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I. INTRODUCTION

The proton isovector-axial coupling g3A and quark
momentum fraction hxiu−d are important benchmarks to
check whether the systematic uncertainties of lattice QCD
simulation, such as finite lattice spacing, finite volume, and
chiral extrapolation, are under control, by a correct repro-
duction of the corresponding experimental results. Since
the noisy disconnected insertion contribution to the iso-
vector part of the nuclear matrix element is canceled
between two degenerate flavors, the values are obtained
solely from the connected insertion and thus are relatively
cheaper to compute with high precision to be considered as
benchmarks.
Most attempts have resulted in values ∼10% below the

experimental number for the axial-vector coupling [1–8],
while a few claim that their results could be consistent with
experiment [9–12]. For the quark momentum fraction
hxiu−d, overestimation by ∼20–30% is common in most
of the calculations [3,7,13–15] except [8].
Recently, attention has been paid to lattice QCD calcu-

lation of the isovector scalar matrix element g3S in the proton
[2,11,16,17] due to its role in constraining possible scalar
interactions at the TeV scale [18].
In this work, we calculate the isovector matrix elements

of the nucleon for the axial-vector and scalar couplings and
the quark momentum fraction with the valence overlap
fermion on 2þ 1 flavor domain-wall fermion (DWF)
configurations [19]. Compared to simulations with other
actions, the overlap fermion provides the best control of the
systematic errors since it is free of explicit chiral symmetry
breaking and gives small Oða2Þ errors, whereas the
numerical work is more costly.
In order to improve SNR, the 8-grid smeared Z3 noise

source with low-mode substitution (LMS) [20–24] has been

applied to the hadron two point correlator on the 243 × 64
lattice [25] which improves the error of the nucleon mass of
a point source by a factor of 7 and that of the 8-grid source
without smearing by a factor of 2.5. In this work, we use a
stochastic sandwich contraction method to remove the need
of multiple inversions in the sink-sequential approach and
use the current-sequential method for the low modes in the
propagator between the current and the sink. This is an
extension of the noise grid smeared source with LMS to the
three point function. Such a many-to-all correlator with
LMS is useful when the low-eigenmode contributions are
important in the relevant time windows where the physical
quantities are extracted.
The structure of the rest of the paper is organized as

follows. The LMS technique with noise grid source for the
nonzero momentum case of the two point correlation
function is provided in Sec. II. Section III discusses the
possibility of applying LMS on all the four quark propa-
gators in the proton three-point function. The numerical
details are provided in Sec. IV. In Sec. V, the results of
isovector matrix elements of the nucleon for the axial-
vector g3A, the scalar coupling g3S and the quark momentum
fraction hxiu−d are provided. A short summary and outlook
are presented in Sec. VI.

II. LOW MODE SUBSTITUTION WITH MIXED
MOMENTUM GRID SOURCE

Let us first consider the nucleon two-point function (2pt)
with the interpolation field of the nucleon [26],

χαðxÞ ¼ ϵabcψ ðuÞa
α ðxÞψ ðuÞb

β ðxÞð ~CÞβγψ ðdÞc
γ ðxÞ

χ̄α0 ðxÞ ¼ −ϵa0b0c0 ψ̄ ðdÞc0
γ0 ð ~CÞγ0β0 ψ̄ ðuÞb0

β0 ðxÞψ̄ ðuÞa0
α0 ðxÞ; ð1Þ
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where ~C≡ Cγ5 ¼ γ2γ4γ5 in the Pauli-Sakurai gamma-matrix convention, used throughout this work. There are two kinds of
the Wick contractions so the 2pt of the nucleon can be constructed in terms of the point-to-point quark propagator S as

Cðy; x;Γ; SðuÞ; SðdÞ; SðuÞÞ ¼ hϵabcϵa0b0c0TrðΓSðuÞaa0 ðy; xÞÞTrðSðdÞbb0 ðy; xÞSðuÞcc0 ðy; xÞÞi
− hϵabcϵa0b0c0TrðΓSðuÞab0 ðy; xÞSðdÞba0 ðy; xÞSðuÞcc0 ðy; xÞÞi

¼ hϵabcϵa0b0c0TrðΓSðuÞaa0 ðy; xÞÞTrðSðdÞbb0 ðy; xÞSðuÞcc0 ðy; xÞÞ
þ TrðΓSðuÞaa0 ðy; xÞSðdÞbb0 ðy; xÞSðuÞcc0 ðy; xÞÞi ð2Þ

where S is defined as ð ~CS ~C−1ÞT and Γ is the projection
operator for the nucleon polarization.
The quark propagator S in the above equation is the

inverse of the operator ðDc þmÞ [27,28], where Dc is
defined in terms of the overlap operator and is chiral, i.e.
fDc; γ5g ¼ 0 [29]. The details will be discussed in Sec. IV.
As in Refs. [25,30], we use the low lying eigenvalues and
eigenvectors of the overlap fermion, λi and jii, satisfying
Dcjii ¼ λijii to speed up the inversion and separate the
propagator into its low-mode and high-mode parts,

SLðy; xÞ ¼
X
jλij<ϵc

1

λi þm
jiiyhijx;

SHðy; xÞ ¼ Sðy; xÞ −
X
jλij<ϵc

1

λi þm
jiiyhijx; ð3Þ

with ϵc as the upper bound of the modulus of the
eigenvalues.
The idea of using the Z3 noise grid source is to tie the

sources of the three quark propagators stochastically to
each point (or a smeared point) on the grid so that one can
have a multi-to-all correlator from one inversion. LMS for
the quark propagator with Z3 noise grid source (PropNG),

be it point-grid (PG) [30] or smeared grid (SG) [25], has
been used to improve the SNR for the nucleon correlator
with significant success. This technique removes the gauge
noninvariant contributions of the low-mode contributions
(defined below) from the cases in which three propagators
are from different source sites, and restores the benefit of
using PropNG.
To construct the nucleon correlation function with LMS,

PropNG SNGðyÞ should be split into its high-mode and low-
mode pieces

SNGðyÞ ¼
X
x∈G

θðxÞSðy; xÞ

¼ SHNGðyÞ þ
X
x∈G

θðxÞSLðy; xÞ; ð4Þ

with SHNGðyÞ ¼
P

x∈GθðxÞSHðy; xÞ and random Z3 phases
θðxÞ ∈ f1; ei23π; e−i23πg for each point on a grid G.
As in Ref. [25], we can expand the nucleon correlation

function Cðy; x;Γ; SðuÞNG; S
ðdÞ
NG; S

ðuÞ
NGÞ with the decomposition

in Eq. (4) (ignoring the indices for the sink position y and
the projection matrix Γ),

CLMSðSNG; SNG; SNGÞ ¼ CðSHNG; S
H
NG; S

H
NGÞ þ

X
x∈G

CðθðxÞSLðxÞ; θðxÞSLðxÞ; θðxÞSLðxÞÞ þ C

�X
x∈G

θðxÞSLðxÞ; SHNG; S
H
NG

�

þ C

�
SHNG;

X
x∈G

θðxÞSLðxÞ; SHNG

�
þ C

�
SHNG; S

H
NG;

X
x∈G

θðxÞSLðxÞ
�

þ
X
x∈G

CðθðxÞSLðxÞ; θðxÞSLðxÞ; SHNGÞ þ
X
x∈G

CðθðxÞSLðxÞ; SHNG; θðxÞSLðxÞÞ

þ
X
x∈G

CðSHNG; θðxÞSLðxÞ; θðxÞSLðxÞÞ

¼ Cker

�
SHNG;

X
x∈G

θðxÞSLðxÞ
�
þ
X
x∈G

CkerðθðxÞSLðxÞ; SHNGÞ ð5Þ

where

CkerðS1; S2Þ ¼ CðS1; S1; S1Þ þ CðS2; S1; S1Þ þ CðS1; S2; S1Þ þ CðS1; S1; S2Þ: ð6Þ
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The nucleon correlator with LMS here can be obtained
from the one in Ref. [25] with just one more step. The low-
mode propagator

P
x∈G θðxÞSLðy; xÞ is decomposed into

several terms as in the very last term in the right-hand side
(RHS) of Eq. (5) to improve the SNR.
After the noise averaging, the nucleon correlation

function with PropNG should be a stochastic estimate of
the sum of nucleon correlators from each of the grid
points, i.e. X

~y

Cgridð~yÞ ¼
X
i

X
~y

Cð~y; ~wiÞ; ð7Þ

where the grid points ~wi are

~wi ∈ ðx0 þmxΔx; y0 þmyΔy; z0 þmzΔzÞ: ð8Þ

with mx;y;z ¼ ð0; 1;…; Ls=Δx;y;zÞ modulo the periodic
boundary condition in the spatial directions. In this grid
pattern, in addition to the zero momentum mode (0,0,0),
one can obtain nonzero momentum modes from the
nucleon correlation function with PropNG. For example,
for the PropNG with a regular (Δx ¼ Δy ¼ Δz ¼ Ls=m)
grid, the momentum mode p ¼ ð�n1m;�n2m;�n3mÞ
(n1;2;3 are integers) can be obtained. In this case, there is
a phase factor which needs to be taken into account when
the origin w0 ¼ ðx0; y0; z0Þ is changed from configuration
to configuration,

X
~y

Cgridð~yÞe−i
2π
Ls
~y·p

¼ e−i
2nπ
Ls
w0·p

X
i

X
~y

Cð~y; ~wiÞe−i
2π
Ls
ð~y− ~wiÞ·p−i2mπ

Ls
ð ~wi− ~w0Þ·ðn1;n2;n3Þ

¼ e−i
2nπ
Ls
w0·p

X
i

X
~y

Cð~y; ~wiÞe−i
2π
Ls
ð~y− ~wiÞ·p ð9Þ

The exponential term in the second line with the exponent
proportional to ~wi − ~w0 does not contribute, since all
components of the latter are proportional to Ls=m and,
as a result, the exponent is a multiple of 2π.
In order to obtain the other momentum modes, propa-

gators with noise grid nonzero momentum source
(PropNGM) are required. To cover a range of p2 modes
and minimize the effect of the rotation symmetry breaking
due to the finite lattice spacing and volume, three kinds of
PropNGM

Sp1
ðyÞ ¼

X
i

θð~wiÞSð~y; ~wiÞei
2π
Ls

~wi·ð1;0;0Þ;

Sp2
ðyÞ ¼

X
i

θð~wiÞSð~y; ~wiÞei
2π
Ls

~wi·ð0;1;0Þ;

Sp3
ðyÞ ¼

X
i

θð~wiÞSð~y; ~wiÞei
2π
Ls

~wi·ð0;0;1Þ ð10Þ

and related inversions are required for the proton case. It is
trivial to confirm that one can obtain a momentum mode
like (1,1,0) from the contraction CðSp1

; Sp2
; SNGÞ, and

(1,1,1) from CðSp1
; Sp2

; Sp3
Þ.

To reduce the cost, we can combine these three kinds of
PropNGM together as the mixed PropNGM,

Sp ≡ Sp1
þ Sp2

þ Sp3

¼
X
i

θð~wiÞSð~y; ~wiÞðei
2π
Ls

~wi·ð1;0;0Þ

þ ei
2π
Ls

~wi·ð0;1;0Þ þ ei
2π
Ls

~wi·ð0;0;1ÞÞ; ð11Þ

with the origin of the grid ~w0 ¼ ðx0; y0; z0Þ to be selected
randomly for each configuration.
Figure 1 shows the SNR of the proton effective mass at

the unitary point where the pion mass due to the valence
quark is the same as that from the sea, on the ensemble of
which details will be addressed in Sec. IV. When LMS is
applied, the SNR of the 2pt with the noise smeared grid
source propagators (PropNG and mixed PropNGM,
Δx ¼ Δy ¼ Δz ¼ Ls=2) is 2.3 times smaller than that of
the of the smeared point source at p2 ¼ 0. This is a gain of
5.3 in statistics which is very good considering that the
maximum possible gain is 8 for the ideal case where
the independent nucleon propagators emerge from each of
the 8 smeared grid points. On the other hand, if we do not
use LMS, the SNR of 2pt with grid source is worse than the
smeared point source, even though the latter has only 1=8
of the statistics of the former. This is understood as due to
the fact that the Parisi-Lepage estimate of the SNR for the
nucleon is modified to
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FIG. 1. The plot shows the relative error of 2pt as a function of
the momentum squared p2 at t ¼ 8 in lattice units. The data
points of the smeared grid cases have been shifted a bit on the
abscissa to make it easier to distinguish them. The SNR of the
case with the noise smeared grid source (red squares) and LMS
applied is better than the one with smeared point source (blue
dots), while the one with the noise smeared grid source but no
LMS (black triangles) is even worse than the one with smeared
point source.
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CNðt; ~p ¼ 0Þ
σNðtÞ

≈

ffiffiffiffiffiffi
N
V3

s
e−ðmN−3=2mπÞt; ð12Þ

where N is the product of the number of noise and the
number of gauge configurations and V3 is the three-volume
of the noise with its support on a time slice. In our case,
V3 ¼ 8. It is this extra factor of 1ffiffiffiffi

V3

p which makes the SRN

of the 2pt from the noise smeared grid source without LMS
worse than that of the smeared point source. When LMS is
employed, the situation is reversed and one gains a

statistical factor almost as large as the number of the grid
points. Thus, it is essential to have LMS when the noise
grid source is used for the nucleon.

III. LMS OF THE CONNECTED THREE-POINT
CORRELATOR

Generally, a nucleon three point function (3pt), from x to
y, with a current ψ̄ðxÞðuÞOðzÞψðxÞðuÞ (with current operator
O such as γi, γiDj, etc.) inserted at z, includes four kinds of
Wick contractions,

Cu
3ðy; x;Γ; ŜðuÞ; SðuÞ; SðdÞ; SðuÞÞ ¼ hϵabcϵa0b0c0TrðΓSðuÞadðy; zÞOðzÞSðuÞda0 ðz; xÞÞTrðSðdÞbb0 ðy; xÞSðuÞcc0 ðy; xÞÞi

þ hϵabcϵa0b0c0TrðΓSðuÞadðy; zÞOðzÞSðuÞda0 ðz; xÞSðdÞbb0 ðy; xÞSðuÞcc0 ðy; xÞÞi
þ hϵabcϵa0b0c0TrðΓSðuÞaa0 ðy; xÞÞTrðSðdÞbb0 ðy; xÞSðuÞcdðy; zÞOðzÞSðuÞdc0 ðz; xÞÞi
þ hϵabcϵa0b0c0TrðΓSðuÞaa0 ðy; xÞSðdÞbb0 ðy; xÞSðuÞcdðy; zÞOðzÞSðuÞdc0 ðz; xÞÞi ð13Þ

and can be expressed in terms of the 2pt correlation
function Cðy; x;Γ; SðuÞ; SðdÞ; SðuÞÞ defined in Eq. (2),

Cu
3ðy; x;Γ; ŜðuÞ; SðuÞ; SðdÞ; SðuÞÞ
¼ Cðy; x;Γ; ŜðuÞ; SðdÞ; SðuÞÞ

þCðy; x;Γ; SðuÞ; SðdÞ; ŜðuÞÞ; ð14Þ

where ŜðO; z0; y; xÞ≡P
~zSðy; zÞOðzÞSðz; xÞ is the current

inserted propagator (PropCI). Similarly, the 3pt with a
current of d quark can be expressed as

Cd
3ðy; x;Γ; ŜðdÞ; SðuÞ; SðdÞ; SðuÞÞ

¼ Cðy; x;Γ; SðuÞ; ŜðdÞ; SðuÞÞ: ð15Þ

Figure 2 shows PropCI as the product of the propagators in
the shadowed region.
Supposing SðuÞ ¼ SðdÞ ¼ S, Eq. (14) can be rewritten

into the contraction of PropCI Ŝ and the remaining parts
denoted as Xu;dðΓ; S1; S2Þ,

Cu
3ðΓ; Ŝ; S; S; SÞ ¼ hTrðŜXuðΓ; S; SÞÞi;

Cd
3ðΓ; Ŝ; S; S; SÞ ¼ hTrðŜXdðΓ; S; SÞÞi; ð16Þ

with

Xaa0
u ðΓ; S1; S2Þ ¼ ϵabcϵa

0b0c0 ðΓTr½S2bb0Scc01 � þ S2bb
0
Scc

0
1 Γ

þ Tr½ΓScc01 �Sbb02 þ ΓScc01 Sbb
0

2 Þ;
Xbb0
d ðΓ; S1; S2Þ ¼ ϵabcϵa

0b0c0 ðTr½ΓSaa01 � ~C−1ðS2cc0 ÞT ~C
þ ~C−1ðS1aa0ΓScc02 ÞT ~CÞ ð17Þ

Based on the above definition, a typical 3pt correlation
function for a point source on the t ¼ 0 time slice, when
summed over the spatial indices of y and z becomes

C3ðt2; t1Þ ¼
X
~y

hTr½ŜðO; t1; ~y; t2; ~0; 0Þ

× Xu;dð~y; t2; ~0; 0;Γ; S; SÞ�i: ð18Þ

A. Sink-sequential method and stochastic
sandwich method

The typical problem of the connected 3pt is calculating
the propagator from the current to the sink Sð~y; t2; ~z; t1Þ. On
the surface, it is an all-to-all propagator which would be
beyond the ability of the standard lattice inversion
operation.

FIG. 2. The quark diagram of the proton correlation function
with the connected insertion, from x to y, with an insertion at z.
The product of the propagators in the shadowed region is the
current inserted propagator, Ŝ. The propagator from the current z
to the sink y is decomposed into its low- and high-mode
contributions (SL and SH respectively) for further SNR/cost
improvement from the advanced technique in the latter discus-
sion. See Sec. III B for more details.
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However, when the sink time t2 is fixed, the
sequential source method [31,32] could be used, with

γ5X
†
u;dð~y; t2; ~0; 0Þγ5 as the source of the matrix inversion,

to construct

SseqðXu;d; ~z; t1; t2; ~0; 0Þ ¼
X
~y

Sð~z; t1; ~y; t2Þγ5

× X†
u;dð~y; t2; ~0; 0Þγ5: ð19Þ

Then, one can contract Sseq with the standard quark
propagator from t ¼ 0 to t1 to construct the 3pt correlator,

C3ðt2; t1;OÞ ¼
X
~z;i

Tr½γ5S†seqðXu;d; ~z; t1; t2; ~0; 0Þγ5

×Oð~z; t1ÞSð~z; t1; ~0; 0Þ�; ð20Þ

taking the advantage of the relation γ5Sðz; yÞ†γ5 ¼ Sðy; zÞ.
The disadvantage of the sequential method is that it has

to calculate the sink-sequential propagator repeatedly when
X is changed for any reason, such as for: different
momentum, different quark flavor or mass, or different
polarization projection of the baryon. This is expensive
when many momenta are needed.
The number of inversions required in the sink-sequential

method is 2 × 4 × Np where the 2 is for the u and d flavors
in the nucleon, 4 is for the polarization, and Np is the
number of momentum projections. When many Np are
required for nucleon form factors with momentum transfer
(hundreds are needed for j~pj ≤ 3 with high statistics), the
cost can be staggering.
A stochastic method [33–35] [referred to as the stochas-

tic sandwich method (SSM) in this work] is introduced to
reduce the cost of the sequential method when many
sequential inversions are required. It entails inserting a
noise estimate of the delta function δð ~y1; ~y2Þ at t ¼ t2,

1

Nnoi

XNnoi

i¼1

X
~y1;~y2;~z

Tr½θðiÞ~y1 Sð~y1; t2; ~z; t1ÞOð~z; t1ÞSð~z; t1; ~0; 0Þ

× Xð~0; 0; ~y2; t2ÞθðiÞ†~y2
� →
Nnoi→∞

C3ðt2; t1;OÞ; ð21Þ

where Nnoi is the number of the noises and the noise θ
satisfies

1

Nnoi

XNnoi

i¼1

θðiÞ~y1 θ
ðiÞ†
~y2

!
Nnoi→∞

δ~y1;~y2 : ð22Þ

In other words, it uses the noise estimate of the all-to-all
propagator,

Sð~y1; t2; ~z; t1Þ ≅
X
i

θðiÞ~y1 γ5ðS
ðiÞ
noið~z; t1; t2ÞÞ†γ5 ð23Þ

with

SðiÞnoið~z; t1; t2Þ ¼
X
~y1

Sð~z; t1; ~y1; t2ÞθðiÞ†; ð24Þ

instead of the original Sð~y; t2; ~z; t1Þ, to avoid the expensive
calculation to construct the sink-sequential propagator with
inversion of 2 × 4 × Np sources.

B. Stochastic sandwich method (SSM) with LMS

SSM avoids the cost of the repeated inversion for many
different sequential sources, but it still requires multiple
inversions for several noises, before the SNR can reach its
upper limit—that of the sequential method. In this work,
the basic idea is to improve the SNR of the 3pt correlator of
SSM using the low lying eigenvectors of Dc to construct
the long distance part of the all-to-all Sð~y; t2; ~z; t1Þ (SL in
Fig. 2, the single line from the current to the sink), and
using the noise many-to-all propagator to estimate the
remaining high frequency part of Sð~y; t2; ~z; t1Þ (SH in
Fig. 2, the double line from the current to the sink).
Thus, the propagator with LMS is written as

SLMSSð~y1; t2; ~z; t1Þ ¼
X
i

θðiÞ~y1 γ5ðS
ðiÞ;H
noi ð~z; t1; t2ÞÞ†γ5

þ
X
i

1

λi þm
við~y; t2Þv†i ð~z; t1Þ: ð25Þ

where λi and vi are the low-lying eigenvalues and the
corresponding eigenvectors of Dc. In other words, it is a
technique to apply LMS to the sequential propagator

SseqðXu;d; ~z; t1; t2; ~0; 0Þ (LMSS). It is expected to reduce
the number of the noise propagators needed to reach the
upper limit of SNR.
When LMSS in Eq. (25) is applied to the PropCI in

Eq. (14), Ŝ comes from t ¼ 0 to t ¼ t2 through t ¼ t1

ŜLMSSðO; t1; ~y; t2; t1; ~0; 0Þ ¼
X
~z

SLMSSð~y1; t2; ~z; t1ÞOð~z; t1ÞSð~z; t1; ~0; 0Þ

¼
X
~z

�X
i

1

λi þm
við~y; t2Þv†i ð~z; t1Þ þ θðiÞð~y; t2Þ

X
~z;i

γ5ðSðiÞ;Hnoi ð~z; t1; t2ÞÞ†γ5
�

×Oð~z; t1ÞSð~z; t1; ~0; 0Þ; ð26Þ
as shown in the shadowed area in Fig. 2.
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Then one can construct 3pt with LMS by constructing the standard 2pt repeatedly (the projection matrix Γ is suppressed
for clarity),

CLMS;u
3 ðŜ; SÞ ¼ C3

kerðŜH; ŜL; SHNG; S
L
NG; S

H
NG; S

L
NGÞ þ

X
x∈G

C3
kerðŜLðxÞ; ŜH; θðxÞSL; SHNG; θðxÞSL; SHNGÞ

þ C3
kerðSHNG; S

L
NG; S

H
NG; S

L
NG; Ŝ

H; ŜLÞ þ
X
x∈G

C3
kerðθðxÞSL; SHNG; θðxÞSL; SHNG; Ŝ

LðxÞ; ŜHÞ

CLMS;d
3 ðŜ; SÞ ¼ C3

kerðSHNG; S
L
NG; Ŝ

H; ŜL; SHNG; S
L
NGÞ þ

X
x∈G

C3
kerðθðxÞSL; SHNG; Ŝ

LðxÞ; ŜH; θðxÞSL; SHNGÞ ð27Þ

where

SLNG ¼
X
x∈G

θðxÞSLðxÞ; and

C3
kerðX1; X2; Y1; Y2; Z1; Z2Þ ¼ CðX1; Y1; Z1Þ þ CðX2; Y1; Z1Þ þ CðX1; Y2; Z1Þ þ CðX1; Y1; Z2Þ ð28Þ

and ŜH and ŜLðxÞ are the high- and low-mode parts of
ŜLMSS in Eq. (26).
This is the stochastic sandwich method with LMS which

uses the low eigenmodes for the propagator from the
current to the sink in PropCI, ŜLMSS with current insertion
and the high modes for the same which originates from the
sink time slice. The construction of the PropCI with low
modes needs to be done for each current and momentum
transfer and t2 (if desired). In contrast, the current-sequen-
tial method will need to do an inversion for each current,
momentum transfer, and t1 separately.
To account for the amount of numerical work for

different approaches to the 3pt CI correlators, we note
the traditional sink-sequential method entails 2 × 4 × Np
inversions at a fixed sink time slice t2, where the 2 and 4
refer to the separate sources X in Eq. (17) labeled with u
and d flavors and polarization directions (unpolarized and
polarization in 3 spatial directions). Np is the number of
sink momenta for the nucleon. For SSM without LMS,
there areNnoi inversions of theNnoi noise vectors at the sink
time t2. How many Nnoi is needed for acceptable SNR

depends on the observable. For the SSMwith LMS, besides
the noise propagator SHnoi with NH

noi inversion, there is an
overhead for the low-mode portion of PropCI [ŜLMSS in
Eq. (26)]. It includes N times the low-mode contributions
from N smeared grid source plus one high-mode contri-
bution for the propagator from the source to the current
(SHNG). Each needs to be folded with the current for different
momentum transfer ~q. Therefore the overhead is ϵ × ðN þ
1Þ × Ncu × Nq where Ncu=Nq is the number of currents/
momentum transfer, and ϵ is the fraction of inversion time
for constructing the low-mode portion of ŜLMSS for each
current and momentum transfer. We list the cost for the sink
and current parts of the 3pt function in units of quark
inversion in Table I for future reference. To evaluate the
efficacy among the three methods, one needs to compare
costs in the table to reach the same precision for a given
observable. For the case of SSM with LMS, there is an
additional gain from the noise grid source with LMS as
discussed in Sec. II which needs to be taken into account.

IV. NUMERICAL DETAILS

In this work, we use the valence overlap fermion on 2þ
1 flavor domain-wall fermion (DWF) configurations [19] to
carry out the calculation [30].
The lattice we use has a size 243 × 64 with lattice

spacing a−1 ¼ 1.75ð4Þ GeV set by r0 at the chiral and
continuum limits [36]. The light sea u=d quark massmla ¼
0.005 corresponds to mπ ∼ 330 MeV. We have calculated
the isovector matrix elements of the nucleon for the axial-
vector and scalar couplings and the quark momentum
fraction at 6 valence quark mass parameters which corre-

spond to the renormalized masses mR
q ≡mMS

q ð2 GeVÞ
ranging from 13 to 32 MeV after the nonperturbative
renormalization procedure in Ref. [37]. They correspond
to the pion mass in the range of 250–400 MeV. In order
to enhance the signal-to-noise ratio in the calculation of

TABLE I. The cost for the sink and current parts of the 3pt
function in units of quark inversion is listed for the sink-
sequential method (Sequential), stochastic sandwich method
(SSM), and SSM with LMS. Np is the number of sink nucleon
momenta, Nnoi is the number of noise in SSM. NH

noi is the number
of noise in SSM with LMS, and Ncu=Nq is the number of
currents/momentum transfer in the construction of the low-mode
part of PropCI. ϵ is the fraction of inversion time for constructing
the low-mode portion of PropCI for each current and momentum
transfer and Np momenta (∼0.02 on the ensemble used in this
work).

Sequential SSM SSMþ LMSS

8Np Nnoi NH
noi þ ϵðN þ 1ÞNcuNq

YANG, ALEXANDRU, DRAPER, GONG, and LIU PHYSICAL REVIEW D 93, 034503 (2016)

034503-6



three-point functions, we use two smeared noise 12-12-12
grid sources at ti ¼ 0 and 32 (one is PropNG and the one is
PropNGM) [25] and two noise 2-2-2 grid point sources at
positions tf which are 8, 10, and 12 time-slices away from
the sources on 203 configurations.
The effective overlap operator Dc is chiral, i.e.

fDc; γ5g ¼ 0 [29], and is expressed in terms of the overlap
operator Dov as

Dc ¼
ρDov

1 −Dov=2
with Dov ¼ 1þ γ5ϵðγ5DwðρÞÞ; ð29Þ

where ϵ is the matrix sign function and Dw is the Wilson
Dirac operator with a negative mass characterized by the
parameter ρ ¼ 4 − 1=2κ for κc < κ < 0.25. We set κ ¼ 0.2
which corresponds to ρ ¼ 1.5.
Compared to the earlier implementation of the overlap

operator [30], the current implementation further improves
the performance of data exchange on different nodes of the
cluster and uses the polynomial approximation for the
overlap operator instead of the rational approximation, and
has achieved better scaling and further speed up of the
calculation by a factor of two on average [38].
The number of Dc’s low mode eigenvectors used for the

deflation of the overlap operator inversion and LMS, on
this 243 × 64 lattice, is 200 pairs plus the zero modes, and
the upper bound of the absolute value of the eigenvalues is
0.154 which is over two times larger than the dimensionless
strange quark mass.
We check the efficacy of the sequential low-mode

substitution (LMSS) in the PropCI by examining the 3pt
functions for the isovector axial and scalar currents. We plot
the ratio of 3pt-to-2pt correlators as a function of the
current insertion time t1 in Fig. 3 where the sink time t2 is
10. The blue dots and black triangles show the contribu-
tions where the current-to-sink part of PropCI is from the
low modes and the noise-estimated high modes respec-
tively. Notice that the contribution from the low modes is
much larger than that of the high modes when the current
time slice is farther away from the sink (i.e. closer to the
source with small t1) for both the axial and scalar cases,
which reflects the fact that the low modes dominate the
long-distance behavior of the PropCI between t1 to t2.
When the current is closer to the sink with larger t1, we see
that the high modes dominate for the axial case which
shows that the high modes are important and dominate the
short distance behavior of the propagator. However, the
high-mode contribution is still small for the scalar current
case when t1 is close to the sink which shows that the high-
mode contribution is small for the 3pt function for the
scalar current.
The red squares are the sum of the low- and high-mode

contributions from the present hybrid scheme.We have also
calculated the 3pt function without LMSS for the PropCI,
but instead use only the noise propagator as the full

propagator from t1 to t2. These are shown as the green
triangles in Fig. 3. These correspond to the stochastic
method introduced by the QCDSF Collaboration [33,34]
and the Cyprus group [35]. Since our LMSS replaces the
long distance part of the current-to-sink part of PropCI with
an exact all-to-all one, the larger its contribution the larger
the improvement. As in Fig. 3, the blue dots contribute over
80% in the guS case and so the improvement of LMSS is
larger than in the guA case. The error bars of SSM at the time
slices t1 ¼ 2–6 turn out to be a factor ∼2 for guA (∼4 for guS)
larger than that of using LMSS in the present approach.
The fact that the error of g3A=g

3
S in our approach is smaller

than that of SSM with 2 noises by a factor of ∼2=4 shows
that it would take 8=32 noise inversions for SSM to have
the same error as the present method with LMS. To
compare the cost of SSMþ LMS, we should take its
overhead into account. On the present lattice, the percent-
age of inversion time for low-mode construction is
ϵ ¼ 0.02. Therefore, the overhead ϵðN þ 1ÞNcuNq ¼
0.72 for N ¼ 8 (smeared grid source), Ncu ¼ 4 to account
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all
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FIG. 3. The 3pt-to-2pt ratio with LMSS (red squares) vs. the
one without it (green inverted triangles). The source/sink is
located at 0=10, and the current dependence for the matrix
element with the current-to-sink part of PropCV including just the
low- or high-mode parts are plotted as the blue dots or black
triangles, respectively. The upper panel is for the axial-vector
current case and the lower panel is for the scalar case. Notice that
the contribution of the low-mode part is larger when the current
time slice is farther away from the sink.
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for the scalar current and Ai for 3 spatial directions and
Nq ¼ 1. Together with NH

noi ¼ 2, the cost is 2.72 inver-
sions. This means that, to reach the same error, it would
take SSM 2.9 and 11.8 times more inversions than SSM
with LMS for g3A and g3S, respectively. Furthermore, the
smeared grid source with LMS has improved the statistics
by a factor of 5.3 for N ¼ 8 for the 2pt function. This
additional factor of improvement is also expected for the
3pt function.
To compare with the sink-sequential method, we assume

that our results have reached the SNR of that of the sink-
sequential method. This is consistent with the fact that in
the range t1 ¼ 2–6 where the observables are fitted, the
PropCI are dominated by the low-mode contributions,
particularly for g3S. In this case, the cost of sink-sequential
takes 16 inversions. Here, we have taken Np ¼ 2 to include
the hxiu−d calculation in addition to g3A and g3S. For the
overhead in SSMþ LMS, the number of currents needed is
Ncu ¼ 6 for these three quantities and the overhead is
ϵðN þ 1ÞNcuNq ¼ 1.08. Therefore, besides the improve-
ment from the use of the grid source, the present method
would be 16=3.08 ¼ 5.2 times more efficient than the sink-
sequential method for the calculation of the three quantities.
Note that the cost of the sink-sequential method has
additional factors that need to be taken into account, such
as Nmass for different masses, and also N when the
necessary LMS is applied on the source of the sink-
sequential propagator [as in Eq. (17)], so SSM is much
cheaper than the sink-sequential method.
When the physical volume is increased, while keeping

the lattice spacing unchanged, and with a noise vector
covering the entire spatial volume of the sink time slice, we
expect that the region essentially contributing to 3pt will
not change, while the remaining region contributes only to
the noise. Such a simple argument hints that the noise
required to reach the same SNR is proportional to volume
and we have confirmed it explicitly on the 483 × 96 lattice
with similar lattice spacing [39]. At the same time, the
number of low modes will be proportional to volume if we
want to reach the same upper bound of the eigenvalues, so
the SSM with LMS will not lose its efficiency as compared
to SSMwithout LMS, when the volume is larger. But, since

the number of inversions is fixed in the standard sequential
method, the SSM with and without LMS will lose their
comparative efficiencies when the volume is very large.
Another issue we need to check is the effect of LMS in

the 3pt case. For the 3pt function, we check, for example,
the vector charge renormalization constant from the for-
ward matrix element at the unitary point for several nucleon
momenta. For p2 ¼ 0 and 4, only the propagator PropNG is
involved, while the other cases involve PropNGM also. In
the former cases, we find that the smeared grid source with
LMS improves the SNR by a factor of 2.0 compared to that
with a smeared point source without LMS, slightly smaller
than what we found with the 2pt function as discussed in
Sec. II; whereas, the gain is only 1.4 for the other p2 where
the PropNGM is involved, as in Fig. 4. We shall look into
the possibility of improving the SNR further when
PropNGM is involved.

V. RESULTS

A standard 3pt=2pt ratio in the forward matrix element
case is

Rðt2; t1; 0Þ ¼ C3ðt2; t1; 0Þ=Cðt2; 0Þ

¼
P

i;jZ
ðiÞ
f ZðjÞ

i e−E
ðiÞðt2−t1Þ−EðjÞt1hχðiÞf jJjχðjÞi iP

kZ
ðkÞ
f ZðkÞ

i e−E
ðkÞt2

!
t2≫0

hχð0Þf jJjχð0Þi i þ Zð1Þ
f

Zð0Þ
f

hχð1Þf jJjχð0Þi ie−ΔEðt2−t1Þ

þ Zð1Þ
i

Zð0Þ
i

hχð0Þf jJjχð1Þi ie−ΔEt1 þ Zð1Þ
f Zð1Þ

i

Zð0Þ
f Zð0Þ

i

ðhχð1Þf jJjχð1Þi i − hχð0Þf jJjχð0Þi iÞe−ΔEt2 þ � � � ; ð30Þ

where EðiÞ and ZðiÞ are the energy and the overlap of the interpolation field of the ith state and ΔE ¼ Eð1Þ − Eð0Þ. For
t2 ≫ t1 ≫ 0, the contributions from all the terms in the right-hand side of Eq. (30) except the first term vanish, and then one
can use Eq. (30) to obtain the matrix element.
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FIG. 4. The vector renormalization constant in the rest/moving
frame at the unitary point, as a function of the momentum squared
p2 in lattice unit. The p2 ¼ 0, 4 involve PropNG only and the
other cases involve PropNGM also. The former case gains more
from LMS (black squares vs. red dots). The results obtained using
the 8-point grid source without LMS applied are very noisy (blue
triangles).
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When t2 is fixed, one may fit the first term and the
combined second and third terms around t1 ¼ t2=2 to
include the effect of the ground state to first excited state
transition in the right-hand side of Eq. (30) which is t1
dependent. But since the fourth term in the right-hand side
of Eq. (30), which is the difference of the matrix element in
the ground state and the first excited state, is independent of
t1 just like the first term, one will not be able disentangle
them and, as a result, a systematic error may be induced by
its contribution which is suppressed by e−ðEð1Þ−Eð0ÞÞt2. To get
a feeling for the size of the correction, let us suppose that

the first excited state matrix element hχð1Þf jJjχð1Þi i is 30%

different from the ground state matrix element hχð0Þf jJjχð0Þi i,
and the mass difference of the first excited state and the
ground state is about 500 MeV. Then the correction from
such a effect with t2 ¼ 8, 10 and 12 (with the nucleon
source set at t0 ¼ 0) is about 3%, 2% and 1% respectively.
To assess this error, we shall calculate the 3pt function at
three values of t2 so that we can fit all four terms
in Eq. (30).
In order to check the t2 dependence of the plateau, three

sets of propagators with two noise-grid point sources each
at positions t2 ¼ 8, 10 and 12 time-slices away from the
nucleon source are generated, and all the t1 dependence of
these three cases are plotted together for comparison in
Fig. 5 for the vector current case. The sink-source sepa-
ration dependence seems to be mild here, but in general the
minimum separation required by other quantities can be
different.
To check the separation effect quantitatively, we applied

three kinds of fits to deduce the results: The first method is
to fit the ratio as a function of t1 and t2,

Rfitðt2; t1Þ ¼ C0 þ C1e−Δmðt2−t1Þ

þ C2e−Δmt1 þ C3e−Δmt2 ð31Þ

with C0;1;2;3 and Δm as free parameters. C0 is the ground
state matrix element we want. Since the t1 dependence of
Rðt2; t1Þ is mild in some of the quantities like gV and gA, we
take Δm as a common parameter for all the quantities. This
is what we mark as “2-state” in the following discussion.
In this work, we use the smeared source and the point

sink, so the excited-state contaminations are different in the
smaller and larger t ends. If the smeared source makes the
contaminations in the smaller t end small, or has a different
sign compared to that in the larger t end, the position of the
plateau will be harder to determine, as in the case of guþd

V
(Fig. 5) and g3A (Fig. 7). Applying the “2-state” fit on such a
quantity is not stable and provides large uncertainties (and/
or large χ2=d:o:f:) on the results. In this work, we constrain
the mass difference Δm to be the same for the different
matrix elements with the same quark mass value, and apply
a correlated joint 2-state fit. To suppress the contamination
from the excited state, we excluded the data points with
t1 ¼ 0, t2 − 1 and t2. One more data point at the larger t end
is excluded since the excited-state contamination is larger
there. Despite this, the fit is still not very good. Taking the
unitary point as an example, the χ2=d:o:f:with ∼70 degrees
of freedom is 1.45, the corresponding p-value is just 0.008.
In addition, this method requires a joint fit with several
quantities and is not suitable for the analysis of a single
quantity without the information of the other quantities.
The second method is the sum method [40,41] which is

used in the disconnected insertion case, wherein a sum is
taken over all the 3pt=2pt ratios in Eq. (30) with different t1,

SRðt2; t1; 0Þ
¼

X
0<t1<t2

Rðt2; t1; 0Þ

¼ ðt2 − 1Þhχð0Þf jJjχð0Þi i

þ e−Δm

1 − e−Δm

�
Zð1Þ
f

Zð0Þ
f

hχð1Þf jJjχð0Þi i þ Zð1Þ
i

Zð0Þ
i

hχð0Þf jJjχð1Þi i
�

þ ðt2 − 1ÞZ
ð1Þ
f Zð1Þ

i

Zð0Þ
f Zð0Þ

i

ðhχð1Þf jJjχð1Þi i − hχð0Þf jJjχð0Þi iÞ

× e−Δmt2 þ � � � ð32Þ

When t2 is large, we can use the linear function of t2
(ignoring the e−Δmt2 correction)

SRfitðt2; t1Þ ¼ t2C0 þ C0
1 ð33Þ

to fit our summed ratio with 3 different separations, and
obtain the slope as the ground state matrix element. This
method will be marked as “sum" in the following discussion.
We found that the “sum” fit can obtain a χ2=d:o:f:

smaller than one, for all the quantities. But this fit just has

 0.8
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FIG. 5. The nucleon sink-source separation dependence of the
matrix element with the vector charge for uþ d in the connected
insertion. Obviously, the larger t2, the worse the signal. The data
points marked with the black squares (t2 ¼ 8), the blue dots
(t2 ¼ 10) and the red triangles (t2 ¼ 12) are consistent.
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one degree of freedom. Ignoring the e−Δmt2 correction can
induce an uncontrolled systematic error.
The third method is to combine the first two methods, by

fitting both the ratios and their sum together (denoted as
“mixed”),

Rfitðt2; t1Þ ¼ C0 þ C1e−Δmðt2−t1Þ

þ C2e−Δmt1 þ C3e−Δmt2 ; ð34Þ

SRfitðt2; t1Þ ¼ t2C0 þ
e−Δm

1 − e−Δm
ðC1 þ C2Þ

þ ðt2 − 1ÞC3e−Δmt2 þ C4; ð35Þ

whereC0;1;2;3 andΔm are the same as that in the “2-state” fit,
and C4 is for the constant contribution from the transition
between higher excited states and the ground state.
The “2-state” fit makes full use of the ratios, while it is

unstable when the position of the plateau is hard to
determine (such as for g3A). The “sum” fit provides a stable
estimate of the ground state matrix element, but it suffers
from the systematic error from ignoring the e−Δmt2 correc-
tion. By combining them together, we can obtain a stable fit
of all the quantities discussed in this work independently,
and do not have to use a joint fit with several quantities. The
χ2=d:o:f: of different quantities and quark masses vary
between 1.0 and 1.5 with 18 degrees of freedom, corre-
sponding to p-values in the range of [0.08–0.46]. The value
of Δm we obtained at the unitary point has a strong
dependence on the quantity and varies from 400 MeV
to 1 GeV.
The values for the renormalized isovector axial vector

coupling g3A, scalar coupling g3S and quark momentum
fraction hxiu−d from the three methods at the unitary point
are listed in Table II.

A. Vector and axial vector case

The lattice renormalization of the vector current can be
defined from normalizing the vector charge,

gbV4
≡ Tr½ΓehPj R d3xψ̄ðxÞγ4ψðxÞjPi�

Tr½ΓehPjPi� ¼ 1

ZV
ð36Þ

where superscript b is for bare value, and Γe ¼ ð1þ γ4Þ=2
is the unpolarized projection operator. Figure 6 shows that
all the fitting methods mentioned in the last section provide

consistent results, while the results from the “mixed”
method have the best signals among the three methods.
A constant fit for the cases with mπ ∈ ð0.25; 0.4Þ GeV
gives the value of the vector renormalization factor as 1.096
(6) which is just slightly smaller than the value 1.105(4)
obtained from the axial Ward identity [37].
Then the renormalization of the vector current can be

used to renormalize the axial-vector matrix element with
polarized projection,

gbA ≡
P

i¼1;2;3Tr½Γm
i hPj

R
d3xψ̄ðxÞγ5γiψðxÞjPi�

3Tr½ΓehPjPi�
gRA ≡ gbAZV

¼
P

i¼1;2;3Tr½ΓihPj R d3xψ̄ðxÞγ5γiψðxÞjPi�
3Tr½ΓehPj R d3xψ̄ðxÞγ4ψðxÞjPi�

ð37Þ

where the superscript b=R stands for the bare/renormalized
value respectively and Γm

i ¼ ð1þ γ4Þγiγ5=2 is the polar-
ized projection operator.
Using gbV4

(instead of that from the axial Ward identity
for pion) to renormalize gA as in Eq. (37) could improve the
signal of the renormalized gA by ∼20% since these two
matrix elements are correlated. As observed in Fig. 7, the
sink-source separation dependence for the isovector case is
mild, while a curve is observable at the right side of the
plateau due to a larger excited state contribution from the
point interpolation field at the sink. This is in contrast to
the flatter behavior to the left of the plateau where the
excited-state contribution is ameliorated by the smeared
source. In Fig. 8, we plot the results of the isovector axial-
vector coupling g3A from the three fitting methods we
mentioned. We note that those from the “mixed” method
are always between those from the other two methods, for
all the data points in the range of mπ ∈ ð0.25; 0.4Þ GeV.
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FIG. 6. The vector renormalization factor from the charge vs the
pion mass, from three kinds of fitting methods: 2-state fit (red
squares), summed slope (black triangles), and the mixed fit which
combines those two methods (blue dots). The results from these
different methods are consistent while that from the mixed
method provides the best signal.

TABLE II. Isovector axial-vector coupling g3A, scalar coupling
g3S and quark momentum fraction hxiEu−d at the unitary point from
three fitting methods. See the following three subsections for the
details.

2-state sum mixed

g3A 1.189(20) 1.157(18) 1.166(19)
g3S 0.61(6) 0.78(6) 0.74(4)
hxiEu−d 0.209(12) 0.190(13) 0.193(19)
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The values from the three methods at the unitary point are
listed in Table II. Similar to other lattice calculations at this
pion mass (i.e. ∼300 MeV), irrespective of which fit is
used, the isovector axial-vector matrix element, gu−dA is
∼10% smaller than the experimental value 1.2723(23)[42].

B. Scalar case

Similarly, the renormalized scalar matrix element with the
unpolarized projection of the nucleon can be calculated by,

gS ≡ ZSTr½ΓehPj R d3xψ̄ðxÞψðxÞjPi�
Tr½ΓehPjPi� ; ð38Þ

where the renormalization constant ZS is obtained from the
RI/MOM scheme and its value on the ensemble we use here

is calculated to be 1.1397(54) [37]. On the other hand, if one
just focuses on the πNσ term, 2ZmmqZSgbS, the renormal-
izations of the quark mass Zm and that of the scalar matrix
element ZS are canceled and so the πNσ term is free of the
renormalization.
It is interesting to point out that the CI part of the scalar

singlet matrix element has a strong sink-source separation
dependence, as seen in the lower panel of Fig. 9. At the same
time, such a separation dependence seems to be canceled
between the u and d quarks, so that the isovector case in the
upper panel of Fig. 9 has only a mild separation dependence.
The results for the isovector scalar matrix element from the
three fitting methods are plotted in Fig. 10 and those at the
unitary point are listed in Table II. This shows that, despite
the fact that there are 2 u valence quarks and only one d
quark in the proton, the d contribution to the scalar matrix
element per quark is more than that of the u, as

guS;CI
2gdS;CI

¼ 0.67ð2Þ ð39Þ

is much smaller than one. The scalar matrix elements of both
the u and d quark increase asmq decreases, but the isovector
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scalar matrix element is not far from unity over the entire
quark mass region from light to heavy. This has been
interpreted to be related to the Gottfried sum rule violation
[43] where it is found experimentally that there are more d
antipartons than u antipartons.

C. Quark momentum fraction

The quark momentum fraction in the nucleon can be
calculated with the traceless part of the energy momentum
tensor, and it should be consistent between calculations
with two different operators. The first one uses the
combination of the diagonal temporal and spatial compo-
nents of the energy momentum tensor,

hxiE ≡ Tr½ΓehPj R d3xOEðxÞjPi�
ETr½ΓehPjPi� ; ð40Þ

where OEðxÞ ¼ ψ̄ðxÞ 1
2
ðγ4D

↔

4 − 1
3

P
i¼1;2;3γiD

↔

iÞψðxÞ is the
traceless part of the energy momentum tensor T44 and is a
measure of the quark fraction of the nucleon mass or
energy. The related matrix element can be calculated in the
rest frame and, as a result, it will have a good signal. On the
other hand, the operator T44 itself can have mixing with
lower dimension operators like the dimension-3 scalar
operator ψ̄ðxÞψðxÞ. Nevertheless, such a mixing will be
canceled due the subtraction of the diagonal spatial
components in OE.
The other approach uses the forward off-diagonal matrix

components of the energy momentum tensor (T4i) in a
moving frame,

hxiP≡Tr½ΓehPjR d3xψ̄ðxÞ1
4
ðγiD

↔

4þγ4D
↔

iÞψðxÞjPi�
piTr½ΓehPjPi� ð41Þ

with pi being the ith component of the nucleon momentum.
Therefore, it is a measure of the quark momentum fraction
in a moving nucleon. Such a scheme is free of mixing of the
lower dimension operators due to its tensor structure, while
the corresponding matrix element is proportional to the
momentum and is thus more noisy than that from the first
approach, because mixed momentum sources are involved
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for the matrix element of the nucleon at nonzero
momentum.
Figure 11 shows the plateau fit values of the t2 ¼ 10 case

for the quark isovector momentum fraction. They are hxiE
from the diagonal components of the energy-momentum
tensor with the nucleon in the rest frame and also hxiP from
the off-diagonal components in a moving frame with
different momenta. The results from both the diagonal
and off-diagonal components (and also those from different
momenta) are consistent, but hxiE provides much better
SNR. The sink-source separation dependence is shown in
Fig. 12, for both results based on the diagonal components
and off-diagonal components. It is interesting to observe
that the separation dependence of the isovector quark
momentum fraction based on the off-diagonal components
seems to be milder than that based on the diagonal ones, for
the cases with t2 ¼ 8 and 10. The hxiP case with t2 ¼ 12
seems to have some t dependence at the smeared source
end, but it could be due to the statistical fluctuation due to
relatively poor signal.
As in Ref. [44], the renormalization factor for the

ensemble we used has been obtained with the one-loop
lattice perturbative theory, as 1.049(3), in the MS scheme at
2 GeV. The error is from the uncertainty of the lattice
spacing. The renormalized values of the isovector quark
momentum fraction of hxiE from the three fitting methods
are plotted in Fig. 13, and those at the unitary point are
listed in Table II.

VI. SUMMARY

We have introduced a new method to calculate the
nucleon matrix elements in the connected insertion. The
stochastic sandwich method (SSM) with low-mode sub-
stitution (LMS) is an approach which uses low modes for
the all-to-all quark propagator between the current and the
sink and the corresponding high-mode contribution is taken

care of by the noise propagator from the sink to the current.
We have shown that it is more efficient than the sink- and
current- sequential methods. However, it does not scale
well with volume which requires more low eigenmodes. It
will lose its advantage when the overhead from calculating
the LMS for all the quark propagators involved is more than
the amount it saves compared with the sink-sequential or
current-sequential method. But this will occur only at
volumes much larger than that used here.
We have used three fitting methods. One is a two-state

fitting including the contamination from the excited-state
transition and the second is the summed-slope method. The
third is a mix of these two methods.
The proton isovector axial-vector coupling g3A we obtain

with the overlap fermion at the unitary point with mπ ¼
330 MeV is

g3A ¼ 1.166ð19Þ ð42Þ

which is ∼8% smaller than the experimental value.
The separation dependence of this quantity is mild. Since

it is smaller than the experimental value on this lattice, it is
essential to repeat the calculation of g3A on larger volumes
and with lighter quark masses.
For the isovector scalar matrix element in the proton, the

renormalized value at MSð2 GeVÞ at the unitary point is

g3S ¼ 0.74ð4Þ: ð43Þ

This shows that, despite the fact that there are 2 u valence
quarks and only one d quark in the proton, the d
contribution to the scalar matrix element per quark is more
than that of the u, as

guS;CI
2gdS;CI

¼ 0.67ð2Þ ð44Þ

is much smaller than one. This has been interpreted [43] to
be related to the Gottfried sum rule violation [45] where it is
found experimentally that there are more d antipartons than
u antipartons.
In the isovector quark momentum fraction case, the bare

value we obtained at the unitary point on the ensemble
mentioned above is

hxiu−d ¼ 0.192ð19Þ; ð45Þ

with the renormalization factor 1.049(3) from one-loop
lattice perturbative theory [44]. This value is similar to
those from most lattice calculations [3,7,13–15] and is
larger than the experimental value. However, the Oða2Þ
error has not been considered. It can be assessed by
imposing the momentum and angular momentum sum
rules at finite lattice spacing as is demonstrated in a
quenched calculation [46]. We will return to this issue
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when the complete lattice simulation of the momentum and
angular-momentum decompositions is carried out.
We will perform calculations with physical sea quark

masses in the future.
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