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The empirical absence to date of particles obeying parastatistics in high-energy collider experiments
might be due to their large masses, weak scale couplings, and lack of gauge couplings. Paraparticles of
order p ¼ 2 must be pair produced, so the lightest such particles are absolutely stable and so are excellent
candidates to be associated with dark matter and/or dark energy. If there is a portal to such particles, from a
new scalar A1 boson they might be cascade emitted as a pair of para-Majorana neutrinos as in A1 → A2ν̆αν̆β
or as a pair of neutral spin-zero paraparticles such as in A1 → A2Ă B̆, where B̆ is the anti-paraparticle to Ă.
In this paper, for an assumed supersymmetric-like “statistics portal” Lagrangian, the associated connected
tree diagrams and their parastatistical factors are obtained for the case of order p ¼ 2 parastatistics. These
factors are compared with the corresponding statistical factors for the analogous emission of a
nondegenerate or a twofold degenerate pair which obey normal statistics. This shows that diagrams,
and diagrammatic thinking, can be useful in perturbatively analyzing paraparticle processes. The
parastatistical factor associated with each diagram does require explicit calculation.
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I. INTRODUCTION

In the standard model all particles are either fermions
or bosons which correspond to order p ¼ 1 parastatistics.
Identical fermions (bosons) occur only in the one-
dimensional totally antisymmetric column (totally sym-
metric row) representations of the permutation group.
Parastatistics is a natural and simple generalization which
includes the additional higher-dimensional representations
of the permutation group. Fields and quanta obeying
parastatistics are allowed in local relativistic quantum field
theory [1–8]. Occasionally in this paper there are brief
summaries, such as in the appendices, so as not to assume
that the reader has a quantum field theory background in
parastatistics.
In this paper, we concentrate on order p ¼ 2 para-

statistics, which is the simplest such generalization of
normal Fermi and Bose statistics. A simple consequence
of order p parastatistics is that up to p identical paraf-
ermions (parabosons) can occupy a totally symmetric
(antisymmetric) state, unlike for normal statistics. More
generally, identical parafermions (parabosons) of order p
occur in Young diagrams with at most p columns (rows).
Due to p ¼ 2 parastatistics, an even number of para-

particles must occur in the “total external state” for a
physical process, so paraparticles must be pair produced
and the lightest paraparticles are absolutely stable. The
“total external state” consists of the particles in the initial
state plus the final state. Because of this absolute stability,

paraparticles of order p ¼ 2 are excellent candidates to be
associated with dark matter and/or dark energy (accelerated
expansion), given what is currently known from astrophys-
ics and accelerator experiments.
If there is a “statistics portal” from normal bosons and

fermions to p ¼ 2 paraparticles at a high-energy collider,
then these particles might be emitted in a cascade process
from a new scalar A1 boson as a pair of para-Majorana
neutrinos as in A1 → A2ν̆αν̆β or as a pair of spin-zero
paraparticles such as in A1 → A2Ă B̆, where B̆ is the anti-
paraparticle to Ă. The paraparticles/parafields are denoted
by a “breve” accent. All the new particles considered in this
paper are assumed to be electromagnetically neutral with
∼100 GeV to ∼2 TeV scale masses. The diagrammatic
parastatistical factors are calculated for these two pair
emission cascades because of their massive and unstable
final A2 normal spin-zero boson, versus the empirical
difficulties for investigating a cascade to an almost massless
final Majorana neutrino ν2 in A1 → ν2Ă ν̆. Depending on
the unknown masses and coupling constants, these cascade
processes might occur in the ongoing experiments at the
LHC with

ffiffiffi
s

p
∼ 13–14 TeV.

As in the supersymmetric Wess-Zumino model [9], we
assume that the portal Lagrangian densities for the cascade
processes involve both a Majorana spin-1=2 field ξ and a
neutral complex spin-zero field A which respectively
obey Fermi and Bose statistics, and parafermi and
parabose counterparts ξ̆ and Ă which obey order p ¼ 2
parastatistics. We consider this complex A field in the
particle-antiparticle basis with corresponding quanta A and
B. Similarly, Ă and B̆ are the quanta for the complex*cnelson@binghamton.edu
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spin-zero parabose Ă field. We will assume that there are
two new A1;2 (with antiparticle B1;2) bosons with
m1 > m2 ≫ 0, that all mass values are at the ∼100 GeV
to ∼2 TeV scale, and that each of the cascade processes is
kinematically allowed. We also assume that if not for their
weak-scale portal associated couplings, the paraparticles
would only interact gravitationally. Obviously, the seven
cascade processes considered in this paper are kinemati-
cally analogous to τ− → μ−νμντ. However, the A1;2’s and
B1;2’s are spin-zero, so there do not exist useful polarization
observables due to the cascading particle’s spin, but
concurrently there are fewer unknown possible covariant
couplings.
Using these Lagrangian densities, we perturbatively

calculate the S-matrix elements for A1 → A2ν̆αν̆β;… and
A1 → A2Ă B̆;…. We find that the tree diagrams for the
associated connected amplitudes for cascade emission of a
pair of paraparticles correspond to the same diagrams as in
the case of the emitted pair obeying ordinary statistics; see
Fig. 1 and others below. While the diagrams are the usual
covariant perturbative ones, with the initial state on the left
and the final state on the right, in labeling the virtual lines
by A or B, the displayed time ordering has been assumed.

The arrows on the particle A (antiparticle B) scalar boson
lines are correspondingly forward (backward) in time. Since
A is a complex field, upon a time reversal of a time-ordered
virtual line, we exchange theA andB labels. Unlike the spin-
zero Higgs bosonwhich is its own antiparticle, the neutralA
field has distinguishable particle-antiparticle quanta. This
same time-ordering property holds for time-ordered Ă and B̆
virtual lines associated with the Ă field. In the figures,
vertices and lines associatedwith the paraparticles are drawn
heavy or “dark.” There are also “dark dots” on the external
paraparticle legswhich enables the omission in the figures of
an awkward “breve” accent on the Weyl spinors. In the case
of p ¼ 2 parastatistics, the parastatistical factors cp for the
diagrams displayed are evaluated.
These cp factors in the p ¼ 2 para case are then

compared with the analogous statistical factors cd calcu-
lated for the amplitudes in the case of the emitted neutral
pair obeying ordinary statistics and in the case when there is
a hidden twofold degeneracy, for instance A1 → A2νa;ανa;β,
where there are two kinds of emitted pairs νa;ανa;β with
a ¼ 1, 2 the degeneracy index. In the twofold degenerate
case, as for a final particle polarization summation, this
index a is summed over to obtain the partial decay width.
The assumed portal Lagrangian densities considered for
these two comparison cases are analogous to those for the
para case.
In agreement with what might have been anticipated by

some readers, our explicit calculations show that for each
diagram the statistical factor cp for order p ¼ 2 para-
statistics, and hence the associated partial decay width, is
the same as the cd statistical factor for such a twofold
degeneracy.
Section II contains the supersymmetric-like Lagrangian

densities assumed for these cascade processes. It continues
with the evaluations of the statistical factors cp in the para
case and of the analogous factors cd in the cases of
emission of a nondegenerate or a twofold degenerate pair
obeying normal statistics. Section III discusses the pre-
dictions for partial decay widths for these three cases.
Section IV has some concluding remarks.
The relatively simple trilinear relations for the creation

and annihilation operators for an “order p ¼ 2 family” of
parafields are listed in Appendix A.

II. CASCADE PROCESSES WITH EMISSION
OF A PAIR OF PARAPARTICLES

A. Lagrangian densities

For each of the interaction Lagrangian densities there is
an explicit normalization of its coupling constant: for fields
obeying normal statistics, a factor of ð1=n!Þ occurs when
that field occurs to the nth power. For a para Lagrangian
density, two parafields occur in their appropriate commu-
tator/anticommutator ordering [see after Eq. (9)], and also
with an additional factor of ð1=2Þ.

FIG. 1. Reading left to right, the first two of four diagrams for a
cascade from a new scalar A1 boson by emission of a pair of para-
Majorana neutrinos A1 → A2ν̆αν̆β. The virtual scalar B is the
antiparticle to A. Scalar bosons are denoted with thin dashed
lines. In the diagrams in this paper, “dark dots” denote the portal
Lagrangian vertices and the external p ¼ 2 paraparticles which
have weak-scale portal associated couplings. The “dark” solid
lines for the para-Majorana neutrinos are arrowed per the forward
left-handed x† and backward right-handed y Weyl spinor, final-
state wave functions as in DHM [10]. The greek subscripts label
the momenta and helicities of the para-Majorana neutrinos in
Eqs. (17) and (18).
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While these are the usual normalizations associated with
the identity of the fields in normal statistics and in para-
statistics, these definitions are arbitrary. However, these
definitions of coupling constants are fixed and are used to
calculate the statistical factors (cp and cd) for each diagram/
amplitude. Any overall minus sign, or phase, is absorbed
into the amplitude so cp; cd ≥ 0. From the values obtained
for these factors, the consequences of alternate normaliza-
tions can be easily considered. The overall sign of each of
the interaction Lagrangian densities has been arbitrarily
chosen as minus.
Among the usual p ¼ 1 fields, we consider interactions

as in the supersymmetric Wess-Zumino model [9], but with
unrelated weak-scale coupling constants, so only slightly
more general than in the supersymmetric limit. We use the
excellent supersymmetric formalism/notation of Dreiner-
Haber-Martin (DHM) [10] with additional “breve” accents
to denote the paraparticles/parafields. The fields have
their usual covariant momentum expansions and normal-
izations in terms of their associated creation and annihi-
lation operators [11]. The interaction densities involving
only p ¼ 1 fields are

LY ¼ −
f
2
ðAξξþA†ξ̄ ξ̄Þ; ð1Þ

LC ¼ −
t
2
ðAðA†Þ2 þA2A†Þ; ð2Þ

Lq ¼ −
F
4
ðA†Þ2A2: ð3Þ

For the cascade processes, we consider the following
“statistics portal” couplings between these p ¼ 1 fields and
the p ¼ 2 fields, with anticommutator curly braces and
commutator square brackets:

LY̆ ¼ −
f̆
4
ð½ξ̆; ξ̆�AþA†½ ¯̆ξ; ¯̆ξ�Þ; ð4Þ

L2c̆ ¼ −
t̆
4
ðfĂ; ĂgA† þAfĂ†; Ă†gÞ; ð5Þ

L3c̆ ¼ −
T̆
2
ðAþA†ÞfĂ; Ă†g; ð6Þ

L2q̆ ¼ −
F̆
8
ðfĂ; ĂgðA†Þ2 þA2fĂ†; Ă†gÞ; ð7Þ

L3q̆ ¼ −
Ğ
4
fA;A†gfĂ; Ă†g; ð8Þ

LĂ ¼ −
j̆
2
ðξfξ̆; Ăg þ fĂ†; ¯̆ξgξ̄Þ: ð9Þ

In these Lagrangian densities, the standard rules of
paraquantization dictate the commutator/anticommutator

ordering of the parafields. By “paralocality” [3,12] for
fields obeying order p ¼ 2 parastatistics, two parafermi
fields occur in a commutator ordering, whereas two para-
bose fields, or a parabose and a parafermi field, occur in an
anticommutator ordering. Paralocality is a generalization of
locality for parafields; see Appendix B.
For comparison, we also consider the case of cascade

decays by pair emission fields Aa (neutral complex spin-
zero) and ξa (Majorana spin-1=2) obeying respectively
Bose and Fermi statistics, for instance A1 → A2νa;ανa;β. For
the degenerate case, the Lagrangian densities are analogous
to the above portal ones:

Ld
Y ¼ −

fd
2
ðAξaξa þA†ξ̄aξ̄aÞ; ð10Þ

Ld
2c ¼ −

td
2
ðA†AaAa þA†

aA†
aAÞ; ð11Þ

Ld
3c ¼ −TdðAAaA

†
a þAaA

†
aA†Þ; ð12Þ

Ld
2q ¼ −

Fd

4
ðAaAaðA†Þ2 þA2A†

aA†
aÞ; ð13Þ

Ld
3q ¼ −GdðAaA

†
aÞðAA†Þ; ð14Þ

Ld
A ¼ −jdðξξaAa þA†

aξ̄aξ̄Þ: ð15Þ

For the case of twofold degeneracy, the degeneracy index
ða ¼ 1; 2Þ is summed over in these densities.
The interaction Lagrangian densities which do not occur

in the cascade processes calculated in this paper are Eqs. (1)
and (3), and in the paraparticle portal case Eq. (9) and its
analog Eq. (15) in the degenerate case. However, the
empirically difficult to observe cascade to an almost
massless final Majorana neutrino ν2 in A1 → ν2Ă ν̆ does
involve both Eq. (1) and the portal coupling (9), and its
degenerate counterpart (15).

B. Parastatistical factors for seven cascade processes

The above interaction Lagrangian densities have a
particle-antiparticle transformation symmetry such that
the results obtained for each cascade also hold for the
cascade obtained by transforming all Ai↔Bi and Ă↔B̆.
For instance, the parastatistical factors are the same for
A1 → A2Ă B̆ and B1 → B2B̆ Ă. For the normal statistics
cascades involving Aa and ξa, there is the analogous
transformation of all Ai↔Bi and Aa↔Ba. Consequently,
the statistical factors cp and cd obtained below for the
diagrams in the scalar A1 decay process are the same as for
the associated antiparticle B1 decay process because of this
particle-antiparticle transformation symmetry.
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1. Emission of a pair of para-Majorana neutrinos:
A1 → A2ν̆αν̆β and A1 → B2ν̆αν̆β

In this paper the evaluations of the S-matrix elements only
involve processes with a pair of final paraparticles. We
calculate the associated amplitudes in the “occupation num-
ber basis” for a specific ordering of the twoparticles in thepair
and then by addition or subtraction, construct the correspond-
ing amplitudes in the “permutation group basis” [2] to obtain
the physical amplitudes for the pair of paraparticles. In these
evaluations, calculating in the occupation number basis
halves the number of terms, versus using the permutation
group basis, and a simple relabeling in the final expression
gives the amplitude for the opposite ordering of the final two
paraparticles. This distinction between fundamental bases in
parastatistics is explicitly and simply explained below in the
context of the calculation of the amplitudes for A1 → A2ν̆αν̆β
associated with the two Fig. 1 diagrams. This leads to the
discussion in the text of the two physical permutation group
basis final states of Eq. (19) below.
In canonical quantum field theory, for particles obeying

normal statistics there is a successful normal ordering
procedure for correctly ordered Lagrangian densities which
is used in the perturbative evaluation of S-matrix elements
[13]. This procedure discards various diagrams and yields
results for the standard model which are currently in highly
precise agreement with experimental data. However, this
procedure has not been generalized for paraparticles.
Nevertheless, as shown in this paper, knowing from purely
p ¼ 1 quanta the canonical assembly of contributions from
the perturbative evaluation into physical amplitudes, we find
that it is straightforward to proceed analogously by hand
for p ¼ 2 paraparticles using the above paraquantized
Lagrangian densities:we require each field inLint to contract
with a field in a differentLint or with a particle in the initial or
final states. This omits disconnected diagrams and oneswith
a single Lint term self-contraction. In this context, it is
important to note that there are highly nontrivial signs
associatedwith this diagrammatic application of the trilinear
quantization relations and of the paralocal Lagrangian
densities involving order p ¼ 2 fields. Clearly, the two
crucial tests of this systematic diagrammatic evaluation of
paraparticle S-matrix elements will bewhether it generalizes
in perturbative quantum field theory and whether the
resultant amplitudes do indeed agree with experiment.

(i) We first consider a cascade from a new A1 boson by
emission of a pair of para-Majorana neutrinos
A1 → A2ν̆αν̆β.
From LY̆ and LC there is the following time-

ordered product:

Sfi¼ðiÞ2
Z

d4x1

Z
d4x2θðt1−t2Þ

AhAlν̆αν̆βjfLY̆ðx1ÞLCðx2ÞþLCðx1ÞLY̆ðx2ÞgjAki:
ð16Þ

The final state has the ν̆αν̆β paraparticle operators
ordered as jAlν̆αν̆βiA ¼ 1

2
l†α†β†j0i in the occupation

number basis. The role of the subscript on the ket
state (bra state) is to denote the place-position order
[14]. We are labeling one place-position order “A”
(α†β†) and its orthogonal counterpart “B” (β†α†),
where the ordering of the operators is reversed
jAlν̆αν̆βiB ¼ 1

2
l†β†α†j0i. In p ¼ 2 parastatistics

there are the trilinear relations instead of the usual
bilinear ones, so these A and B orderings in the
occupation number basis must be distinguished.
We label the Al creation operator by l†. Notice the

essential and easy to forget two paraparticles’ factor
of ð 1ffiffi

2
p Þ2 in the state norm due to the vacuum

condition αkα
†
l j0i ¼ 2δklj0i. These extra parapar-

ticle normalization factors occur because our calcu-
lations depend on the “arbitrary p normalization”;
see Appendix A.
By writing the fields of the A-ordered final state in

Eq. (16) in terms of their positive- and negative-
frequency parts, and then using the p ¼ 2 trilinear
relations for the paraquanta, we obtain amplitudes
corresponding to the two connected tree diagrams
shown in Fig. 1. See Appendix C for p ¼ 2
normalization details.
From Eq. (16), the (s1) amplitude [11] for the A-

ordered final state is

−iMðs1Þ
A ¼ f1gðitÞðif̆Þ

×
i

q2A −m2 þ iϵ
yAð~pα; λαÞyAð~pβ; λβÞ

ð17Þ
with A being the two-valued summed index for the
commuting two-component “right-handed Weyl”
spinor, final-state wave function yA of DHM [10],
and the (s2) amplitude is

−iMðs2Þ
A ¼ f1gðitÞðif̆Þ

×
i

q2B −m2 þ iϵ
x†_Að~pα; λαÞx† _Að~pβ; λβÞ

ð18Þ
with A-dot being the two-valued summed index for
the commuting, conjugate “left-handed Weyl”
spinor, final-state wave function x† _A. Because of
our usage of greek letters for parafermions, such as
in the trilinear relations in Appendix A, we use
undotted and dotted capital roman letters for these
two-valued Weyl indices in place of the lowercase
greek letters in DHM.
As in DHM, the arrows on the two-component

spinor lines correspond to fields with undotted
(dotted) indices flowing into (out of) any vertex.
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The direction of an arrow, versus a vertex, for either
a spin-zero or a spin-1=2 line is unchanged upon any
time reordering of a displayed diagram. From the
Lagrangian densities (1), (4), (9) and (10), (15), the
arrows on the lines for the scalar fields A and Ă are
also into (out of) any vertex per the common into
(out of) direction of the two spinor lines.
To maintain simplicity of the expressions for the

matrix elements, we omit the associated mixing
matrices between the mass eigenstates and the
interaction eigenstates for the external A1;2 bosons.
In this paper, the amplitude/diagrammatic normali-
zation is for a single A, ξ̆, or Ă in the virtual
propagators. Also, while the standard model lacks
sufficient CP violation for the observed baryon and
lepton asymmetries of the Universe, we omit explicit
CP violation formalism and possible mixing of the
A1;2 with the B1;2 bosons.
For comparison, in the case with pair emission

fields Aa and ξa obeying the usual Bose and Fermi
statistics, the same amplitudes for (s1) and (s2) are
obtained for the process A1 → A2νa;ανa;β with
jAlνa;ανa;βi ¼ l†α†aβ

†
aj0i except in place of the para-

statistical factor f1gðtf̆Þ, there is instead a factor of
f1gðtfdÞ, where the respective statistical factors cp
and cd are given in the curly braces. In writing these
statistical factors times coupling constants, we omit
each ðiÞ associated with the iLint vertex. This is the
comparison amplitude for all fields obeying ordinary
statistics for the Lagrangian densities given in
Eqs. (10)–(15). In the twofold degenerate case where
there are twokindsof emittedpairsνa;ανa;β, calculation
of the partial decay width requires a factor of 2 due to
summing over the two final degenerate channels.
For the orthogonal B-ordered final state, the same

amplitude for (s1), and similarly for (s2), is obtained
but with an opposite overall sign in comparison to the
A-ordered final state, so that the permutation group
basis amplitudesMðs1Þ andMðs2Þ for the symmetric/
antisymmetric final states

jAlν̆αν̆βisym;asym¼ 1ffiffiffi
2

p ðjAlν̆αν̆βiA�jAlν̆αν̆βiBÞ ð19Þ

are respectively zero and
ffiffiffi
2

p
times those for the A

ordering. Hence, from the values of the statistical
factors cp and cd, if these were the only two diagrams,
upon summing over the two permutation basis final
states for the decay process A1 → A2ν̆αν̆β the partial
decay width would be twice that for the corresponding
normal statistics process A1 → A2νa;ανa;β with a non-
degenerate pair. However, the p ¼ 2 partial decay
width would be the same as that for the case of
emission of two kinds of pairs νa;ανa;β due to summing
over these two degenerate channels.

For the A1 → A2ν̆αν̆β cascade, there is also a
contribution from ðLY̆Þ2 which corresponds to the
two diagrams in Fig. 2. Again, for each diagram, the B
ordering gives the same amplitude, but with opposite
overall signversus theAordering.Also, again for theA
ordering, the expressions associated with the diagrams
are proportional in the case of paraparticles and the
p ¼ 1 (normal statistics) case of nondegenerate Ma-
jorana neutrinos. The contributionof the ðuÞ diagram is
minus that of the ðtÞ diagram with α and β exchanged.
In the para case, the ðtÞ diagram has a factor of
f1gðf̆Þ2, and in the p ¼ 1 case there is a factor of
f1gðfdÞ2 instead. In the evaluation for the para case,
there is a factor of 2which arises from transforming the
position-space propagator vacuum expectation value
to momentum space; see Appendix C.

(ii) As shown in Fig. 3, there is a similar cascade from
A1 to the antiparticle B2 by the emission of a pair of
para-Majorana neutrinos, A1 → B2ν̆αν̆β:

For each diagram, for the A ordering the para
amplitude is proportional to that obtained in the case
of ordinary fermion Majorana neutrinos. Also for
each diagram, the B-ordered expression is of oppo-
site sign to that of the A ordering, so the permutation
group basis amplitude is again the asymmetric one.

From LY̆ and LC, for the A ordering there is a
single ðsÞ diagram with a parastatistical factor of
f1gðtf̆Þ. For the analogous p ¼ 1 cascade
A1 → B2νa;ανa;β, there is a factor of f1gðtfdÞ. The
contribution from ðLY̆Þ2 involves a para-Majorana
mass insertion contribution. The amplitude for the

FIG. 2. The remaining two diagrams for A1 → A2ν̆αν̆β.
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ðuÞ diagram is again minus that of the ðtÞ diagram
with α and β exchanged. For the ðtÞ diagram, in the
para case there is a factor of f1gðf̆Þ2 and correspond-
ingly in the p ¼ 1 fermion case a factor of f1gðfdÞ2.

2. Emission of a pair of scalar paraparticles:
A1 → A2Ă B̆; A1 → B2Ă3Ă4; � � �

In the remaining five cascade processes, A1 → A2Ă B̆;
A1 → B2Ă3Ă4;…, a pair of scalar paraparticles are emitted.
For each process, the obtained A-ordered amplitudes can
again be considered in terms of its covariant diagrams
which are displayed in the figures. These A amplitudes in
the para case are again proportional to those in the non-
degenerate case in which there is a scalar pair emitted. In
the following, for each diagram the respective statistical
factors cp and cd are listed.
For each diagram the same amplitudes are obtained for

the A-ordered and B-ordered final states. Therefore, in the

permutation group basis the associated symmetric final
state has an amplitude of

ffiffiffi
2

p
times that for the A ordering,

and the amplitude for the antisymmetric final state van-
ishes. For the first cascade A1 → A2Ă B̆ with emission of a
particle-antiparticle pair of paraparticles, the symmetric/
antisymmetric final states are

jA2;lĂ B̆isym;asym ¼ 1ffiffiffi
2

p ðjA2;lĂ B̆iA � jA2;lĂ B̆iBÞ ð20Þ

with A ordering and B ordering of the kets jA2;lĂ B̆iA ¼
1
2
l†A†B†j0i and jA2;lĂ B̆iB ¼ 1

2
l†B†A†j0i.

(i) Figure 4 shows the first three diagrams for the
cascade A1 → A2Ă B̆.

Figure 5 shows the remaining three diagrams.

FIG. 3. The three diagrams for A1 cascading to B2 by emission
of a pair of para-Majorana neutrinos A1 → B2ν̆αν̆β. There is a
para-Majorana mass insertion in the ðtÞ and ðuÞ diagrams.

FIG. 4. First three of six diagrams for the cascade A1 → A2Ă B̆
by emission of a particle-antiparticle pair of scalar paraparticles
Ă B̆. B̆ is the anti-paraparticle to Ă. These scalar paraparticles are
denoted by “dark” dashed lines with forward (backward) in time
arrows for the particle Ă (antiparticle B̆).
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From L3q̆, there is the ðqÞ diagram with a factor of
f1gð−ĞÞ versus f1gð−GdÞ. The minuses occur here
because we omit each ðiÞ associated with the iLint
vertex. FromLC andL3c̆, the ðs1Þ and ðs2Þ diagrams
each have a factor of f1gðtT̆Þ versus f1gðtTdÞ. From
the ðL3c̆Þ2 contribution, the ðt1Þ and ðuÞ diagrams
each have a factor of f1gðT̆Þ2 versus f1gðTdÞ2.
Interestingly, there is only a single diagram contri-
bution from ðL2c̆Þ2. This ðt2Þ diagram has a factor of
f1gðt̆Þ2 versus f1gðtdÞ2.

(ii) The analogous cascade from A1 to the antiparticle
B2, A1 → B2Ă3Ă4, has the six diagrams shown in
Figs. 6 and 7.
From L2q̆, there is the ðqÞ diagram with a factor

of f1gð−F̆Þ in the para case versus a factor of
f1gð−FdÞ in the boson case. From LC and L2c̆, the
ðsÞ diagram has a factor of f1gðtt̆Þ versus f1gðttdÞ.
As shown, the remaining four diagrams arise
from L2c̆ and L3c̆. They are ðt1Þ, ðu1Þ, ðt2Þ, and

ðu2Þ. Each has a factor of f1gðt̆ T̆Þ versus
f1gðtdTdÞ.

(iii) The cascade from A1 to A2 by A1 → A2Ă3Ă4 has the
diagrams shown in Fig. 8.

From LC and L2c̆, the ðsÞ diagram has a factor of
f1gðtt̆Þ versus f1gðttdÞ. From L2c̆ and L3c̆, the ðtÞ
and ðuÞ diagrams each have a factor of f1gðt̆ T̆Þ
versus f1gðtdTdÞ.

(iv) If instead there is emission of an antiparticle pair
B̆3B̆4 via the cascade A1 → A2B̆3B̆4, there are the
diagrams shown in Fig. 9.

From LC and L2c̆, the ðsÞ diagram has a factor of
f1gðtt̆Þ versus f1gðttdÞ. From L2c̆ and L3c̆, the ðtÞ
and ðuÞ diagrams each have a factor of f1gðt̆ T̆Þ
versus f1gðtdTdÞ. The interaction vertices L2c̆ and
L3c̆ in the ðtÞ and ðuÞ diagrams are exchanged in
Fig. 9 for emission of B̆3B̆4 versus those in Fig. 8 for
emission of Ă3Ă4.

FIG. 5. The remaining three diagrams for A1 → A2Ă B̆.

FIG. 6. First three of six diagrams for the cascade A1 →
B2Ă3Ă4 by emission of a pair of scalar paraparticles Ă3Ă4.
The subscripts on Ă3 and Ă4 are for momentum labeling which
distinguishes the two identical parabosons.
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(v) For the cascade A1 → B2Ă3B̆4 by emission of Ă3B̆4

there are the diagrams in Fig. 10.
From LC and L3c̆, the ðsÞ diagram has a factor of

f1gðtT̆Þ versus f1gðtTdÞ. From second order in L3c̆,
the ðtÞ and ðuÞ diagrams each have a factor of
f1gðT̆Þ2 versus f1gðTdÞ2.
As briefly explained in Appendix D, the same

parastatistical factor cp (as above) is obtained for
each diagram in the alternate p ¼ 2 normalization of
Green and Volkov [1] for the trilinear commutation
relations. To achieve these same cp values, there is a
necessary rescaling of each of the portal coupling
constants in Eqs. (4)–(9) by gi → 2gi.

III. COMPARISON OF PREDICTIONS
FOR THREE CASES

To compare the partial widths in the three cases, in the
Lagrangian densities we assume the corresponding cou-
pling constants involved in the cascade are equal in the para
case and in the two p ¼ 1 cases of a nondegenerate or a
twofold degenerate pair.

For the assumed portal Lagrangian, the scalar pair
emission mode A1 → B2B̆3B̆4 is forbidden through quad-
ratic order in the Lagrangian densities. Consequently, when
viewed inclusively, the five scalar pair cascades from the
new A1 boson separate into three processes with A1 →
A2 þ X̆ versus two processes with A1 → B2 þ X̆ because
there is the A1 → A2B̆3B̆4 cascade.
The diagrams for these cascade processes with emission

of a pair of scalar paraparticles, or of a pair of scalar Bose
particles, do have common values for all their respective cp
and cd statistical factors. This enables factorization of these
common-valued cp and cd into overall coefficients. When
such a factorization occurs, the partial decay widths for the
para case versus that for emission of a nondegenerate pair
are related by

dΓp¼2 ¼ 2jcp=cdj2dΓp¼1 ð21Þ

where the two permutation group basis final states have
been summed in the para case. From this expression, 2

FIG. 7. The remaining three diagrams for A1 → B2Ă3Ă4. FIG. 8. The three diagrams for the cascade A1 → A2Ă3Ă4 by
emission of a pair of scalar paraparticles Ă3Ă4.
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times the partial width is predicted for all paraboson pair
cascades versus the Bose case of emission of a non-
degenerate pair obeying normal statistics.
Similarly, the partial width for the para case can be

compared with that for the case of emission of a twofold
degenerate pair

dΓp¼2 ¼ jcp=cdj2dΓdeg pair: ð22Þ

The same partial width is predicted for all paraboson pair
cascades versus emission of a twofold degenerate scalar
boson pair.
In the supersymmetric limit, the mass of the para-

Majorana neutrino ν̆ would be the same as that for the
scalar paraparticle Ă and its anti-paraparticle B̆, but in
nature the paraparticle spin-1=2 and spin-zero masses
might be different. This might enable kinematic separa-
tion of a cascade process with emission of a pair of

para-Majorana neutrinos from one with emission of a
pair of scalar paraparticles. In the case of mass degeneracy
of the ν̆ and Ă particles, generalizations of some of the
techniques which exploit the neutrino spin in τ− → μ−νμντ
might possibly be used to separate the ν̆αν̆β cascades from

the Ă3Ă4 cascade.
For the two para-Majorana neutrino cascades, A1 →

A2ν̆αν̆β and A1 → B2ν̆αν̆β, an overall factorization of cp and
cd is also possible, and the partial widths in the para case
are twice (the same as) the corresponding partial width for
emission of a pair of Fermi Majorana neutrinos (twofold
degenerate Fermi Majorana neutrinos).

IV. CONCLUDING REMARKS

This paper is focused on showing that diagrams, and
diagrammatic thinking, can be used in perturbatively
analyzing p ¼ 2 paraparticle processes for an assumed
supersymmetric-like “statistics portal” Lagrangian. If there

FIG. 9. The three diagrams for the cascade A1 → A2B̆3B̆4 by
emission of an antiparticle pair of scalar paraparticles B̆3B̆4.

FIG. 10. The three diagrams for the cascade A1 → B2Ă3B̆4 by
emission of a particle-antiparticle pair of scalar paraparticles Ă3B̆4.
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is a portal to such paraparticles at the LHC, they might be
cascade emitted as a pair of para-Majorana neutrinos as in
A1 → A2ν̆αν̆β or as a pair of neutral spin-zero paraparticles
such as in A1 → A2Ă B̆. The associated connected tree
diagrams and their parastatistical factors are obtained above
for these seven cascade processes, through quadratic order
in the Lagrangian densities. For each diagram, these
explicit calculations show that the statistical factor cp for
order p ¼ 2 parastatistics and the corresponding factor cd
for a nondegenerate or twofold degenerate pair which
obeys normal statistics, satisfy the easy to remember cp ¼
cd ¼ 1 relation.
These results complement general quantum field theory

results for arbitrary order p, including the generalization of
the spin-statistics theorem to “particles of half-integer spin
obey parafermi statistics, while particles of integer spin
obey parabose statistics” [15].
Certainly the systematic diagrammatic procedure used in

this paper, which builds on the successful normal ordering
procedure for p ¼ 1 fields, needs to be shown to generalize,
especially to higher-order nontree diagramprocesses involv-
ing both p ¼ 1, 2 fields. However, from the calculations
herein, it is noteworthy that the commutator ordering of two
parafermi fields in the Lagrangian terms (as dictated by
paralocality for observables) is in agreement with the non-
trivial respective absence (presence) of coupling in the
permutation group basis amplitudes for the final state
jAlν̆αν̆βisym;asym in A1 → A2ν̆αν̆β and A1 → B2ν̆αν̆β. This
occurs diagram by diagram. Likewise, the anticommutator
ordering of two parabose fields in the Lagrangian terms is
also in agreement with the absence (presence) of coupling,
again diagram by diagram, in the permutation group basis
amplitudes for two final scalar parabosons in a totally
antisymmetric (symmetric) final state in the five cascade
processes, A1 → A2Ă B̆; A1 → B2Ă3Ă4;….
While the permutation group basis is always physically

required in constructing the associated physical amplitudes
for all parabosons or all parafermions in the external final
(initial) states, the convenient usage of the occupation
number basis in the calculations in this paper also general-
izes to more than two final paraparticles.
In the case of more than two parabosons, the central

idea of only evaluating one occupation number basis
amplitude for each diagram works. For instance, for
four final parabosons of order p ¼ 2, the totally symmetric
final state which uses the totally symmetric bracket
fa†b†c†d†gþ is

1

4
ffiffiffi
6

p fa†b†c†d†gþj0i ¼
1ffiffiffi
6

p ða†b†c†d† þ b†a†d†c†

þ a†d†b†c† þ d†a†c†b†

þ a†c†d†b† þ b†d†c†a†Þj0i:
ð23Þ

The state has six independent orthogonal terms. However,
for each diagram only one amplitude needs to be calculated
in the occupation number basis, for instance, the amplitude
for the a†b†c†d†j0 > term. The other amplitudes easily
follow by permutations of the mode labels.
In Eq. (23) and in the other state expressions in this

section, the states are normalized, but with the 1ffiffi
2

p factor for
each paraparticle omitted. Note, the reordering relations
[16] of Appendix E must first be used to reduce the 4! ¼ 24
terms from the totally symmetric left-hand side of Eq. (23),
to six independent terms. There are six independent
orthogonal terms because the sum of the dimensions of
the three permutation group irreducible representations for
four parabosons is six. This totally symmetric permutation
group row representation is one dimensional and has an
eigenvalue of 6 for P̄sum. The P̄sum operator is the sum of
the pair particle-exchange operators; see Eq. (A6) for three
parabosons in Appendix A.
This single occupation number basis amplitude for the

a†b†c†d†j0i term then also suffices for the construction of
the permutation basis amplitude for each of the other two
permutation irreducibles. For the L-shaped representation
with dimension three and an eigenvalue of 2 for P̄sum, there
is the eigenvector 1ffiffi

2
p ða†b†c†d† − b†a†d†c†Þj0i. Finally, for

the box-shaped representation with dimension two and an
eigenvalue of 0 for P̄sum, there is the similar eigenvec-
tor 1

2
ð½a†b†c†d† þ b†a†d†c†�− ½a†d†b†c† þ d†a†c†b†�Þj0i.

In summary, for four final parabosons for each diagram
there is one occupation number basis amplitude which
requires evaluation. By permuting the external particle
mode labels, this single amplitude then gives by super-
position the three amplitudes which each correspond to the
three distinct permutation group basis irreducible repre-
sentations (the totally symmetric, the L-shaped, and the
box-shaped).
For four final parafermions the amplitude evaluation

procedure and the state decompositions are very similar
with the permutation group basis irreducibles having the
same dimension but opposite sign of P̄sum eigenvalues
versus four parabosons. Again, only one occupation basis
amplitude needs to be evaluated for each diagram.
Appendix F contains independent basis states and P̄sum
eigenvalues for up to four parabosons (parafermions).

APPENDIX A: TRILINEAR RELATIONS FOR A
“p ¼ 2 FAMILY” OF PARAFIELDS

In the calculations of the cascade matrix elements, the
following trilinear relations [1] for a “p ¼ 2 family” of
parafields, ĂðyÞ and ξ̆ðxÞ, are used with parabose operators
denoted with roman letters and parafermi operators denoted
with greek letters. In the supersymmetric-like model in the
present paper, there are of course an equal number of
parabose and parafermi degrees of freedom. The para-
statistics term “p ¼ 2 family” means that all the fields in
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the family mutually obey these trilinear relations [7]. The
fields, ξ̆ðxÞ and ĂðyÞ, have their usual covariant momen-
tum expansions and normalizations in terms of these
creation and annihilation operators; see Eqs. (C1) and
(C2) below. In the arbitrary p-order trilinear relations,
versus the following p ¼ 2 trilinear relations, there are
twice as many terms on the left-hand side of each relation
due to an additional overall commutator ordering [3].
The mode index k, l, m includes the momentum compo-

nents, and the helicity components for the para-Majorana
field ξ̆, and the Ă, B̆ particle-antiparticle distinction for the Ă
complex field. For instance, in the trilinear relations below
for the para-Majorana operators, the generalized Kronecker
delta is δlm ¼ δλlλmδ

ð3Þð~pl − ~pmÞ. Here, for clarity, we omit/
suppress a possible but awkward “breve” accent which
might be put on top of each of the creation and annihilation
operators.
Several simple patterns are apparent. As for the usual

p ¼ 1 bilinear relations, in each relation the left-hand side
has the second term with the three operators written in
opposite cyclic order to that of the first term. The second
term has a plus (minus) sign when mostly parabosons
(parafermions) occur in the trilinear relation. On the right-
hand side, the existence of a Kronecker delta term, and its
sign, corresponds to an aka

†
l or αkα

†
l adjacent-pair factor

from the left-hand side. The trilinear relations maintain
the associated odd (even) “place positions” [14] of both the
mode and also of the parafermi/parabose labeling of the
operators, whether reading left to right, or right to left.
These simple properties also occur in the adjointed
relations. The normalization of these p ¼ 2 relations
corresponds to that of the trilinear relations for arbitrary
p parastatistics [1,3]. The usual p ¼ 1 creation and
annihilation operators for boson fields, such as the scalar
complex field A, commute with these p ¼ 2 operators and
those for fermion fields, such as the Majorana spin-1=2
field ξ, commute (anticommute) with the parabosons
(parafermions).
For all parabosons (roman letters)

akalam − amalak ¼ 0;

akala
†
m − a†malak ¼ 2δlmak;

aka
†
l am − ama

†
l ak ¼ 2δklam − 2δmlak: ðA1Þ

For all parafermions (greek letters)

αkαlαm þ αmαlαk ¼ 0;

αkαlα
†
m þ α†mαlαk ¼ 2δlmαk;

αkα
†
l αm þ αmα

†
l αk ¼ 2δklαm þ 2δmlαk: ðA2Þ

For two parabosons and one parafermion

akalβm − βmalak ¼ 0;

akβlam − amβlak ¼ 0;

akalβ
†
m − β†malak ¼ 0;

akβla
†
m − a†mβlak ¼ 0;

βkala
†
m − a†malβk ¼ 2δlmβk;

aka
†
l βm − βma

†
l ak ¼ 2δklβm;

akβ
†
l am − amβ

†
l ak ¼ 0: ðA3Þ

For two parafermions and one paraboson

αkαlbm þ bmαlαk ¼ 0;

αkblαm þ αmblαk ¼ 0;

αkαlb
†
m þ b†mαlαk ¼ 0;

αkblα
†
m þ α†mblαk ¼ 0;

bkαlα
†
m þ α†mαlbk ¼ 2δlmbk;

αkα
†
l bm þ bmα

†
l αk ¼ 2δklbm;

αkb
†
l αm þ αmb

†
l αk ¼ 0: ðA4Þ

In this arbitrary p-order normalization, the important
associated vacuum conditions for any mode indices k, l are

akj0i ¼ αlj0i ¼ 0; h0j0i ¼ 1;

aka
†
l j0i ¼ αkα

†
l j0i ¼ 2δklj0i ðA5Þ

and akα
†
l j0i ¼ αka

†
l j0i ¼ 0. The parabose and parafermi

number mode operators are respectively Nk ¼ 1
2
fa†k;akg−1

and N k ¼ 1
2
½α†k; αk� þ 1.

For p-order parastatistics, in the vacuum conditions
(A5), there is the substitution 2 → p, and in the number
operators the ending terms ∓1 → ∓ p

2
, so the important

zero-point energies scale with the order p. Associated with
Eq. (A5), for p ¼ 2 there is an extra ð 1ffiffi

2
p Þ factor for each

paraparticle in an external state. Thereby, the scattering
matrix, and associated in-going and out-going particle
fluxes, have a common “particle density per unit volume”
normalization [11] for all external particles whether of
order p ¼ 2 or p ¼ 1.
For an initial state, final state, or observable expressed as

a function of creation and annihilation operators, the
directly physical “particle permutations” are products of
the pair particle-exchange operators P̄i;j ¼ P̄j;i which
exchange the i and j identical particles, so ai↔aj or
a†i↔a†j . As in Ref. [14], in the present paper these operators
are denoted with an “overbar.” Instead, “place permuta-
tions” are products of the pair place-exchange operators
Pr;s ¼ Ps;r which exchange the occupants of positions r
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and s in a creation and annihilation operator expression
regardless of the identity of the occupants.
In p ¼ 2 parastatistics, unlike for p ¼ 1 quanta, the

external “permutation group basis” states are in general
not eigenstates of the pair particle-exchange operators P̄i;j.
Indeed, for two identical paraparticles, the external states are
pair particle-exchange eigenstates as in Eq. (19) for paraf-
ermions and in Eq. (20) for parabosons. For three identical
parabosons, the totally symmetric one-dimensional external
state is also even under each of the three particle exchanges
P̄i;j. However, the three identical paraboson state corre-
sponding to the two-dimensional L-shaped representation
has basis vectors which are not eigenstates of the three P̄i;j.
For this mixed representation and using the reordering
relations of Appendix E, this is apparent because the two
independent basis vectors can be chosen as 1ffiffi

2
p ða†b†c† −

b†c†a†Þj0i and 1ffiffi
6

p ða†b†c† þ b†c†a† − 2c†a†b†Þj0i. When

one of the three P̄i;j acts on either one of these two basis
vectors, it gives a linear combination of them. More
generally, acting with any of the P̄i;j on a state in an n-
particle irreducible representation of the permutation group
preserves its irreducible representation.
The sum of the three particle exchanges P̄i;j which we

denote as P̄sum

P̄sum ¼ P̄a;b þ P̄b;c þ P̄c;a ðA6Þ

has respective eigenvalues 3 and 0 for these two parabose
representations (row and L-shape), and so it can also be used
to label them. Similarly, we find that states in n-dimensional
parabose representations are eigenstates of P̄sum (at least
through the four six-paraboson irreducibles). For the n-
dimensional totally symmetric representations, the eigen-
value nðn − 1Þ=2 is equal to the number of pair particle-
exchange operators. For states of identical parafermions, the
eigenvalues of P̄sum for the corresponding irreducible rep-
resentations are negative. A diagonal mirror reflection of
rows and columns transforms a paraboson irreducible
representation to a corresponding parafermi irreducible
representation. While the dimension of the permutation
group representation provides one label for the irreducible
representation for p ¼ 2 external state, the two-particle state
shows that the P̄sum eigenvalue is also required for a unique
labeling. Also for the six paraboson state, the P̄sum eigen-
values of 9 (L-shape) and 3 (box-shape) distinguish these
representations which are both five-dimensional.

APPENDIX B: PARALOCALITY, GREEN
COMPONENTS, AND POSSIBLE ADDITIONAL

INTERACTION TERMS

At the beginning of Sec. II, in the construction of the
supersymmetric-like portal Lagrangian densities, “paralo-
cality” is used. It is a generalization of locality for

parafields [3]. The allowed forms of paraparticle couplings
arise as a consequence of the trilinear commutation
relations and the assumed locality condition. By locality,
for the two observables OðxÞ and O0ðyÞ, their commutator
must vanish

½OðxÞ;O0ðyÞ� ¼ 0; x ∼ y ðB1Þ

when points x and y are spacelike separated (denoted by the
symbol ∼). In the interaction picture, OðxÞ and O0ðyÞ are
polynomial functions of the free parafield operators ϕ̆iðxÞ
which act on the vacuum of the physical Hilbert space. In
arbitrary order p parastatistics, “paralocality” holds when
Eq. (B1) is valid in the larger Hilbert space of the Green

component fields ϕ̆ðaÞ
i ðxÞ defined by the expansion

ϕ̆iðxÞ ¼
Xp
a¼1

ϕ̆ðaÞ
i ðxÞ ðB2Þ

where a is the Green index. For parabosons (parafermions)
these Green component fields with the same Green index,

ϕ̆ðaÞ
i ðxÞ and ϕ̆i

ðaÞ†ðyÞ, obey the usual Bose (Fermi) com-
mutation relations, but anticommute (commute) with all

ϕ̆ðbÞ
i ðzÞ and ϕ̆i

ðbÞ†ðzÞ for a ≠ b. In an “order p family” of
parafields, a parabose Green component and a parafermi
Green component have the same commutation pattern as
two paraboson Green components. Green components were
introduced in Ref. [1]. In Refs. [7,12], it is shown that
locality implies paralocality.
While in the perturbative calculations in this paper for

order p ¼ 2 we do not expand in Green components, they
are very convenient tools for analysis and for checking.
Historically, Green components have been exceptionally
useful in developing and understanding fields and quanta
obeying parastatistics, especially for arbitrary p order.
Their underlying presence in parastatistics is a strong
physics/mathematics motivation for the consideration,
throughout the present paper, of the comparison with
cascade emission of a twofold degenerate pair of particles
which obey normal statistics.
In the above portal Lagrangian densities, we do not

consider possible additional “second unit observables”
which are allowed by paralocality. A generic example, in
terms of paraparticle creation or annihilation operators
denoted by a ĉi (the hat accent denotes ci or c

†
i ) is

..

.½ĉ1; ĉ2; � � � ĉn�∓..
.≡ n!

X
a1;a2;…;an

ĉ1ða1Þĉ2ða2Þ � � � ĉnðanÞ ðB3Þ

where the summation is over all different values of the
Green indices a1; a2;…; an. As denoted by its redundant∓
subscript, this “dotted bracket” or “second unit observable”
is totally antisymmetric (symmetric) with respect to the
labels 1; 2;…n in the case of all parabose (parafermi)
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operators and it respectively vanishes for n > p, which is
another meaning for the order p. In permutations for
Eq. (B3), it is understood that the dagger, or the absence
of the dagger, on ĉi, moves with the subscript i.
In the context of deriving the most general selection rules

for particles obeying parastatistics, these second unit
observables were introduced in Ref. [3] (see the earlier
Ref. [17]). Such additional terms are treated in detail in
Ref. [7]. However, these additional terms are forbidden if
either there is the stronger locality condition

½ϕ̆iðxÞ;O0ðyÞ� ¼ 0; x ∼ y ðB4Þ

or if there is a global symmetry such that the Green indices
transform under O(2) or U(2), instead of the smaller SO(2)
or SU(2). These two locality conditions, Eqs. (B1) and
(B4), are equivalent for ordinary fermions and bosons but
are not for even-valued orders of p; see Ref. [7].

APPENDIX C: EVALUATION OF p ¼ 2
MATRIX ELEMENTS

Some care is needed in the evaluation of p ¼ 2 matrix
elements because of the factor of 2 in the vacuum condition
ckc

†
l j0i ¼ 2δklj0i. In the “arbitrary p normalization” of

Ref. [3] which is used in this paper, a factor of 1ffiffi
2

p does not

occur in a parafield’s momentum expansion such as for the
complex spin-zero parabose Ă field

ĂðxÞ ¼
Z

d3qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32ωq

q ðĂð~qÞe−iq·x þ B̆†ð~qÞeiq·xÞ: ðC1Þ

Consequently, ĂðxÞĂ†ðyÞj0i ¼ 2δð3Þð~x − ~yÞj0i, and
2iΔFðqÞ¼2i=ðq2−m2þiϵÞ in momentum space corre-
sponds to h0jTðĂðx0ÞĂ†ðxÞÞj0i, with these three 2’s
replaced by p’s for p order parastatistics. Similarly, there
are corresponding factors of 2 occurring for the Majorana
spin-1=2 parafermi ξ̆ field

ξ̆AðxÞ ¼
X

λ¼�1=2

Z
d3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ32ωp

q ðxAð~p; λÞᾰλð~pÞe−ip·x

þ yAð~p; λÞᾰ†λð~pÞeip·xÞ ðC2Þ

with ¯̆ξ _AðxÞ ¼ ξ̆†_AðxÞ ¼ ðξ̆AðxÞÞ†. For essential properties of
the commuting two-component Weyl spinor wave func-
tions xA and yA see Ref. [10].

APPENDIX D: SAME PARASTATISTICAL
FACTORS FOR THE p ¼ 2 NORMALIZATION OF

GREEN AND VOLKOV

A simple, but very partial, working check of the above
perturbative evaluations is to use the alternate p ¼ 2

normalization of Green and Volkov [1] for the trilinear
relations of AppendixA. If it is used, the same parastatistical
factor cp is obtained for each diagram for these seven
cascade processes. The differences are as follows. (i) For
both the p ¼ 2 parabosons and parafermions, the quanta
operators ci →

ffiffiffi
2

p
di in the trilinear relations and in the

vacuum conditions (A5) of Appendix A. (ii) Each of the
portal Lagrangian densities is quadratic in the parafields, so
each of the coupling constants in Eqs. (4)–(9) must be
rescaled by gi → 2gi. The momentum expansions in
Appendix C are still used without additional factors offfiffiffi
2

p
, so there is no change in the normalization of the

parafields versus the arbitrary p normalization used in this
paper. Conversely, if this Green-Volkov p ¼ 2 normaliza-
tion is used, then the arbitraryp normalization is obtained by
the substitutiondi →

1ffiffi
2

p ci butwith the extra
1ffiffi
2

p factor,which

would occur in each parafield momentum expansion,
instead moved out to be with the coupling constant in the
Lagrangian density.

APPENDIX E: REORDERING
RELATIONS FOR p ¼ 2

With upper (lower) signs for parabose (parafermi)
creation operators, the reordering relations [16] are

a†b†c† ¼ �c†b†a†;

ða†b†Þðc†d†Þ ¼ ðc†d†Þða†b†Þ
¼ �ðc†b†Þða†d†Þ ¼ �ða†d†Þðc†b†Þ: ðE1Þ

The three-operator relation is a cyclic one. In the four-
operator relations, the unnecessary pairing parentheses are
for displaying the pairing patterns. These patterns are that
in reordering (i) the even (odd) place positions are main-
tained, whether reading from the left or right, and (ii) each
single exchange of a†↔c† or b†↔d† gives a � sign. Both
patterns are also in the three-operator relation. The anni-
hilation operators satisfy the same relations (remove
daggers).
As discussed in the last several paragraphs of the text,

these relations are particularly useful in the construction of
the independent orthogonal terms needed in the external
states in the permutation group basis.
These reordering relations follow from the first lines of

Eqs. (A1) and (A2). For three mixed parabose and
parafermi, all creation (annihilation) operators there are
also reordering relations corresponding to Eq. (E1) which
follow from the first two lines of Eq. (A3) and of Eq. (A4).
These analogous three-operator relations to Eq. (E1) are
also cyclic and hold with the � sign for mostly parabosons
(parafermions). The appropriate signs in the four four-
operator relations for any mixture of parabosons and
parafermions then follow iteratively.
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APPENDIX F: INDEPENDENT BASIS STATES
AND P̄sum EIGENVALUES FOR UP TO FOUR

PARABOSONS (PARAFERMIONS)

In this appendix “eigenvalue” for an n parabose or
parafermi state means the eigenvalue of the P̄sum operator
which is the sum of the 1

2
nðn − 1Þ pair particle-exchange

P̄i;j operators; see the end of Appendix A. As in the
concluding Sec. IV, in this appendix we are suppressing the
extra 1ffiffi

2
p normalization factor for each paraparticle. When

these extra factors are included, each state is properly
normalized. Each term in these states is independent and
orthogonal because the reordering relations of Appendix E
have already been used.
For two parabosons, both of the two irreducible repre-

sentations are one dimensional. These correspond to the
totally symmetric row (antisymmetric column) in a Young
diagram, and have basis states

1ffiffiffi
2

p ½a†; b†��j0i ðF1Þ

with eigenvalues�1. The bracket’s� subscript denotes the
anticommutator (commutator).
For three parabosons, there is the totally symmetric one-

dimensional row representation with

1ffiffiffi
3

p ða†b†c† þ b†c†a† þ c†a†b†Þj0i ðF2Þ

and eigenvalue 3. For the two-dimensional, L-shaped
permutation group representation with an eigenvalue equal
to 0, two basis vectors are

1ffiffiffi
2

p ða†b†c† − b†c†a†Þj0i;

×
1ffiffiffi
6

p ða†b†c† þ b†c†a† − 2c†a†b†Þj0i: ðF3Þ

For four parabosons, there is the totally symmetric one-
dimensional row representation with

1ffiffiffi
6

p ða†b†c†d† þ b†a†d†c† þ a†d†b†c† þ d†a†c†b†

þ a†c†d†b† þ b†d†c†a†Þj0i ðF4Þ

and eigenvalue 6. For the three-dimensional, L-shaped
representation with an eigenvalue equal to 2, three basis
vectors are

1ffiffiffi
2

p ða†b†c†d† − b†a†d†c†Þj0i;
1ffiffiffi
2

p ða†d†b†c† − d†a†c†b†Þj0i;
1ffiffiffi
2

p ða†c†d†b† − b†d†c†a†Þj0i: ðF5Þ

For the two-dimensional, box-shaped representation
with an eigenvalue equal to 0, two basis vectors are

1

2
ð½a†b†c†d† þ b†a†d†c†� − ½a†d†b†c† þ d†a†c†b†�Þj0i;
1

2
ffiffiffi
3

p ð½a†b†c†d† þ b†a†d†c†� þ ½a†d†b†c† þ d†a†c†b†�þ

− 2½a†c†d†b† þ b†d†c†a†�Þj0i: ðF6Þ

For the n parafermion states, first recall that a diagonal
mirror reflection of rows and columns transforms a para-
boson Young diagram irreducible representation to the
corresponding parafermi representation. For parafermions,
the above basis vectors also apply with simply a change
from roman to greek letters per the notation in Appendix A.
For three and four parafermions, in the above basis vectors
the expected different signs for parafermions, versus para-
bosons, have already been absorbed by using the reordering
relations of Appendix E to reduce the basis vector expres-
sions to the displayed independent orthogonal terms. For
instance, if for three parafermions, one constructs the one-
dimensional totally antisymmetric representation by first
explicitly writing out the 3! terms, the reordering relations
can be used to reduce it to Eq. (F2), but with greek letters.
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