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We investigate properties of low-energy QCD in a finite spatial volume, but with arbitrary temperature.
In the limit of small temperature and small cube size compared to the pion Compton wavelength, Leutwyler
has shown that the effective theory describing low-energy QCD reduces to that of quantum mechanics on
the coset manifold, which is the so-called delta regime of chiral perturbation theory. We solve this quantum
mechanics analytically for the case of a Uð1ÞL ×Uð1ÞR subgroup of chiral symmetry, and numerically for
the case of SUð2ÞL × SUð2ÞR. We utilize the quantum mechanical spectrum to compute the mass gap and
chiral condensate, and investigate symmetry restoration in a finite spatial volume as a function of
temperature. Because we obtain the spectrum for nonzero values of the quark mass, we are able to
interpolate between the rigid rotor limit, which emerges at vanishing quark mass, and the harmonic
approximation, which is referred to as the p regime. We find that the applicability of perturbation theory
about the rotor limit largely requires lighter-than-physical quarks. As a stringent check of our results, we
raise the temperature to that of the inverse cube size. When this condition is met, the quantum mechanics
reduces to a matrix model. The condensate we obtain in this limit agrees with that determined analytically
in the epsilon regime.
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I. INTRODUCTION

One of the hallmark features of low-energy QCD is
spontaneous breaking of chiral symmetry. In the limit that
the up and down quarks are massless, the QCD action has a
Uð2ÞL ×Uð2ÞR symmetry; however, the Uð1ÞA subgroup
does not remain a symmetry at the quantum level. The
remaining chiral symmetry, however, is hidden due to
spontaneous symmetry breakdown to the vector isospin
subgroup, SUð2ÞL × SUð2ÞR → SUð2ÞV . While the up and
down quarks are not massless in nature, their masses are
considerably small compared to the QCD scale, and the
pions can be identified as the pseudo-Goldstone bosons of
the broken chiral symmetry. Further consequences of the
Goldstone-boson character of pions are comprehensively
detailed in [1], for example.
The fact that spontaneous chiral symmetry breaking

occurs has now been rigorously established from first-
principles lattice gauge theory computations, see [2] for an
overview of lattice QCD methods. These computations are
necessarily performed using a finite, Euclidean spacetime
volume. In the absence of explicit chiral symmetry break-
ing introduced by the quark mass, the order parameter for
chiral symmetry breaking, the so-called chiral condensate,
remains zero in finite volume. With finitely many degrees
of freedom, quantum tunneling becomes possible and the

dynamics dictate that equivalent vacua are averaged over in
a chirally symmetric fashion. This finite-volume restoration
of chiral symmetry has been elucidated directly from the
low-energy effective field theory [3]. The effective theory is
chiral perturbation theory, and, in small, periodic spacetime
volumes, the zero four-momentum mode of the pion
becomes strongly coupled upsetting the infinite-volume
power counting of the effective theory. Ultimately the
nonperturbative dynamics of the zero mode leads to
depletion of the chiral condensate, and this effect can be
computed utilizing a modified power-counting scheme that
appropriately treats the zero mode. This is referred to as the
ε regime of chiral perturbation theory, and its region of
applicability is depicted in Fig. 1. Infinite-volume proper-
ties of low-energy QCD remain accessible through corre-
lation functions that are determined in the ε regime;
however, one must account for the nontrivial finite-volume
effects from zero modes. For early work in this direction,
see [4,5]. This regime of finite-volume QCD has received a
lot of attention, in particular due to the relation to random-
matrix theory and the spectrum of the Dirac operator [6,7].
For a detailed review, see [8].
With nonzero quark mass, and near the infinite-volume

limit, one enters the p regime [10], in which the standard
power counting of chiral perturbation theory applies, albeit
with quantized momentum modes. Power-counting
schemes for regimes intermediate to these two have also
been proposed [11,12]. In this work, we focus on a
considerably less explored regime of finite-volume chiral
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perturbation theory. This is the δ regime, which was first
explicated by Leutwyler [9]. It emerges when the pion
Compton wavelength is larger than the spatial box size, for
which the zero three-momentum mode becomes strongly
coupled. For two massless light-quark flavors, the theory
can be elegantly cast into a quantum mechanical
Hamiltonian for an SOð4Þ rigid rotor. The spectrum
exhibits a nonzero gap at vanishing quark mass, which
accordingly demonstrates that chiral symmetry does not
break at finite spatial volume. Corrections to the rotor
spectrum have been determined using the next-to-leading-
order chiral Lagrangian in the chiral limit [13,14]. The mass
gap in the δ regime was the focus of a lattice QCD
computation, although results were extrapolated from the
p regime [15]. Connections of the rotor limit of QCD to
analogous condensed matter systems have also been
described [16]. In the present paper, our central concern
is with extending the range of existing δ-regime results to
nonzero values of the quark mass. We treat the quark mass
according to the original δ-regime power counting, rather
than additionally considering a perturbative quark mass
expansion, see Fig. 1. In the case of two light-quark flavors
in the δ regime, the determined quark mass dependence
allows us to investigate the rather rich behavior of the low-
energy spectrum. Additionally we investigate the limita-
tions of a perturbative treatment of the quark mass.
Our discussion is ordered in the following way. In

Sec. II, salient features of low-energy QCD in the δ regime
are reviewed, including the δ-regime power counting. In

Sec. III, we treat the case of a Uð1ÞL ×Uð1ÞR subgroup of
chiral symmetry. We obtain the energy spectrum and
partition function from eigenstates of the corresponding
δ-regime Hamiltonian, which is solvable in terms of the
well-known Mathieu functions. The spectrum is utilized to
determine the mass gap and chiral condensate, and their
properties are explored as a function of quark mass and
volume. Additionally the results are confirmed by matching
up with the ε regime. In Sec. IV, the two-flavor case of
chiral symmetry is treated. This section follows the same
evolution; however, eigenvalues of the Hamiltonian are
determined numerically from matrix inversion, and results
are checked against known limiting cases. Our findings are
summarized in Sec. V.

II. POWER COUNTING IN THE DELTA REGIME

Let us start with the effective low-energy represen-
tation of the QCD partition function Z ¼ trðe−βHQCDÞ given
by [17]

Z ¼
Z

DUe−S½U�; ð1Þ

where U is an SUðNfÞ-valued field that parametrizes
the coset manifold, SUðNfÞL × SUðNfÞR=SUðNfÞV . The
Goldstone pion fields ϕ are embedded in U as

U ¼ expði
ffiffiffi
2

p
ϕ=FÞ; ð2Þ

where F is the chiral limit value of the pion decay
constant. The low-energy dynamics of pions is described
by the action S, which is written in terms of a Lagrangian
density L,

S ¼
Z

β

0

dt
Z

L

0

dxLð∂μU;UÞ; ð3Þ

with L as the length of each spatial dimension, and β ¼
1=T as the length of the Euclidean time direction. At
leading order, the chiral Lagrangian density appears as

L ¼ F2

4
tr½∂μU†∂μU − 2BMðU† þ UÞ�; ð4Þ

with M as the quark mass matrix, and the parameter
B is related to the chiral limit value of the quark con-
densate,1 namely hψ̄ψi ¼ −NfBF2.
To completely define the theory in Eq. (3), we take the

pion fields ϕ to satisfy periodic boundary conditions in
both space and time. This will be the case for lattice
simulations of QCD wherein the quark fields satisfy either

FIG. 1. Different regimes of the low-energy chiral expansion in
finite volume (figure adapted from [9]). We label the regimes
using schematic, color-coded regions of applicability that depend
on temperature and pion mass (ε ¼ green, δ ¼ red, p ¼ blue).
We are specifically interested in the heart of the δ regime, and
previous studies have been limited to the slice at Mπ ¼ 0, the
region perturbatively close to this slice, or the region where δ and
p regimes overlap.

1While we have chosen to work with the total condensate
rather than the condensate per flavor, the trivial factor of Nf
ultimately cancels in the condensate ratios presented throughout.
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periodic or antiperiodic boundary conditions in space and
time. Consequently the allowed pion four-momenta pμ are
quantized in modes, nμ, in the form

pμ ¼
�
2π

L
n; 2πTn4

�
; ð5Þ

where nμ ¼ ðn; n4Þ is a four-vector of integers. Expanding
the Lagrangian density to quadratic order in the pion fields,
we seeM2

π ¼ 2Bmq assuming Nf degenerate quark flavors
of mass mq.
In this finite spacetime volume, an interesting regime of

low-energy QCD was pointed out by Leutwyler [9]. Let δ
be a small parameter, and treat

Mπ ∼ T ∼ δ3 and
1

L
∼ δ; ð6Þ

so that the pion Compton wavelength is larger than the box
size, MπL ∼ δ2, but the small temperature T is the same
order as the pion mass, Mπ=T ¼ Mπβ ∼ 1. The pion
propagator for the mode nμ has the behavior

GðnμÞ ¼
��

2πn
L

�
2

þ ð2πTn4Þ2 þM2
π

�
−1
: ð7Þ

Propagation of modes with n ≠ 0 scale with δ−2, while
spatial zero modes, i.e. those with n ¼ 0, scale with δ−6.
Vertices from the leading-order chiral Lagrangian scale
differently depending on the momentum. A quark mass
insertion or two temporal derivatives both scale as M2

π ,
p2
0 ∼ δ6, while a spatial gradient vertex behaves like

p2 ∼ δ2. Each loop in a Feynman diagram contributes a
factor of the inverse spacetime volume, namely
ðβL3Þ−1 ∼ δ6

A typical Feynman diagram having l loops, I internal
lines, and V vertices has a counting depending on
which modes are spatial zero modes and which are not.
For all spatial zero modes propagating in the diagram, we
have

n ¼ 0∶ δ6ðl−IþVÞ ¼ δ6; ð8Þ
whereas for all nonzero modes, we have

n ≠ 0∶ δ6l−2Iþ2V ¼ δ6δ4ðl−1Þ: ð9Þ
For the nonzero modes, there is thus a loop expansion.2 On
the contrary, there is no loop expansion for the spatial
zero modes, and we must work nonperturbatively in the

leading-order chiral Lagrangian. To accomplish this, we
use the collective variableUðtÞ defined through the relation

UðxÞ ¼
ffiffiffiffiffiffiffiffiffi
UðtÞ

p
exp ½i

ffiffiffi
2

p
φðxÞ=F�

ffiffiffiffiffiffiffiffiffi
UðtÞ

p
; ð10Þ

where

φðxÞ ¼
X
n≠0;n4

eip·x ~φnμ ð11Þ

has been defined to exclude the spatial zero modes of the
pion fields. With the parametrization in Eq. (10), the chiral
action for spatial zero modes becomes

S ¼ F2L3

4

Z
β

0

dt tr

�∂U†

∂t
∂U
∂t − 2BMðU† þUÞ

�
; ð12Þ

up to corrections of order δ2.
As anticipated by the power counting in Eq. (9), there are

one-loop contributions from the functional integral over
the nonzero modes; however, the leading contribution to
the QCD partition function is a mass-independent multi-
plicative factor. Thus in the δ regime we have

Z ¼ Z0trðe−βHÞ; ð13Þ

to Oðδ2Þ, where the effective Hamiltonian is given by

H ¼ −
1

2F2L3
D2 −

1

2
BF2L3tr½MðU† þ UÞ�; ð14Þ

with D2 as the Laplace-Beltrami operator on SUðNfÞ. The
nonzero-mode path integration contributes to the normali-
zation factor Z0. Any contributions arising from the
ambiguity of operator ordering have additionally been
absorbed into this factor, which is possible because the
curvature scalar of SUðNfÞ is constant. The constant Z0 can
be determined from matching to expressions calculated in
the p regime. Up to the overall irrelevant normalization
factor, we have

Z0 ¼ e−βEL; ð15Þ

where EL is the contribution to the vacuum energy, and is
given by [9]

EL ¼ N2
f − 1

2L

�
−γ0 þ

Nf

ð2FLÞ2
�
; ð16Þ

for the case of Nf quark flavors. Here γ0 is a pure number
characteristic of a spatial torus, and is given by

γ0 ¼
1

π2
X
n≠0

1

n4
: ð17Þ

2In general there are Feynman diagrams with both zero and
nonzero modes propagating. These will appear in the power
counting between the two extremes detailed above. As we work
to leading order in the δ regime, such contributions are beyond
our consideration.
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The term in the vacuum energy involving γ0 can be
interpreted as arising from the Casimir effect, while the
small repulsive contribution is a perturbative correction due
to nonzero-mode scattering in the vacuum.
For ease below, we work with the dimensionless

variables

τ ¼ 2F2L3T; and μ ¼ MπF2L3: ð18Þ

In terms of these variables, the partition function can be
written as

Z ¼ Z0trðe−H=τÞ; ð19Þ

where the dimensionless Hamiltonian is simply

H ¼ −D2 −
μ2

2
trðU† þUÞ: ð20Þ

In what follows, we determine the spectrum of the
Hamiltonian operator H, which is the spectrum in the δ
regime up to the mass-independent shift EL. Of further
consideration is the volume dependence of the chiral
condensate, hψ̄ψiL. More precisely, we focus on the ratio
of the finite-volume condensate to that in infinite volume

Σ ¼ hψ̄ψiL=hψ̄ψi; ð21Þ

because it is QCD renormalization scale and scheme
independent. Notice we treat the temperature dependence
of this quantity as implicit. The condensate is determined
from the derivative of the partition function logarithm

hψ̄ψiL ¼ −
1

βL3

∂ logZ
∂mq

; ð22Þ

from which we see

Σ ¼ τ

Nf

∂ logZ
∂μ2 : ð23Þ

In this work, we restrict our attention to the two-flavor
case, Nf ¼ 2.

III. Uð1ÞL × Uð1ÞR
As the spectrum in the δ regime for the two-flavor case

ultimately requires a numerical approach, we begin by
considering a simpler case which we show is solvable in
terms of special functions. This case is that of an unbroken
Uð1ÞL ×Uð1ÞR subgroup of chiral symmetry, which in
infinite volume is broken down to Uð1ÞV by the formation
of the chiral condensate. This symmetry breaking pattern
can be realized in several ways: for example, the theory of
QCDþ QED with two massless quarks has this symmetry
breaking pattern, for which the sole Goldstone boson is the

neutral pion; an analogous situation occurs in QCD with an
isospin chemical potential [18], or that of QCDwith isospin
twisted boundary conditions [19]. Staggered fermions [20]
on a coarse lattice present an additional example. In this
case, the unbroken Uð1ÞL ×Uð1ÞR subgroup at finite
lattice spacing is contained in the larger chiral symmetry
group of so-called quark taste, SUð4ÞL × SUð4ÞR, see,
e.g. [21,22].

A. Determination of the spectrum

For a theory with residual Uð1ÞL ×Uð1ÞR chiral sym-
metry, the Goldstone manifold is parametrized by a single
angle α, which we can choose to correspond to the
neutral pion. To determine the spectrum in the δ regime,
we must consider the spatial zero mode, which thus has the
form

UðtÞ ¼ exp ½iαðtÞτ3�: ð24Þ

To solve the theory, we obtain the eigenvalues of the
corresponding δ-regime Hamiltonian, which in dimension-
less units reads

H ¼ −
d2

dα2
− 2μ2 cos α: ð25Þ

The corresponding eigenfunctions and eigenvalues are
given by the well-known Mathieu functions and Mathieu
characteristics, respectively, see [23]. Periodicity in the
parametrization of Uð1Þ, namely α≡ αþ 2π, restricts us to
the π-periodic solutions of the Mathieu equation. These
solutions can be further classified by their behavior under
reflection α → −α. This corresponds directly to the parity
transformation of QCD. Even and odd solutions are written
as the Mathieu functions ce2n and se2n, respectively. The
required eigenfunctions of the Hamiltonian H are given by

ΨðeÞ
n ðαÞ ¼ Nce2n

�
α

2
;−4μ2

�
;

ΨðoÞ
n ðαÞ ¼ Nse2n

�
α

2
;−4μ2

�
; ð26Þ

where n ¼ 0; 1; 2;… for the even solutions, and n ¼
1; 2;… for the odd. The multiplicative factor of N is
determined by the wave function normalization, and,
although we do not write it explicitly, the normalization
generally depends on the parameters n and μ2. Notice that π
periodicity of the Mathieu functions implies the condition
Ψðαþ 2πÞ ¼ ΨðαÞ. The energy eigenvalues are given by

EðeÞ
n ¼ 1

4
a2nð−4μ2Þ;

EðoÞ
n ¼ 1

4
b2nð−4μ2Þ; ð27Þ
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for the corresponding even and odd solutions. These are
written in terms of a2n and b2n which are referred to as
Mathieu characteristics.
The low-lying spectrum of H is shown as a function of

μ2 in Fig. 2. The ground state (vacuum) is nondegenerate,
while the even and odd solutions for a given n > 0 are
degenerate at μ2 ¼ 0. Away from this value, the levels split,
with a splitting that increases monotonically with μ2.
Higher-lying states exhibit successively smaller splittings
at fixed μ2, and hence parity doubling occurs. This is a
manifestation of chiral symmetry restoration in the excited-
state spectrum.

B. Mass gap

A simple quantity to investigate is the mass gap. From
the spectrum, we see that the first excitation above the
vacuum has odd parity and thus the quantum numbers of
the neutral pion. The mass gap ΔM is given by

ΔM ¼ 1

4
½b2ð−4μ2Þ − a0ð−4μ2Þ�: ð28Þ

At vanishing quark mass, μ ¼ 0, the mass gap is non-
vanishing because chiral symmetry is restored in finite
volume excluding the possibility of a Goldstone pion.
Increasing μ2 away from zero introduces explicit chiral
symmetry breaking, thus increasing the gap. This behavior
is exhibited in Fig. 3, where we also compare the behavior
of the mass gap computed in two limits using standard
Rayleigh-Schrödinger perturbation theory. These results
reproduce the known limiting behavior of the Mathieu
characteristics [23], but are sufficiently rich in physics to
warrant further discussion.
At vanishing μ2, the effective Hamiltonian H is that of a

Uð1Þ rigid rotor (RR). Treating the quark mass in

perturbation theory we attain the mass gap

ΔMRR ¼ 1þ 5

3
μ4 −

751

216
μ8 þOðμ12Þ; ð29Þ

where the μ4 term we deem next-to-leading order (NLO)
and arises in second-order perturbation theory, while the μ8

term we deem next-to-next-to-leading order (NNLO) and
arises in fourth-order perturbation theory.
In the opposite limit of large μ2, the potential term in H

forces the angle α near zero about which a harmonic
approximation emerges. This resulting Hamiltonian H can
be easily identified as the one-dimensional simple har-
monic oscillator (SHO). Perturbation theory can be per-
formed about the harmonic limit, and leads to the mass gap

ΔMSHO ¼ 2μ −
5

16
−

9

256
μ−1 þOðμ−2Þ: ð30Þ

The first term is merely the difference in oscillator
quanta, whereas the second term arises in first-order
perturbation theory (NLO), and the third term arises at
second order (NNLO). Reinstating dimensionful parame-
ters, we appropriately recover the pion mass from the mass
gap in the infinite-volume limit; specifically, we have

1
2F2L3 ΔMSHO ¼L→∞Mπ .
From Fig. 3, we see that the SHO approximation appears

to work for the mass gap down to μ2 ∼ 1, which is quite
fortuitous given that the harmonic approximation emerges
from considering μ ≫ 1. One should keep in mind that for
values of MπL ≫ 1, the nonzero modes are no longer
suppressed, and these must be accounted for to recover the

FIG. 2. Low-lying spectrum as a function of the parameter μ2 ¼
ðMπLÞ2ðFLÞ4 in the δ regime of Uð1ÞL × Uð1ÞR chiral pertur-
bation theory. The ground-state (vacuum) energy is shown,
n ¼ 0, as well as the energies of even- and odd-parity states
with n ¼ 1, 2. States of even and odd parity split as a function of
μ2, with the even-parity states pushed toward larger energies.

FIG. 3. Mass gap in the δ regime of Uð1ÞL × Uð1ÞR. The gap
ΔM given in Eq. (28) is plotted as a function of μ2. Superimposed
are results for the mass gap computed in perturbation theory for
small μ2, the RR limit, and large μ2, the SHO limit. For the RR
limit, the NNLO result is not much more accurate than NLO;
however, it is noteworthy that the corrections alternate in sign.
For the SHO limit, the NLO and NNLO results are quite similar,
and we have opted to plot the (slightly better) NNLO result.
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full results of the p regime. Our harmonic approximation
treats only the zero-momentum mode.
In the opposite limit, which is the chiral limit, we see that

the RR approximation for the mass gap remains under
perturbative control up to values of μ2 ≲ 2

5
. In order for

chiral expansion itself to be valid, we require ð2FLÞ2 ≫ 1.
Assuming that FL > 1 is sufficient leads to the requirement
that L > 2.2 fm. In turn, requiring the RR approximation

to be under control requires MπL≲
ffiffi
2
5

q
. Combining the

two constraints leads to a requirement on the pion mass,
namely Mπ ≲ 60 MeV. While this condition is quite pro-
hibitive for lattice QCD computations, it can be avoided by
treating the quark mass nonperturbatively, as we have done
in Eq. (28).

C. Chiral condensate

The chiral condensate is a quantity of particular interest
in the δ regime. At zero temperature, the chiral condensate
can be determined solely from the quark mass derivative of
the ground-state energy eigenvalue. In particular, we have
the condensate ratio of finite to infinite volume given
simply by the expression

ΣðT ¼ 0Þ ¼ −
1

8

∂a0ð−4μ2Þ
∂μ2 : ð31Þ

The behavior of this ratio is shown in Fig. 4. In the chiral
limit, μ2 ¼ 0, the condensate identically vanishes because
there is no spontaneous chiral symmetry breaking at finite
volume. A nonzero value of the quark mass introduces
explicit breaking of chiral symmetry, and a bias for the
vacuum expectation value of the coset field to lie near unity,

corresponding to α ¼ 0. Consequently the condensate
increases rapidly away from μ2 ¼ 0.
Also shown in the figure are perturbative approximations

to the chiral condensate about the RR limit. Up to NNLO
accuracy, we have

ΣRRðT ¼ 0Þ ¼ 2μ2 − 7μ6 þOðμ10Þ: ð32Þ

From the figure, the expansion appears to be under control
up to μ2 ≲ 1

4
, which corresponds to pion masses Mπ ≲

45 MeV on the minimally sufficient volume of L ¼ 2.2 fm.
Approaching from the opposite limit,MπL≳ 1, the SHO

approximation for the chiral condensate works remarkably
well. Using only the energy eigenvalues of the simple
harmonic oscillator without any perturbative corrections,
we have the behavior of the zero-temperature condensate as

ΣSHOðT ¼ 0Þ ¼ 1 −
1

4
μ−1 þOðμ−2Þ; ð33Þ

which produces the LO curve shown in the figure. While
the SHO result approaches the infinite-volume limit slowly,
i.e. only with a power of L, namely the volume L−3, we
must remember that for MπL ≫ 1 contributions from
nonzero modes become important. Their summation results
in exponential scaling, ∝ e−MπL=ðMπLÞ3=2, rather than
power law.
As we increase the temperature away from zero, we

require excited-state contributions to the partition function,
which takes the form

Z ¼ e−
a0ð−4μ2Þ

4τ þ
X∞
n¼1

½e−a2nð−4μ2Þ
4τ þ e−

b2nð−4μ2Þ
4τ �: ð34Þ

The temperature dependence of the chiral condensate ratio
determined using the partition function is exhibited in
Fig. 5. Increasing the temperature not surprisingly melts the

FIG. 4. Chiral condensate in the δ regime of Uð1ÞL × Uð1ÞR.
Shown is the ratio of the chiral condensate at finite volume to that
in infinite volume at vanishing temperature, T ¼ 0. Results
obtained from perturbing about the RR limit are shown along
with the SHO approximation. Corrections about the RR limit
alternate in sign.

FIG. 5. Chiral condensate in the δ regime of Uð1ÞL ×Uð1ÞR as
a function of mass μ2 and temperature. Shown is the ratio of the
chiral condensate at finite volume to that in infinite volume for
several values of the temperature, τ ¼ 2F2L3T.
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condensate. To determine the condensate, we truncate the
infinite sum over energy levels. For the range of temper-
atures considered, 0 ≤ τ ≤ 2, a total of 13 states, corre-
sponding to even- and odd-parity states with n ≤ 6, is more
than sufficient to guarantee convergence of the condensate.
The maximum temperature plotted τ ¼ 2 corresponds to
T ¼ 90 MeV in physical units for the minimal box
size, L ¼ 2.2 fm.
Finally we increase the temperature to satisfy the

condition T ¼ L−1, so that now Mπβ ≪ 1. Under this
condition, the δ-regime condensate can be verified against
the known result from the ε regime. In the latter regime, the
pion fluctuations are frozen into the zero four-momentum
mode, nμ ¼ ð0; 0; 0; 0Þ, and there is no “momentum” on the
group manifold driving the selection of the ground state.
Instead, all values of α are averaged over with a weight that
depends on the potential. The trace required for the
partition function is then to be evaluated in the group-
coordinate basis

Z ¼ trðe−βHÞ ¼ 1

2π

Z
2π

0

d α e2s cos α; ð35Þ

where we have introduced the variable s ¼ μ2=τ, which
satisfies s ¼ 1

2
ðMπLÞ2ðFLÞ2, for the particular value

T ¼ L−1. From this ε-regime partition function, one easily
derives the finite-volume-to-infinite-volume ratio of the
chiral condensate

ΣðsÞ ¼ I1ð2sÞ=I0ð2sÞ; ð36Þ
where the InðxÞ are modified Bessel functions. To compare
this with the δ-regime result, we evaluate the latter by
writing the mass in terms of the scaling variable s, namely
μ2 ¼ sτ ¼ 2sðFLÞ2. For the convergence of the chiral
expansion, we need FL≳ 1, and, in practice, we choose
the value FL ¼ 2 to match the δ- and ε-regime results. This
corresponds to a temperature of T ¼ 45 MeV, where only a
few excited states are required in the partition function,
Eq. (34). Convergence with the number of states is
demonstrated in Fig. 6. Notice the increased allowance
of contributions from higher-lying states serves to melt the
condensate, as chiral symmetry becomes restored in the
spectrum of excited states. Having examined low-energy
QCD in the δ regime ofUð1ÞL × Uð1ÞR, we now turn to the
case of SUð2ÞL × SUð2ÞR.

IV. SUð2ÞL × SUð2ÞR
We begin our investigation of low-energy QCD in the δ

regime of SUð2ÞL × SUð2ÞR with a brief discussion of our
parametrization of the zero-mode manifold, and the result-
ing Hamiltonian. Next we solve for the eigenstates of zero
isospin, l ¼ 0, for which there is an exact solution. This
solution enables us to analytically determine the finite-
volume modification of the chiral condensate at zero

temperature. To obtain the spectrum of states with non-
vanishing isospin, l ≠ 0, we use a numerical method, for
which comparison with the exact l ¼ 0 result proves
beneficial. As in Sec. III, we calculate the mass gap, the
finite-volume modification to the chiral condensate at
vanishing and nonvanishing temperature, and finally we
show our results for the condensate appropriately match
onto those determined in the ε regime.

A. Setup

For the case of SUð2ÞL × SUð2ÞR symmetry in the δ
regime, the spatial zero mode of the coset manifold must be
treated nonperturbatively. Accordingly we adopt the stan-
dard parametrization

UðtÞ ¼ exp ½iαðtÞn̂ðtÞ · τ� ð37Þ
written in terms of the angle α and the vector n̂ of unit
normalization, namely n̂ · n̂ ¼ 1. The normalization of the
isospin generators is such that we restrict the angle α to
0 ≤ α < 2π. The δ-regime Hamiltonian is determined from
Eq. (20), with the Laplace-Beltrami operatorD2 having the
general form

D2 ¼ 1ffiffiffi
g

p ∂a
ffiffiffi
g

p
gab∂b; ð38Þ

where gab as the induced metric on the coset manifold,
which is given by

gab ¼
1

2
tr½∂aU†∂bU�; ð39Þ

and satisfies gabgbc ¼ δac. In the Laplace-Beltrami oper-
ator, g is the determinant of the metric gab.

FIG. 6. Chiral condensate in the ε regime of Uð1ÞL × Uð1ÞR.
Also shown is the convergence of the δ-regime condensate with
the quantum number n (including both even- and odd-parity
states for each n). In order to make this comparison, we set FL ¼
2 corresponding to a temperature of T ¼ 45 MeV. With n ≤ 4, the
condensate ratio is indistinguishable from that determined di-
rectly in the ε regime, which we label with n ≤ ∞.
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For the particular case of the coset U parametrized by
Eq. (37), we arrive at the δ-regime Hamiltonian

H ¼ −
1

sin2α

� ∂
∂α sin

2α
∂
∂αþ L2

�
− 2μ2 cos α; ð40Þ

upon combining the Laplace-Beltrami operator on the
manifold described by U with the quark mass term of
the chiral Lagrangian density. The quark mass term
introduces breaking of the SUð2ÞL × SUð2ÞR symmetry
of the Hamiltonian. The vector subgroup SUð2ÞV , however,
remains intact. Consequently the spectrum is described by
irreducible representations of SUð2ÞV , which are charac-
terized by the isospin quantum number l. This quantum
number appears in the eigenvalues of L2 in the familiar
way, lðlþ 1Þ. On account of isospin symmetry, eigen-
functions of this δ-regime Hamiltonian are of the form

ΨnlmðUÞ ¼ ΨnlðαÞYlmðθ;ϕÞ: ð41Þ

The Ylmðθ;ϕÞ are, of course, the familiar spherical
harmonics which are the characteristic functions for the
isospin states jl; mi. Thus, the crux of our task ahead lies in
finding the spectrum of H by determining the eigenfunc-
tions ΨnlðαÞ.
To solve for these eigenfunctions, it is useful to cast the

differential equation for the energy eigenvalues in a reduced
form by making the replacement, ΨnlðαÞ ¼ ψnlðαÞ= sin α,
in which ψnlðαÞ is reminiscent of the reduced radial wave
function from quantum mechanics. As a result, the energy
eigenvalues Enl are determined by solving the differential
equation

�
−

d2

dα2
− 1þ lðlþ 1Þ

sin2α
− 2μ2 cos α

�
ψnlðαÞ ¼ EnlψnlðαÞ:

ð42Þ

In accordance with the Uð1ÞL ×Uð1ÞR subgroup consid-
ered in Sec. III, the equivalence of α modulo 2π leads to
periodicity of the wave function in α; however, there are
further constraints imposed due to the double cover of
SOð3Þ, and the introduction of the reduced wave function,
ψnlðαÞ. We can utilize the double cover to relate the wave
function ψnlðαÞ on the interval 0 ≤ α ≤ π to that on
π < α < 2π, namely ψnlðαþ πÞ ¼ ψnlðπ − αÞ. As a
result, we need only determine the wave function for
0 ≤ α ≤ π; hence, the global properties of the manifold
SUð2Þ ¼ SOð3Þ × Z2 do not affect the spectrum. Finally
the introduction of the reduced wave function gives us
boundary conditions. As the original wave functionΨnlðαÞ
must be finite to guarantee a normalizable solution, we
require that ψnlð0Þ ¼ ψnlðπÞ ¼ 0. Enforcing these
conditions then determines a discrete set of energy
eigenvalues, Enl.

B. Determining the spectrum

To determine the spectrum via Eq. (42), we first
specialize to the case of isosinglet states, l ¼ 0. With
vanishing isospin, the eigenvalue problem is solved in
terms of the odd Mathieu functions in the interval
0 ≤ α ≤ π, specifically of the form

ψn0ðαÞ ¼ Nse2n

�
α

2
;−4μ2

�
; ð43Þ

where n ¼ 1; 2; � � �. Notice that the even Mathieu function
solutions are disallowed by the imposition of boundary
conditions, namely ce2nð0;−4μ2Þ ≠ 0. The isosinglet
spectrum is therefore determined by the odd Mathieu
characteristics

En0 ¼
1

4
b2nð−4μ2Þ − 1: ð44Þ

These analytic solutions will prove useful in checking our
numerical results.
In order to numerically solve for the eigenvalues with

arbitrary isospin l, we cast the differential equation,
Eq. (42), into a matrix eigenvalue equation. To accomplish
this, we discretize the variable α into N mesh points of even
spacing Δα over the whole angular interval π. As a result, α
takes on the discrete values αj ¼ jΔα, with Δα ¼ π=N. On
the mesh, the second derivative is replaced by the finite-
difference approximation

d2ψnlðαjÞ
dα2

→
ψnlðαjþ1Þ − 2ψnlðαjÞ þ ψnlðαj−1Þ

Δα2
; ð45Þ

which is valid up to terms of OðΔα2Þ. Using the notation
ψnlðαjÞ≡ ðψnlÞj for the eigenvectors, the finite-difference
approximation to the differential equation takes on the form

XN
k¼0

½Mlðμ2Þ�jkðψnlÞk ¼ EnlðψnlÞj; ð46Þ

where the matrix Mlðμ2Þ has the form Mlðμ2Þ ¼
T þ Vlðμ2Þ, with the kinetic term of the differential
equation giving rise to the matrix

T jk ¼ −
1

Δα2
½δj;kþ1 − 2δjk þ δj;k−1�; ð47Þ

and the matrix potential emerging in diagonal form

½Vlðμ2Þ�jk ¼ δjk

�
−1þ lðlþ 1Þ

sin2αj
− 2μ2 cos αj

�
: ð48Þ

To enforce Dirichlet boundary conditions at α ¼ 0 and
α ¼ π, we define δj;0 ¼ δj;N ¼ 0 in Eq. (47). Thus for a
mesh of N points, the matrixMlðμ2Þ is a tridiagonal square
matrix of dimension N − 1. The low-lying eigenvalues can
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be found very efficiently using commercially available
sparse-matrix techniques. Notice we must perform the
matrix diagonalization for each isospin l and as a function
of the parameter μ2.
In order to check how well the finite-difference approxi-

mation is working, we compare our numerically deter-
mined results with the spectrum we obtained analytically
for l ¼ 0. In Fig. 7, we show how the numerical approxi-
mation converges to the exact solution as the number of
mesh points N increases. One should notice that on a fixed
mesh of sizeN, the approximation is generally less accurate
for the excited states of increasing n. We found the value
N ¼ 80 is more than sufficient to guarantee the accuracy of
our results (not just for the spectrum, but for the condensate
calculated below).
Having checked the convergence of our numerical

solution, we now present the spectrum for general isospin
quantum number l. The low-lying spectrum is plotted as a
function of μ2 in Fig. 8. Notice that the principle quantum
number n has been defined to start at unity in order to
match with the l ¼ 0 case. As is well known, there is a high
degree of degeneracy exhibited in the spectrum in the chiral
limit, μ2 ¼ 0. Each energy level n has an n2 degeneracy and
contains states of differing isospin. As μ2 increases, chiral
symmetry is explicitly broken but isospin remains intact.
We observe this symmetry breaking through mass splittings
that depend upon the values of the isospin quantum number
l. The lower-lying states correspond to those with larger
isospin. For large μ2, a new degeneracy asymptotically
appears dictated by the SUð3Þ symmetry of the three-
dimensional isotropic quantum harmonic oscillator.
Quantum numbers of the low-lying multiplets are shown
in Fig. 9, along with the evolution of the spectrum as a
function of μ2. Excitation energies relative to the first
excitation are plotted. These ratios are defined as

ΔEnl ¼ Enl − E10

E21 − E10

: ð49Þ

The RR and SHO limits are investigated in detail for the
mass gap below.

C. SUð2ÞL × SUð2ÞR mass gap

Using the spectrum determined in the δ regime, we
compute the mass gap for SUð2ÞL × SUð2ÞR as a function
of μ2. As in the Uð1ÞL ×Uð1ÞR case, the first excited state
in the spectrum corresponds to the pion; however, it is now
a degenerate triplet with isospin l ¼ 1. The m ¼ �1, 0
states correspond to the charged and neutral pions, respec-
tively. The mass gap ΔM is thus given by

ΔM ¼ E21 − E10; ð50Þ

where the first excited-state energy E21 must be determined
numerically. As in the previous case, the gap is non-
vanishing in the chiral limit because there is no sponta-
neous symmetry breaking in finite volume (and hence no
Goldstone pions). Compared to the Uð1ÞL ×Uð1ÞR, the
mass gap is larger in the present case. This fact can be
attributed to the general flavor dependence of the mass gap
in the δ regime, namely [9]

ΔMðμ2 ¼ 0Þ ¼ 2
N2

f − 1

Nf
; ð51Þ

where Nf is the number of massless quark flavors, and we
have rewritten the result in our dimensionless units. The
mass gap determined as a function of μ2 is shown in
Fig. 10. The behavior of the gap in limiting cases of μ can

FIG. 7. The first seven energy eigenvalues of the SUð2ÞL ×
SUð2ÞR δ-regime Hamiltonian with the vanishing isospin, l ¼ 0.
The energies En0ðμ2Þ are given analytically in Eq. (44). Also
depicted are numerical solutions to these energies for various
values of the number of mesh points N. Values obtained for
N ¼ 80 are nearly identical to the analytic result.

FIG. 8. Low-lying spectrum in the δ regime of SUð2ÞL ×
SUð2ÞR chiral perturbation theory as a function of the mass
parameter μ2 ¼ ðMπLÞ2ðFLÞ4. The ground-state (vacuum) en-
ergy is shown and labeled by n ¼ 1, as well as the higher levels
with n ¼ 2; 3;…. The splittings observed correspond to different
isospin states, with the smaller energies shown corresponding to
larger l values.
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easily be discerned using Rayleigh-Schrödinger perturba-
tion theory.
At vanishing μ2, the effective HamiltonianH is that of an

SOð4Þ RR.3 The perturbative expansion of the mass gap is
found to be

ΔMRR ¼ 3þ 1

5
μ4 −

193

9000
μ8 þOðμ12Þ: ð52Þ

The leading-order term is that in Eq. (51), while the μ4 term
we deem NLO arises in second-order perturbation theory,
and agrees with the result found in [9]. The μ8 term we
deem NNLO and we have determined it using fourth-order
perturbation theory.
In the opposite limit of large μ2, the potential term in H

dominates and freezes the angle α near zero. Fluctuations
about this value lead to a harmonic approximation, and the
Hamiltonian becomes that of the three-dimensional SHO.
The mass gap calculated in the SHO approximation is

ΔMSHO ¼ 2μþ 1

4
þ 13

32μ
þOðμ−2Þ; ð53Þ

where the first term is merely the difference in oscillator
quanta. The second term (NLO) includes terms that arise in

first-order perturbation theory, and constant isospin-
dependent terms. The third term (NNLO) comes from
considering terms to μ−1 order, as well as terms one order
higher in perturbation theory. Reinstating the dimensionful
parameters, we appropriately recover the pion mass
from the mass gap in the infinite-volume limit, namely

1
2F2L3 ΔMSHO ¼L→∞

Mπ .
Referring back to Fig. 10, we see that the SHO

approximation appears to work well for the mass gap
down to values of μ2 ≳ 4. In the opposite limit, we see
that the RR approximation remains under perturbative

FIG. 9. Excitation energies ΔEnl defined in Eq. (49) shown as a function of μ2. At vanishing μ2, the energy eigenstates fall into
irreducible representations of the SOð4Þ rigid rotor, while at asymptotically large μ2, one encounters SUð3Þ multiplets of the isotropic
harmonic oscillator. The spectrum at intermediate values of μ2 maintains only SUð2ÞV isospin symmetry. The level crossing appearing in
the plot occurs between states of differing isospin that cannot mix.

FIG. 10. Mass gap in the δ regime of SUð2ÞL × SUð2ÞR. The
gap ΔM given in Eq. (50) is plotted as a function of μ2.
Superimposed are results for the mass gap computed in pertur-
bation theory for small μ2, the 4D RR limit, and large μ2, the 3D
SHO limit. Corrections about the RR limit alternate in sign, as
shown, while those about the SHO limit are positive.

3While matrix elements required in perturbation theory about
the RR and SHO limits can both be evaluated using algebraic
means, we found the explicit form of the eigenfunctions useful
for additional checks on our numerical solutions. For instance,
the wave functions in the RR limit have the form
ψnlðαÞ ¼ Nðsin αÞlþ1Clþ1

n−l−1ðcos αÞ, with Ca
bðxÞ denoting the

Gegenbauer polynomials. These wave functions are particularly
useful for testing numerical solutions with nonvanishing isospin.
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control up to values of μ2 ≲ 3
2
, which, following the

reasoning of the Uð1ÞL ×Uð1ÞR case, corresponds to a
restriction on the pion mass of Mπ ≲ 110 MeV using a
length of L ¼ 2.2 fm.

D. SUð2ÞL × SUð2ÞR chiral condensate

We now utilize our solution for the spectrum of
SUð2ÞL × SUð2ÞR chiral perturbation theory in the δ
regime to calculate the chiral condensate. At vanishing
temperature, T ¼ 0, we can determine the condensate
analytically. The sole occupied state is the isosinglet
ground state, and thus the ratio of finite- to infinite-volume
condensates is given by

ΣðT ¼ 0Þ ¼ −
1

8

∂b2ð−4μ2Þ
∂μ2 : ð54Þ

The behavior of the chiral condensate is depicted in Fig. 11.
As expected, the condensate identically vanishes when
μ2 ¼ 0 on account of the absence of spontaneous symmetry
breaking at finite volume. The introduction of a quark mass
brings with it the explicit symmetry breaking that appears
in the potential of the δ-regime Hamiltonian.
Also shown in the figure are the limiting cases of μ2

dependence, between which the condensate determined
from Eq. (54) nicely interpolates. The behavior in the
limiting cases is determined as follows. About the RR limit
we have, up to NNLO accuracy,

ΣRRðT ¼ 0Þ ¼ 1

3
μ2 −

5

108
μ6 þOðμ10Þ: ð55Þ

In contrast to the Uð1ÞL ×Uð1ÞR condensate the RR
approximation continues to perform well up to values of

μ2 ≲ 1. The RR approximation for the condensate is seen to
be only a little less effective than the same approximation
for the mass gap. This loss of effectiveness occurs because
the zeroth-order term in the expansion of the condensate
vanishes. The upper bound on μ2 for the condensate in the
RR approximation corresponds to a pion mass satisfying
Mπ ≲ 90 MeV, for L ¼ 2.2 fm. Taking up the opposite
limit, MπL≳ 1, we have the SHO approximation. It works
nearly as good as that in the Uð1ÞL ×Uð1ÞR case. The
distinction of keeping LO and NLO terms in the energy is
moot because the NLO term is constant, and does not
survive differentiation with respect to μ2. For the SHO
condensate, we have

ΣSHOðT ¼ 0Þ ¼ 1 −
3

4
μ−1 þOðμ−2Þ: ð56Þ

The condensate approaches the infinite-volume limit
by the same power of the volume, namely L−3, as in the
Uð1ÞL ×Uð1ÞR case; however, the differing numerical
factor of N2

f − 1 ¼ 3 makes it a slower approach. As
one nears the infinite-volume limit, of course, one must
add contributions from the nonzero modes. Summing these
contributions produces exponentially small finite-volume
effects.
Increasing the temperature requires contributions to the

condensate from excited states. We consider low temper-
atures for which truncation of the partition function is a
good approximation. To this end, we use the same temper-
ature range employed in the Uð1ÞL × Uð1ÞR case, and
include states up to and including those corresponding to
n ¼ 7. In order to compute the condensate, we account for
the isospin degeneracy with proper factors of gl ¼ 2lþ 1,
and we include in total 28 distinct states specified by 1 ≤
n ≤ 7 with 0 ≤ l ≤ n. Beyond this number of states, we
see diminishing returns in accuracy for the highest temper-
ature considered. The finite-temperature behavior of the
chiral condensate is shown in Fig. 12. Comparing to
Uð1ÞL ×Uð1ÞR, we see the condensate melts more slowly,
but is also not as frozen to begin with.
To compare our computation of the chiral condensate in

the δ regime with that of the ε regime, we must again set the
temperature equal to inverse length, T ¼ L−1, which leads
us to the additional condition Mπβ ≪ 1. In the ε regime,
only the zero four-momentum mode survives to leading
order; therefore, there is no kinetic term in the effective
chiral Lagrangian density. The partition function is then
obtained by integration over the coset manifold (which
appears as a trace over the group coordinates), rather than
by summation over energy eigenstates. The partition
function in the ε regime is thus given by [3]

Z ¼ trðe−βHÞ ¼ 1

2π

Z
2π

0

d α sin2αe2s cosα; ð57Þ

FIG. 11. Chiral condensate in the δ regime of
SUð2ÞL × SUð2ÞR. Shown is the ratio of the chiral condensate
at finite volume to that of infinite volume at zero temperature,
T ¼ 0. Superimposed are the RR approximation up to both NLO
and NNLO accuracy, which exhibits corrections of alternating
sign, and the SHO approximation only to LO accuracy, which
performs quite well.
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where the scaling variable s ¼ 1
2
ðMπLÞ2ðFLÞ2, and sat-

isfies s ¼ μ2=τ when T ¼ L−1. The chiral condensate ratio
can be determined from applying Eq. (23) to this partition
function, and produces

ΣðsÞ ¼ d
ds

log
I1ð2sÞ
2s

; ð58Þ

where I1ðxÞ is a modified Bessel function. In merging the
two regimes, we seek to achieve a similar depiction as in
the Uð1ÞL ×Uð1ÞR case. For this purpose, we choose the
value of FL ¼ ffiffiffi

8
p

which satisfies the condition FL≳ 1,
and corresponds to a temperature of T ∼ 30 MeV. The
convergence with the number of states of the δ-regime
condensate to that of the ε regime is depicted in Fig. 13.
Compared to the Uð1ÞL ×Uð1ÞR case, further excited

states must be included at a lower temperature in order
to have the two regimes meet.

V. SUMMARY

In the above presentation, we investigate the δ regime of
chiral perturbation theory, which was first introduced and
studied in [9]. This regime of low-energy QCD emerges in
a box of finite spatial volume, but with an adjustable
temperature. Specifically pertinent is the requirement that
the Compton wavelength of pions be larger than the length
of the box, 1=Mπ ≫ L. This condition necessitates non-
perturbative treatment of the spatial zero modes of the
Goldstone pions. The universal dynamics of these zero
modes is governed by quantum mechanics on the coset
manifold. Details of the δ-regime power counting are
reviewed in Sec. II. Unlike the ε regime, a novel feature
of the δ regime is the ability to explore the thermal behavior
of the theory, provided the temperature remains in the low-
energy regime, Mπ=T ≲ 1.
We investigate two scenarios of chiral symmetry

relevant in low-energy QCD, namely that of
SUð2ÞL × SUð2ÞR, and its Uð1ÞL ×Uð1ÞR subgroup.
The simpler case of the Uð1ÞL ×Uð1ÞR subgroup is
considered first in Sec. III. The energy spectrum is
determined in terms of the well-known Mathieu func-
tions, see Eq. (27). From the spectrum, we obtain the
mass gap which corresponds to the mass of the neutral
pion in finite volume. Unlike previous studies, we
explore the pion mass and volume dependence by
treating the quark mass according to the δ-regime power
counting. The spectrum and other derived quantities
depend on the dimensionless parameter μ2, which is
given by μ2 ¼ ðMπLÞ2ðFLÞ4. To confirm our results, we
consider two limiting cases for the values of μ2. In the
large μ2 limit, the SHO approximation emerges, works
quite well, and produces the pion mass in the infinite-
volume limit. In the small μ2 limit, the RR approximation
emerges. We find that the success of perturbation theory
about the RR limit requires quark masses that are lighter
than physical. The chiral condensate is also computed
and exhibits the expected behavior as a function of μ2

and temperature T. Our results nicely illustrate that
melting of the condensate results from greater statistical
weight attached to the excited states, which exhibit
symmetry restoration. For this Uð1ÞL ×Uð1ÞR case,
symmetry restoration in the spectrum is exhibited by
parity doubling. A stringent test of our results is provided
by raising the temperature to meet up with analytical
expectations from the ε regime. As the number of states
in the δ-regime partition function is increased, the chiral
condensate converges quickly to that of the ε regime.
The case of SUð2ÞL × SUð2ÞR symmetry is considered

in Sec. IV. Unlike the previous case, an analytic solution for
the entire spectrum is not known, and numerical methods

FIG. 12. Chiral condensate in the δ regime of SUð2ÞL ×
SUð2ÞR as a function of mass μ2 and temperature. Shown is
the ratio of the chiral condensate at finite volume to that in infinite
volume for several values of the temperature, τ ¼ 2F2L3T.

FIG. 13. Chiral condensate comparison between the δ
regime and ε regime of SUð2ÞL × SUð2ÞR as a function of
s ¼ 1

2
ðMπLÞ2ðFLÞ2. The convergence of the δ-regime conden-

sate to that of the ε regime is shown as a function of the number of
energy eigenstates included in the partition function. For each n
value, all allowed l states are included. We set FL ¼ ffiffiffi

8
p

, which
corresponds to a temperature of T ∼ 30 MeV.
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are utilized to determine the energy eigenstates of nonzero
isospin. Using a finite-difference approximation, the
Hamiltonian is easily diagonalized using sparse-matrix
techniques. As a result, properties in the δ regime are
determined as a function of the parameter μ2. The analyti-
cally soluble isosinglet states provide a useful check on the
numerical solution, and, on a fixed mesh, the accuracy
decreases with increasing energy, as expected. Many of the
conclusions reached for the Uð1ÞL ×Uð1ÞR case are mir-
rored in the SUð2ÞL × SUð2ÞR case. In contrast, perturba-
tion theory about the RR limit appears to work better for the
mass gap, although slightly less-that-physical pion masses
are required to approach this limit in practice. The spectrum
shows rich behavior as a function of μ2. Energy eigenstates
fall into SUð2ÞL × SUð2ÞR multiplets for small μ2, SUð2ÞV
multiplets for intermediate μ2, and SUð3Þ multiplets for
large μ2. The chiral condensate exhibits the expected
behavior at small temperatures; however, more numerous
excited states are required to achieve convergence of the
partition function compared to the Uð1ÞL × Uð1ÞR case.
Finally, we use the numerically determined condensate in
the δ regime to reproduce the analytically known con-
densate of the ε regime. The observed melting of the chiral
condensate seen in the ε regime requires the inclusion of 28
states in the δ-regime partition function at a modest
temperature of T ¼ 30 MeV.

We show that numerical solution of the δ-regime
Hamiltonian provides useful insight into the properties
of low-energy QCD. In particular, the rich symmetry
properties of the spectrum are nicely illustrated by comput-
ing the quantum mechanical energy eigenvalues. It should
prove rewarding to numerically explore the case of
SUð3ÞL × SUð3ÞR symmetry, which is also of relevance
for low-energy QCD. Other groups can similarly be
explored in the δ regime, especially those relevant for
condensed matter systems with spontaneously broken
symmetries. Finally, confrontation with numerical data
from lattice QCD computations is desirable. We intend
to use our results to explore the extent to which existing
computations enter the various finite-volume regimes
depicted in Fig. 1.
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