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We compute fragmentation corrections to hadroproduction of the quarkonium states J=ψ , χcJ , and ψð2SÞ
at leading power in m2

c=p2
T , where mc is the charm-quark mass and pT is the quarkonium transverse

momentum. The computation is carried out in the framework of nonrelativistic QCD. We include
corrections to the parton-production cross sections through next-to-leading order in the strong coupling αs
and corrections to the fragmentation functions through second order in αs. We also sum leading logarithms
of p2

T=m
2
c to all orders in perturbation theory. We find that, when we combine these leading-power

fragmentation corrections with fixed-order calculations through next-to-leading order in αs, we are able to
obtain good fits for pT ≥ 10 GeV to hadroproduction cross sections that were measured at the Tevatron and
the LHC. Using values for the nonperturbative long-distance matrix elements that we extract from the
cross-section fits, we make predictions for the polarizations of the quarkonium states. We obtain good
agreement with measurements of the polarizations, with the exception of the CDF Run II measurement of
the prompt J=ψ polarization, for which the agreement is only fair. In the predictions for the prompt-J=ψ
cross sections and polarizations, we take into account feeddown from the χcJ and ψð2SÞ states.
DOI: 10.1103/PhysRevD.93.034041

I. INTRODUCTION

In recent years, corrections to inclusive quarkonium
production cross sections and polarizations through next-
to-leading order (NLO) in the strong coupling αs have been
computed for both hadroproduction [1–6] and photo-
production [7–9]. These computations have been carried
out in the context of the nonrelativistic QCD (NRQCD)
factorization conjecture [10], which states that the inclusive
production cross section to produce a quarkonium H in a
collision of particles A and B can be written as

dσAþB→HþX ¼
X
n

dσAþB→QQ̄ðnÞþXhOHðnÞi: ð1Þ

Here, the dσAþB→QQ̄ðnÞþX are the short-distance coefficients
(SDCs), which can be computed in perturbation theory and
which correspond to the production of a heavy quark-
antiquark pair QQ̄ðnÞ in a specific color and angular-
momentum state n. The hOHðnÞi are NRQCD long-distance
matrix elements (LDMEs), which parametrize the non-
perturbative part of the production process.
Because the LDMEs have a known scaling with v, the

heavy-quark velocity in the quarkonium rest frame [10], the
sum in Eq. (1) can be regarded as an expansion in the small
parameter v. (v2 ≈ 0.3 for the J=ψ .) In present-day phe-
nomenology, the sum in Eq. (1) is truncated at relative

order v4. For H ¼ J=ψ or H ¼ ψð2SÞ, the truncated

sum involves four LDMEs: hOψð3S½1�1 Þi, hOψð3S½8�1 Þi,
hOψð1S½8�0 Þi, and hOψ ð3P½8�

J Þi, where the expressions in
parentheses give the color state of the QQ̄ pair (singlet or
octet) and spin and orbital angular momentum in spectro-
scopic notation. Here, ψ stands for J=ψ or ψð2SÞ.
For H ¼ χcJ, the truncated sum involves two LDMEs:

hO χc0ð3P½1�
0 Þi and hO χc0ð3S½8�1 Þi, where the LDMEs for the

χc1 and χc2 states can be related to the LDMEs for the χc0
state by making use of the heavy-quark spin symmetry
[10], which is valid up to corrections of relative order v2.
Since the color-singlet LDME for quarkonium produc-

tion hOψ ð3S½1�1 Þi is related to the color-singlet LDME for
quarkonium decay, it can be determined in lattice QCD,
from potential models, or from the ψ decay rates into
lepton pairs. On the other hand, it is not known how to
compute the color-octet production LDMEs from first
principles, and they are usually fixed by comparisons of
NRQCD factorization predictions with measured cross
sections.
Even at the level of NLO accuracy in the theoretical

predictions, it is not possible to achieve a fully consistent
description of the existing J=ψ production data within
the NRQCD framework. For example, one can fit the

PHYSICAL REVIEW D 93, 034041 (2016)

2470-0010=2016=93(3)=034041(17) 034041-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.034041
http://dx.doi.org/10.1103/PhysRevD.93.034041
http://dx.doi.org/10.1103/PhysRevD.93.034041
http://dx.doi.org/10.1103/PhysRevD.93.034041


hadroproduction cross-section data [11,12] and polariza-
tion data [13–15] simultaneously [4], but the LDMEs that
are obtained yield a prediction for the photoproduction
cross section that is larger than the HERA data from the H1
Collaboration [16,17] by factors of 4–8 at the highest value
of pT at which the cross section has been measured [18].
On the other hand, one can fit the predictions for the
hadroproduction and photoproduction cross sections to
the experimental data [5], but the LDMEs that are obtained
lead to predictions of large transverse polarization in
hadroproduction at large pT , in disagreement with the
experimental data [5]. In addition, it was found in Ref. [19]
that the ηc production data that were measured by the
LHCb Collaboration [20] are incompatible with the
LDMEs that were extracted in Ref. [5] from hadroproduc-
tion and photoproduction cross-section data. Although one
can describe the ηc production data by using the LDMEs
that were extracted in Ref. [3], there is a very large

cancellation between the contributions from the 3S½8�1 and
3P½8�

J channels [21,22], and, hence, the remainder may be
strongly dependent on uncertainties from uncalculated
higher-order contributions.
These difficulties provide motivation for calculations of

quarkonium production cross sections beyond NLO accu-
racy in αs. An approach that simplifies computations
beyond NLO in αs is to compute rates at leading power
(LP) or next-to-leading power (NLP) in m2

c=p2
T , where mc

is the charm-quark mass and pT is the quarkonium trans-
verse momentum. LP contributions can be factorized into
semi-inclusive partonic cross sections to produce a specific
single parton convolved with one-parton fragmentation
functions (FFs) [23]. NLP contributions can be factorized
into semi-inclusive partonic cross sections to produce two
specific partons convolved with two-parton FFs [24].
Calculations of these fragmentation contributions, at any
given order in αs, are much simpler than a full fixed-order
calculation. Furthermore, the LP- and NLP-factorization
frameworks are natural ones within which to resum large
logarithms of p2

T=m
2
c. Of course, because the LP and NLP

contributions represent the leading and first subleading
terms in an expansion in powers of m2

c=p2
T , one would not

expect them to be valid unless pT is significantly greater
than mc.
In Ref. [25] it was found that LP contributions beyond

NLO in αs are important in J=ψ hadroproduction. With the
inclusion of these contributions, the LDMEs that are
extracted from the prompt hadroproduction cross sections
alone yield predictions for the J=ψ polarization at large pT
that are near zero and are in agreement with the exper-
imental data [25]. One deficiency in the analysis of
Ref. [25] is that it does not take into account the effects
of feeddown from the χcJ and ψð2SÞ states to the J=ψ .
In this paper, we remedy that deficiency and extend the

application of the LP-factorization approach by computing
LP-fragmentation contributions to direct J=ψ , χcJ, and

ψð2SÞ production. We extract LDMEs by fitting to the
Tevatron and LHC production cross sections, and we use
those LDMEs to predict the J=ψ , χcJ, and ψð2SÞ polar-
izations. Our predictions for the prompt J=ψ and ψð2SÞ
polarizations agree well with the existing high-pT LHC
data, but the prompt J=ψ polarization is in only fair
agreement with the high-pT Tevatron Run II data. Our
predictions for the χcJ polarizations will be tested soon at
the LHC. While the results in this paper do not resolve the
discrepancies between the NRQCD predictions and the
J=ψ photoproduction and ηc hadroproduction data, they do
provide a consistent description of the existing spin-triplet
charmonium hadroproduction data at high pT .
The remainder of this paper is organized as follows. In

Sec. II, we discuss the form of the LP corrections that we
compute. Section III contains the details of the calculation
of the LP SDCs. We combine the LP and NLO results for
the SDCs in Sec. IV. In Sec. V, we fit our predictions for the
hadroproduction cross sections to the data, obtaining values
for the LDMEs. We use these values for the LDMEs to
make predictions for cross-section ratios and polarizations
in Sec. VI. Finally, in Sec. VII, we summarize and discuss
our results.

II. CORRECTIONS TO QUARKONIUM
PRODUCTION AT LEADING POWER IN pT

The contribution of leading power in pT to a quarkonium
production cross section is given by the LP-factorization
formula [23]

dσLPAþB→QQ̄ðnÞþXðpÞ

¼
Z

1

0

dz
X
i

dσ̂AþB→iþXðpi ¼ p=z; μfÞDi→QQ̄ðnÞðz;μfÞ:

ð2Þ

Here, dσ̂AþB→iþX is the semi-inclusive parton-production
cross section (PPCS) for hadrons A and B to produce parton
i, and Di→QQ̄ðnÞ is the FF for parton i to fragment into the
QQ̄ pair with quantum numbers n. p is the momentum of
theQQ̄ pair, which is taken to be lightlike by neglecting the
heavy-quark mass, and pi is the momentum of parton i,
which is taken to be lightlike by neglecting the parton mass.
μf is the factorization scale.
As we will describe in more detail in Sec. III, the PPCSs

and the FFs have been calculated to order α3s and α2s ,
respectively. Hence, we write them as

dσ̂AþB→iþX ¼ α2sdσ̂
ð2Þ
AþB→iþX þ α3sdσ̂

ð3Þ
AþB→iþX

þOðα4sÞ; ð3aÞ

Di→QQ̄ðnÞ ¼ αsD
ð1Þ
i→QQ̄ðnÞ þ α2sD

ð2Þ
i→QQ̄ðnÞ þOðα3sÞ: ð3bÞ
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As we have already mentioned, the SDCs for both
unpolarized and polarized quarkonium production have
been computed through NLO in αs, which is order α4s.
In this paper, we extend these order-α4s calculations by
combining existing calculations of the PPCSs through
order α3s and existing calculations of the FFs through order
α2s to obtain a partial calculation of the order-α5s (NNLO)
contributions to the LP SDCs. Furthermore, we calculate
corrections to the LP SDCs involving leading logarithms of
p2
T=m

2
c to all orders in αs by solving the Dokshitzer-

Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equa-
tion [26–29]. Because this calculation of the LP SDCs
accounts only partially for corrections of order α5s, we
expect uncertainties from uncalculated corrections to be of
order α5s. However, these uncalculated corrections will not
contain any enhancements from leading logarithms of
p2
T=m

2
c.

Part of the LP-fragmentation contribution through order
α4s is already included in the NLO SDCs, namely,

dσLPNLOðpÞ

¼
Z

1

0

dz
X
i

α3sdσ̂
ð2Þ
AþB→iþXðpi¼p=z;μfÞDð1Þ

i→QQ̄ðnÞðz;μfÞ

þ
Z

1

0

dz
X
i

α4s ½dσ̂ð2ÞAþB→iþXðpi¼p=z;μfÞDð2Þ
i→QQ̄ðnÞðz;μfÞ

þdσ̂ð3ÞAþB→iþXðpi¼p=z;μfÞDð1Þ
i→QQ̄ðnÞðz;μfÞ�: ð4Þ

Hence, when we combine the SDCs through NLO in αs and
the LP-fragmentation contributions, we must subtract the
contributions in Eq. (4) in order to avoid double counting.
Following Ref. [25], we compute

dσLPþNLO

dpT
¼ dσLP

dpT
− dσLPNLO

dpT
þ dσNLO

dpT
; ð5Þ

where dσNLO=dpT is the SDC through NLO in αs. The
expression (5) takes into account, without double counting,
the complete calculations through NLO in αs and also the
additional LP corrections beyond NLO that we have
mentioned.

III. COMPUTATION OF THE LP
SHORT-DISTANCE COEFFICIENTS

In this section we describe the details of the computation
of the PPCSs and FFs that enter into the LP short-distance
coefficients in the LP factorization formula (2).
We take mc ¼ 1.5 GeV. We use the CTEQ6M parton

distribution functions and the two-loop expression for αs,

with nf ¼ 5 quark flavors and Λð5Þ
QCD ¼ 226 MeV. We set

the renormalization scale μr and the factorization scale μf
for the both parton distribution functions and the FFs to be
mT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ 4m2

c

p
. In order to resum leading logarithms of

p2
T=m

2
c, we evolve the FFs from the scale μ0 ¼ 2mc to the

scale μf ¼ mT ≈ pT . We take the NRQCD factorization
scale to be μΛ ¼ mc. In the calculation of the PPCSs and
the evolution of the FFs, we take nf ¼ 3 active-quark
flavors. That is, we ignore contributions from virtual or
initial heavy quarks.

A. Parton production cross sections

The PPCSs through order α3s were computed in the modi-
fied minimal-subtraction (MS) scheme in Refs. [30,31]. We
carry out numerical computations of the PPCSs through
order α3s by making use of the computer code that was
written by the authors of Ref. [30].
The PPCSs are computed as a function of pT , y, and

z ¼ pþ=pi
þ ¼ pT=piT , where pT is the transverse

momentum of the QQ̄ pair, y is the rapidity of the QQ̄
pair in the hadron center-of-momentum frame, and piT is
the transverse momentum of the specific parton that is
produced in the semi-inclusive partonic scattering process.
Here, we have written z in terms of the transverse momenta
by using the fact that, in the LP approximation, one can
ignore the invariant mass of the QQ̄ pair. The maximum
value of piT is kinematically constrained, and, so, the
PPCSs vanish for z ≤ z0 ¼ pTffiffi

s
p ðeþy þ e−yÞ, where ffiffiffi

s
p

is the

center-of-mass energy.

B. Fragmentation functions

In this paper we take into account FFs through order α2s,
which are available for fragmentation of both gluons and
quarks into polarized and unpolarized QQ̄ pairs. A sum-
mary of FFs that we use in our calculation can be found in
Ref. [32] and Ref. [33] for unpolarized and polarized QQ̄
pairs, respectively. We give a detailed description below of
the sources of these FFs.

The gluon FF Dg→QQ̄ðnÞ for n ¼ 3S½8�1 was calculated for
both unpolarized and polarized final states at order αs (LO)
in Ref. [34] and at order α2s (NLO) in Refs. [32,35]. The

gluon FF for n ¼ 1S½8�0 was calculated at order α2s (LO) in

Refs. [36,37]. The gluon FFs for n ¼ 3P½8�
J were calculated

at order α2s (LO) in Refs. [34,37] for unpolarized final states
and in Ref. [33] for polarized final states. The gluon FFs for

n ¼ 3P½1�
J were calculated at order α2s (LO) in Ref. [34] for

unpolarized final states and in Refs. [33,38] for polarized
final states.
The situation for quark FFs Dq→QQ̄ðnÞ with n an S-wave

state is rather complicated, as there are several independent
calculations, some of which do not agree. Let us distinguish

three cases: (i) q ≠ Q, in which case, n ¼ 3S½8�1 ; (ii) q ¼ Q

and n ¼ 3S½8�1 ; (iii) q ¼ Q and n ¼ 3S½1�1 . The quark FF for
case (i) for an unpolarized final state was calculated at order
α2s (LO) in Refs. [32,39,40], whose results all agree. The
quark FF for case (i) for a polarized final state was
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calculated at order α2s (LO) in Refs. [33,39,41]. The results
in Refs. [33,39] agree with each other, but disagree with the
result in Ref. [41]. The results in Refs. [33,39] have since
been confirmed by the author of Ref. [41]. The quark FF for
case (ii) for an unpolarized final state was calculated at
order α2s (LO) in Refs. [32,39,40,42]. The results in
Refs. [32,39] agree with each other and disagree with
the results in Refs. [40,42]. We use the results in
Refs. [32,39] in this paper. The quark FF for case (ii) for
a polarized final state was calculated at order α2s (LO) in
Refs. [33,39,41], whose results agree. The quark FF for
case (iii) for an unpolarized final state was calculated at
order α2s (LO) in Refs. [32,39,43], whose results agree. The
quark FF for case (iii) for a polarized final state was
calculated at order α2s (LO) in Refs. [33,39,41], whose
results agree.

The quark FFs DQ→QQ̄ðnÞ for n ¼ 3P½1�
J and n ¼ 3P½8�

J

were calculated for the unpolarized and polarized cases at
order α2s (LO) in Ref. [40].
The gluon FF D

g→QQ̄ð3S½1�
1
Þ was calculated at order α3s

(LO) in Refs. [44,45]. Because the contributions to the FF

in the 3S½1�1 channel begin at order α3s, we do not include
them in our LP-fragmentation calculations. However, we

do use the LO FF for the 3S½1�1 channel to estimate the size of
the uncalculated LP-fragmentation contributions for that
channel.

C. DGLAP equation

At leading order in αs, the DGLAP equation is given by
[26–29]

d
d log μ2f

�
DSðμfÞ
DgðμfÞ

�
¼ αsðμfÞ

2π

�
Pqq 2nfPgq

Pqg Pgg

�

⊗
�
DSðμfÞ
DgðμfÞ

�
; ð6Þ

where Dg ¼Dg→QQ̄ðnÞ, DS¼
P

f½Dqf→QQ̄ðnÞ þDq̄f→QQ̄ðnÞ�,
f is the light-quark or light-antiquark flavor, the Pij are the
splitting functions for the FFs, and nf is the number of
active light-quark flavors. The symbol ⊗ represents the
convolution

ðf ⊗ gÞðzÞ ¼
Z

1

0

dx
Z

1

0

dyfðxÞgðyÞδðxy − zÞ

¼
Z

1

z

dx
x
fðz=xÞgðxÞ

¼
Z

1

z

dx
x
fðxÞgðz=xÞ: ð7Þ

The splitting functions are given by

PggðzÞ ¼ 2CA

�
z

ð1− zÞþ
þ 1− z

z
þ zð1− zÞ þ b0

12
δð1− zÞ

�
;

ð8aÞ

PgqðzÞ ¼ CF
1þ ð1 − zÞ2

z
; ð8bÞ

PqgðzÞ ¼ TF½z2 þ ð1 − zÞ2�; ð8cÞ

PqqðzÞ ¼ CF

�
1þ z2

ð1 − zÞþ
þ 3

2
δð1 − zÞ

�
; ð8dÞ

where

CA ¼ Nc; ð9aÞ

CF ¼ N2
c − 1

2Nc
; ð9bÞ

TF ¼ 1

2
; ð9cÞ

b0 ¼
11

3
Nc − 2

3
nf; ð9dÞ

and Nc ¼ 3 is the number of colors.
As is well known, an analytic solution to Eq. (6) can be

obtained in Mellin space. The Mellin transform of a
function f is defined by

~fðNÞ ¼ ðMfÞðNÞ ¼
Z

1

0

dz zN−1fðzÞ; ð10Þ

where we use a tilde ( ∼) to denote objects in Mellin space.
The Mellin transform of the convolution in Eq. (6) is an
ordinary product:

½Mðf ⊗ gÞ�ðNÞ ¼ ðMfÞðNÞ × ðMgÞðNÞ: ð11Þ

Hence, Eq. (6) can be diagonalized by taking the Mellin
transform. Using the one-loop evolution of αs

d
d log μ2f

¼ − b0
4π

α2sðμfÞ
d

dαsðμfÞ
; ð12Þ

one obtains the following solution of the DGLAP
equation:
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� ~DSðN; μfÞ
~DgðN; μfÞ

�

¼
�
Mþ

�
αsðμ0Þ
αsðμfÞ

�
2 ~Pþ=b0 þM−

�
αsðμ0Þ
αsðμfÞ

�
2 ~P−=b0

�

×

� ~DSðN; μ0Þ
~DgðN; μ0Þ

�
; ð13Þ

where

M� ¼ � 1

~Pþ − ~P−

� ~Pqq − ~P∓ 2nf ~Pgq

~Pqg
~Pgg − ~P∓

�
; ð14Þ

and

~P� ¼ 1

2

h
~Pgg þ ~Pqq �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~Pgg − ~PqqÞ2þ 8nf ~Pqg

~Pgq

q i
: ð15Þ

The evolved FFs in z-space can be obtained from Eq. (13)
by applying the inverse Mellin transform

Di→QQ̄ðnÞðz; μfÞ ¼
1

2πi

Z
cþi∞

c−i∞
dNz−N ~Di→QQ̄ðnÞðN; μfÞ;

ð16Þ

where the real number c is chosen so that the integral over
N follows a contour that lies to the right of all of the poles
of ~Di→QQ̄ðnÞðN; μfÞ.
We resum the leading logarithms of p2

T=m
2
c by choosing

the evolution scales μ0 ¼ 2mc and μf ¼ mT ≈ pT . In this
paper, we compute the integral over N numerically, using
analytic expressions for the Mellin transforms of the FFs at
the scale μ0 ¼ 2mc.
There is a difficulty in numerical computation of the

inverse Mellin transform in Eq. (16) near z ¼ 1. For z ≪ 1,
the factor z−N causes the integrand to vanish quickly at
large jNj and the integral over N converges. On the
other hand, when z ¼ 1, the convergence of the integral
depends solely on the behavior of the Mellin-space FF
~Di→QQ̄ðnÞðN; μfÞ at large jNj. Since ~Pgg and ~Pqq behave
asymptotically as negative constants times log jNj, while
~Pgq and ~Pqg vanish asymptotically as inverse powers of N,
the coefficients ofMþ andM− in Eq. (16) damp the integral
when αsðμfÞ ≪ αsðμ0Þ. However, the integrals do not
converge at z ¼ 1 unless μf is quite large in comparison
with μ0. In fact, as μf approaches μ0, the evolved FFs
approximate the initial FFs, which, in some cases, are
distributions at z ¼ 1. We deal with this problem by
rearranging the convolutions of the FFs and the PPCSs
so as to treat the singular behavior of the FFs at z ¼ 1
analytically. The details of the method are given in the
Appendix.

IV. RESULTS FOR COMBINED LP AND NLO
SHORT-DISTANCE COEFFICIENTS

Now we use Eq. (5) to combine results for the LP SDCs,
computed as described in Sec. III, with the SDCs through
NLO in αs. For the latter, we make use of the computations
in Refs. [1,3,4], taking the values of the parton distribu-
tions,mc, αs, μr, μf, μΛ, and nf that are specified at the start
of Sec. III.1

We first compare our results for dσLPNLO=dpT with
dσNLO=dpT , the fixed-order SDC accurate through NLO.
Figures 1–4 show the ratios ðdσLPNLO=dpTÞ=ðdσNLO=dpTÞ
for the polarized and unpolarized final states in the process
pp → H þ X at

ffiffiffi
s

p ¼ 7 TeV and jyj < 1.2.
In Fig. 1, we show the ratios ðdσLPNLO=dpTÞ=

ðdσNLO=dpTÞ for unpolarized final states in the 3S½8�1 ,
1S½8�0 , and 3P½8�

J channels. As pT increases, the ratios for

the 3S½8�1 and 3P½8�
J channels quickly approach unity because

the LP-fragmentation contribution dominates the SDCs.

This approach to unity is slower for the 1S½8�0 channel

because the FF for the 1S½8�0 channel does not receive
enhancements near z ¼ 1 from a Dirac δ function or plus
distributions that are the remnants of soft divergences that
cancel between real and virtual gluon-emission processes.2

At small pT , the ratio ðdσLPNLO=dpTÞ=ðdσNLO=dpTÞ is larger

1In order to improve computational efficiency, we have
omitted in the calculation of dσNLO=dpT contributions from
processes that are initiated by two light quarks, two light-
antiquarks, or a light quark and a light antiquark, where the
two initial partons can have different flavors. We use the generic
expression qq to denote these light-quark/antiquark initial states.
The qq-initiated contributions are small in comparison to the sum
of the qg- and gg-initiated contributions because the q and q̄
partonic fluxes are small in comparison to the g partonic flux. As
pT increases, the sizes of the q and q̄ partonic fluxes increase
relative to the size of the g partonic flux because larger values of
the parton momentum fractions are emphasized. At large values
of pT , dσNLO=dpT is well approximated by dσLPNLO=dpT. There-
fore, we adopt the following computational strategy. In order to
match what was done in the NLO calculation, we omit the qq-
initiated contributions in computing dσLPNLO=dpT in Eq. (5).
However, we take the qq-initiated contributions into account
at large pT , where they can be more important, by including them
in the computation of dσLP=dpT in Eq. (5). Since each qq-
initiated process that produces a given QQ̄ channel contains an
LP fragmentation contribution at the leading nontrivial order in
αs, we can use LP fragmentation results to estimate the sizes of
the qq-initiated contributions. These estimates indicate that qq-
initiated contributions produce the largest fractional correction in
the longitudinally polarized 3S½8�1 channel, in which they grow to
about 5% of the total at pT ¼ 100 GeV. Hence, we expect any
errors that result from the omission of the qq-initiated processes
in the NLO calculations to be much less than 5%.

2It was shown in Ref. [46] that the ratio ðdσLPNLO=dpTþ
dσNLPNLO=dpTÞ=ðdσNLO=dpTÞ, which takes into account both the
LP and NLP contributions, approaches unity much faster for the
1S½8�0 channel than does the ratio ðdσLPNLO=dpTÞ=ðdσNLO=dpTÞ.
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for the 3P½8�
J channel than for the 3S½8�1 and 1S½8�0 channels

because, for the 3P½8�
J channel, the LO and NLO contribu-

tions in the denominator tend to cancel.
In Fig. 2, we show the ratios ðdσLPNLO=dpTÞ=

ðdσNLO=dpTÞ for longitudinal final states in the 3S½8�1 and
3P½8�

J channels. The approach of each of these ratios to unity
is slow. As was the case for the ratio of cross sections in the
1S½8�0 channel, the slow approach to unity is a consequence
of the fact that the FFs are not enhanced near z ¼ 1 by a
Dirac δ function or plus distributions.
In Fig. 3, we show the ratios ðdσLPNLO=dpTÞ=

ðdσNLO=dpTÞ for unpolarized final states in the color-
singlet P-wave channels. We show the ratios for the
polarized final states in Fig. 4. Here, h is the helicity of
the QQ̄ pair in the final state. The behaviors are similar to
those for the 3P½8�

J channel, except for the case of J ¼ 2with
jhj ¼ 1, for which the ratio ðdσLPNLO=dpTÞ=ðdσNLO=dpTÞ is
almost constant. We note that the deviation of
ðdσLPNLO=dpTÞ=ðdσNLO=dpTÞ from unity at large pT is of

the same relative size as the statistical uncertainty in the
NLO calculation.
Next we compare dσLPþNLO

NLO =dpT , the SDC that inc-
ludes both the fixed-order corrections through NLO
and the additional LP corrections, with dσNLO=dpT ,
the SDC that includes fixed-order corrections through
NLO. Specifically, we show the ratios ðdσLPþNLO

NLO =dpTÞ=
ðdσNLO=dpTÞ for the polarized and unpolarized final states

in Figs. 5–8. With the exception of the 3S½8�1 channel,
the additional LP-fragmentation contributions are of the
order of 100% at large pT . As we have mentioned, because
there is a partial cancellation between the LO and the

NLO contributions in the 3P½8�
J channel, the additional LP

fragmentation corrections have a significant impact on the

shape in that channel. For the 3S½8�1 channel the additional
LP-fragmentation contributions are negative and only
mildly alter the shape.
As was pointed out in Ref. [25], the effects from the all-

orders resummation of logarithms of p2
T=m

2
c are small.

FIG. 3. The ratio ðdσLPNLO=dpTÞ=ðdσNLO=dpTÞ for the 3P½1�
1

and 3P½1�
2 channels in the process pp → H þ X at

ffiffiffi
s

p ¼ 7 TeV
and jyj < 1.2.

FIG. 4. The ratio ðdσLPNLO=dpTÞ=ðdσNLO=dpTÞ for the polarized
3P½1�

1 and3P½1�
2 channels in theprocesspp → H þ X at

ffiffiffi
s

p ¼ 7 TeV
and jyj < 1.2. h is the helicity of the QQ̄ pair in the final state.

FIG. 1. The ratio ðdσLPNLO=dpTÞ=ðdσNLO=dpTÞ for the 1S½8�0 ,
3P½8�

J , and 3S½8�1 channels in the process pp → H þ X at
ffiffiffi
s

p ¼
7 TeV and jyj < 1.2.

FIG. 2. The ratio ðdσLPNLO=dpTÞ=ðdσNLO=dpTÞ for the polarized
3P½8�

J and 3S½8�1 channels with longitudinal final states in the
process pp → H þ X at

ffiffiffi
s

p ¼ 7 TeV and jyj < 1.2.
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In the case of the 3S½8�1 channel, almost all of the effects of
the large logarithms are already accounted for in the NLO

contribution. In the cases of the 1S½8�0 and 3P½8�
J channels, the

all-orders resummations of logarithms shift the FFs by only
about 2% and 5%, respectively, at pT ¼ 52.7 GeV because
contributions from the running of αs and from the DGLAP
splitting cancel. Hence, almost all of the large additional LP
corrections that we find arise from nonlogarithmic con-
tributions of order α5s.
Finally, we discuss the LP-fragmentation contribution to

the 3S½1�1 channel. Since the FF for this channel begins at

order α3s, the
3S½1�1 channel receives an LP contribution that

begins at order α5s (NNLO). We do not include this LP-
fragmentation contribution in our analysis. However, we
have estimated its size by making use of the FF at order α3s.
At pT ¼ 10 GeV, the LP contribution is about an order
of magnitude smaller than the fixed-order contribution
through NLO. The LP contribution reaches the same size
as the fixed-order contribution through NLO at around
pT ¼ 50 GeV. Finally, when pT ¼ 130 GeV, the LP con-
tribution is almost an order of magnitude larger than
the fixed-order contribution through NLO. Although the
LP-fragmentation contribution can have a significant effect
on the color-singlet contribution at large pT , its effect on
the cross section is only of the order of 1% of the measured
cross section at pT ¼ 130 GeV.

V. FITS OF CROSS-SECTION
PREDICTIONS TO DATA

In this section we extract the color-octet LDMEs by
fitting the cross-section predictions that are based on the
LPþ NLO SDCs to the measured cross sections. We use
the resulting LDMEs to make predictions for the prompt-
J=ψ polarization. In order to suppress possible nonfacto-
rizing contributions, we fit only to data for which pT is

FIG. 6. The ratio ðdσLPþNLO=dpTÞ=ðdσNLO=dpTÞ for the

polarized 3P½8�
J and 3S½8�1 channels with longitudinal final states

in the process pp → H þ X at
ffiffiffi
s

p ¼ 7 TeV and jyj < 1.2.

FIG. 5. The ratio ðdσLPþNLO=dpTÞ=ðdσNLO=dpTÞ for the 1S½8�0 ,
3P½8�

J , and 3S½8�1 channels with unpolarized final states in the
process pp → H þ X at

ffiffiffi
s

p ¼ 7 TeV and jyj < 1.2.

FIG. 8. The ratio ðdσLPþNLO=dpTÞ=ðdσNLO=dpTÞ for the 3P½1�
1

and 3P½1�
2 channels with polarized final states in the process pp →

H þ X at
ffiffiffi
s

p ¼ 7 TeV and jyj < 1.2.

FIG. 7. The ratio ðdσLPþNLO=dpTÞ=ðdσNLO=dpTÞ for the 3P½1�
1

and 3P½1�
2 channels with unpolarized final states in the process

pp → H þ X at
ffiffiffi
s

p ¼ 7 TeV and jyj < 1.2.
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greater than 3mH, wheremH is the quarkonium mass. Since
the shape of the pT distribution determines the LDMEs, it is
crucial to use the data at the highest pT values in the fits.
In the case of the direct J=ψ cross section, we estimate

the theoretical uncertainties in the SDCs to be 25% of the
central values. We arrived at these uncertainties by varying
the factorization scale μf and the renormalization scale μr
independently between 1

2
mT and 2mT . This 25% uncer-

tainty is also roughly the size of the uncertainty that one
would expect from uncalculated corrections of higher
order in v. In the cases of the cross sections of the excited
charmonium states, we take the uncertainties to be 30% of
the central values because the v2 for those states is larger
than for the J=ψ .

A. Production of ψð2SÞ
We determine the three color-octet ψð2SÞ LDMEs by

performing a least-χ2 fit to the CDF [47] and CMS [12,48]
cross-section data. In order to suppress possible nonfacto-
rizing contributions, we use only the data for which pT is
greater than 11 GeV. We ignore feeddown contributions
from decays of heavier quarkonia.
In the case of the color-singlet LDME, we take a value

that was determined in a potential-model calculation [49]:

hOψð2SÞð3S½1�1 Þi ¼ 0.76 GeV3. Different choices for the
value of the color-singlet LDME would have little effect
on our results, as the contribution from the color-singlet
channel is much smaller than the theoretical uncertainties.
In the lowest pT bin that we consider for the CMS data that
have jyj < 1.2 (11 GeV < pT < 12 GeV), the contribution
from the color-singlet channel is only about 5% of the cross
section, and the color-singlet contribution drops to 0.2%
in the highest pT bin (75 GeV < pT < 100 GeV).
The fitted LPþ NLO cross section is compared with

the data in Fig. 9. The quality of the fit is quite good,
with χ2=d:o:f: ¼ 1.71=29. As can be seen from Fig. 10, the

cross section is dominated by the 1S½8�0 channel at moderate
values of pT , but not at large values of pT . The concept

of 1S½8�0 dominance has been suggested previously in
Refs. [4,25,50].
The color-octet LDMEs that are obtained from the fit are

hOψð2SÞð3S½8�1 Þi ¼ ð−1.57� 2.80Þ × 10−3 GeV3; ð17aÞ

hOψð2SÞð1S½8�0 Þi ¼ ðþ3.14� 0.79Þ × 10−2 GeV3; ð17bÞ

hOψð2SÞð3P½8�
0 Þi

m2
c

¼ ð−1.14� 1.21Þ × 10−3 GeV3: ð17cÞ

The uncertainties that are shown above are correlated. The

correlation matrix of the uncertainties in hOψð2SÞð3S½8�1 Þi,
hOψð2SÞð1S½8�0 Þi, and hOψð2SÞð3P½8�

0 Þi=m2
c, respectively, is

Cψð2SÞ ¼

0
BB@

7.85 −14.7 3.36

−14.7 62.2 −5.52
3.36 −5.52 1.46

1
CCA × 10−6 GeV6:

ð18Þ
It is useful to examine the correlation matrix of relative

uncertainties, C̄ψð2SÞ, whose components are defined by

C̄ψð2SÞ
mn ¼ C ψð2SÞ

mn

OnOm
; ð19Þ

FIG. 10. Contributions of the individual channels to the prompt
ψð2SÞ differential cross section at the LHC (

ffiffiffi
s

p ¼ 7TeV).
Bψð2SÞ ¼ Br½ψð2SÞ → μþμ−�.

FIG. 9. The differential cross sections for prompt ψð2SÞ
production at the Tevatron (

ffiffiffi
s

p ¼ 1.96TeV) and the LHC
(

ffiffiffi
s

p ¼ 7TeV). Bψð2SÞ ¼ Br½ψð2SÞ → μþμ−�, where Br denotes
a branching ratio.
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where On is the central value of the nth LDME. Then
C̄ψð2SÞ is given by

C̄ψð2SÞ ¼

0
B@

32.0 2.98 18.9

2.98 0.63 1.55

18.9 1.55 11.3

1
CA × 10−1: ð20Þ

The normalized eigenvectors of C̄ψð2SÞ are

vψð2SÞ1 ¼

0
B@

0.858

0.0780

0.508

1
CA; vψð2SÞ2 ¼

0
B@

0.181

0.879

−0.441

1
CA;

vψð2SÞ3 ¼

0
B@

−0.481
0.470

0.740

1
CA; ð21Þ

and the corresponding eigenvalues are λψð2SÞ1 ¼ 4.34,

λψð2SÞ2 ¼ 4.67 × 10−2, and λψð2SÞ3 ¼ 1.96 × 10−3. The

eigenvector vψð2SÞ2 is predominantly 1S½8�0 and its uncertainty

[ðλψð2SÞ2 Þ1=2] is fairly small. On the other hand, the eigen-

vector vψð2SÞ1 has a very large uncertainty [ðλψð2SÞ1 Þ1=2].
Hence, the 3S½8�1 and 3P½8�

0 LDMEs can vary together in a

correlated way that tends to preserve the 1S½8�0 dominance.
(Recall that the SDCs for these channels have opposite

signs.) The eigenvector vψð2SÞ3 has a very small uncertainty

[ðλψð2SÞ3 Þ1=2] and, therefore, the anticorrelated variation of

the 3S½8�1 and 3P½8�
0 LDMEs is highly constrained.

B. Production of χ c1 and χ c2
We determine the two χcJ LDMEs by fitting to ATLAS

cross-section data [51]. In order to suppress possible non-
factorizing contributions we fit only to data for which pT is
greater than 11 GeV.We ignore feeddown contributions. The
ψð2SÞ decays into χc1γ and χc2γ with branching ratios of
9.55% and 9.11%, respectively. These contributions amount
to only a few percent of the measured cross sections and are
much smaller than the theoretical uncertainties.
The fitted LPþ NLO χc1 and χc2 cross sections are

compared with the data in Fig. 11. We do not consider the
χc0 cross section because the χc0 branching ratio to J=ψγ is
small and the corresponding contribution to the prompt
J=ψ cross section is negligible. Again, we obtain a good fit
to data, with χ2=d:o:f: ¼ 1.19=8. The contributions of the
individual channels to the prompt-χc1 and prompt-χc2 cross
sections are shown in Fig. 12. There are substantial

cancellations between the contributions of the 3S½8�1 and
3P½1�

J channels.
The resulting LDMEs are

hO χcð3S½8�1 Þi ¼ ð5.74� 1.31Þ × 10−3 GeV3; ð22aÞ

hO χcð3P½1�
0 Þi

m2
c

¼ ð3.53� 1.08Þ × 10−2 GeV3: ð22bÞ

The correlation matrix of the uncertainties in hO χcð3S½8�1 Þi
and hO χcð3P½1�

0 Þi=m2
c, respectively, is

C χc ¼
�
1.71 14.0

14.0 117

�
× 10−6 GeV6: ð23Þ

The relative uncertainties in these LDMEs are fairly
small, but there are substantial correlations between them.
The correlation matrix of relative uncertainties is

C̄ χc ¼
�
5.18 6.91

6.91 9.39

�
× 10−2: ð24Þ

The normalized eigenvectors of C̄ χc are

FIG. 11. The differential cross sections for prompt χc1 and χc2
production at the LHC (

ffiffiffi
s

p ¼ 7TeV).BχcJ ¼ Br½ χcJ → J=ψ þ γ�
×Br½J=ψ → μþμ−�.

FIG. 12. Contributions of the individual channels to the differ-
ential cross sections for prompt χc1 and χc2 production at the LHC
(

ffiffiffi
s

p ¼ 7TeV). BχcJ ¼ Br½ χcJ → J=ψ þ γ� × Br½J=ψ → μþμ−�.
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v χc
1 ¼

�
0.595

0.804

�
; v χc

2 ¼
�

0.804

−0.595
�
; ð25Þ

and the corresponding eigenvalues are λχc1 ¼ 0.145 and
λχc2 ¼ 5.70 × 10−4. We see that, while the eigenvector v χc

1

has a small uncertainty, the 3S½8�1 and 3P½1�
0 LDMEs can vary

in a correlated way. However, from the very small uncer-
tainty of the eigenvector v χc

2 , we see that anticorrelated
variation of these LDMEs is highly constrained.
At leading order in v, the color-singlet LDME is related

to the derivative of the wave function at the origin as

hOð3P½1�
0 Þiχc ¼ 2Nc

3

4π
jR0ð0Þj2: ð26Þ

The value of the color-singlet LDME that we obtained from
our fit corresponds to jR0ð0Þj2 ¼ 0.055� 0.017 GeV5.
This is consistent with the value jR0ð0Þj2 ¼ 0.075 GeV5

that was obtained in Ref. [49] by using the Buchmüller-Tye
potential. It is also consistent with the value that was
determined in Ref. [52] from the two-photon decay

rates of the χc0 and the χc2, namely, hOð3P½1�
0 Þiχc ¼

0.060þ0.043−0.029 GeV5, which corresponds to jR0ð0Þj2 ¼
0.042þ0.030−0.020 GeV5.

C. Production of prompt J=ψ

We determine the J=ψ LDMEs by fitting to the CDF [11]
and CMS [12,48] prompt-J=ψ cross-section data. In order
to suppress possible nonfactorizing contributions, we fit

only to data for pT greater than 10 GeV. We compute the
feeddown contributions from the decays of ψð2SÞ, χc1, and
χc2 by making use of the LDMEs that were determined in
the preceding sections. The prompt-J=ψ cross section is
given by

dσprompt
J=ψ

dpT
¼ dσdirectJ=ψ

dpT
þ dσψð2SÞ
dpψð2SÞ

T

Br½ψð2SÞ → J=ψ þ X�

þ dσχc1
dp χc1

T
Br½ χc1 → J=ψ þ γ�

þ dσχc2
dp χc2

T
Br½ χc2 → J=ψ þ γ�: ð27Þ

Here, we ignore the feeddown contribution from the decay
of the χc0. As we have mentioned, the χc0 decays into J=ψγ
with a small branching ratio, and the contribution to the
prompt J=ψ cross section is negligible. pT is the transverse
momentum of the J=ψ , and pH

T is the transverse momentum
of H ¼ ψð2SÞ, χcJ. In the feeddown contributions, we take
pH
T to be

pH
T ¼ mH

mJ=ψ
pT . ð28Þ

The relation (28) is derived by neglecting the 3-momentum
of the J=ψ in the H rest frame in comparison with mJ=ψ .

3

We take the value of the color-singlet LDME that has
been obtained from the electromagnetic decay rate [55]:
hOJ=ψð3S½1�1 Þi ¼ 1.32 GeV3. Again, the contribution from
the color-singlet channel is much smaller than the theoretical
uncertainties, ranging from 4% for the bin 10 GeV < pT <
11 GeV to 0.2% for the bin 95 GeV < pT < 120 GeV in
comparison with the direct J=ψ cross section.
We obtain a good fit to the data, with χ2=d:o:f. ¼

8.20=40. The fitted LPþ NLO cross section is shown in
comparison with the data in Fig. 13. The contributions of
the individual channels to the direct J=ψ cross section are
shown in Fig. 14. The direct J=ψ cross section is dominated

by the 1S½8�0 channel at all values of pT between 10 GeVand
100 GeV.

FIG. 13. The differential cross section for prompt J=ψ pro-
duction at the Tevatron (

ffiffiffi
s

p ¼ 1.96TeV) and the LHC
(

ffiffiffi
s

p ¼ 7TeV). BJ=ψ ¼ Br½J=ψ → μþμ−�.

3We have estimated the effects of corrections to this relation
on the contributions of χc1 and χc2 feeddown to the J=ψ
unpolarized and polarized cross sections. In these estimates,
we computed the angular distribution of the J=ψ momentum in
the χcJ rest frame by making use of the formalism of Ref. [53],
and we included the E1, M2, and E3 electromagnetic transition
amplitudes, taking the M2 and E3 amplitudes to be given by the
central values of the measurement of the CLEO Collaboration
[54]. We find that the corrections to the feeddown contributions
are no more than 8% in any of the J=ψ polarization channels.
Furthermore, the corrections are essentially flat as functions of
pT , deviating by only about 1% over the range 10 GeV ≤ pT ≤
100 GeV, with almost all of the deviation occurring between
10 GeV and 15 GeV. Hence, the corrections have little effect
on the shapes of the cross sections and can be absorbed into
normalization shifts of the LDMEs of a few percent or less.
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The color-octet LDMEs that are obtained from the fit are

hOJ=ψð3S½8�1 Þi ¼ ð−7.13� 3.64Þ × 10−3 GeV3; ð29aÞ

hOJ=ψð1S½8�0 Þi ¼ ðþ1.10� 0.14Þ × 10−1 GeV3; ð29bÞ
hOJ=ψð3P½8�

0 Þi
m2

c
¼ ð−3.12� 1.51Þ × 10−3 GeV3: ð29cÞ

The correlation matrix of the uncertainties in hOJ=ψð3S½8�1 Þi,
hOJ=ψð1S½8�0 Þi, and hOJ=ψð3P½8�

0 Þi=m2
c, respectively, is

CJ=ψ ¼

0
B@

13.3 −38.2 5.48

−38.2 188 −14.6
5.48 −14.6 2.29

1
CA × 10−6 GeV6: ð30Þ

The correlation matrix of relative uncertainties is

C̄J=ψ ¼

0
B@

26.1 4.88 24.7

4.88 1.55 4.26

24.7 4.26 23.5

1
CA × 10−2: ð31Þ

The normalized eigenvectors of C̄J=ψ are

vJ=ψ1 ¼

0
B@

0.719

0.131

0.682

1
CA; vJ=ψ2 ¼

0
B@

0.168

0.920

−0.354

1
CA;

vJ=ψ3 ¼

0
B@

−0.674
0.369

0.640

1
CA; ð32Þ

and the corresponding eigenvalues are λJ=ψ1 ¼ 0.504,

λJ=ψ2 ¼ 8.06 × 10−3, and λJ=ψ3 ¼ 2.35 × 10−4. As is the
case for the ψð2SÞ, the eigenvector that is predominantly
1S½8�0 , namely, vJ=ψ2 , has a fairly small uncertainty. However,

the eigenvector vJ=ψ1 has a very large uncertainty. Therefore,

variations of the 3S½8�1 and 3P½8�
0 LDMEs are correlated and

tend to preserve the 1S½8�0 dominance. (Recall that the SDCs
for these channels have opposite signs.) The very small
uncertainty of the eigenvector vJ=ψ3 means that the anti-

correlated variation of the 3S½8�1 and 3P½8�
0 LDMEs is highly

constrained.

VI. PREDICTIONS FROM
EXTRACTED LDMEs

In this section, we use the LDMEs that we have extracted
from the fits to cross sections to make predictions of cross-
section ratios and polarizations.We estimate the uncertainties
in these predictions by making use of the eigenvectors and
eigenvalues of the LDME uncertainty correlation matrices.
In the expression for each prediction, we write the LDMEs
in terms of the eigenvectors. Then, we vary each eigenvector
about its central value by an amount that is equal to the square
root of its eigenvalue. We take the resulting variation in the
prediction as the uncertainty in the prediction fromvariations
of that eigenvector. Finally, we estimate the total uncertainty
in the prediction by adding the uncertainties from the
variations of the individual eigenvectors in quadrature.

A. Ratios RH

We can use our predictions for the J=ψ , ψð2SÞ, and χcJ
cross sections and the LDMEs that we have extracted to
compute the ratios RH, which are defined by

RH ¼ Br½H → J=ψ þ X� × dσH=dpH
T

dσ prompt
J=ψ =dpT

; ð33Þ

where pH
T is given in Eq. (28). In Figs. 15 and 16 we show

our results for Rψð2SÞ and Rχc ≡ Rχc1 þ Rχc2 , respectively.
As can be seen from Fig. 16, our prediction for Rχc lies
systematically below the ATLAS [51] and LHCb [56]
measurements for pT < 15 GeV. This discrepancy occurs
because the prediction for the numerator of Rχc lies slightly
below the data at low pT, while the prediction for the

FIG. 14. Contributions of the individual channels to the differ-
ential cross section for direct J=ψ production at the LHC
(

ffiffiffi
s

p ¼ 7TeV). BJ=ψ ¼ Br½J=ψ → μþμ−�.

FIG. 15. Fraction of prompt J=ψ’s produced in feeddown from
ψð2SÞ decays at the LHC (

ffiffiffi
s

p ¼ 7TeV).
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denominator of Rχc lies slightly above the data at low pT.
However, the predictions for both the numerator and the
denominator agree with the data within uncertainties. We
also note that corrections to the relation (28) for the J=ψ
momentum would increase the theoretical prediction for
Rχc by a few percent.

B. Polarization predictions

We now compute prompt-ψð2SÞ and prompt-J=ψ polar-
izations by making use of the LDMEs that we have
determined from fits to the cross-section data. We also
compute the effects of feeddown from the ψð2SÞ and χcJ
states on the polarizations of the prompt J=ψ’s.
For J ¼ 1 states, one measure of the polarization is the

polarization parameter λθ, which is defined as

λθ ¼
σ − 3σL
σ þ σL

; ð34Þ

where σ and σL are the polarization-summed and longi-
tudinal cross sections, respectively. If the J ¼ 1 state is
completely transversely (longitudinally) polarized, then
σL ¼ 0 (σL ¼ σ), and λθ ¼ þ1 (λθ ¼ −1). If the J ¼ 1
state is unpolarized, then σ ¼ 3σL, and λθ ¼ 0.
We show the polarization of the ψð2SÞ as produced at the

LHC at
ffiffiffi
s

p ¼ 7 TeV and at the Tevatron at
ffiffiffi
s

p ¼ 1.96 TeV
in Figs. 17 and 18, respectively. The prediction for the CMS
polarization is in fair agreement with the CMS data [15].
The prediction for the polarization at the Tevatron is in
rough agreement with the CDF Run I [13] and Run II [14]
data, given the very large error bars. (Although the CDF
Run I data were taken at

ffiffiffi
s

p ¼ 1.8TeV, rather than atffiffiffi
s

p ¼ 1.96TeV, this energy shift produces a negligible
change in the polarization prediction.) The predicted ψð2SÞ
polarization grows as pT increases, owing to the fact that
the 1S½8�0 channel is no longer dominant at large pT . Hence,
measurements of the ψð2SÞ polarization at larger values of

pT would provide an important test of the theoretical
prediction.
The longitudinal prompt-J=ψ cross section, including

the feeddown contributions from the decays of the ψð2SÞ,
the χc1, and the χc2 is computed as follows:

dσ prompt
J=ψðλ¼0Þ
dpT

¼
dσ direct

J=ψðλ¼0Þ
dpT

þdσψð2SÞðλ¼0Þ
dpψð2SÞ

T

Br½ψð2SÞ→J=ψþX�

þ1

2

�
dσχc1ðλ¼þ1Þ

dp χc1
T

þdσχc1ðλ¼−1Þ
dp χc1

T

�

×Br½ χc1→J=ψþγ�

þ
�
2

3

dσχc2ðλ¼0Þ
dp χc2

T
þ1

2

�
dσχc2ðλ¼þ1Þ

dp χc2
T

þdσχc2ðλ¼−1Þ
dp χc2

T

��

×Br½ χc2→J=ψþγ�; ð35Þ

where pH
T is given by Eq. (28). In deriving Eq. (35), we

have assumed that the polarization of the ψð2SÞ is
completely transferred to J=ψ and that the decays χcJ →
J=ψ þ γ proceed through an E1 transition. In the decays
χcJ → J=ψ þ γ, the higher multipole corrections are poorly

FIG. 17. Polarization of prompt ψð2SÞ at the LHC
(

ffiffiffi
s

p ¼ 7 TeV).
FIG. 16. Fraction of prompt J=ψ’s produced in feeddown from
χc1 and χc2 decays at the LHC (

ffiffiffi
s

p ¼ 7TeV).

FIG. 18. Polarization of prompt ψð2SÞ at the Tevatron
(

ffiffiffi
s

p ¼ 1.96TeV).
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known, but they have little effect on the polarizations of
the J=ψ’s that are produced in χcJ decays [53].
We show the polarization of J=ψ ’s from χcJ decays at

the LHC at
ffiffiffi
s

p ¼ 7 TeV in Fig. 19. In Fig. 20, we show
the polarization of prompt J=ψ ’s produced at the LHC
at

ffiffiffi
s

p ¼ 7 TeV, including feeddown from the ψð2SÞ and
the χcJ states. The prediction is in good agreement with
the CMS data [15]. Finally, in Fig. 21, we show the
polarization of prompt J=ψ’s produced at the Tevatron atffiffiffi
s

p ¼ 1.96TeV, including feeddown from the ψð2SÞ and
the χcJ states. The prediction is in good agreement with the
CDF Run I data [13], but disagrees with the CDF Run II
data [14]. (Although the CDF Run I data were taken atffiffiffi
s

p ¼ 1.8TeV, rather than at
ffiffiffi
s

p ¼ 1.96TeV, this energy
shift produces a negligible change in the polarization
prediction.) We note that the predicted polarizations are
almost the same for the LHC and the Tevatron, while the
CDF Run II polarization data lies significantly below the
CMS polarization data.
The fairly small polarizations that are seen in the

predictions for the prompt J=ψ ’s and ψð2SÞ’s are a
consequence of the dominance in the production rates of

the 1S½8�0 channel, which, of course, is completely unpo-
larized. This mechanism whereby small polarizations can
be obtained was noted previously in Refs. [4,25,50].

VII. SUMMARY AND DISCUSSION

In this paper, we have computed, in the NRQCD
factorization framework, leading-power (LP) fragmenta-
tion corrections to production of the charmonium states
J=ψ , χcJ, and ψð2SÞ in pp̄ collisions at the Tevatron and
in pp collisions at the LHC. Specifically, our calculation
makes use of parton production cross sections (PPCSs)
through order α3s (NLO) and fragmentation functions (FFs)
through order α2s. We have also used the DGLAP equation
to resum leading logarithms of p2

T=m
2
c to all orders in αs.

Our calculations take into account the effects of feeddown
from the ψð2SÞ and χcJ states on the prompt-J=ψ cross
sections and polarizations. Hence, the work in the present
paper is an extension and a refinement of the work in
Ref. [25], which also addressed LP corrections, but which
did not include computations of cross sections or polar-
izations for the ψð2SÞ or χcJ states or include the effects of
feeddown from those states. We find that the LP correc-
tions, beyond those that are contained in fixed-order
calculations through NLO in αs, are substantial—typically
of order 100% at large pT . Owing to a partial cancellation
between the LO and NLO contributions in the 3P½8�

J
channel, the LP corrections have a very significant effect
on the shape in that channel.
As was pointed out in Ref. [25], the all-orders resumma-

tions of logarithms of p2
T=m

2
c have only small effects on the

predictions for the cross sections and polarizations. Hence,
almost all of the large additional LP corrections that we find
arise from nonlogarithmic contributions of order α5s.

FIG. 19. Polarization of J=ψ from χcJ decays at the LHC
(

ffiffiffi
s

p ¼ 7 TeV).

FIG. 21. Polarization of prompt J=ψ ’s produced at the Tevatron
(

ffiffiffi
s

p ¼ 1.96TeV). The polarizations of J=ψ ’s produced in feed-
down from the ψð2SÞ and the χcJ states are shown with dashed
and dotted lines, respectively.

FIG. 20. Polarization of prompt J=ψ’s at the LHC
(

ffiffiffi
s

p ¼ 7 TeV). The polarizations of J=ψ ’s produced in feeddown
from the ψð2SÞ and the χcJ states are shown with dashed and
dotted lines, respectively.
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Our approach in calculating the LP fragmentation cor-
rections is to use the most accurate results for the PPCSs and
FFs that are currently available. This means that we have
computed some, but not all, of the LP contributions in order
α5s , i.e., NNLO in terms of the fixed-order calculations. In the
case of gluon fragmentation, a complete calculation of

the order-α5s contributions in the 1S½8�0 and 3P½8�
J channels

would require the calculation of the NLO corrections to the
FFs for those channels. In the case of gluon fragmentation, a

complete calculation of the order-α5s contributions in the
3S½8�1

channel would require a calculation of the NNLO correc-
tions to the FFs for that channel and the NNLO corrections to
the PPCSs. We expect these uncalculated LP corrections in
order α5s to be of comparable size, in each channel, to the LP
corrections that we have calculated in this paper. Hence, the
actual theoretical uncertainties may be much larger than the
estimates that we have obtained by varying the scales μr and
μf. However, we emphasize that the calculation in this paper
eliminates the largest existing source of theoretical uncer-
tainty by taking into account leading logarithms of p2

T=m
2
c at

all orders in αs.
We have combined the LP corrections that we have

calculated with the NLO fixed-order calculations from
Refs. [1,3,4] to obtain predictions for the production
cross sections and polarizations as functions of pT . By
fitting the cross-section predictions to the Tevatron and
LHC cross-section data, we have obtained values for the
NRQCD nonperturbative long-distance matrix elements
(LDMEs) that enter into the production predictions
through order v4. Since the LP approximation is valid
only for pT ≫ mH, where mH is the quarkonium mass,
we use only data for which pT is greater than 3mH. We
obtain good fits to the high-pT cross sections, with
χ2=d:o:f. ≪ 1 in each case.
One interesting result of the fits to the χcJ cross sections

is that the value of the 3P½1�
0 LDME that we obtain is in good

agreement with the value that has been obtained in a
potential model and with values that have been extracted
from the two-photon decays of the χc0 and χc2. This
agreement of values of the 3P½1�

0 LDME that have been
obtained through very different methods is important
evidence in support of the NRQCD factorization conjec-
ture. We note that, in previous works on the χcJ cross
section, which were based on fixed-order NLO calcula-
tions, the 3P½1�

0 LDME was fixed to values that were
obtained from potential models [6,57–61].
We have used our cross-section predictions to predict

the ratio Rχc , which is the χcJ feeddown contribution to the
prompt-J=ψ cross section divided by the prompt-J=ψ
cross section itself. The prediction lies systematically
below the data for pT < 15 GeV. This discrepancy in
Rχc seems to be the result of a downward deviation in the
numerator combined with an upward deviation in the
denominator. However, the predictions for both numerator

and the denominator agree with the data within
uncertainties.
We have also used the extracted LDMEs to predict the

J=ψ , ψð2SÞ, and χcJ polarizations. The predictions for the
J=ψ polarizations agree with the CMS data and the CDF
Run I data, but lie systematically above the CDF Run II
data. The CDF Run I data show a slightly longitudinal
polarization, while the CMS data show a slightly trans-
verse polarization. However, the theoretical predictions
are very similar for the CDF and CMS kinematics. The
predictions for the ψð2SÞ polarizations agree with the
Tevatron data and the LHC data, although the theoretical
and experimental uncertainties are quite large. For ψð2SÞ
production, the 1S½8�0 channel is no longer dominant at
large pT , and, so, the predicted ψð2SÞ polarization
becomes more transverse as pT increases. It is important
to test this prediction through measurements of the ψð2SÞ
polarization with good precision at larger values of pT .
There are, as yet, no measurements of the χcJ polar-
izations. These would also provide very useful tests of
the theoretical predictions.
While we have obtained a reasonably good description of

the hadroproduction cross sections and polarizations for the
J=ψ , ψð2SÞ, and χcJ states, our results do not address two
outstanding problems in quarkonium production, namely,
the HERA J=ψ photoproduction cross section, as measured
by the H1 Collaboration [16,17], and the ηc hadroproduc-
tion cross section, as measured by the LHCb Collaboration
[20]. In the case of the J=ψ photoproduction cross section,
additional LP fragmentation corrections, analogous to
those that were computed in this paper, were computed
in Ref. [62]. Those additional LP corrections have very
small effects on the photoproduction cross section. For
the choices of LDMEs that were used in Ref. [62], the
theoretical prediction for the photoproduction cross section
is dominated by the contribution from the 1S½8�0 channel.
The value for hOJ=ψ ð1S½8�0 Þi in Eq. (29) is about 10% larger
than the value from Ref. [25], which was used in Ref. [62].
Hence, it makes the discrepancy between theory and
experiment slightly worse. In the case of the ηc cross
section, the change in value of hOJ=ψ ð1S½8�0 Þi from Ref. [25]
to the present paper also makes the discrepancy between
theory and experiment slightly worse.
While there remain important discrepancies between

theory and experiment in quarkonium production at high
pT , the theoretical predictions are far from settled. At a
minimum, a complete calculation of all of the LP con-
tributions in order α5s is needed in order to have reasonable
control of the theoretical uncertainties. These LP contri-
butions in order α5s may be most important in the 3P½8�

J
channel because of their greater potential to affect the shape
in that channel. Higher-order calculations of NLP contri-
butions may also be needed, especially in the 1S½8�0 channel,
for which the LP contributions are not dominant until very
large values of pT . New measurements at the LHC of the
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ψðnSÞ, χcJ,ϒðnSÞ, and χbJ cross sections and polarizations
and the ηc cross section, all at unprecedentedly large values
of pT , can provide definitive tests of the improved
theoretical predictions.
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APPENDIX: NUMERICAL TREATMENT OF DIVERGENCES IN FRAGMENTATION FUNCTIONS

The LP-factorization contribution to the cross section is given by the convolution of the PPCSs dσ̂AB→iþX=dpT and the
FFs Di→QQ̄ðnÞðz; μfÞ:

dσLPAB→QQ̄ðnÞþX

dpT
¼

Z
1

z0

dz
dσ̂AB→iþXðz; μfÞ

dpT
Di→QQ̄ðnÞðz; μfÞ: ðA1Þ

Here, z0 ¼ pTffiffi
s

p ðeþy þ e−yÞ. We compute the evolved FFs by solving the LO DGLAP equation in Mellin space (moment space)
and performing the inverse Mellin transform numerically. As is discussed in Sec. III C, the inverse Mellin transform becomes
numerically unstable near z ¼ 1 because Di→QQ̄ðnÞðz; μfÞ can vary rapidly in this region and may even diverge at z ¼ 1.
In order to deal with this problem, we partition the integral over z as follows:Z

1

z0

dz
dσ̂AB→iþXðz;μfÞ

dpT
Di→QQ̄ðnÞðz;μfÞ ¼

Z
1−ϵ

z0

dz
dσ̂AB→iþXðz;μfÞ

dpT
Di→QQ̄ðnÞðz;μfÞ

þ
Z

1

1−ϵ
dz

dσ̂AB→iþXðz;μfÞ
dpT

Di→QQ̄ðnÞðz;μfÞ; ðA2Þ

where ϵ is a small, positive number that is chosen so that the evolved FF Di→QQ̄ðnÞðz; μfÞ can be computed reliably for
z < 1 − ϵ. In order to compute the integral over 1 − ϵ < z < 1, we use the fact that the PPCSs behave as dσ̂AB→iþX=dpT ∼
zN for z ≈ 1, where N ≈ 4. Hence, we have

Z
1

1−ϵ
dz

dσ̂AB→iþXðz; μfÞ
dpT

Di→QQ̄ðnÞðz; μfÞ

¼
Z

1

1−ϵ
dz

�
dσ̂AB→iþXðz; μfÞ

dpT
z−N

�
½zNDi→QQ̄ðnÞðz; μfÞ�

≈
�
dσ̂AB→iþXðz; μfÞ

dpT

�
z¼1

×
Z

1

1−ϵ
dz zNDi→QQ̄ðnÞðz; μfÞ

¼
�
dσ̂AB→iþXðz; μfÞ

dpT

�
z¼1

×

�Z
1

0

dz zNDi→QQ̄ðnÞðz; μfÞ −
Z

1−ϵ
0

dz zNDi→QQ̄ðnÞðz; μfÞ
�

¼
�
dσ̂AB→iþXðz; μfÞ

dpT

�
z¼1

×

�
~Di→QQ̄ðnÞðN þ 1; μfÞ −

Z
1−ϵ

0

dz zNDi→QQ̄ðnÞðz; μfÞ
�
; ðA3Þ

where we have expanded z−Ndσ̂AB→iþX=dpT in powers of 1 − z and retained only the leading-order contribution, which is
simply the value of dσ̂AB→iþX=dpT at z ¼ 1. The quantity ~Di→QQ̄ðnÞðN þ 1; μfÞ, the ðN þ 1Þst moment of Di→QQ̄ðnÞ, is
known analytically, and the integral over the range 0 < z < 1 − ϵ can be computed numerically. Hence, in our calculations,
we use the expression
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Z
1

z0

dz
dσ̂AB→iþXðz;μfÞ

dpT
Di→QQ̄ðnÞðz;μfÞ

≈
Z

1−ϵ
z0

dz
dσ̂AB→iþXðz;μfÞ

dpT
Di→QQ̄ðnÞðz;μfÞ

þ
�
dσ̂AB→iþXðz;μfÞ

dpT

�
z¼1

×

�
~Di→QQ̄ðnÞðNþ1;μfÞ−

Z
1−ϵ

0

dz zNDi→QQ̄ðnÞðz;μfÞ
�
:

ðA4Þ
In our numerical calculations, we take N ¼ 4 and
ϵ ¼ 10−6. We have varied N between 3.1 and 7 and

find that the largest sensitivity to N occurs at low pT

and is less than 3 × 10−6 of the contribution in each
channel.
We have compared numerical results from Eq. (A4) for

μf near μ0 with the analytic expression for the evolved
FFs through second order in αs. The results agree to
better than 1%. We expect numerical difficulties in
Eq. (A4) to be most severe as μf approaches μ0, where
the evolved FFs approximate the initial FFs, which,
in some cases, are distributions at z ¼ 1. Hence, good
agreement with the analytic expressions in this region
gives us confidence that the algorithm that is based on
Eq. (A4) is reliable.
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