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We present a complete study of the leading-twist quark Wigner distributions in the nucleon, discussing
both the T-even and T-odd sectors, along with all the possible configurations of the quark and nucleon
polarizations. We identify the basic multipole structures associated with each distribution in the transverse
phase space, providing a transparent interpretation of the spin-spin and spin-orbit correlations of quarks and
nucleons encoded in these functions. Projecting the multipole parametrization of the Wigner functions onto
the transverse-position and the transverse-momentum spaces, we find a natural link with the corresponding
multipole parametrizations for the generalized parton distributions and transverse-momentum dependent
parton distributions, respectively. Finally, we show results for all the distributions in the transverse phase
space, introducing a representation that allows one to visualize simultaneously the multipole structures in
both the transverse-position and transverse-momentum spaces.
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I. INTRODUCTION

The concept of phase-space distributions borrowed from
classical mechanics has been transposed to quantum
mechanics [1], where it finds numerous applications
[2–4]. Phase-space distributions have also been defined
in the context of relativistic field theory [5–7] and more
specifically in quantum chromodynamics [8–12]. The six-
dimensional version of these phase-space distributions has
been discussed for the first time in connection with
generalized parton distributions (GPDs) in Refs. [13,14].
However, in this case the physical interpretation is plagued
by relativistic corrections. This issue has been solved in the
light-front formalism by integrating over the longitudinal
spatial dimension [15–18], leading to five-dimensional
phase-space distributions [19] which are related via a
proper Fourier transform to generalized transverse-
momentum dependent distributions (GTMDs) [20–22].
The GTMDs recently received increasing attention due

to the fact that they can be considered as the mother
distributions of GPDs and transverse-momentum depen-
dent distributions (TMDs) [20–22]. Moreover, it turned out
that they are naturally related to the parton orbital angular
momentum (OAM) [19,23–25]. Except possibly at low-x
[26–30], no experimental process directly sensitive to
GTMDs has been identified so far. Nevertheless, these
distributions can be studied using phenomenological or
perturbative models [19,20,31–37] and can also in principle
be computed on a lattice [38].
In total, there are at leading twist 32 quark phase-space

distributions among which half originate from naive T-odd
GTMDs. In a former work [19], we studied the four
naive T-even distributions associated with longitudinal

polarization. Here, we present for the first time a complete
study of all the 32 distributions.
Even though the number of independent functions is

fixed by hermiticity and space-time symmetries, the para-
metrization of the correlator is not unique. In some sense,
choosing a particular parametrization amounts to choosing
a particular basis for decomposing the correlator. One can
change the basis but not the number of independent basis
elements. The choice of a particular decomposition is
arbitrary and is often motivated by the simplicity of the
mathematical expressions. However, simple mathematical
expressions often turn out to have rather obscure physical
interpretation.
In this work, we choose natural combinations of GTMDs

corresponding to distributions for all the possible configu-
rations of the target and quark polarizations, and we perform
a multipole decomposition of each of these distributions in
the transverse phase space. This multipole analysis allows us
to identify in a clear way all the possible spin-spin and spin-
orbit correlations of quarks and nucleons in phase space, and
it has a direct connection with the spin densities in impact-
parameter space described by GPDs and the transverse-
momentum densities described by TMDs.
The plan of the manuscript is as follows. In Sec. II

we review the definition of the Wigner distributions
obtained by Fourier transform of the GTMDs to the
impact-parameter space, and we summarize the transfor-
mation properties of these functions under time reversal,
parity, and Hermitian conjugation. In Sec. III, we outline
the general method for the decomposition of the Wigner
functions in basic multipoles in the transverse phase space,
and we identify all the possible correlations between target
polarization, quark polarization, and quark OAM encoded
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in these phase-space distributions. In Sec. IV we introduce
a new representation of the transverse phase space,
which allows one to visualize the multipole structures
simultaneously in both the transverse-momentum and the
transverse-position spaces. In Sec. V we present and
discuss the results of both the T-even and T-odd distribu-
tions, for all the possible quark and target polarizations.
Although the calculation is performed within a specific
relativistic light-front constituent quark model [21], we can
draw general and model-independent conclusions about the
physical information encoded in these functions. Finally,
we summarize our results in Sec. VI.

II. POLARIZED RELATIVISTIC
PHASE-SPACE DISTRIBUTIONS

We introduce two lightlike four-vector n� satisfying
nþ ·n−¼ 1. Any four-vector aμ can then be decomposed as

aμ ¼ aþnμþ þ a−nμ− þ aμT; ð1Þ

where a� ¼ a · n∓ and aμT ¼ −δμνT aν with

δμνT ≡ nμþnν− þ nμ−nνþ − gμν: ð2Þ

Writing the light-front components of aμ as ½aþ; a−; aT �, we
have a2T ¼ −a2T . The transverse skewed product is then
given by

ϵμνT ≡ ϵμναβn−αnþβ ð3Þ

with ϵ0123 ¼ 1 so that ϵ12T ¼ −ϵ21T ¼ 1. Denoting by ~P ¼
1
2
ð~p0 þ ~pÞ the average hadron three-momentum and work-

ing in a frame where PT ¼ 0T , any spatial three-vector ~a
can similarly be decomposed as

~a ¼ aLP̂þ ~aT; ð4Þ

where aL ¼ ~a · P̂ with P̂ ¼ ~P=j~Pj, and aiT ¼ δijT a
j. For

later convenience, we shall also denote the longitudinal

component of the skewed product as ð~a × ~bÞ · P̂ ¼
ϵijT a

i
Tb

j
T ¼ ðaT × bTÞL.

The quark GTMD correlator is defined as [20,22]

Wab
Λ0Λ ≡

Z
dk−

Z
d4z
ð2πÞ4 e

ik·z

�
Pþ Δ

2
;Λ0

����ψ̄b

�
−
z
2

�

×Wψa

�
z
2

�����P −
Δ
2
;Λ

�
; ð5Þ

where W is an appropriate Wilson line ensuring color
gauge invariance, k is the quark average four-momentum
conjugate to the quark field separation z, and jp;Λi is the
spin-1=2 target state with four-momentum p and light-front
helicity Λ. The correlatorWab

Λ0Λ can be thought of as a 2 × 2

matrix in target polarization space and as a 4 × 4 matrix in
Dirac space. At leading twist, one can interpret

W~S~Sq ¼
1

8

X
Λ0;Λ

ð1þ ~S · ~σÞΛΛ0Tr½WΛ0ΛΓ~Sq � ð6Þ

with Γ~Sq ¼ γþ þ SqLγ
þγ5 þ SqjT iσjþT γ5, as the GTMD cor-

relator describing the distribution of quarks with polariza-

tion ~Sq inside a target with polarization ~S [39].
The corresponding phase-space distribution is obtained

by performing an appropriate Fourier transform [19]

ρ~S~Sqðx;kT;bT ;P̂;ηÞ¼
Z

d2ΔT

ð2πÞ2e
−iΔT ·bTW~S~SqðP;k;Δ;n−Þjξ¼0;

ð7Þ

where x ¼ kþ=Pþ and kT are, respectively, the longitudinal
fraction and transverse components of the quark average
momentum, bT is the quark average impact parameter
conjugate to the transverse-momentum transfer ΔT, ξ ¼
−Δþ=2Pþ is the fraction of longitudinal momentum trans-
fer, and η ¼ sgnðn0−Þ. This phase-space distribution can be
interpreted semiclassically as giving the quasiprobability of

finding a quark with polarization ~Sq, transverse position ~bT ,

and light-front momentum ðxPþ; ~kTÞ inside a spin-1=2

target with polarization ~S [19]. The Hermiticity property of
the GTMD correlator (6) ensures that these phase-space
distributions are always real valued [24] (see Table I),
which is consistent with their quasiprobabilistic interpre-

tation. The behavior of the variables x, kT , bT , P̂, η, ~S, and
~Sq under parity and time reversal1 can also be read from
Table I by looking at the arguments of the functions.

TABLE I. Transformation properties of the polarized GTMD
correlator and phase-space distribution. For a generic four-vector
aμ with light-front components ½aþ; a−; aT �, the light-front
components of āμ are ½aþ; a−;−aT �.

W~S~SqðP; k;Δ; n−Þ ρ~S~Sqðx; kT ; bT ; P̂; ηÞ
Hermiticity W�

~S~Sq
ðP; k;−Δ; n−Þ ρ~S~Sqðx; kT ; bT ; P̂; ηÞ

Parity W~S~SqðP̄; k̄; Δ̄; n̄−Þ ρ~S~Sqðx;−kT ;−bT ;−P̂; ηÞ
Time reversal W�

−~S−~Sq
ðP̄; k̄; Δ̄;−n̄−Þ ρ−~S−~Sqðx;−kT; bT ;−P̂;−ηÞ

1We work here with the passive form of parity and time-
reversal transformations so that the two lightlike four-vectors n�
also undergo the transformations. In light-front quantization, one
often chooses instead the active form so that these four-vectors
remain invariant, with the annoying consequence that the
components a� are then transformed into each other. This can
be cured by performing an additional π-rotation about e.g. the x
axis, i.e. by defining light-front parity and time reversal as PLF ¼
RxðπÞP and TLF ¼ RxðπÞT; see [22,40–42].

C. LORCÉ and B. PASQUINI PHYSICAL REVIEW D 93, 034040 (2016)

034040-2



There are 16 independent polarization configurations
[19,22] which correspond to particular linear combinations
of the 16 independent complex-valued GTMDs [20,22]. By
construction, the real and imaginary parts of the GTMDs
have opposite behavior under naive time-reversal trans-
formation [20,22], which is defined as usual time reversal
but without interchange of initial and final states. Similarly,
we can separate each phase-space distribution into naive
T-even and T-odd contributions

ρ~S~Sq ¼ ρe~S~Sq þ ρo~S~Sq ; ð8Þ

where

ρe;o~S~Sq
ðx; kT; bT ; P̂; ηÞ ¼ �ρe;o~S~Sq

ðx; kT; bT ; P̂;−ηÞ
¼ �ρe;o

−~S−~Sq
ðx;−kT; bT ;−P̂; ηÞ: ð9Þ

In some sense, the naive T-even contributions describe the
intrinsic distribution of quarks inside the target, whereas
the naive T-odd contributions describe how initial- and
final-state interactions modify this distribution.
So, based on Hermiticity and space-time symmetries, we

find in total 32 (leading-twist) phase-space distributions.
We stress that this counting is completely model indepen-
dent, though it may appear that some linear combinations
of these distributions vanish in particular models or theories
for deeper symmetry reasons.

III. MULTIPOLE DECOMPOSITION

The relativistic phase-space distribution is linear in ~S

and ~Sq,

ρ~S~Sq ¼ ρUU þ SLρLU þ SqLρUL þ SLS
q
LρLL

þ SiTðρTiU þ SqLρTiLÞ þ SqiT ðρUTi þ SLρLTiÞ
þ SiTS

qj
T ρTiTj ; ð10Þ

and can further be decomposed into two-dimensional
multipoles in both kT and bT spaces. While there is no

limit in the multipole order,2 parity and time reversal
impose certain constraints on the allowed multipoles. It
is therefore more sensible to decompose the phase-space
distributions ρX with X ¼ UU;LU;… as follows:

ρXðx; kT; bT ; P̂; ηÞ ¼
X
mk;mb

ρðmk;mbÞ
X ðx; kT; bT ; P̂; ηÞ; ð11Þ

ρðmk;mbÞ
X ðx; kT; bT ; P̂; ηÞ ¼ Bðmk;mbÞ

X ðk̂T ; b̂T ; P̂; ηÞ
× Cðmk;mbÞ

X ½x; k2T; ðkT · bTÞ2; b2T �;
ð12Þ

where Bðmk;mbÞ
X represent the basic (or simplest) multipoles

allowed by parity and time-reversal symmetries. These
basic multipoles are multiplied by the coefficient functions

Cðmk;mbÞ
X which depend on P- and T-invariant variables only.

The couple of integers ðmk;mbÞ gives the basic multipole
order in both kT and bT spaces. An illustration of the
decomposition of a phase-space density into basic multi-
pole and coefficient function is given in Fig. 1.
The basic multipoles can be expressed in terms of

transverse multipoles in kT space,

mk ¼ 0 Mk ¼ 1;

mk ¼ 1 Di
k ¼ k̂iT ;

mk ¼ 2 Qij
k ¼ k̂iT k̂

j
T −

1

2
δijT ;

mk ¼ 3 Oijl
k ¼ k̂iT k̂

j
T k̂

l
T −

1

4
ðδijT k̂lT þ δjlT k̂

i
T þ δliT k̂

j
TÞ;

..

. ..
. ð13Þ

and the corresponding ones in bT space. For example, for
the spin-independent contribution ρUU, the simplest basic

FIG. 1. Simple illustration of the decomposition (12) at fixed x and bT . The phase-space distribution ρ can be written as a product of a
basic multipole B (here a dipole in kT space) with an oval-shaped coefficient function C.

2Indeed, the multiplication by ðkT · bTÞ2 increases the trans-
verse multipole order in kT and bT spaces, but does not change
the transformation properties under parity and time reversal.
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multipole one can build is obviously in terms of the

transverse monopoles Bð0;0Þ
UU ¼ MkMb ¼ 1. The only pos-

sibility3 involving the transverse dipoles is Bð1;1Þ
UU ¼

ηDi
kD

i
b ¼ ηðk̂T · b̂TÞ, where the η factor ensures time

reversal invariance. Higher transverse multipoles do not
lead to new basic multipoles since they always reduce to

Bð0;0Þ
UU and Bð1;1Þ

UU multiplied by some function of k2T ,
ðkT · bTÞ2, and b2T . This analysis is consistent with the fact
that there exists only one spin-independent complex-valued
GTMD denoted as F11 [20], leading to two different real-
valued phase-space distributions. Note also that, from the

explicit expressions for the basic multipoles Bðmk;mbÞ
UU , we

find that ρeUU ¼ ρð0;0ÞUU and ρoUU ¼ ρð1;1ÞUU . All the basic
multipoles associated with the other contributions ρX are
obtained following the same strategy.
Note that only the multipoles with mb ¼ 0 survive

integration over bT and reduce to TMD amplitudes.
Similarly, only the multipoles with mk ¼ 0 survive inte-
gration over kT and reduce to impact-parameter distribu-
tions. Since GPDs do not depend on η, only the naive
T-even multipoles correspond to the Fourier transforms of
GPD amplitudes [21,43]. Interestingly, the naive T-odd
ones represent new contributions, just like new contribu-
tions were obtained in the general parametrization of the
light-front energy-momentum tensor [44].
Remarkably, it turns out that all the contributions ρX can

be understood as encoding all the possible correlations
between target and quark angular momenta; see Table II.

We stress in particular that ~lq refers to the canonical quark
OAM, since it is defined in terms of the canonical quark

momentum ~k [45]. As will be discussed in more detail in
Sec. V, the relation with all the possible angular correlations
becomes more transparent once one sees the five-
dimensional relativistic phase-space distributions as six-
dimensional phase-space distributions integrated over the
quark average longitudinal position

ρXðx; kT; bT ; P̂; ηÞ ¼
Z

dbLρXð~k; ~b; P̂; ηÞ: ð14Þ

Noting that bL is even under parity and odd under time
reversal, one can perform a similar multipole expansion for
the six-dimensional distributions. Naturally, the integral
over bL of the six-dimensional multipoles can be expressed
in terms of the five-dimensional ones

Z
dbLBð~k; ~b; P̂; ηÞC½x; ~k2; ð~k · ~bÞ2; ~b2; bLð~k · ~bÞ�

¼
X
i

Biðk̂T ; b̂T ; P̂; ηÞCi½x; k2T; ðkT · bTÞ2; b2T �: ð15Þ

For convenience, this correspondence will simply be
denoted in Sec. V as

Z
dbLB ∼

X
i

Bi: ð16Þ

We shall also implicitly use the fact that

bLC½x; ~k2; ð~k · ~bÞ2; ~b2; bLð~k · ~bÞ�

¼ ð~k · ~bÞ bLð
~k · ~bÞ

ð~k · ~bÞ2
C½x; ~k2; ð~k · ~bÞ2; ~b2; bLð~k · ~bÞ�

≡ ð~k · ~bÞC0½x; ~k2; ð~k · ~bÞ2; ~b2; bLð~k · ~bÞ�; ð17Þ

so that we can write e.g.
R
dbLbL ∼ ðk̂T · b̂TÞ. As we will

explicitly show in the following, working at the level of
phase-space distributions gives us much more insight
about the physics encoded in the various GPDs and
TMDs.

IV. REPRESENTATION OF TRANSVERSE
PHASE SPACE

The relativistic phase-space distributions are functions of
five continuous variables. It is therefore particularly diffi-
cult to represent them on a two-dimensional space. Since
we are mainly interested in the transverse direction, we
reduce the number of variables by
(1) integrating these phase-space distributions over x;
(2) discretizing the polar coordinates of bT .

For further convenience, we also set η ¼ þ1 and choose
P̂ ¼ ~ez ¼ ð0; 0; 1Þ so that b̂T ¼ ðcosϕb; sinϕb; 0Þ and
k̂T ¼ ðcosϕk; sinϕk; 0Þ. The resulting transverse phase-
space distributions are then represented as sets of distri-
butions in kT space

ρXðkT jbTÞ ¼
Z

dxρXðx; kT; bT ; P̂ ¼ ~ez; η ¼ þ1ÞjbT fixed

ð18Þ

with the origin of axes lying on circles of radius jbT j at
polar angle ϕb in impact-parameter space; see Fig. 2. In this

TABLE II. Correlations between target polarization (SL, ST),
quark polarization (SqL, S

q
T ), and quark OAM (lq

L, l
q
T) encoded in

the various phase-space distributions ρX. We then see that e.g.
ρUL encodes the spin-orbit correlation hSqLlq

Li, and ρTxTy
encodes

the double spin-orbit correlation hSxlq
xS

q
yl

q
yi.

ρX U L Tx Ty

U h1i hSqLlq
Li hSqxlq

xi hSqylq
yi

L hSLlq
Li hSLSqLi hSLlq

LS
q
xl

q
xi hSLlq

LS
q
yl

q
yi

Tx hSxlq
xi hSxlq

xS
q
Ll

q
Li hSxSqxi hSxlq

xS
q
yl

q
yi

Ty hSylq
yi hSylq

yS
q
Ll

q
Li hSylq

yS
q
xl

q
xi hSySqyi

3Indeed, the other combination ϵijT D
i
kD

j
b ¼ ðk̂T × b̂TÞL is

P odd.
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way, one can see how the transverse momentum is
distributed at some point in the impact-parameter space.
In the language of differential geometry, the bT space plays
the role of a base space and the kT space plays the role of
the corresponding tangent space. All we do is just draw the
tangent spaces associated with a couple of points in the
base space and situated at a fixed distance from the center.
Naturally, one can also represent the same transverse phase-
space distributions in terms of bT distributions

ρXðbT jkTÞ ¼
Z

dxρXðx; kT; bT ; P̂ ¼ ~ez; η ¼ þ1ÞjkT fixed

ð19Þ

with the origin of axes lying on circles of radius jkT j
at polar positions ϕk in transverse-momentum space. In this
case, one sees how some specific transverse momentum
is distributed in impact-parameter space. In the following,
we shall only consider the discrete bT representation
ρXðkT jbTÞ.
The above representation of transverse phase space has

the advantage to make the multipole structure in both kT
and bT spaces particularly clear. For example, the basic

multipole Bðmk;mbÞ
X simply displays a mk pole in transverse-

momentum space at any transverse position bT . The
orientation of this mk pole is determined by mb and
ϕb ¼ arg b̂T . More precisely, by going once around the

circle, the mk pole will undergo
mb
mk

complete rotations. The
case mk ¼ 0 does not cause any problem since a monopole
is invariant under rotations.

V. DISCUSSION

Since the focus of this paper is on the multipole
decomposition of the transverse phase space, we choose
for all the figures in the following to represent only eight
points in impact-parameter space lying on a circle with
radius jbT j ¼ 0.4 fm. Also, for better legibility, the kT
distributions are normalized to the absolute maximal value
over the whole circle in impact-parameter space

max
jbT j¼0.4 fm

jρXðkT jbTÞj ¼ 1: ð20Þ

The results presented in the following are obtained using
the light-front constituent quark model (LFCQM) [21] for
up quarks, by computing directly the Fourier transform of
the helicity amplitudes associated with the GTMD corre-
lator. Light and dark regions represent, respectively, pos-
itive and negative domains of the transverse phase-space
distributions. Since our purpose at this point is simply to
illustrate the multipole structure, we computed only the
naive T-even contributions in this model. The fact that the
calculated distributions perfectly match the expected multi-
pole decomposition presented in Sec. III proves the con-
sistency of the approach.4 The naive T-odd contributions
have been obtained by extracting the coefficient functions
from the naive T-even part and multiplying them by the
appropriate basic multipoles. We stress that the global sign
of these naive T-odd contributions has been chosen
arbitrarily. Only a proper calculation including initial-
and/or final-state interactions can determine these global
signs.

A. Unpolarized target

1. Unpolarized quark

The simplest contribution is ρUU. It describes the
distribution of unpolarized quarks inside an unpolarized
target. As already discussed at the end of Sec. III, there
exist only two spin-independent phase-space distributions

ρeUU ¼ ρð0;0ÞUU ; ρoUU ¼ ρð1;1ÞUU ; ð21Þ

which are represented in Fig. 3. The corresponding basic
multipoles are

Bð0;0Þ
UU ðk̂T ; b̂T ; P̂; ηÞ ¼ MkMb ¼ 1; ð22Þ

FIG. 2. Representation of the transverse phase space. The circle
represents the points in impact-parameter space at a fixed distance
jbT j from the center of the target. With each point on this circle is
associated a distribution in transverse-momentum space. See text
for more details.

4Note that alternative definitions of the GTMDs including a
soft factor contribution [46] modifies only the k2⊥ dependence,
and so does not alter the following multipole analysis.
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Bð1;1Þ
UU ðk̂T ; b̂T ; P̂; ηÞ ¼ ηDi

kD
i
b ¼ ηðk̂T · b̂TÞ: ð23Þ

Only ρð0;0ÞUU survives integration over kT or bT and is then
naturally related to both the unpolarized GPD H and the
unpolarized TMD f1 [21,43]. Contrary to its kT- and

bT-integrated versions, ρð0;0ÞUU is not circularly symmetric.

The reason is that ρð0;0ÞUU also contains information about the
correlation between kT and bT , which is lost under
integration over one of the transverse variables [19]. As
one can see from Fig. 3, the kT distribution is elongated in
the direction orthogonal to the transverse position. This
means that a polar flow (kT ⊥ bT) is preferred over a radial
flow (kT∥bT), which is expected because the quarks are
bound in the target. In other words, the preferred flow of
quarks is along circles around the center of the target. The
quark motion is of course not limited to the transverse

plane. So, for fixed quark momentum ~k, ρð0;0ÞUU should be
better thought of as the projection of a three-dimensional
distribution in position space onto the transverse plane

Z
dbL1 ∼ 1: ð24Þ

Note, however, that the net OAM is zero in this case,
because there is no preferred direction in ρUU. Quarks tend
to follow circular motion equally in both clockwise and
anticlockwise directions.
Since it integrates to zero in both kT and bT spaces, ρð1;1ÞUU

represents a completely new piece of information which is
not accessible via GPDs or TMDs at leading twist. The
dipole in kT space signals the presence of a net flow in the
transverse radial direction ðk̂T · b̂TÞ, which can be seen as
the projection of a three-dimensional radial flow ðk̂ · b̂Þ
onto the transverse position space

Z
dbLð~k · ~bÞ ∼ ðk̂T · b̂TÞ: ð25Þ

For a stable target, this must obviously be zero. A non-
vanishing net radial flow therefore originates purely from
initial- and final-state interactions, in agreement with the

naive T-odd nature of ρð1;1ÞUU . The coefficient function Cð1;1Þ
UU

then represents in some sense the strength of the
spin-independent part of the force felt by the quark due
to initial- and final-state interactions.

2. Longitudinally polarized quark

The contribution ρUL describes how the distribution of
quarks inside an unpolarized target is affected by the quark
longitudinal polarization. We find only two phase-space
distributions

ρeUL ¼ ρð1;1ÞUL ; ρoUL ¼ ρð2;2ÞUL ; ð26Þ

which are represented in Fig. 4. The corresponding basic
multipoles are

SqLB
ð1;1Þ
UL ðk̂T ; b̂T ; P̂; ηÞ ¼ −SqLϵ

ij
T D

i
kD

j
b

¼ SqLðb̂T × k̂TÞL; ð27Þ

SqLB
ð2;2Þ
UL ðk̂T ; b̂T ; P̂; ηÞ ¼ −ηSqLϵ

ij
T Q

il
kQ

jl
b

¼ ηSqLðb̂T × k̂TÞLðk̂T · b̂TÞ: ð28Þ

None of these survive integration over kT or bT. Both
therefore represent completely new information which is
not accessible via GPDs or TMDs at leading twist. The kT
dipole in ρð1;1ÞUL signals the presence of a net flow in the polar
direction ðb̂T × k̂TÞL, i.e. a net longitudinal component of
quark OAM, which can be seen as the projection of a three-

dimensional azimuthal flow ð~b × ~kÞ · P̂ onto the transverse
position space

Z
dbL½ð~b × ~kÞ · P̂� ∼ ðb̂T × k̂TÞL: ð29Þ

FIG. 3. Naive T-even (left) and T-odd (right) contributions to the transverse phase-space distribution ρUU. See text for more details.
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By reversing the quark longitudinal polarization SqL, one

reverses also the orbital flow. The coefficient functionCð1;1Þ
UL

then represents in some sense the strength of the correlation
between the longitudinal components of quark polarization
and OAM hSqLlq

Li [19,47].
On the contrary, the contribution ρð2;2ÞUL does not modify

the net quark flow. The effect of the kT quadrupoles is to
globally tilt the kT distributions with respect to bT , so that
the preferred flow is now a spiral correlated with the quark
longitudinal polarization, which can be seen as the pro-
jection of a three-dimensional spiral flow onto the trans-
verse position space

Z
dbL½ð~b × ~kÞ · P̂�ð~k · ~bÞ ∼ ðb̂T × k̂TÞLðk̂T · b̂TÞ: ð30Þ

In other words, the contribution ρð2;2ÞUL gives the difference
of radial flows between quarks with opposite hSqLlq

Li
correlations. The coefficient function Cð2;2Þ

UL then represents
in some sense the strength of the hSqLlq

Li-dependent part of
the force felt by the quark due to initial- and final-state
interactions.

3. Transversely polarized quark

The contribution ρUTi describes how the distribution of
quarks inside an unpolarized target is affected by the quark
transverse polarization. We find in total four phase-space
distributions

ρeUTi ¼ ρð0;1ÞUTi þ ρð2;1ÞUTi ; ρoUTi ¼ ρð1;0ÞUTi þ ρð1;2ÞUTi ; ð31Þ

which are represented in Fig. 5 for the quark polarization
~SqT ¼ ~ex. The corresponding basic multipoles are

SqiT B
ð0;1Þ
UTi ðk̂T ; b̂T ; P̂; ηÞ ¼ SqiT ϵ

ij
TMkD

j
b ¼ ðSqT × b̂TÞL; ð32Þ

SqiT B
ð2;1Þ
UTi ðk̂T ; b̂T ; P̂;ηÞ¼ SqiT ϵ

ij
TQ

jl
k D

l
b

¼ðSqT × k̂TÞLðk̂T · b̂TÞ−
1

2
ðSqT × b̂TÞL;

ð33Þ
SqiT B

ð1;0Þ
UTi ðk̂T ; b̂T ; P̂; ηÞ ¼ ηSqiT ϵ

ij
T D

j
kMb

¼ ηðSqT × k̂TÞL; ð34Þ

SqiT B
ð1;2Þ
UTi ðk̂T ; b̂T ; P̂; ηÞ

¼ ηSqiT ϵ
jl
T D

l
kQ

ij
b

¼ η

�
ðSqT · b̂TÞðb̂T × k̂TÞL −

1

2
ðSqT × k̂TÞL

�
: ð35Þ

The contribution ρð0;1ÞUTi is the only one surviving the
integration over kT and is then naturally related to the
GPD combination 2 ~HT þ ET [21,43,48]. The dipole in bT
space indicates the presence of a spatial separation between
quarks with opposite transverse polarizations. This trans-
verse shift is actually an effect related to the light-front
imaging due to the fact that the light-front densities are
defined in terms of the jþ ¼ 1ffiffi

2
p ðj0 þ j3Þ component of the

current instead of the j0 component, and finds its physical
origin in the correlation between the transverse components
of quark polarization and OAM hSqT · lq

Ti [18]. Indeed,
because of transverse OAM, quarks situated at opposite
sides tend to have opposite longitudinal momenta kLP̂,
i.e. opposite j3 components, and are then associated
with different light-front densities jþ. From a slightly
different perspective, the transverse shift can also be
understood from the fact that the position of the relativistic
center of mass of a rotating body is frame dependent
[49,50].
There are actually two independent transverse correla-

tions, say hSqxlq
xi and hSqylq

yi. The contribution ρð0;1ÞUTi gives
us information about only one particular combination. The
other combination is given by the other naive T-even

FIG. 4. Naive T-even (left) and T-odd (right) contributions to the transverse phase-space distribution ρUL. See text for more details.
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contribution ρð2;1ÞUTi which is not accessible via GPDs or
TMDs at leading twist. Indeed, let us consider the projec-

tion of a three-dimensional hð~SqT · ~nTÞð~lq
T · ~nTÞi correlation

onto the transverse position space, where ~nT is some

transverse vector. For ~nT ¼ ~kT and ~nT ¼ ð~kT × P̂Þ, we,
respectively, find
Z

dbLð~SqT · ~kTÞ½ð~b× ~kÞT · ~kT �∼ ðSqT · k̂TÞðk̂T × b̂TÞL; ð36Þ

Z
dbL½~SqT · ð~kT × P̂Þ�½ð~b × ~kÞT · ð~kT × P̂Þ�

∼ ðSqT × k̂TÞLðk̂T · b̂TÞ: ð37Þ
Noting that

ðSqT · k̂TÞðk̂T × b̂TÞL þ ðSqT × k̂TÞLðk̂T · b̂TÞ ¼ ðSqT × b̂TÞL
ð38Þ

and comparing with the basic multipoles (32) and (33), we

can see that the two coefficient functions Cð0;1Þ
UTi and Cð2;1Þ

UTi

are related to the strength of two different combinations of
the transverse correlations hSqxlq

xi and hSqylq
yi.

Similarly, the contribution ρð1;0ÞUTi is the only one surviving
the integration over bT and is then naturally related to the
Boer-Mulders TMD h⊥

1 . The dipole in kT space indicates
the presence of a net transverse flow orthogonal to the
quark transverse polarization. Interestingly, this phenome-
non is reminiscent of the spin Hall effect in spintronics and
the Magnus effect in fluid mechanics [51,52]. Such a net
transverse flow can only arise from initial- and/or final-state
interactions, in accordance with the naive T-odd nature

of ρð1;0ÞUTi .
The contribution ρð1;2ÞUTi corresponds to completely new

information which is not accessible via GPDs or TMDs at

leading twist. Combined with ρð1;0ÞUTi , it tells us how the
initial- and final-state interactions depend on the two
transverse correlations, say hSqxlq

xi and hSqylq
yi. Indeed,

let us consider the projection of a three-dimensional

transverse spiral flow ð~SqT · ~nTÞ½ð~b × ~kÞT · ~nT �ð~k · ~bÞ onto

the transverse position space. For ~nT ¼ ~bT and ~nT ¼
ð~bT × P̂Þ, we, respectively, find

FIG. 5. Naive T-even (left) and T-odd (right) contributions to the transverse phase-space distribution ρUT for the quark polarization
~SqT ¼ ~ex (red arrows). See text for more details.
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Z
dbLð~SqT · ~bTÞ½ð~b× ~kÞT · ~bT �ð~k · ~bÞ∼ ðSqT · b̂TÞðb̂T × k̂TÞL;

ð39Þ
Z

dbL½~SqT · ð~bT × P̂Þ�½ð~b × ~kÞT · ð~bT × P̂Þ�ð~k · ~bÞ

∼ ðSqT × b̂TÞLðb̂T · k̂TÞ: ð40Þ
Noting that

ðSqT · b̂TÞðb̂T × k̂TÞL þ ðSqT × b̂TÞLðb̂T · k̂TÞ ¼ ðSqT × k̂TÞL
ð41Þ

and comparing with the basic multipoles (34) and (35), we

can see that the two coefficient functions Cð1;0Þ
UTi and Cð1;2Þ

UTi

are related to the strength of the hSqxlq
xi- and hSqylq

yi-
dependent parts of the force felt by the quark due to
initial- and final-state interactions. In other words, the

contributions ρð1;0ÞUTi and ρð1;2ÞUTi describe the difference of
radial flows between quarks with opposite hSqxlq

xi or
hSqylq

yi correlations.
As a final remark, it has been suggested by Burkardt [18]

that
R
d2kTρeUTi and

R
d2bTρoUTi could be related by some

lensing effect. We unfortunately cannot confirm this
suggestion, because such a relation relies on a dynamical
mechanism which goes beyond the general constraints
considered in the present paper.

B. Longitudinally polarized target

1. Unpolarized quark

The contribution ρLU describes how the distribution of
unpolarized quarks is affected by the target longitudinal
polarization. Its structure is very similar to ρUL because one
just exchanges the roles of quark and target polarizations.
We then find only two phase-space distributions

ρeLU ¼ ρð1;1ÞLU ; ρoLU ¼ ρð2;2ÞLU ; ð42Þ

which are represented in Fig. 6. None of these survive
integration over kT or bT. Both therefore represent com-
pletely new information which is not accessible via GPDs
or TMDs at leading twist.
Following the same arguments as in Sec. VA 2, with SqL

replaced by SL, we can relate the ρð1;1ÞLU contribution to the
presence of a net longitudinal component of quark OAM
correlated with the target longitudinal polarization SL, with

the coefficient function Cð1;1Þ
LU giving the amount of longi-

tudinal quark OAM in a longitudinally polarized target

hSLlq
Li [19]. Similarly, the contribution ρð2;2ÞLU gives the

difference of radial flows between quarks with opposite

OAM hSLlq
Li, with the coefficient function Cð2;2Þ

LU repre-
senting in some sense the strength of the hSLlq

Li-dependent
part of the force felt by the quark due to initial- and final-
state interactions.
The corresponding basic multipoles are

SLB
ð1;1Þ
LU ðk̂T ; b̂T ; P̂; ηÞ ¼ −SLϵ

ij
TD

i
kD

j
b

¼ SLðb̂T × k̂TÞL; ð43Þ

SLB
ð2;2Þ
LU ðk̂T ; b̂T ; P̂; ηÞ ¼ −ηSLϵ

ij
T Q

il
kQ

jl
b

¼ ηSLðb̂T × k̂TÞLðk̂T · b̂TÞ: ð44Þ

2. Longitudinally polarized quark

The contribution ρLL describes how the quark distribu-
tion is affected by the correlation between the quark and
target longitudinal polarizations. Since the product SLS

q
L is

invariant under parity and time reversal, the contribution
ρLL turns out to be very similar to ρUU. We then find only
two phase-space distributions

ρeLL ¼ ρð0;0ÞLL ; ρoLL ¼ ρð1;1ÞLL ; ð45Þ

FIG. 6. Naive T-even (left) and T-odd (right) contributions to the transverse phase-space distribution ρLU . See text for more details.
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which are represented in Fig. 7. The corresponding basic
multipoles are

SLS
q
LB

ð0;0Þ
LL ðk̂T ; b̂T ; P̂; ηÞ ¼ SLS

q
LMkMb ¼ SLS

q
L; ð46Þ

SLS
q
LB

ð1;1Þ
LL ðk̂T ; b̂T ; P̂; ηÞ ¼ ηSLS

q
LD

i
kD

i
b

¼ ηSLS
q
Lðk̂T · b̂TÞ: ð47Þ

Only ρð0;0ÞLL survives integration over kT or bT and is then
naturally related to both the helicity GPD ~H and the helicity
TMD g1L [21,43]. Contrary to its kT- and bT-integrated

versions, ρð0;0ÞLL is not circularly symmetric. The reason is

that ρð0;0ÞLL also contains information about the correlation
between kT and bT , which is lost under integration over one
of the transverse variables [19]. Following the same argu-
ments as in Sec. VA 1, with all expressions now multiplied

by SLS
q
L, we can relate the coefficient function Cð0;0Þ

LL to the
strength of the correlation between the longitudinal com-
ponent of quark and target polarizations hSLSqLi. Similarly,

the contribution ρð1;1ÞLL gives the difference of radial flows
between quarks with opposite hSLSqLi correlations, with the
coefficient function Cð1;1Þ

LL representing in some sense the
strength of the hSLSqLi-dependent part of the force felt by
the quark due to initial- and final-state interactions.

3. Transversely polarized quark

The contribution ρLTi describes how the distribution of
quarks is affected by the combination of quark transverse
polarization and target longitudinal polarization. We find in
total four phase-space distributions

ρeLTi ¼ ρð1;0ÞLTi þ ρð1;2ÞLTi ; ρoLTi ¼ ρð0;1ÞLTi þ ρð2;1ÞLTi ; ð48Þ
which are represented in Fig. 8 for the quark polarization
~SqT ¼ ~ex. The corresponding basic multipoles are

SLS
qi
T B

ð1;0Þ
LTi ðk̂T ; b̂T ; P̂; ηÞ ¼ SLS

qi
T D

i
kMb

¼ SLðSqT · k̂TÞ; ð49Þ

SLS
qi
T B

ð1;2Þ
LTi ðk̂T ; b̂T ; P̂; ηÞ

¼ SLS
qi
T D

j
kQ

ij
b

¼ SL

�
ðSqT · b̂TÞðb̂T · k̂TÞ −

1

2
ðSqT · k̂TÞ

�
; ð50Þ

SLS
qi
T B

ð0;1Þ
LTi ðk̂T ; b̂T ; P̂; ηÞ ¼ ηSLS

qi
T MkDi

b

¼ ηSLðSqT · b̂TÞ; ð51Þ

SLS
qi
T B

ð2;1Þ
LTi ðk̂T ; b̂T ; P̂; ηÞ

¼ ηSLS
qi
T Q

ij
k D

j
b

¼ ηSL

�
ðSqT · k̂TÞðk̂T · b̂TÞ −

1

2
ðSqT · b̂TÞ

�
: ð52Þ

The contribution ρð1;0ÞLTi is the only one surviving the
integration over bT and is then naturally related to the
worm-gear TMD h⊥

1L [21,43]. The dipole in kT space
indicates the presence of a net transverse flow parallel to the
quark transverse polarization. This transverse flow is
actually an effect due to the light-front imaging, once
again associated with the fact that the light-front densities
are defined in terms of the jþ ¼ 1ffiffi

2
p ðj0 þ j3Þ component of

the current instead of the j0 component. As we will soon
see, it turns out that the transverse flow finds its physical
origin in the correlation between the longitudinal compo-
nent of quark OAM and the transverse spin-orbit cou-
pling hSLlq

LðSqT · lq
TÞi.

The contribution ρð1;2ÞLTi corresponds to completely new
information which is not accessible via GPDs or TMDs at

leading twist. Combined with ρð1;0ÞLTi , it tells us how the
quark distribution is affected by the two longitudinal-
transverse worm-gear correlations, say hSLlq

LS
q
xl

q
xi and

FIG. 7. Naive T-even (left) and T-odd (right) contributions to the transverse phase-space distribution ρLL. See text for more details.
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hSLlq
LS

q
yl

q
yi. Indeed, let us consider the projection of a

three-dimensional hSLlq
Lð~SqT · ~nTÞð~lq

T · ~nTÞi correlation

onto the transverse position space. For ~nT ¼ ~bT and

~nT ¼ ð~bT × P̂Þ, we, respectively, find
Z

dbL½ð~b × ~kÞ · P̂�ð~SqT · ~bTÞ½ð~b × ~kÞT · ~bT �

∼ ðSqT · b̂TÞðb̂T · k̂TÞ; ð53Þ
Z

dbL½ð~b × ~kÞ · P̂�½~SqT · ð~bT × P̂Þ�½ð~b × ~kÞT · ð~bT × P̂Þ�

∼ ðSqT × b̂TÞLðb̂T × k̂TÞL: ð54Þ

Noting that

ðSqT · b̂TÞðb̂T · k̂TÞ − ðSqT × b̂TÞLðb̂T × k̂TÞL ¼ ðSqT · k̂TÞ
ð55Þ

and comparing with the basic multipoles (49) and (50), we

can see that the two coefficient functions Cð1;0Þ
LTi and Cð1;2Þ

LTi

are related to the strength of two different combinations of

the two longitudinal-transverse worm-gear correlations
hSLlq

LS
q
xl

q
xi and hSLlq

LS
q
yl

q
yi.

Similarly, the contribution ρð0;1ÞLTi is the only one surviving
the integration over kT. It cannot, however, be related to the
GPD ~ET [21,43,48] since the latter is η-independent.5 It then
corresponds to completely new information. Once again, the
dipole in bT space indicates the presence of a spatial
separation between quarks with opposite correlations.
This is again an effect related to the light-front imaging.
The contribution ρð2;1ÞLTi corresponds to more completely

new information which is not accessible via GPDs or

TMDs at leading twist. Combined with ρð0;1ÞLTi , it tells us how
the initial- and final-state interactions depend on the two
longitudinal-transverse worm-gear correlations, say
hSLlq

LS
q
xl

q
xi and hSLlq

LS
q
yl

q
yi. Indeed, let us consider the

projection of a three-dimensional spiral worm-gear flow

½ð~b × ~kÞ · P̂�ð~SqT · ~nTÞ½ð~b × ~kÞT · ~nT �ð~k · ~bÞ onto the trans-

verse position space. For ~nT ¼ ~kT and ~nT ¼ ð~kT × P̂Þ, we,
respectively, find

FIG. 8. Naive T-even (left) and T-odd (right) contributions to the transverse phase-space distribution ρLT for the quark polarization
~SqT ¼ ~ex (red arrows). See text for more details.

5Moreover, the GPD ~ET is ξ odd and cannot therefore appear in
our multipole decomposition based on ξ ¼ 0.
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Z
dbL½ð~b × ~kÞ · P̂�ð~SqT · ~kTÞ½ð~b × ~kÞT · ~kT �ð~k · ~bÞ

∼ ðSqT · k̂TÞðk̂T · b̂TÞ; ð56Þ
Z

dbL½ð~b× ~kÞ · P̂�½~SqT · ð~kT × P̂Þ�½ð~b× ~kÞT · ð~kT × P̂Þ�ð~k · ~bÞ

∼ ðSqT × k̂TÞLðk̂T × b̂TÞL: ð57Þ

Noting that

ðSqT · k̂TÞðk̂T · b̂TÞ − ðSqT × k̂TÞLðk̂T × b̂TÞL ¼ ðSqT · b̂TÞ
ð58Þ

and comparing with the basic multipoles (51) and (52), we

can see that the two coefficient functions Cð0;1Þ
LTi and Cð2;1Þ

LTi

are related to the strength of the hSLlq
LS

q
xl

q
xi- and

hSLlq
LS

q
yl

q
yi-dependent parts of the force felt by the quark

due to initial- and final-state interactions. In other words,

the contributions ρð0;1ÞLTi and ρð2;1ÞLTi describe the difference of

radial flows between quarks with opposite hSLlq
LS

q
xl

q
xi or

hSLlq
LS

q
yl

q
yi correlations.

C. Transversely polarized target

1. Unpolarized quark

The contribution ρTiU describes how the distribution of
unpolarized quarks is affected by the target transverse
polarization. Its structure is very similar to ρUTi because
one just exchanges the roles of quark and target
polarizations. We then find in total four phase-space
distributions

ρeTiU ¼ ρð0;1ÞTiU þ ρð2;1ÞTiU ; ρoTiU ¼ ρð1;0ÞTiU þ ρð1;2ÞTiU ; ð59Þ

which are represented in Fig. 9 for the target polarization
~ST ¼ ~ex. The corresponding basic multipoles are

SiTB
ð0;1Þ
TiU ðk̂T ; b̂T ; P̂; ηÞ ¼ SiTϵ

ij
TMkD

j
b ¼ ðST × b̂TÞL; ð60Þ

FIG. 9. Naive T-even (left) and T-odd (right) contributions to the transverse phase-space distribution ρTU for the target polarization
~ST ¼ ~ex (red dashed arrows). See text for more details.
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SiTB
ð2;1Þ
TiU ðk̂T ; b̂T ; P̂; ηÞ

¼ SiTϵ
ij
TQ

jl
k D

l
b

¼ ðST × k̂TÞLðk̂T · b̂TÞ −
1

2
ðST × b̂TÞL; ð61Þ

SiTB
ð1;0Þ
TiU ðk̂T ; b̂T ; P̂; ηÞ ¼ ηSiTϵ

ij
TD

j
kMb

¼ ηðST × k̂TÞL; ð62Þ

SiTB
ð1;2Þ
TiU ðk̂T ; b̂T ; P̂; ηÞ

¼ ηSiTϵ
jl
T D

l
kQ

ij
b

¼ η
h
ðST · b̂TÞðb̂T × k̂TÞL −

1

2
ðST × k̂TÞL

i
: ð63Þ

The contribution ρð0;1ÞTiU is the only one surviving the
integration over kT and is then naturally related to the
GPD E [21,43,48]. The dipole in bT space indicates a
spatial shift in the distribution of quarks due to the target
transverse polarization. This is again a result of the light-
front imaging associated with the fact that the light-front
densities are defined in terms of the jþ ¼ 1ffiffi

2
p ðj0 þ j3Þ

component of the current instead of the j0 component. The
spatial shift finds its physical origin in the transverse quark
OAM hST · lq

Ti [17], and it can also be understood from the
fact that the position of the relativistic center of mass of a
rotating body is frame dependent [49,50].
The contribution ρð2;1ÞTiU corresponds to completely new

information which is not accessible via GPDs or TMDs at

leading twist. Combined with ρð0;1ÞTiU , it tells us how the
quark distribution is affected by the two transverse com-
ponents of quark OAM, say hSxlq

xi and hSylq
yi. Following

the same arguments as in Sec. VA 3, with SqT replaced by

ST , we can relate the two coefficient functions Cð0;1Þ
TiU and

Cð2;1Þ
TiU to the amount of transverse quark OAM in a

transversely polarized target hSxlq
xi and hSylq

yi.
Similarly, the contribution ρð1;0ÞTiU is the only one surviving

the integration over bT and is then naturally related to the
Sivers TMD f⊥

1T [21,43]. The dipole in kT space indicates
the presence of a net transverse flow orthogonal to the
quark transverse polarization. Such a net transverse flow
can only arise from initial- and/or final-state interactions, in

accordance with the naive T-odd nature of ρð1;0ÞTiU .
The contribution ρð1;2ÞTiU corresponds to completely new

information which is not accessible via GPDs or TMDs at

leading twist. Combined with ρð1;0ÞTiU , it tells us how the
initial- and final-state interactions depend on the two
transverse components of quark OAM, say hSxlq

xi and
hSylq

yi. Following once again the same arguments as in
Sec. VA 3, with SqT replaced by ST, we can relate the two

coefficient functions Cð1;0Þ
TiU and Cð1;2Þ

TiU to the strength of the

hSxlq
xi- and hSylq

yi-dependent parts of the force felt by the
quark due to initial- and final-state interactions. In other

words, the contributions ρð1;0ÞTiU and ρð1;2ÞTiU describe the
difference of radial flows between quarks with opposite
transverse components of OAM hSxlq

xi or hSylq
yi.

Note that it has been suggested that
R
d2kTρeTiU andR

d2bTρoTiU could be related by some lensing effect [17,53].
We cannot unfortunately confirm this suggestion, because
such a relation relies on a dynamical mechanism which goes
beyond the general constraints considered in the present paper.

2. Longitudinally polarized quark

The contribution ρTiL describes how the distribution of
quarks is affected by the combination of quark longitudinal
polarization and target transverse polarization. Its structure
is very similar to ρLTi because one just exchanges the roles
of quark and target polarizations. We then find in total four
phase-space distributions

ρeTiL ¼ ρð1;0ÞTiL þ ρð1;2ÞTiL ; ρoTiL ¼ ρð0;1ÞTiL þ ρð2;1ÞTiL ; ð64Þ

which are represented in Fig. 10 for the target polarization
~ST ¼ ~ex. The corresponding basic multipoles are

SiTS
q
LB

ð1;0Þ
TiL ðk̂T ; b̂T ; P̂; ηÞ ¼ SiTS

q
LD

i
kMb

¼ SqLðST · k̂TÞ; ð65Þ

SiTS
q
LB

ð1;2Þ
TiL ðk̂T ; b̂T ; P̂; ηÞ

¼ SiTS
q
LD

j
kQ

ij
b

¼ SqL

�
ðST · b̂TÞðb̂T · k̂TÞ −

1

2
ðST · k̂TÞ

�
; ð66Þ

SiTS
q
LB

ð0;1Þ
TiL ðk̂T ; b̂T ; P̂; ηÞ ¼ ηSiTS

q
LMkDi

b

¼ ηSqLðST · b̂TÞ; ð67Þ

SiTS
q
LB

ð2;1Þ
TiL ðk̂T ; b̂T ; P̂; ηÞ

¼ ηSiTS
q
LQ

ij
k D

j
b

¼ ηSqL

�
ðST · k̂TÞðk̂T · b̂TÞ −

1

2
ðST · b̂TÞ

�
: ð68Þ

The contribution ρð1;0ÞTiL is the only one surviving the
integration over bT and is then naturally related to the
worm-gear TMD g1T [21,43]. The dipole in kT space
indicates the presence of a net transverse flow parallel to the
quark transverse polarization. This transverse flow is once
again due to the light-front imaging, associated with the
fact that the light-front densities are defined in terms of
the jþ ¼ 1ffiffi

2
p ðj0 þ j3Þ component of the current instead of

the j0 component. As we will soon see, it turns out that the
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transverse flow finds its physical origin in the correlation
between the transverse component of quark OAM and the
longitudinal spin-orbit coupling hðST · lq

TÞSqLlq
Li.

The contribution ρð1;2ÞTiL corresponds to completely new
information which is not accessible via GPDs or TMDs at

leading twist. Combined with ρð1;0ÞTiL , it tells us how the
quark distribution is affected by the two transverse-longi-
tudinal worm-gear correlations, say hSxlq

xS
q
Ll

q
Li and

hSylq
yS

q
Ll

q
Li. Following the same arguments as in

Sec. V B 3, with SLS
q
T replaced by STS

q
L, we can relate

the two coefficient functionsCð1;0Þ
TiL andCð1;2Þ

TiL to the strength
of the two transverse-longitudinal worm-gear correlations
hSxlq

xS
q
Ll

q
Li and hSylq

yS
q
Ll

q
Li.

Similarly, the contribution ρð0;1ÞTiL is the only one surviving
the integration over kT. It cannot, however, be related to the
GPD ~E [21,43,48] since the latter is η independent.6 Once
again, the dipole in bT space indicates the presence of a

spatial separation between quarks with opposite correla-
tions. This is likely another effect due to the light-front
imaging.
The contribution ρð2;1ÞTiL corresponds to completely new

information which is not accessible via GPDs or TMDs at

leading twist. Combined with ρð0;1ÞTiL , it tells us how the
initial- and final-state interactions depend on the two
transverse-longitudinal worm-gear correlations, say
hSxlq

xS
q
Ll

q
Li and hSylq

yS
q
Ll

q
Li.

Following once again the same arguments as in
Sec. V B 3, with SLS

q
T replaced by STS

q
L, we can relate

the two coefficient functionsCð0;1Þ
TiL andCð2;1Þ

TiL to the strength
of the hSxlq

xS
q
Ll

q
Li- and hSylq

yS
q
Ll

q
Li-dependent parts of the

force felt by the quark due to initial- and final-state

interactions. In other words, the contributions ρð0;1ÞTiL and

ρð2;1ÞTiL describe the difference of radial flows between quarks
with opposite hSxlq

xS
q
Ll

q
Li or hSylq

yS
q
Ll

q
Li correlations.

3. Transversely polarized quark

The contribution ρTiTj describes how the quark distri-
bution is affected by the correlation between the

FIG. 10. Naive T-even (left) and T-odd (right) contributions to the transverse phase-space distribution ρTL for the target polarization
~ST ¼ ~ex (red dashed arrows). See text for more details.

6Moreover, while the GPD ~E is ξ even, it enters the amplitude
with an explicit ξ factor and cannot therefore appear in our
multipole decomposition based on ξ ¼ 0. It then corresponds to
completely new information.
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quark and target transverse polarizations. Focusing on
the naive T-even sector, we find four phase-space
distributions

ρeTiTj ¼ ρð0;0ÞTiTj þ ρð0;2ÞTiTj þ ρð2;0ÞTiTj þ ρð2;2ÞTiTj ; ð69Þ
which are represented in Fig. 11 for the target polarization
~ST ¼ ~ex and for the two quark polarizations ~S

q
T ¼ ~ex;y. The

corresponding basic multipoles are

SiTS
qj
T Bð0;0Þ

TiTj ðk̂T ; b̂T ; P̂; ηÞ ¼ SiTS
qi
L MkMb

¼ ðST · SqTÞ; ð70Þ

SiTS
qj
T Bð0;2Þ

TiTj ðk̂T ; b̂T ; P̂; ηÞ ¼ SiTS
qj
T MkQ

ij
b

¼ ðST · b̂TÞðb̂T · SqTÞ−
1

2
ðST · SqTÞ;

ð71Þ

FIG. 11. Naive T-even contributions to the transverse phase-space distribution ρTT for the target polarization ~ST ¼ ~ex (red dashed

arrows) and for the two quark polarizations (red solid arrows) ~SqT ¼ ~ex (left) and ~SqT ¼ ~ey (right). See text for more details.
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SiTS
qj
T Bð2;0Þ

TiTj ðk̂T ; b̂T ; P̂; ηÞ ¼ SiTS
qj
T Qij

k Mb

¼ ðST · k̂TÞðk̂T · SqTÞ −
1

2
ðST · SqTÞ;

ð72Þ
SiTS

qj
T Bð2;2Þ

TiTj ðk̂T ; b̂T ; P̂; ηÞ ¼ −SiTS
qj
T ϵijT ϵ

mn
T Qlm

k Qln
b

¼ ðST × SqTÞLðb̂T × k̂TÞLðk̂T · b̂TÞ:
ð73Þ

The contribution ρð0;0ÞTiTj is the only one surviving both
integrations over bT and kT , and is then naturally related

to both the transversity GPD combination HT þ Δ2
T

4M2
~HT

and the transversity TMD h1 [21,43]. Contrary to its

kT- and bT-integrated versions, ρð0;0ÞTiTj is not circularly

symmetric. The reason is that ρð0;0ÞTiTj also contains
information about the correlation between kT and
bT , which is lost under integration over one of the

FIG. 12. Naive T-odd contributions to the transverse phase-space distribution ρTT for the target polarization ~ST ¼ ~ex (red dashed

arrows) and for the two quark polarizations (red solid arrows) ~SqT ¼ ~ex (left) and ~SqT ¼ ~ey (right). See text for more details.
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transverse variables [19]. Following the same arguments

as in Sec. VA 1 for ρð0;0ÞUU , with the corresponding
expressions now multiplied by ST · SqT, we can relate

the coefficient function Cð0;0Þ
TiTj to the strength of the

correlation between the transverse component of quark
and target polarizations hST · SqTi.
The contribution ρð0;2ÞTiTj is the only other contribution

surviving integration over kT and is then naturally
related to the GPD ~HT [21,43,48]. Similarly, the

contribution ρð2;0ÞTiTj is the only other contribution surviv-
ing integration over bT and is then naturally related to
the pretzelosity TMD h⊥

1T [43,54–57]. Combined with

ρð0;0ÞTiTj , these two contributions tell us how the quark
distribution is affected by the two transverse spin-spin
correlations, say hSxSqxi and hSySqyi. Indeed, let us

consider the projection of a three-dimensional hð~ST ·

~nTÞð~SqT · ~nTÞi correlation onto the transverse position

space. For ~nT ¼ ~bT and ~nT ¼ ð~bT × P̂Þ, we, respec-
tively, find

Z
dbLð~ST · ~bTÞð~SqT · ~bTÞ ∼ ðST · b̂TÞðSqT · b̂TÞ; ð74Þ

Z
dbL½~ST · ð~bT × P̂Þ�½~SqT · ð~bT × P̂Þ�

∼ ðST × b̂TÞLðSqT × b̂TÞL; ð75Þ

and similarly for ~nT ¼ ~kT and ~nT ¼ ð~kT × P̂Þ. Now,
noting that for any unit transverse vector n̂T

ðST · n̂TÞðSqT · n̂TÞ þ ðST × n̂TÞLðSqT × n̂TÞL ¼ ðST · SqTÞ
ð76Þ

and comparing with the basic multipoles (70), (71),
and (72), we can see that the three coefficient

functions Cð0;0Þ
TiTj , Cð0;2Þ

TiTj , and Cð2;0Þ
TiTj are related to

the strength of the two transverse spin-spin correla-
tions hSxSqxi and hSySqyi.
It may seem weird that we need three contributions to

determine two transverse spin-spin correlations. The

reason is that the two contributions ρð0;2ÞTiTj and ρð2;0ÞTiTj also
contain information about another type of correlation.

Combined with ρð2;2ÞTiTj , which corresponds to completely
new information not accessible via GPDs or TMDs at
leading twist, they also tell us how the quark distribu-
tion is affected by the two transverse-transverse worm-
gear correlations, say hSxlq

xS
q
yl

q
yi and hSylq

yS
q
xl

q
xi.

Indeed, let us consider the projection of a three-dimen-

sional hð~ST · ~nTÞð~lq
T · ~nTÞ½~SqT · ð~nT × P̂Þ�½~lq

T · ð~nT × P̂Þ�i

correlation onto the transverse position space. For ~nT ¼
~bT and ~nT ¼ ð~bT × P̂Þ, we, respectively, find

Z
dbLð~ST · ~bTÞ½ð~b × ~kÞT · ~bT �½~SqT · ð~bT × P̂Þ�

× ½ð~b × ~kÞT · ð~bT × P̂Þ�
∼ ðST · b̂TÞðSqT × b̂TÞLðb̂T × k̂TÞLðk̂T · b̂TÞ; ð77Þ

Z
dbL½~ST · ð~bT × P̂Þ�½ð~b × ~kÞT · ð~bT × P̂Þ�ð~SqT · ~bTÞ

× ½ð~b × ~kÞT · ~bTÞ�
∼ ðST × b̂TÞLðSqT · b̂TÞðb̂T × k̂TÞLðk̂T · b̂TÞ; ð78Þ

and similarly for ~nT ¼ ~kT and ~nT ¼ ð~kT × P̂Þ. Now,
noting that for any unit transverse vector n̂T

ðST × n̂TÞLðSqT · n̂TÞ − ðST · n̂TÞðSqT × n̂TÞL ¼ ðST × SqTÞL;
ð79Þ

½ðST × n̂TÞLðSqT · n̂TÞ þ ðST · n̂TÞðSqT × n̂TÞL�
× ðb̂T × k̂TÞLðk̂T · b̂TÞ

¼ ½ðk̂T · n̂TÞ2 − ðk̂T × n̂TÞ2L�

×

�
ðST · b̂TÞðb̂T · SqTÞ −

1

2
ðST · SqTÞ

�

− ½ðb̂T · n̂TÞ2 − ðb̂T × n̂TÞ2L�

×

�
ðST · k̂TÞðk̂T · SqTÞ −

1

2
ðST · SqTÞ

�
; ð80Þ

and comparing with the basic multipoles (71), (72), and
(73), we can see that the three coefficient functions

Cð0;2Þ
TiTj , C

ð2;0Þ
TiTj , and Cð2;2Þ

TiTj are related to the strength of the
two transverse-transverse worm-gear correlations
hSxlq

xS
q
yl

q
yi and hSylq

yS
q
xl

q
xi.

Focusing now on the naive T-odd sector, we also find
four phase-space distributions

ρoTiTj ¼ ρð1;1ÞTiTj þ ρð1;3ÞTiTj þ ρð3;1ÞTiTj þ ρð1;1Þ
0

TiTj ; ð81Þ

which are represented in Fig. 12 for the target polarization
~ST ¼ ~ex and for the two quark polarizations ~S

q
T ¼ ~ex;y. The

corresponding basic multipoles are

SiTS
qj
T Bð1;1Þ

TiTj ðk̂T ; b̂T ; P̂; ηÞ ¼ SiTS
qi
L D

j
kD

j
b

¼ ðST · SqTÞðk̂T · b̂TÞ; ð82Þ
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SiTS
qj
T Bð1;3Þ

TiTj ðk̂T ; b̂T ; P̂; ηÞ
¼ SiTS

qj
T Dl

kO
ijl
b

¼ ðST · b̂TÞðSqT · b̂TÞðk̂T · b̂TÞ −
1

4
½ðST · SqTÞðk̂T · b̂TÞ

þ ðST · b̂TÞðSqT · k̂TÞ þ ðST · k̂TÞðSqT · b̂TÞ�; ð83Þ

SiTS
qj
T Bð3;1Þ

TiTj ðk̂T ; b̂T ; P̂; ηÞ
¼ SiTS

qj
T Oijl

k Dl
b

¼ ðST · k̂TÞðSqT · k̂TÞðk̂T · b̂TÞ −
1

4
½ðST · SqTÞðk̂T · b̂TÞ

þ ðST · b̂TÞðSqT · k̂TÞ þ ðST · k̂TÞðSqT · b̂TÞ�; ð84Þ

SiTS
qj
T Bð1;1Þ0

TiTj ðk̂T ; b̂T ; P̂; ηÞ ¼ −SiTS
qj
T ϵijT ϵ

lm
T Dl

kD
m
b

¼ ðST × SqTÞLðb̂T × k̂TÞL: ð85Þ

None of these survive integration over kT or bT. They
therefore represent completely new information which is
not accessible via GPDs or TMDs at leading twist.
Following the same arguments as in Sec. VA 1 for ρð1;1ÞUU ,

with now the corresponding expressions multiplied by

ST · SqT , we can relate the coefficient function Cð1;1Þ
TiTj to

the strength of the correlation between the transverse
component of quark and target polarizations hST · SqTi.
Combining ρð1;1ÞTiTj with ρð1;3ÞTiTj and ρð3;1ÞTiTj tells us how the
initial- and final-state interactions depend separately on the
two transverse spin-spin correlations, say hSxSqxi and
hSySqyi. Indeed, let us consider the projection of a three-

dimensional radial flow ð~ST · ~nTÞð~SqT · ~nTÞð~k · ~bÞ onto the

transverse position space. For ~nT ¼ ~bT and ~nT ¼ ð~bT × P̂Þ,
we, respectively, find

Z
dbLð~ST · ~bTÞð~SqT · ~bTÞð~k · ~bÞ

∼ ðST · b̂TÞðSqT · b̂TÞðk̂T · b̂TÞ; ð86Þ
Z

dbL½~ST · ð~bT × P̂Þ�½~SqT · ð~bT × P̂Þ�ð~k · ~bÞ

∼ ðST × b̂TÞLðSqT × b̂TÞLðk̂T · b̂TÞ; ð87Þ

and similarly for ~nT ¼ ~kT and ~nT ¼ ð~kT × P̂Þ. Now, noting
that for any unit transverse vectors n̂T and n̂0T

ðST · n̂TÞðSqT · n̂TÞ þ ðST × n̂TÞLðSqT × n̂TÞL ¼ ðST · SqTÞ;
ð88Þ

ðST · n̂TÞðSqT · n̂TÞðn̂T · n̂0TÞ þ ðST · n̂0TÞðSqT · n̂0TÞðn̂0T · n̂TÞ
¼ ½ðST · n̂TÞðSqT · n̂0TÞ þ ðST · n̂0TÞðSqT · n̂TÞ�ðn̂T · n̂0TÞ2
þ ½ðST · SqTÞðn̂T · n̂0TÞ�ðn̂T × n̂0TÞ2L; ð89Þ

and comparing with the basic multipoles (82), (83), and

(84), we can see that the three coefficient functions Cð1;1Þ
TiTj ,

Cð1;3Þ
TiTj , and Cð3;1Þ

TiTj are related to the strength of the hSxSqxi-
and hSySqyi-dependent parts of the force felt by the quark
due to initial- and final-state interactions. In other words,

the contributions ρð1;1ÞTiTj , ρð1;3ÞTiTj , and ρð3;1ÞTiTj describe the
difference of radial flows between quarks with opposite
hSxSqxi or hSySqyi correlations.
As in the naive T-even sector, it may seem weird that we

need three contributions to determine the dependence of
initial- and final-state interactions on two transverse spin-
spin correlations. The reason is that the two contributions

ρð1;3ÞTiTj and ρ
ð3;1Þ
TiTj also contain information about another type

of dependence. Combined with ρð1;1Þ
0

TiTj , they also tell us how
the initial- and final-state interactions depend separately on
the two transverse-transverse worm-gear correlations, say
hSxlq

xS
q
yl

q
yi and hSylq

yS
q
xl

q
xi. Indeed, let us consider the

projection of a three-dimensional spiral worm-gear flow

ð~ST · ~nTÞð~lq
T · ~nTÞ½~SqT · ð~nT × P̂Þ�½~lq

T · ð~nT × P̂Þ�ð~k · ~bÞ onto
the transverse position space. For ~nT ¼ ~bT and ~nT ¼
ð~bT × P̂Þ, we, respectively, find

Z
dbLð~ST · ~bTÞ½ð~b × ~kÞT · ~bT �½~SqT · ð~bT × P̂Þ�

× ½ð~b × ~kÞT · ð~bT × P̂Þ�ð~k · ~bÞ
∼ ðST · b̂TÞðSqT × b̂TÞLðb̂T × k̂TÞL; ð90Þ

Z
dbL½~ST · ð~bT × P̂Þ�½ð~b × ~kÞT · ð~bT × P̂Þ�ð~SqT · ~bTÞ

× ½ð~b × ~kÞT · ~bT �ð~k · ~bÞ
∼ ðST × b̂TÞLðSqT · b̂TÞðb̂T × k̂TÞL; ð91Þ

and similarly for ~nT ¼ ~kT and ~nT ¼ ð~kT × P̂Þ. Noting that
for any unit transverse vectors n̂T and n̂0T

ðST × n̂TÞLðSqT · n̂TÞ − ðST · n̂TÞðSqT × n̂TÞL ¼ ðST × SqTÞL;
ð92Þ
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4ðST · n̂TÞðSqT · n̂TÞðn̂T · n̂0TÞ
− ½ðST ·SqTÞðn̂T · n̂0TÞþ ðST · n̂TÞðSqT · n̂0TÞ
þ ðST · n̂0TÞðSqT · n̂TÞ�

¼ ½ðST · n̂TÞðSqT · n̂TÞ− ðST × n̂TÞLðSqT × n̂TÞL�ðn̂T · n̂0TÞ
þ ½ðST · n̂TÞðSqT × n̂TÞLþðST × n̂TÞLðSqT · n̂TÞ�ðn̂T × n̂0TÞL;

ð93Þ

and comparing with the basic multipoles (83), (84), and

(85), we can see that the three coefficient functions Cð1;3Þ
TiTj ,

Cð3;1Þ
TiTj , and Cð1;1Þ0

TiTj are related to the strength of the
hSxlq

xS
q
yl

q
yi- and hSylq

yS
q
xl

q
xi-dependent parts of the force

felt by the quark due to initial- and final-state interactions.

In other words, the contributions ρð1;3ÞTiTj , ρ
ð3;1Þ
TiTj , and ρð1;1Þ

0

TiTj

describe the difference of radial flows between quarks with
opposite hSxlq

xS
q
yl

q
yi or hSylq

yS
q
xl

q
xi correlations.

VI. CONCLUSIONS

We presented for the first time a systematic study of the
complete set of the leading-twist quark Wigner distribu-
tions in the nucleon, introducing a multipole analysis in the
transverse phase space. In this approach each distribution is
represented as a combination of basic multipoles structures
multiplied by coefficient functions giving the correspond-
ing strengths. The multipole structures are obtained for
each configuration of the nucleon and target polarizations,
taking into account the constraints from Hermiticity, parity,
and time-reversal transformations, while the coefficient
functions depend on P- and T-invariant Hermitian variables
only. There are several advantages in using this represen-
tation. First, it provides a clear interpretation of all the

amplitudes in terms of the possible correlations between
target and quark angular momenta in the transverse phase
space. Second, it provides a convenient basis to make a
direct connection with GPDs in impact-parameter space
and TMD in transverse-momentum space after integration
over the transverse-momentum and the transverse-position
space, respectively. In order to emphasize these multipole
structures, we also proposed a new graphical representation
of the transverse phase-space distributions.
We presented results for both the naive T-even and the

naive T-odd contributions. The first ones describe the
contributions to the intrinsic distribution of quarks inside
the target, whereas the naive T-odd contributions describe
how initial- and final-state interactions modify this
distribution. We have explicitly calculated the naive T-
even contributions adopting a light-front quark model,
whereas the naive T-odd contributions have been
obtained by extracting the coefficient functions from
the naive T-even part and multiplying them by the
appropriate basic multipoles. In this way, the global sign
of the naive T-odd contributions has been chosen
arbitrarily. Only a proper calculation taking into account
the dynamics of the initial- and/or final-state interactions
can determine the global signs. However, these global
signs are not important for the purpose of the present
paper since we wanted to emphasize the general features
related to the multipole structure of the distribution, and
to identify the physical (angular) correlation encoded in
each distribution.
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