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We present a complete study of the leading-twist quark Wigner distributions in the nucleon, discussing
both the T-even and T-odd sectors, along with all the possible configurations of the quark and nucleon
polarizations. We identify the basic multipole structures associated with each distribution in the transverse
phase space, providing a transparent interpretation of the spin-spin and spin-orbit correlations of quarks and
nucleons encoded in these functions. Projecting the multipole parametrization of the Wigner functions onto
the transverse-position and the transverse-momentum spaces, we find a natural link with the corresponding
multipole parametrizations for the generalized parton distributions and transverse-momentum dependent
parton distributions, respectively. Finally, we show results for all the distributions in the transverse phase
space, introducing a representation that allows one to visualize simultaneously the multipole structures in
both the transverse-position and transverse-momentum spaces.
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I. INTRODUCTION

The concept of phase-space distributions borrowed from
classical mechanics has been transposed to quantum
mechanics [1], where it finds numerous applications
[2-4]. Phase-space distributions have also been defined
in the context of relativistic field theory [5—7] and more
specifically in quantum chromodynamics [8—12]. The six-
dimensional version of these phase-space distributions has
been discussed for the first time in connection with
generalized parton distributions (GPDs) in Refs. [13,14].
However, in this case the physical interpretation is plagued
by relativistic corrections. This issue has been solved in the
light-front formalism by integrating over the longitudinal
spatial dimension [15-18], leading to five-dimensional
phase-space distributions [19] which are related via a
proper Fourier transform to generalized transverse-
momentum dependent distributions (GTMDs) [20-22].

The GTMDs recently received increasing attention due
to the fact that they can be considered as the mother
distributions of GPDs and transverse-momentum depen-
dent distributions (TMDs) [20-22]. Moreover, it turned out
that they are naturally related to the parton orbital angular
momentum (OAM) [19,23-25]. Except possibly at low-x
[26-30], no experimental process directly sensitive to
GTMDs has been identified so far. Nevertheless, these
distributions can be studied using phenomenological or
perturbative models [19,20,31-37] and can also in principle
be computed on a lattice [38].

In total, there are at leading twist 32 quark phase-space
distributions among which half originate from naive T-odd
GTMDs. In a former work [19], we studied the four
naive T-even distributions associated with longitudinal
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polarization. Here, we present for the first time a complete
study of all the 32 distributions.

Even though the number of independent functions is
fixed by hermiticity and space-time symmetries, the para-
metrization of the correlator is not unique. In some sense,
choosing a particular parametrization amounts to choosing
a particular basis for decomposing the correlator. One can
change the basis but not the number of independent basis
elements. The choice of a particular decomposition is
arbitrary and is often motivated by the simplicity of the
mathematical expressions. However, simple mathematical
expressions often turn out to have rather obscure physical
interpretation.

In this work, we choose natural combinations of GTMDs
corresponding to distributions for all the possible configu-
rations of the target and quark polarizations, and we perform
a multipole decomposition of each of these distributions in
the transverse phase space. This multipole analysis allows us
to identify in a clear way all the possible spin-spin and spin-
orbit correlations of quarks and nucleons in phase space, and
it has a direct connection with the spin densities in impact-
parameter space described by GPDs and the transverse-
momentum densities described by TMDs.

The plan of the manuscript is as follows. In Sec. II
we review the definition of the Wigner distributions
obtained by Fourier transform of the GTMDs to the
impact-parameter space, and we summarize the transfor-
mation properties of these functions under time reversal,
parity, and Hermitian conjugation. In Sec. III, we outline
the general method for the decomposition of the Wigner
functions in basic multipoles in the transverse phase space,
and we identify all the possible correlations between target
polarization, quark polarization, and quark OAM encoded
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in these phase-space distributions. In Sec. IV we introduce
a new representation of the transverse phase space,
which allows one to visualize the multipole structures
simultaneously in both the transverse-momentum and the
transverse-position spaces. In Sec. V we present and
discuss the results of both the T-even and T-odd distribu-
tions, for all the possible quark and target polarizations.
Although the calculation is performed within a specific
relativistic light-front constituent quark model [21], we can
draw general and model-independent conclusions about the
physical information encoded in these functions. Finally,
we summarize our results in Sec. VL.

II. POLARIZED RELATIVISTIC
PHASE-SPACE DISTRIBUTIONS

We introduce two lightlike four-vector n. satisfying
n, -n_=1. Any four-vector a* can then be decomposed as

a* =a'n +ant +dy, (1)
where a® = a - n4 and df = =& a, with
& =nlin” +ntnt — g, (2)
Writing the light-front components of a* as [a™, a~, ar], we
have a7 = —a?. The transverse skewed product is then
given by
e = b, (3)

with €123 = 1 so that €} = —2! = 1. Denoting by P =
1(P' + p) the average hadron three-momentum and work-

ing in a frame where P, = 0, any spatial three-vector a
can similarly be decomposed as

-

= aLP + ZlT, (4)

, and @, = §al. For
later convenience, we shall also denote the longitudinal
component of the skewed product as (axb)-P =
eraTbJT = (ar xby),.

The quark GTMD correlator is defined as [20,22]

Wb, = / dk- / (;1%4 1,7,,<—§)
XWI//H<§> P—%,A>, (5)

where W is an appropriate Wilson line ensuring color
gauge invariance, k is the quark average four-momentum
conjugate to the quark field separation z, and |p, A) is the
spin-1/2 target state with four-momentum p and light-front
helicity A. The correlator W% 4/) can be thought of as a2 x 2

. A
ik-z P N
e < + >
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TABLE 1. Transformation properties of the polarized GTMD
correlator and phase-space distribution. For a generic four-vector
a* with light-front components [a",a™,ar], the light-front
components of a* are [a™,a”, —ar].

Wige (P k, Asn) pso (x.kr,br; P.)

Hermiticity Wt (P k,—A;n_) pize(x, ky. by P.n)

557 o s
Parity W:S'S“’( R k, A; fl_) ps,gq ()C _kT _bT; )
Time reversal Wig_gq(i)’]_‘*& i) p. o (X, —kp. by — _;7)

matrix in target polarization space and as a 4 x 4 matrix in
Dirac space. At leading twist, one can interpret

1 A
ngq = gZ(]] + S - O')AA/TI'[WA/AFS:q] (6)
A/

with Tz =y + S{yTys + S%iciTys, as the GTMD cor-
relator descrlblng the distribution of quarks with polariza-
tion S inside a target with polarization S [39].

The corresponding phase-space distribution is obtained
by performing an appropriate Fourier transform [19]

ZA
T e—zAT by ngq

R d
Pz (x.Ker . bri P.n) =/

(271_)2 (P’k’A;n—”é‘:O’

(7)

where x = k*/P* and ky are, respectively, the longitudinal
fraction and transverse components of the quark average
momentum, by is the quark average impact parameter
conjugate to the transverse-momentum transfer Ay, & =
—A*1/2P" is the fraction of longitudinal momentum trans-
fer, and 7 = sgn(n"). This phase-space distribution can be
interpreted semiclassically as giving the quas1probab1hty of

finding a quark with polarization 5%, transverse position bT,
and light-front momentum (xP* ,kT) inside a spin-1/2
target with polarization S [19]. The Hermiticity property of
the GTMD correlator (6) ensures that these phase-space

distributions are always real valued [24] (see Table 1),
which is consistent with their quasiprobabilistic interpre-

tation. The behavior of the variables x, kr, br, P, n, § and

S7 under parity and time reversal' can also be read from
Table I by looking at the arguments of the functions.

'We work here with the passive form of parity and time-
reversal transformations so that the two lightlike four-vectors n.,
also undergo the transformations. In light-front quantization, one
often chooses instead the active form so that these four-vectors
remain invariant, with the annoying consequence that the
components a* are then transformed into each other. This can
be cured by performing an additional z-rotation about e.g. the x
axis, i.e. by defining light-front parity and time reversal as P} =
R.(7)P and T = R, (7)T; see [22,40-42].
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Simple illustration of the decomposition (12) at fixed x and b7. The phase-space distribution p can be written as a product of a

basic multipole B (here a dipole in k7 space) with an oval-shaped coefficient function C.

There are 16 independent polarization configurations
[19,22] which correspond to particular linear combinations
of the 16 independent complex-valued GTMDs [20,22]. By
construction, the real and imaginary parts of the GTMDs
have opposite behavior under naive time-reversal trans-
formation [20,22], which is defined as usual time reversal
but without interchange of initial and final states. Similarly,
we can separate each phase-space distribution into naive
T-even and T-odd contributions

551 = Pf—;gq + Pf—;gq, (8)

where

PEL, (e, Ky by o) = +p%8, (x kg brs P, —n)
- ipe_’g_gq (x, kg, br:—P.n). 9)

In some sense, the naive T-even contributions describe the
intrinsic distribution of quarks inside the target, whereas
the naive T-odd contributions describe how initial- and
final-state interactions modify this distribution.

So, based on Hermiticity and space-time symmetries, we
find in total 32 (leading-twist) phase-space distributions.
We stress that this counting is completely model indepen-
dent, though it may appear that some linear combinations
of these distributions vanish in particular models or theories
for deeper symmetry reasons.

III. MULTIPOLE DECOMPOSITION

The relativistic phase-space distribution is linear in S
and S’q,
Pize = Puu + Sepru + Sipur + SLSipLL
+ Sr(priv + Sipric) + ST (pur + Scpir)
+ 878 prigs, (10)

and can further be decomposed into two-dimensional
multipoles in both k; and by spaces. While there is no

limit in the multipole order,” parity and time reversal
impose certain constraints on the allowed multipoles. It
is therefore more sensible to decompose the phase-space
distributions py with X = UU, LU, ... as follows:

px(x.kr b Py = > U™ (x ke brs P,

my,my,

(11)

/’g(mhmb)(X, k. by P, n = Bg(mk’mb)(i{T’i’T;ﬁ’n)
« Cg(mk,mb)[x, k:‘}, (kr 'bT)z,b%L
(12)

where Bg(mk ) represent the basic (or simplest) multipoles
allowed by parity and time-reversal symmetries. These
basic multipoles are multiplied by the coefficient functions

") which depend on P- and T-invariant variables only.
The couple of integers (my, m;) gives the basic multipole
order in both k; and by spaces. An illustration of the
decomposition of a phase-space density into basic multi-
pole and coefficient function is given in Fig. 1.

The basic multipoles can be expressed in terms of
transverse multipoles in k; space,

mk:0 Mkzl,
my=1  Di =k,
U
me=2 Q= k’rkjr—zé%
. A 1 .. o .
me=3 O = kikyki — 3 (37Rr + 57k + 51k,

(13)

and the corresponding ones in by space. For example, for
the spin-independent contribution py;;, the simplest basic

’Indeed, the multiplication by (kg - by)? increases the trans-
verse multipole order in k; and by spaces, but does not change
the transformation properties under parity and time reversal.
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multipole one can build is obviously in terms of the

transverse monopoles Bg%)) = MM, = 1. The only pos-

sibility3 involving the transverse dipoles is nglijl) =

nDiDi = n(ky - by), where the n factor ensures time
reversal invariance. Higher transverse multipoles do not

lead to new basic multipoles since they always reduce to

B(L(,)i?) and B(Ji,l) multiplied by some function of k2,

(kr - br)?, and b%. This analysis is consistent with the fact
that there exists only one spin-independent complex-valued
GTMD denoted as Fy; [20], leading to two different real-
valued phase-space distributions. Note also that, from the

(my.my,)

explicit expressions for the basic multipoles By ", we

find that p¢, = p\n) and p9, = pihi. All the basic
multipoles associated with the other contributions py are
obtained following the same strategy.

Note that only the multipoles with m;, = 0 survive
integration over by and reduce to TMD amplitudes.
Similarly, only the multipoles with m; = 0 survive inte-
gration over k; and reduce to impact-parameter distribu-
tions. Since GPDs do not depend on 7, only the naive
T-even multipoles correspond to the Fourier transforms of
GPD amplitudes [21,43]. Interestingly, the naive T-odd
ones represent new contributions, just like new contribu-
tions were obtained in the general parametrization of the
light-front energy-momentum tensor [44].

Remarkably, it turns out that all the contributions py can
be understood as encoding all the possible correlations
between target and quark angular momenta; see Table II.

We stress in particular that ¢ refers to the canonical quark
OAM, since it is defined in terms of the canonical quark

momentum k [45]. As will be discussed in more detail in
Sec. V, the relation with all the possible angular correlations
becomes more transparent once one sees the five-
dimensional relativistic phase-space distributions as six-
dimensional phase-space distributions integrated over the
quark average longitudinal position

prleckrbribo) = [ bupxbipo). (14

Noting that b; is even under parity and odd under time
reversal, one can perform a similar multipole expansion for
the six-dimensional distributions. Naturally, the integral
over b; of the six-dimensional multipoles can be expressed
in terms of the five-dimensional ones

/ db B(k, by P.n)Clx, k., (k- b)2, B>, by (k - b)]

= ZBI<IA<T’ bry Pn)Clx, k5, (ky - br)?, b7 (15)

*Indeed, the other combination €DiD} = (ks x by), is
P odd.
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TABLE II. Correlations between target polarization (S;, S7),
quark polarization (S7, S1), and quark OAM (¢4, %) encoded in
the various phase-space distributions py. We then see that e.g.
pur encodes the spin-orbit correlation (S?#7), and pr,r, encodes

the double spin-orbit correlation (S,£7S7¢%).

Px U L T, T,
U (1) (s11) (Si3) (S3¢7)
L (S.27) (S.87) (S,18ict)  (SLe1S3ey)
T, (S21)  (S.18]77) (8.5%) (8.1834%)
T, (S,e%) (S, 8ict) (S, 98I (S,87)

For convenience, this correspondence will simply be
denoted in Sec. V as

/dbLBerB". (16)

We shall also implicitly use the fact that
biClx, K, (k- b)%, b° by (k - b)]

= = by(k-b)
— (k 19)7@%)2

= (k- b)C'[x. k. (k- b)2, 6%, by (k- b)), (17)

Clx, &, (k- b)2, b7, by (k- b)]

so that we can write e.g. [db, by ~ (kr - by). As we will
explicitly show in the following, working at the level of
phase-space distributions gives us much more insight
about the physics encoded in the various GPDs and
TMDs.

IV. REPRESENTATION OF TRANSVERSE
PHASE SPACE

The relativistic phase-space distributions are functions of
five continuous variables. It is therefore particularly diffi-
cult to represent them on a two-dimensional space. Since
we are mainly interested in the transverse direction, we
reduce the number of variables by

(1) integrating these phase-space distributions over x;

(2) discretizing the polar coordinates of by.

For further convenience, we also set 7 = +1 and choose
P=2.=1(0,0,1) so that by = (cos,.sing,,0) and
kr = (cos by singy,0). The resulting transverse phase-
space distributions are then represented as sets of distri-
butions in k; space

px(krlbr) = /dxpx(x,kr,bT;P = e, = +1)|p, fixed
(18)

with the origin of axes lying on circles of radius |b;| at
polar angle ¢, in impact-parameter space; see Fig. 2. In this
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FIG.2. Representation of the transverse phase space. The circle
represents the points in impact-parameter space at a fixed distance
|b7| from the center of the target. With each point on this circle is
associated a distribution in transverse-momentum space. See text
for more details.

way, one can see how the transverse momentum is
distributed at some point in the impact-parameter space.
In the language of differential geometry, the by space plays
the role of a base space and the k; space plays the role of
the corresponding tangent space. All we do is just draw the
tangent spaces associated with a couple of points in the
base space and situated at a fixed distance from the center.
Naturally, one can also represent the same transverse phase-
space distributions in terms of b, distributions

px(brlkr) = /dxﬂx(x, kp.bp:P=¢,.n= + 1)k, fixed

(19)

with the origin of axes lying on circles of radius |ky|
at polar positions ¢;, in transverse-momentum space. In this
case, one sees how some specific transverse momentum
is distributed in impact-parameter space. In the following,
we shall only consider the discrete by representation
px(krlbr).

The above representation of transverse phase space has
the advantage to make the multipole structure in both k;
and by spaces particularly clear. For example, the basic

multipole Bg(mk’m”) simply displays a m;, pole in transverse-

momentum space at any transverse position by. The
orientation of this m; pole is determined by m, and

¢, = arg BT. More precisely, by going once around the

PHYSICAL REVIEW D 93, 034040 (2016)

circle, the m;, pole will undergo ;Z—" complete rotations. The
k

case m;, = 0 does not cause any problem since a monopole
is invariant under rotations.

V. DISCUSSION

Since the focus of this paper is on the multipole
decomposition of the transverse phase space, we choose
for all the figures in the following to represent only eight
points in impact-parameter space lying on a circle with
radius |by| = 0.4 fm. Also, for better legibility, the k;
distributions are normalized to the absolute maximal value
over the whole circle in impact-parameter space

‘brlnzlgffm‘/’x(kﬂbrﬂ =1 (20)

The results presented in the following are obtained using
the light-front constituent quark model (LFCQM) [21] for
up quarks, by computing directly the Fourier transform of
the helicity amplitudes associated with the GTMD corre-
lator. Light and dark regions represent, respectively, pos-
itive and negative domains of the transverse phase-space
distributions. Since our purpose at this point is simply to
illustrate the multipole structure, we computed only the
naive T-even contributions in this model. The fact that the
calculated distributions perfectly match the expected multi-
pole decomposition presented in Sec. III proves the con-
sistency of the approach.4 The naive T-odd contributions
have been obtained by extracting the coefficient functions
from the naive T-even part and multiplying them by the
appropriate basic multipoles. We stress that the global sign
of these naive T-odd contributions has been chosen
arbitrarily. Only a proper calculation including initial-
and/or final-state interactions can determine these global
signs.

A. Unpolarized target

1. Unpolarized quark

The simplest contribution is pyy. It describes the
distribution of unpolarized quarks inside an unpolarized
target. As already discussed at the end of Sec. III, there
exist only two spin-independent phase-space distributions

(0,0)

. L1
Puu = Puu Py = PE/U)’ (21)

which are represented in Fig. 3. The corresponding basic
multipoles are

By (ky by Py) = MM, = 1, (22)

“Note that alternative definitions of the GTMDs including a
soft factor contribution [46] modifies only the k% dependence,
and so does not alter the following multipole analysis.
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L)/ 72 .5 ini (] 7
BgJU)(kT’ br; P.n) = nDiDj, = nlkr - br).  (23)
Only pE?’L(,)) survives integration over ky or by and is then
naturally related to both the unpolarized GPD H and the

unpolarized TMD f; [21,43]. Contrary to its k;- and

by -integrated versions, pg%)) is not circularly symmetric.

The reason is that pg%) ) also contains information about the

correlation between k; and by, which is lost under
integration over one of the transverse variables [19]. As
one can see from Fig. 3, the k; distribution is elongated in
the direction orthogonal to the transverse position. This
means that a polar flow (k; L by) is preferred over a radial
flow (kr||b7), which is expected because the quarks are
bound in the target. In other words, the preferred flow of
quarks is along circles around the center of the target. The
quark motion is of course not limited to the transverse

plane. So, for fixed quark momentum %, p%%n should be
better thought of as the projection of a three-dimensional
distribution in position space onto the transverse plane

/ dby1~1. (24)

Note, however, that the ner OAM is zero in this case,
because there is no preferred direction in py;. Quarks tend
to follow circular motion equally in both clockwise and
anticlockwise directions.

Since it integrates to zero in both k7 and b spaces, pﬁ};})
represents a completely new piece of information which is
not accessible via GPDs or TMDs at leading twist. The
dipole in k7 space signals the presence of a net flow in the
transverse radial direction (k7 - by), which can be seen as
the projection of a three-dimensional radial flow (k- b)
onto the transverse position space

~

/ dby (k- B) ~ (kr - by). (25)

Naive T-even (left) and T-odd (right) contributions to the transverse phase-space distribution p;;. See text for more details.

For a stable target, this must obviously be zero. A non-
vanishing net radial flow therefore originates purely from
initial- and final-state interactions, in agreement with the

naive T-odd nature of pgip. The coefficient function Cgi})

then represents in some sense the strength of the
spin-independent part of the force felt by the quark due
to initial- and final-state interactions.

2. Longitudinally polarized quark

The contribution py;; describes how the distribution of
quarks inside an unpolarized target is affected by the quark
longitudinal polarization. We find only two phase-space
distributions

1,1 22
PuL = /)EJL )’ PuL = PE/L )v (26)

which are represented in Fig. 4. The corresponding basic
multipoles are

SIBY (ky. bys Py) = =S4l DiD)

= Si(ﬁr X ]ACT)L’ (27)
SIBG (ky.bys Poy) = —nSicii 0l 0]

= WSZ(BT X ]ACT)L(’A(T : [;T)- (28)

None of these survive integration over k; or b;. Both
therefore represent completely new information which is
not accessible via GPDs or TMDs at leading twist. The k;
dipole in pgjl ’Ll)
direction (by x kr),, i.e. a net longitudinal component of

quark OAM, which can be seen as the projection of a three-

signals the presence of a net flow in the polar

dimensional azimuthal flow (b x k) - P onto the transverse
position space

[ bl B P~y sk ©9)
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FIG. 4. Naive T-even (left) and T-odd (right) contributions to the transverse phase-space distribution p; . See text for more details.

By reversing the quark longitudinal polarization S}, one

reverses also the orbital flow. The coefficient function Cg,lil)

then represents in some sense the strength of the correlation
between the longitudinal components of quark polarization
and OAM (S7¢7) [19,47].

On the contrary, the contribution pﬁfﬁ does not modify
the net quark flow. The effect of the k; quadrupoles is to
globally tilt the k7 distributions with respect to by, so that
the preferred flow is now a spiral correlated with the quark
longitudinal polarization, which can be seen as the pro-
jection of a three-dimensional spiral flow onto the trans-
verse position space

/ by (B %K) - PI(K-B) ~ (br x kp)y(hy - Br). (30)

In other words, the contribution pﬁff) gives the difference

of radial flows between quarks with opposite (S7¢7)

correlations. The coefficient function C 5]2,'?) then represents

in some sense the strength of the (S £ )-dependent part of
the force felt by the quark due to initial- and final-state
interactions.

3. Transversely polarized quark

The contribution p;+ describes how the distribution of
quarks inside an unpolarized target is affected by the quark
transverse polarization. We find in total four phase-space
distributions

o1, @

10 12
Pyri = Pyri T Pyri» PUri :pEJTf) +pEJT")’ (31)

which are represented in Fig. 5 for the quark polarization

fy - ¢,. The corresponding basic multipoles are

SUBYY (ky, bys P.y) = STeiiM D) = (84 x br),, (32)

(2.1)

S By (ky bys Pon) = s¥ e 01D}

~ PN 1 ~
= (S% x kr)p (kg -br) —E(S% xbr),,
: o o (33)
i 0 2~ i
4 B0 (ky. bys P.y) = nS§eiDiM,
= (8§ x kr),. (34)
S4BY) (ky by P.y)
=S4 ] DO}

~ ~ ~ 1 ~
=n (S(% ~br)(br X kr), — 5 (Sl% X kr)p |- (35)

The contribution pg)’Tl,)

integration over k; and is then naturally related to the
GPD combination 2H 7+ E7 [21,43,48]. The dipole in by
space indicates the presence of a spatial separation between
quarks with opposite transverse polarizations. This trans-
verse shift is actually an effect related to the light-front
imaging due to the fact that the light-front densities are
defined in terms of the j*© = % (j° + j*) component of the

is the only one surviving the

current instead of the j° component, and finds its physical
origin in the correlation between the transverse components
of quark polarization and OAM (S% - #%) [18]. Indeed,
because of transverse OAM, quarks situated at opposite
sides tend to have opposite longitudinal momenta k; P,
i.e. opposite j> components, and are then associated
with different light-front densities j©. From a slightly
different perspective, the transverse shift can also be
understood from the fact that the position of the relativistic
center of mass of a rotating body is frame dependent
[49,50].

There are actually two independent transverse correla-
tions, say (S71#%) and (S#}). The contribution pL?Tl gives
us information about only one particular combination. The
other combination is given by the other naive T-even

034040-7
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FIG. 5. Naive T-even (left) and T-odd (right) contributions to the transverse phase-space distribution py7 for the quark polarization

SqT = ¢, (red arrows). See text for more details.

contribution p(UZTl) which is not accessible via GPDs or
TMDs at leading twist. Indeed, let us consider the projec-

- -
tion of a three-dimensional ((S% - 71;)(£% - 1iy)) correlation
onto the transverse position space, where 7 is some

transverse vector. For 7y = kp and ny = (kp x P), we,
respectively, find

/ dby (34 ) [(b x )y o] ~ (84 kp) (ky x Br)y. (36)

[ i35 G x PGB x By - iy x P
~ (87 x ]ACT)L(’A‘T : Z;T)' (37)
Noting that
(7 - kp)(kp x br), + (87 x kr), (kp - by) = (87 x by
(38)

and comparing with the basic multipoles (32) and (33), we

can see that the two coefficient functions Cg)’Tl,-) and CS’TI,-)

are related to the strength of two different combinations of

the transverse correlations (S7#£7) and (Si¢Y).

Similarly, the contribution pS’Tg) is the only one surviving

the integration over by and is then naturally related to the
Boer-Mulders TMD hlL. The dipole in ks space indicates
the presence of a net transverse flow orthogonal to the
quark transverse polarization. Interestingly, this phenome-
non is reminiscent of the spin Hall effect in spintronics and
the Magnus effect in fluid mechanics [51,52]. Such a net
transverse flow can only arise from initial- and/or final-state

interactions, in accordance with the naive T-odd nature
of pS’Tq). 2
The contribution p,;;° corresponds to completely new

information which is not accessible via GPDs or TMDs at
leading twist. Combined with )7, it tells us how the
initial- and final-state interactions depend on the two
transverse correlations, say (S7#%) and (S7ZY). Indeed,

let us consider the projection of a three-dimensional
transverse spiral flow (8% -7i7)[(b x k) - 7iy)(k - b) onto
the transverse position space. For iy = by and iy =
(Z;T x P), we, respectively, find

034040-8
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- -

/ dby (54 By)[(B x )y - Byl (B- B) ~ (8% by) by x k),

(39)

[ L[5+ (e x PG x By - G x PR )

~ (87 x BT)L(Z;T : ]ACT)- (40)
Noting that

(87~ BT)(gT X ]ACT)L + (87 x gT)L(Z;T : ]ACT) = (87 x ]ACT)L
(41)

and comparing with the basic multipoles (34) and (35), we

can see that the two coefficient functions C STO) and C ST2>
are related to the strength of the (ST£7)- and (S7£7)-
dependent parts of the force felt by the quark due to
initial- and final-state interactions. In other words, the

(1,0) (1.2)
ur’ UT
radial flows between quarks with opposite (ST#£%) or
(83£1%) correlations.

As a final remark, it has been suggested by Burkardt [18]
that [ d*krp¢,, and [d*byrp?. . could be related by some
lensing effect. We unfortunately cannot confirm this
suggestion, because such a relation relies on a dynamical
mechanism which goes beyond the general constraints
considered in the present paper.

contributions p and p describe the difference of

B. Longitudinally polarized target

1. Unpolarized quark

The contribution p;; describes how the distribution of
unpolarized quarks is affected by the target longitudinal
polarization. Its structure is very similar to p;;; because one
just exchanges the roles of quark and target polarizations.
We then find only two phase-space distributions

PHYSICAL REVIEW D 93, 034040 (2016)

11 22

Pru = Péu)v Piu = péu)v (42)
which are represented in Fig. 6. None of these survive
integration over ky or by. Both therefore represent com-
pletely new information which is not accessible via GPDs
or TMDs at leading twist.

Following the same arguments as in Sec. VA 2, with S7
replaced by §;, we can relate the pgijl) contribution to the
presence of a net longitudinal component of quark OAM
correlated with the target longitudinal polarization S; , with

the coefficient function C(Ll[’]l ) giving the amount of longi-

tudinal quark OAM in a longitudinally polarized target

(S:£%) [19]. Similarly, the contribution p(Lzl’]2 ) gives the

difference of radial flows between quarks with opposite
OAM (S, 77), with the coefficient function C(Lzl}z) repre-
senting in some sense the strength of the (S; #7 )-dependent
part of the force felt by the quark due to initial- and final-
state interactions.

The corresponding basic multipoles are

Sy BV (ky, bys Poy) = =S €4DLD)]

= SL(BT X ]%T>L, (43)
SLB(LZiJz) (/A‘T’I;ﬁi),ﬂ) = —’ISLGiTj }ZQ?

= WSL(Z;T X ]ACT)L(’A‘T . BT) (44)

2. Longitudinally polarized quark

The contribution p;; describes how the quark distribu-
tion is affected by the correlation between the quark and
target longitudinal polarizations. Since the product S; S7 is
invariant under parity and time reversal, the contribution
ppL turns out to be very similar to py;. We then find only
two phase-space distributions

(0,0)
PiL =PLL

o (11
PLL = p(LL )’ (45)

FIG. 6. Naive T-even (left) and T-odd (right) contributions to the transverse phase-space distribution p; ;. See text for more details.
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FIG. 7. Naive T-even (left) and T-odd (right) contributions to the transverse phase-space distribution p;; . See text for more details.

which are represented in Fig. 7. The corresponding basic
multipoles are

0,0) /%9 ~ A
S.SIBOY (ky, bys Pon) = S,SIM M, = S, ST, (46)

SLSZBSLU(’%T, by; Pn) =S, SIDLD},
= 1887 (kr - br). (47)

Only p(LOL’O) survives integration over k; or by and is then

naturally related to both the helicity GPD H and the helicity
TMD g¢,; [21,43]. Contrary to its ky- and bp-integrated
versions, p<LOL‘O)

that p(LOL‘O) also contains information about the correlation

between k; and b7, which is lost under integration over one
of the transverse variables [19]. Following the same argu-
ments as in Sec. VA 1, with all expressions now multiplied

by S.S7, we can relate the coefficient function C(LOL’O) to the
strength of the correlation between the longitudinal com-
ponent of quark and target polarizations (S; S? ). Similarly,

the contribution p(LlL’l) gives the difference of radial flows

between quarks with opposite (S; S7) correlations, with the

: . L1 A
coefficient function Cg I ) representing in some sense the

strength of the (S;S7)-dependent part of the force felt by
the quark due to initial- and final-state interactions.

is not circularly symmetric. The reason is

3. Transversely polarized quark

The contribution p; i describes how the distribution of
quarks is affected by the combination of quark transverse
polarization and target longitudinal polarization. We find in
total four phase-space distributions

(1.2)

1,0
( i) +,0L7-i s

0,1 2.1
Pl =Py Pl = p(LTi) + péri), (48)

which are represented in Fig. 8 for the quark polarization
3‘% = ¢,. The corresponding basic multipoles are

SLS?B(L];’-)) (ky, bys Poy) = S, S¥ DM,
= S.(8% - kr). (49)
SLS(]]]BST"?) (]%T, BT’ p, 11)
= 5,54 D0y

A oa 1 A
= S.|(87 - br)(br - kr) =5 (S7-kr) |, (50)

i (0, ~ ~ A i ;
SLS% BiT})(kT’ bT;Ps 7]) == nSLS%Mka
=S, (8% br). (51)

in21) 2 1
SLSqT Béri)(krvbﬁp,’?)

= nS.84 0/ D]
~ ~ A 1 ~
=nSL (S%'kr)(kr‘br)—i(s%‘br) . (52)

The contribution p(Ll;,-)) is the only one surviving the

integration over by and is then naturally related to the
worm-gear TMD hi; [21,43]. The dipole in k; space
indicates the presence of a net transverse flow parallel to the
quark transverse polarization. This transverse flow is
actually an effect due to the light-front imaging, once
again associated with the fact that the light-front densities
are defined in terms of the j* = \/LE (j° + j*) component of

the current instead of the j° component. As we will soon
see, it turns out that the transverse flow finds its physical
origin in the correlation between the longitudinal compo-
nent of quark OAM and the transverse spin-orbit cou-
pling (S, £ (S7 - £7)).

The contribution p(LlT’?) corresponds to completely new
information which is not accessible via GPDs or TMDs at

leading twist. Combined with p(Ll%,O-), it tells us how the
quark distribution is affected by the two longitudinal-

transverse worm-gear correlations, say (S;77Si¢1) and

034040-10
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I,

FIG. 8.
S% =&, (red arrows). See text for more details.

(S, 2181¢1). Indeed, let us consider the projection of a
(5,643 i) (7 - 7ip))  corr
onto the transverse position space. For 7n; = by and

three-dimensional correlation

nr = (Z;T X P), we, respectively, find

/ db, (B x &) PI(S% - by)[(b x By - by]

~ (87~ br)(br - kr). (53)

[ dbelb xRy - PIE- (by x PG xRy - By x P)
~ (87 x I;T)L(I;T X /ACT)L- (54)
Noting that

(S% X 2T)L(BT X ]%T)L = (S(% : IACT)
(55)

(87 - br)(br - kr) ~

and comparing with the basic multipoles (49) and (50), we

can see that the two coefficient functions C(LT,) and C(LT,)

are related to the strength of two different combinations of

PHYSICAL REVIEW D 93, 034040 (2016)

Naive T-even (left) and T-odd (right) contributions to the transverse phase-space distribution p; ; for the quark polarization

the two longitudinal-transverse worm-gear correlations
(S,£959£9) and (S, £957¢7).

Similarly, the contribution p Lo;_) is the only one surviving
the integration over k7. It cannot, however, be related to the
GPD ET [21,43,48] since the latter is 77—independent.5 It then
corresponds to completely new information. Once again, the
dipole in by space indicates the presence of a spatial
separation between quarks with opposite correlations.
This is again an effect related to the light-front imaging.

The contribution p LT}) corresponds to more completely
new information which is not accessible via GPDs or

TMDs at leading twist. Combined with p(LO;), it tells us how
the initial- and final-state interactions depend on the two
longitudinal-transverse =~ worm-gear correlations,  say
(S.£18%¢1) and (S £7S7¢1). Indeed, let us consider the
projection of a three-dimensional spiral worm-gear flow
(b x k) - P)(S% - 7ip)[(b x k) - nT](k b) onto the trans-

verse position space. For iy = kT and ny = (kT x P), w
respectively, find

Moreover, the GPD Ey is £ odd and cannot therefore appear in
our multipole decomposition based on & = 0.
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[ aulbx B PIE Kb x Ry RelB D)

~ (S% ) ]ACT)(]ACT : i’T)’ (56)

[ dbel(bxy- PSS (e x BB x Ry o x P&
~ (87 x ky), (kr > br),. (57)
Noting that

(S‘% : ]A(T)(]%T : lA?T) - (S% X I}T)L(]ACT X ET)L = (S% : l;T)
(58)

and comparing with the basic multipoles (51) and (52), we
can see that the two coefficient functions C(LOT’,D and C(LZT’E)
are related to the strength of the (S, Z7S1#%)- and
(S, £181¢1)-dependent parts of the force felt by the quark
due to initial- and final-state interactions. In other words,

(0.1 (2.1)

L7 L7 describe the difference of

the contributions p ) and P

S
&

PHYSICAL REVIEW D 93, 034040 (2016)

radial flows between quarks with opposite (S, Z7 S1¢1) or
(S.¢18%¢1) correlations.

C. Transversely polarized target

1. Unpolarized quark

The contribution p;i;; describes how the distribution of
unpolarized quarks is affected by the target transverse
polarization. Its structure is very similar to p;; because
one just exchanges the roles of quark and target
polarizations. We then find in total four phase-space
distributions

(0.1) (2.1)

p;‘iU :pTiU +pTiU7 (1’0) (1’2)

p;*iU:pTiU +pTiU’ (59)

which are represented in Fig. 9 for the target polarization
S'T = ¢,. The corresponding basic multipoles are

S?ngklj)(]%T» ET;P’ n = SiTeiTijDi = (87 x BT)L’ (60)

FIG. 9. Naive T-even (left) and T-odd (right) contributions to the transverse phase-space distribution p7y; for the target polarization

S‘T = ¢, (red dashed arrows). See text for more details.
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Sl (kT’ st P ’1)
= Slre’%Q{fDé

n ~ ~ 1 ~
= (Sy x k) (kg - br) = E(ST X br)r, (61)

S’TB( )(kTvstP n) = nSyel DM,
= n(ST X ]ACT)L’ (62)

S’ (kTvbTvP ’7)
= WS'T€ITID§th

= 7]|:<ST : BT)(BT X ]%T)L _%(ST X ]ACT)L:|- (63)

1) . .
riy 18 the only one surviving the

integration over k; and is then naturally related to the
GPD E [21,43,48]. The dipole in b; space indicates a
spatial shift in the distribution of quarks due to the target
transverse polarization. This is again a result of the light-
front imaging associated with the fact that the light-front
densities are defined in terms of the j* :\/%(j0 +/3)

component of the current instead of the j° component. The
spatial shift finds its physical origin in the transverse quark
OAM (S - €%) [17], and it can also be understood from the
fact that the position of the relativistic center of mass of a
rotating body is frame dependent [49,50].
. 2,1
The contribution p.;; corresponds to completely new

information which is not accessible via GPDs or TMDs at
leading twist. Combined with p(T,’ ), it tells us how the
quark distribution is affected by the two transverse com-
ponents of quark OAM, say (S,#{) and (S,77}). Following

the same arguments as in Sec. VA 3, with S7 replaced by

The contribution p

S7, we can relate the two coefficient functions Cg’(lj) and

c@D
U

transversely polarized target (S,£7) and (S,¢7).
Similarly, the contribution pTI[’U is the only one surviving

the integration over by and is then naturally related to the

Sivers TMD £ [21,43]. The dipole in k; space indicates
the presence of a net transverse flow orthogonal to the
quark transverse polarization. Such a net transverse flow

can only arise from initial- and/or final-state interactions, in
(1.0)

to the amount of transverse quark OAM in a

accordance with the naive T-odd nature of Priy
The contribution p(T, 2) corresponds to completely new
information which is not accessible via GPDs or TMDs at

leading twist. Combined with p(T, ), it tells us how the

initial- and final-state interactions depend on the two
transverse components of quark OAM, say (S,7{) and
(S,£3). Following once again the same arguments as in
Sec. VA 3, with S% replaced by S, we can relate the two

coefficient functions C( ) and C( ) to the strength of the

PHYSICAL REVIEW D 93, 034040 (2016)

(S,£%)- and (S,£7)-dependent parts of the force felt by the
quark due to initial- and final-state interactions. In other
words, the contributions p(Tlig) and p(Tl,-f/) describe the
difference of radial flows between quarks with opposite
transverse components of OAM (S, %) or (S,¢7).

Note that it has been suggested that [ deTpeT,»U and
Ik dszpCT’, y could be related by some lensing effect [17,53].
We cannot unfortunately confirm this suggestion, because
such a relation relies on a dynamical mechanism which goes
beyond the general constraints considered in the present paper.

2. Longitudinally polarized quark
The contribution pi; describes how the distribution of
quarks is affected by the combination of quark longitudinal
polarization and target transverse polarization. Its structure
is very similar to p; 7+ because one just exchanges the roles
of quark and target polarizations. We then find in total four
phase-space distributions

. o 0,1 2,1

Py = p<T, Y +p(T,L), PliL P(m) +p(T,»L), (64)
which are represented in Fig. 10 for the target polarization
S; = ¢,. The corresponding basic multipoles are

$i.89 B (ky, bys o) =

L 838 DM,

= SZ(ST ’ ]A(T)v (65)

Sl SqB )(kTvbTaP ’1)
= STSzDi

N oA oA 1 ~
:SZ (ST'bT)(bT’kT>_§(ST'kT) > (66)

Si8IBS (ky, bys o) = nSiSIMD),
=nS7(Sr - br). (67)

SlTSq T’L (kTvbTaPﬂ)
:nS’TSZQkD

~ ~ ~ 1 ~
:’151[{ (ST'kT)(kT'bT>_§<ST'bT) . (68)

The contribution p(Tl,-’f) is the only one surviving the

integration over by and is then naturally related to the
worm-gear TMD ¢, [21,43]. The dipole in k; space
indicates the presence of a net transverse flow parallel to the
quark transverse polarization. This transverse flow is once
again due to the light-front imaging, associated with the
fact that the light-front densities are defined in terms of
the j*© = % (j° + j*) component of the current instead of

the j° component. As we will soon see, it turns out that the
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FIG. 10. Naive T-even (left) and T-odd (right) contributions to the transverse phase-space distribution p;; for the target polarization

3’T = ¢, (red dashed arrows). See text for more details.

transverse flow finds its physical origin in the correlation
between the transverse component of quark OAM and the
longitudinal spin-orbit coupling ((S7 - #%)S? 7).
o 12
The contribution p,;;” corresponds to completely new
information which is not accessible via GPDs or TMDs at

leading twist. Combined with p(Tl,-f), it tells us how the

quark distribution is affected by the two transverse-longi-
tudinal worm-gear correlations, say (S,£1S7¢7) and
(S,£187¢1). Following the same arguments as in
Sec. VB3, with S; 87 replaced by S;S7, we can relate

the two coefficient functions C(Tl,-f) and C(Tlf) to the strength

of the two transverse-longitudinal worm-gear correlations
(S,£459£9) and (S,£45£1).

Similarly, the contribution quz) is the only one surviving
the integration over k7. It cannot, however, be related to the
GPD E [21,43,48] since the latter is 5 independent.6 Once

again, the dipole in by space indicates the presence of a

6Moreover, while the GPD E is £ even, it enters the amplitude
with an explicit £ factor and cannot therefore appear in our
multipole decomposition based on ¢ = 0. It then corresponds to
completely new information.

spatial separation between quarks with opposite correla-
tions. This is likely another effect due to the light-front
imaging.

The contribution p(Tzi’Ll) corresponds to completely new

information which is not accessible via GPDs or TMDs at
leading twist. Combined with pgi), it tells us how the
initial- and final-state interactions depend on the two
transverse-longitudinal ~worm-gear correlations, say
(5,£1821) and (S,£489£1).

Following once again the same arguments as in
Sec. VB3, with S;S% replaced by S;S7, we can relate
the two coefficient functions C (T(fz) and C (Tz,]j) to the strength
of the (S,£1S} £1)- and (S,£7S] ¢])-dependent parts of the
force felt by the quark due to initial- and final-state

interactions. In other words, the contributions p(T(fi)
(2.

Pri Ll ) describe the difference of radial flows between quarks
with opposite (S,£1S7¢7) or (S,£1S7¢]) correlations.

and

3. Transversely polarized quark

The contribution pi; describes how the quark distri-
bution is affected by the correlation between the
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quark and target transverse polarizations. Focusing on
the naive T-even sector, we find four phase-space
distributions

_ ,00) , (02) | (20) , (22)
p;iTj _pTiTj +pTiTj +pTiTj +pTiTj’ (69)
which are represented in Fig. 11 for the target polarization
Sy = ¢, and for the two quark polarizations S = ¢, . The
corresponding basic multipoles are

PHYSICAL REVIEW D 93, 034040 (2016)
P i p00) 3 2 g o
SITS‘TI‘]B;ITJ) (kT’ st P, 71) == SITSZleMb
= (S7 - 87), (70)

Cin02 8 B N i eting il
STS%JB;I'TJ? (kT» bTa P’ 77) - STS[]I!M]Cij

= Sy br)(by 51 = 5 (789,
™)

FIG. 11. Naive T-even contributions to the transverse phase-space distribution py; for the target polarization §T = ¢, (red dashed
arrows) and for the two quark polarizations (red solid arrows) S% = ¢, (left) and S% = Ey (right). See text for more details.
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i i »(2.0) /9 S i I ALJ
SiSYBEY) ke, by Poy) = SiSY 00 M,

PN 1
= (ST : kT)(kT ’ S%) - E(ST ’ S‘%),

(72)

e -
Sy SY B (k. brs o) = =Sp.S§ e 0l O

= (Sr x SqT)L(i?T X ]ACT)L(’ACT : lA’T)'

(73)

@)

PHYSICAL REVIEW D 93, 034040 (2016)
(0,0)

The contribution p,;;; is the only one surviving both
integrations over by and k, and is then naturally related

2 o~
to both the transversity GPD combination Hy +4A#HT

and the transversity TMD h; [21,43]. Contrary to its
kr- and bp-integrated versions, p(T(f’;)j) is not circularly

symmetric. The reason is that p(ﬁfj) also contains

information about the correlation between k; and
by, which is lost under integration over one of the

FIG. 12. Naive T-odd contributions to the transverse phase-space distribution p;; for the target polarization §T = ¢, (red dashed

arrows) and for the two quark polarizations (red solid arrows) g,qT = ¢, (left) and 3‘; = Ey (right). See text for more details.
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transverse variables [19]. Following the same arguments
as in Sec. VA1 for p(l?i(,», with the corresponding

expressions now multiplied by S;-S% we can relate

the coefficient function C(T(f"ﬁj) to the strength of the
correlation between the transverse component of quark
and target polarizations (S7 - S7).

The contribution p;(?Tz,) is the only other contribution
surviving integration over k; and is then naturally
related to the GPD I:IT [21,43,48]. Similarly, the
contribution p(Tz;)j) is the only other contribution surviv-
ing integration over by and is then naturally related to
the pretzelosity TMD hj} [43,54-57]. Combined with
pg’ﬁ,), these two contributions tell us how the quark
distribution is affected by the two transverse spin-spin
correlations, say (S,S7) and (S,S7). Indeed, let us
consider the projection of a three-dimensional ((S‘T
7ir)(S4-7iz)) correlation onto the transverse position
space. For ny = Z)T and ny = (l;T x P), we, respec-
tively, find

/ db, (57 br)(S4 - br) ~ (Sy- by)(SL-by).  (74)

/ db, Sy - (by x P)EL - (by x P)]

~ (87 x BT)L(S(TI“ X I;T)L’ (75)

and similarly for n; = ky and iy = (%T x P). Now,
noting that for any unit transverse vector iy

(St - iig) (ST - fig) + (S7 X fig) (ST x fip), = (St - S7)
(76)

and comparing with the basic multipoles (70), (71),

and (72), we can see that the three coefficient
: (0.0) (0.2) (2.0)
functions C..;, Cpj, and Cjn; are related to

the strength of the two transverse spin-spin correla-
tions (S,S7) and (S,S7).
It may seem weird that we need three contributions to

determine two transverse spin-spin correlations. The

(0.2) (2.0)

reason is that the two contributions pT,-’Tz_,- and p.;; also

contain information about another type of correlation.

Combined with p(TzT2? which corresponds to completely

new information not accessible via GPDs or TMDs at
leading twist, they also tell us how the quark distribu-
tion is affected by the two transverse-transverse worm-
gear correlations, say (S,£1S1/%) and (S,/1Si/7).
Indeed, let us consider the projection of a three-dimen-

sional  ((Sy - 7ip) (€% - 1i7)[SF - (g x P)|[£% - (g x P)))

PHYSICAL REVIEW D 93, 034040 (2016)

correlation onto the transverse position space. For ny =

by and iy = (Z;T x P), we, respectively, find

/ dby (87 - br)[(b x By - BI[SY - (by x P)]
x [(bx k)p - (by x P)]
~ (ST : Z;T)(S(% X ET)L(BT X i‘T)L(]ACT : Br)a (77)

/ by (87 - (by x PY|[(B x By (by x P)|(5% - by)

x [(b x &) b))
~ (87 x I;T)L(S; ’ I;T)(BT X I}T)L(]ACT : lA?T)a (78)

and similarly for 7y =k; and 7y = (ky x P). Now,
noting that for any unit transverse vector 7iy

(S7 x ﬁT)L(S; “iip) = (St ﬁT)(S?" X iip), = (St x S;I")L’

(79)
[(S7 x fig) (ST - i) + (S7 - Aig) (ST % fir),]
x (br x kT)L(]ACT BT)
= [(IACT ﬁr)z - (]A(T X flr)%]
. | )

X _(ST br)(br - S7) — E(ST : ST):|

—[(by - Air)* = (b x 77)3]

< |(Sr 5D 55080 @0

and comparing with the basic multipoles (71), (72), and
(73), we can see that the three coefficient functions

two  transverse-transverse
(S, £18%eY) and (S,77S177).

Focusing now on the naive T-odd sector, we also find
four phase-space distributions

are related to the strength of the

worm-gear  correlations

(L.1) (1,3) (3.1)

0 L1y
pTiTj :pTiTj +pTiTj +pTiTj +p§~z

1)
T/ (81)

which are represented in Fig. 12 for the target polarization

S‘T = ¢, and for the two quark polarizations 3"% =¢,,. The
corresponding basic multipoles are

SySYB\Y) (ky, bys P.m) = S3.59D{D]
= (S7-S4)(kr - br),  (82)
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Si S‘}JBT,TJ (kT,bT,P 1)
— Sl SqJDl Ol/l
A PPN 1
= (ST : bT)(S(TI“ ) bT)(kT : bT) - Z [(ST : Sqr)(kT : bT)
+ (St - BT)(S% ~kr) + (S - ]ACT)(S;I" :

Sl S%]B;ITJ)(kT3 bT? P ’7)

i ijl
— 5,8 01D}

= (Sy k) (8% k) ke - br) — (57 $Dr - br)

+ (St br) (ST - kr) + (Sr - kr)(ST - br)), (84)
SiSUBLY) (ky, bys Pon) = =Sis¥ellelm DL Dy

= (Sr x S;)L(I;T X ]A(T)L' (85)

None of these survive integration over k; or by. They
therefore represent completely new information which is
not accessible via GPDs or TMDs at leading twist.
Following the same arguments as in Sec. VA 1 for pgjl 2]1),
with now the corresponding expressions multiplied by

Sr- ST, we can relate the coefficient function C(T,Tj) to

the strength of the correlation between the transverse

component of quark and target polarizations (S7 - S?%).

Combining p(Tlle) with p(Tl,YTB) and p(T3T1,) tells us how the

initial- and final-state interactions depend separately on the
two transverse spin-spin correlations, say (S,SY) and
(S,S87). Indeed, let us consider the projection of a three-

iir) (k- b) onto the

transverse position space. For ny = bT and n; = (bT x P),
we, respectively, find

dimensional radial flow (S'T ﬁT)(S'

/ dby (37 - by) (34 by) (k- B)

~ (ST : BT)(S;]" : BT)(]%T ) lA’T)v (86)
[ abufSr (b x PYSE - (b x P& D)
~ (g x by) (8% x by), (ks - br). (87)

and similarly for 71 = kg and iy = (kg x P). Now, noting
that for any unit transverse vectors 7y and 7/,

(S7 x fig) (ST x fig), = (S7 - S7),
(88)

(S7 - ftg) (ST - fiy) +

PHYSICAL REVIEW D 93, 034040 (2016)

(St - ir) (ST - ig) (Ar - A7) + (St - 7) (ST - A7) (A - )
= [(S7 - A7) (87 - Af) + (St - A7) (ST - )] (r - A7)
+ (St - 8) (Ar - iy)] (A x AY)7, (89)

and comparing with the basic multipoles (82), (83), and

(84), we can see that the three coefficient functions C(T,T),

C(T‘T/)’ and C(T‘T/) are related to the strength of the (S,S7)-
and (S, S})-dependent parts of the force felt by the quark
due to initial- and final-state interactions. In other words,

the contributions p(T,T), p(Tl;j) and p(T3T1]) describe the

difference of radial flows between quarks with opposite
(8,8%) or (S,87) correlations.

As in the naive T-even sector, it may seem weird that we
need three contributions to determine the dependence of
initial- and final-state interactions on two transverse spin-

spin correlations. The reason is that the two contributions

(1.3) (3.1)

and p_...; also contain information about another type

Priri 7T ,
of dependence. Combined with p(Tl,Tl) , they also tell us how
the initial- and final-state interactions depend separately on
the two transverse-transverse worm-gear correlations, say
(S,£183¢7) and (S,£7Si¢7). Indeed, let us consider the
projection of a three-dimensional spiral worm-gear flow
(Sr i) (74 ip)[8% - Gy x P24 - Gy x P)](k - ) onto
the transverse position space. For 7y = by and iy =

(Z;T X ﬁ’), we, respectively, find

/ dby (37 - by)l(b x Ky - by][5% - (by x P)]

P)](k- b)
X kT)L’ (90)

x [(bx &)y - (by x P
~(S7- ET)<S(; X bT) (

/ dby (7 - (by x PY)[(B x )y - (by x P)](3% - By)
x [(b x k)7 - br](k - b)
~ (ST X 2T)L(S;1‘ : Z;T)(I;T X ]ACT)L’ (91)

and similarly for 7i; = k7 and 7iy = (ky x P). Noting that
for any unit transverse vectors 7iy and 7’y

(S7 x ﬁT)L(S; “iip) = (St ﬁT)(S?" X fip), = (S x S;I")L’

(92)
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A(Syir)(SY - ir) (i - )
= [(S7-87) (A - ) + (S - uy) (ST )
+ (S - 7) (7 fir)]
= (S~ 7t7)(S7 - fty) = (Sp x r) (ST X far) ] (7 - i)
+[(SrAir) (ST X far), + (Sp X ir) (ST - Ar)|(Ar X i), .

(93)

and comparing with the basic multipoles (83), (84), and

(85), we can see that the three coefficient functions ct13)

Ti Tj b}
C(T3T1,) , and C<T1T1]) are related to the strength of the
(S, £181eY)- and (S, £181¢1)-dependent parts of the force
felt by the quark due to initial- and final-state interactions.

In other words, the contributions p(Tl,T3,), p<T31le), and p<Tl,le>

describe the difference of radial flows between quarks with
opposite (S,21S7¢7) or (S,/1S1¢%) correlations.

VI. CONCLUSIONS

We presented for the first time a systematic study of the
complete set of the leading-twist quark Wigner distribu-
tions in the nucleon, introducing a multipole analysis in the
transverse phase space. In this approach each distribution is
represented as a combination of basic multipoles structures
multiplied by coefficient functions giving the correspond-
ing strengths. The multipole structures are obtained for
each configuration of the nucleon and target polarizations,
taking into account the constraints from Hermiticity, parity,
and time-reversal transformations, while the coefficient
functions depend on P- and T-invariant Hermitian variables
only. There are several advantages in using this represen-
tation. First, it provides a clear interpretation of all the

PHYSICAL REVIEW D 93, 034040 (2016)

amplitudes in terms of the possible correlations between
target and quark angular momenta in the transverse phase
space. Second, it provides a convenient basis to make a
direct connection with GPDs in impact-parameter space
and TMD in transverse-momentum space after integration
over the transverse-momentum and the transverse-position
space, respectively. In order to emphasize these multipole
structures, we also proposed a new graphical representation
of the transverse phase-space distributions.

We presented results for both the naive T-even and the
naive T-odd contributions. The first ones describe the
contributions to the intrinsic distribution of quarks inside
the target, whereas the naive T-odd contributions describe
how initial- and final-state interactions modify this
distribution. We have explicitly calculated the naive T-
even contributions adopting a light-front quark model,
whereas the naive T-odd contributions have been
obtained by extracting the coefficient functions from
the naive T-even part and multiplying them by the
appropriate basic multipoles. In this way, the global sign
of the naive T-odd contributions has been chosen
arbitrarily. Only a proper calculation taking into account
the dynamics of the initial- and/or final-state interactions
can determine the global signs. However, these global
signs are not important for the purpose of the present
paper since we wanted to emphasize the general features
related to the multipole structure of the distribution, and
to identify the physical (angular) correlation encoded in
each distribution.
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