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We discuss massive quark effects in the end-point region x → 1 of inclusive deep inelastic scattering
(DIS), where the hadronic final state is collimated and thus represents a jet. In this regime heavy quark
pairs are generated via secondary radiation, i.e. due to a gluon splitting in light quark initiated
contributions starting at Oðα2sÞ in the fixed-order expansion. Based on the factorization framework for
DIS in the end-point region for massless quarks in soft collinear effective theory (SCET), which we
also scrutinize in this work, we construct a variable flavor number scheme that deals with arbitrary
hierarchies between the mass scale and the kinematic scales. The scheme exhibits a continuous behavior
between the massless limit for very light quarks and the decoupling limit for very heavy quarks. It
entails threshold matching corrections, arising from all gauge-invariant factorization components at the
mass scale, which are related to each other via consistency conditions. This is explicitly demonstrated
by recalculating the known threshold correction for the parton distribution function at Oðα2sCFTFÞ
within SCET. The latter contains large rapidity logarithms ∼ lnð1 − xÞ that can be summed by
exponentiation. Their coefficients are universal, which can be used to obtain potentially relevant higher-
order results for generic threshold corrections at colliders from computations in DIS. In particular, we
extract the Oðα3sÞ threshold correction multiplied by a single rapidity logarithm from results obtained
earlier.
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I. INTRODUCTION

For multiple collider processes precision phenomenol-
ogy requires a thorough understanding of quark mass
effects to meet future experimental data with high
statistics and low systematic uncertainties. One of the
challenges hereby is that the quark mass represents a
scale that can be parametrically much different than the
typical hard scattering scale, which can give rise to large
logarithms in fixed-order perturbation theory. At the
Large Hadron Collider this concerns e.g. bottom mass
effects in Higgs production via gluon fusion or in
association with bottom-quark jets.
One example where the treatment of massive quark

effects raised a lot of interest is deep inelastic scattering
(DIS), the benchmark process for the extraction of parton
distribution functions (PDFs). These are one main input
for the analysis of all processes at hadron colliders, such
that precise predictions including the effects of the
charm- and bottom-quark masses are necessary. A first
systematic approach to incorporate heavy quarks with
arbitrary masses with respect to the other relevant scales
has been provided in Refs. [1,2], which laid the basis of a
variable flavor number scheme (VFNS) for inclusive
processes in hadron collisions. The method is founded on
the separation of close-to-mass-shell modes and off-shell
fluctuations and is thus in the spirit of effective field
theory (EFT) factorization; see e.g. Ref. [3]. Nowadays,

different schemes have been developed to cope with this
challenge, which are mainly based on this approach, but
they differ in their detailed implementation concerning
formally subleading contributions (see Ref. [4] for a short
overview).
In this work we discuss the end-point region of DIS,

i.e. x → 1, where the final state becomes a single jet with
invariant mass Q

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
≪ Q, where q2 ¼ −Q2 denotes

the hard momentum transfer. Although having a limited
phenomenological impact, the regime 1 − x ≪ 1 pro-
vides a simple and instructive example of how to
incorporate quark mass effects in differential distribu-
tions at hadron colliders with multiple kinematic scales.
We construct a VFNS, which is in the same spirit as the
well-known VFNS in the classical operator product
expansion (OPE) region 1 − x ∼Oð1Þ [1,2] and exhibits
similar main characteristics. These include (i) the resum-
mation of all large logarithms, also those involving the
quark mass, (ii) the correct limiting behavior of the
perturbative structures, i.e. the hard matching coefficient
at the scale Q and the jet function at the scale Q

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
,

for very small and large masses and (iii) a continuous
description for arbitrary hierarchies of the dynamic
scales with respect to the mass keeping the full mass
dependence of the singular terms (i.e. at leading order in
the power counting). The latter is in particular relevant,
since for a single value of the hard momentum transfer
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Q or the Bjorken variable x the hierarchies can change
significantly when scanning over the respective other
variable.
We will see that for x → 1 quark mass effects arise

(mainly) via light quark initiated contributions, where the
heavy quarks are produced via secondary radiation through
the splitting of an additionally emitted virtual gluon starting
at Oðα2sÞ. Our treatment of these secondary massive quark
corrections relies on the setup developed in Refs. [5,6]. In
these papers a VFNS for event-shape distributions, spe-
cifically for thrust, in the dijet region for eþe− collisions
was constructed in the framework of SCET. It was shown
that in a strict EFT interpretation one has to introduce
additional degrees of freedom to the existing massless
SCET modes, namely collinear and soft mass modes.
These adopt the scaling of the corresponding massless
modes if the mass is below the typical invariant mass
scale of the massless collinear or ultrasoft modes, respec-
tively, but contain in addition fluctuations around the
mass shell which have to be considered when the massive
quark is integrated out. The mass mode picture leads to
the emergence of different EFTs, which implies the
strict guideline of having the massive quark modes
either as fluctuating fields or excluded completed (i.e.
integrated out).
In Ref. [6] also an alternative formulation of the VFNS

is described which does not rely on different EFTs, but is
only based on the massless factorization theorem with
different renormalization conditions for the massive quark
corrections to the matrix elements according to the
hierarchy between the mass and the other involved scales.
This renormalization procedure is similar to the one for
the strong coupling in the presence of massive quarks [7]
and is also the underlying idea for the formulation of the
VFNS for DIS in the OPE region [8]. The interpretation
in terms of different renormalization conditions is con-
venient since it automatically takes into account any
possible power corrections between the hard or jet scale
and the mass scale arising in the EFT picture when the
hierarchy between the mass scale and the respective
kinematic scale is marginal.1 Thus it provides a continu-
ous description of the cross section for arbitrary masses
by construction, whereas in a strict EFT picture (which
would enforce expansions) the transitions between differ-
ent hierarchical scenarios would have to be adapted by
nonsingular corrections, which concerns in particular the
real radiation thresholds. In the following we will there-
fore discuss the VFNS only in the formulation relying on
renormalization conditions.
The renormalization conditions with respect to the

massive quark corrections which we are going to impose

are either the MS prescription or an on-shell (OS) pre-
scription.2 The common use of the MS prescription has
the feature that the nl massless quarks and the massive
flavor both contribute to the renormalization group (RG)
evolution in the same way corresponding to an (nl þ 1)
running flavor scheme. The OS prescription is defined by
the condition that the massive quark corrections vanish
for invariant mass scales much smaller than the quark
mass and also subtracts finite and scale-dependent con-
tributions such that the massive flavor does not lead to
any contribution in the RG evolution, implying only nl
running flavors. This concerns the matrix elements, i.e.
the current, the jet function and the PDFs, as well as the
strong coupling αs. The MS prescription is appropriate to
cover the situation where the quark mass becomes small
(where appropriate means that no large mass logarithms
arise in this limit) and leads to expressions which give
the known results for massless quarks in the limit m → 0.
The OS prescription is suitable to cover the decoupling
limit, such that the effects of the massive quark vanish in
the infinite-mass limit. The differences of the renormal-
ized quantities with respect to both of these renormaliza-
tion prescriptions constitute matching factors, also called
threshold corrections. Since the hard matching coeffi-
cient, the jet function and the PDFs are independent and
in principle not exclusively tied to any particular fac-
torization theorem, these factors represent also universal
ingredients that appear in a similar way for the descrip-
tion of different processes. Here we will emphasize
universal features of the threshold corrections and estab-
lish the connections to some of the results anticipated
in Ref. [6].
The outline of this paper is as follows. In Sec. II we set

up the notation and display the massless factorization
theorem for the structure functions in DIS for 1 − x ≪ 1.
Here we do not require to be in the kinematic region with
the scaling 1 − x ∼ ΛQCD=Q as frequently adopted in the
literature. We show that the factorization theorem has the
same form in the complete end-point region 1 − x≳
ΛQCD=Q using the proper mode setup for 1 − x ≫
ΛQCD=Q. We also explain that massive quark effects
can only arise via secondary radiation, and we show in
Sec. III how to incorporate them consistently by setting
up a VFNS for any gauge-invariant component of the
factorization theorem. For definiteness we discuss in
Sec. IV practical implementations of the VFNS for
various hierarchies between the kinematic scales and
the mass scale. Here we also consider different choices
of the final renormalization scale in the factorization
theorem that lead to consistency conditions between the
threshold correction factors involved in the RG running
of the corresponding matrix elements. In Sec. V we

1For all possible scale hierarchies covered within our VFNS
approach a strict EFT factorization can be constructed that agrees
with our result up to nonsingular corrections.

2For the purely massless quark corrections we always use the
MS scheme.
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explicitly calculate the PDF threshold correction at Oðα2sÞ
in the large-x limit in the effective theory and show that
our result is consistent both with the one obtained in
classical DIS [9] expanded for x → 1 and with the result
for the jet and hard function threshold corrections
performed at Oðα2sÞ in Ref. [6]. In the end-point region
the threshold corrections contain large logarithms ∼α2s log
related to the separation of the collinear and soft mass
modes in rapidity, whose resummation we carry out
explicitly via the rapidity RG equation (RGE) [10,11].
Based on the considerations in Secs. IV and V we display
also the explicit expressions for the threshold corrections
up to the required order for a full N3LL analysis, which
includes rapidity logarithms ∼α2s log, ∼α3s log and
∼α4s log2. These results represent universal ingredients
useful for various collider processes that involve PDFs in
the end-point region, jet functions and a hard function
related to the one appearing in DIS. Finally, in Sec. VI
we conclude. For the sake of comparison, we provide in
Appendix A the results for secondary massive quark
corrections in the OPE region known from Ref. [9]. In
Appendix B we show that for x → 1 our results are in
agreement with them.

II. MASSLESS FACTORIZATION THEOREM FOR
DIS IN THE END-POINT REGION

Before discussing quark mass effects we briefly describe
the kinematic setup and the factorization theorem for DIS in
the end-point region 1 − x ≪ 1. Here we display the mode
setup, highlight the relevant steps for its derivation spe-
cifically for the hierarchy 1 − x ≫ ΛQCD=Q and show that
it can be readily combined with the commonly considered
scaling 1 − x ∼ ΛQCD=Q.

A. Kinematics of DIS

In the following we consider the scattering of an electron
off a proton via photon exchange. We denote the proton
momentum by Pμ, the momentum of the incoming

(outgoing) electron by kμ (k0μ), the incoming momentum
of the virtual photon by qμ ¼ k0μ − kμ with spacelike
invariant mass q2 ¼ −Q2 < 0 and the momentum of the
outgoing hadronic final state X by Pμ

X. The Lorentz-
invariant Bjorken scaling variable x is defined by

x ¼ −
q2

2P · q
¼ Q2

2P · q
ð1Þ

with the kinematic constraint 0 ≤ x ≤ 1. We will work in
the Breit frame, where qμ does not have an energy
component and the initial-state proton is n̄ collinear.
Neglecting the proton mass the relevant momenta in the
Breit frame in terms of light-cone coordinates read

qμ ¼ Q
2
nμ −

Q
2
n̄μ; Pμ ¼ Q

2x
n̄μ;

Pμ
X ¼ Q

2
nμ þQð1 − xÞ

2x
n̄μ: ð2Þ

In the end-point region the hadronic final state is an n-
collinear jet with an invariant mass P2

X ≈Q2ð1 − xÞ ≪ Q2.
The differential cross section for DIS can be decomposed

in terms of a leptonic and a hadronic tensor. The latter is
defined by

WμνðP; qÞ ¼ 1

2π
Im½i

Z
d4zeiqzhPjT½Jμ†ðzÞJνð0Þ�jPi�;

ð3Þ

with jPi denoting the initial proton state and the current
JμðzÞ ¼ P

qi
e2qi q̄iγ

μqiðzÞ summed over all quark flavors qi
with corresponding electric charges eqi . We will just deal
with unpolarized DIS, so that a spin average is always
implied. Using current conservation, which implies
qμWμν ¼ 0, one can decompose the hadronic tensor for
the parity-conserving vector current into the two structure
functions F1ðx;Q2Þ and F2ðx;Q2Þ,

WμνðP; qÞ ¼ −
�
gμν −

qμqν

q2

�
F1ðx;QÞ þ 1

P · q

�
Pμ þ qμ

2x

��
Pν þ qν

2x

�
F2ðx;QÞ

¼ −gμν⊥ F1ðx;QÞ þ 1

2x

�
nμ

2
þ n̄μ

2

��
nν

2
þ n̄ν

2

�
FLðx;QÞ ð4Þ

with gμν⊥ ¼ gμν − 1=2ðnμn̄ν þ n̄μnνÞ. Here the longitudinal
structure function FLðx;QÞ reads

FLðx;QÞ ¼ F2ðx;QÞ − 2xF1ðx;QÞ; ð5Þ

in terms of F1ðx;QÞ and F2ðx;QÞ. These structure func-
tions contain physics at different invariant mass scales and

thus must be factorized to resum the corresponding large
logarithms.

B. Factorization setup

In this section we briefly discuss the derivation of the
factorization theorem for inclusive DIS for massless quarks
in the end-point region 1 − x ≪ 1 and set up the notation
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employed for the rest of the paper. The factorization can be
performed in a multistep matching procedure and has been
carried out already a number of times [12–17]. However,
here we focus on the proper mode setup in the limit
Qð1 − xÞ ≫ ΛQCD and explain why the factorization theo-
rem adopts the same form as for Qð1 − xÞ ∼ ΛQCD.
Although this fact has been already stated in several papers
(e.g. Refs. [13,18]), we believe that it is worthwhile to give
a short derivation using our mode setup.3

The relevant modes are displayed in Fig. 1. The
n̄-collinear modes describing the initial-state proton in
the Breit frame always have the same scaling
pμ
n̄ ¼ ðn · pn̄; n̄ · pn̄; p⊥̄

n Þ ∼ ðQ;Λ2
QCD=Q;ΛQCDÞ. The final

state is strongly collimated for x → 1 with a large momen-
tumQ and an invariant massQ

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
and is thus described

by n-collinear modes scaling as pμ
n ∼Qð1 − x; 1;

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p Þ.
The kinematics in the Breit frame prohibits the appearance
of a final n̄-collinear state, as can be seen from Eq. (2). This
has the important consequence that the n̄-collinear sector
just enters the factorization theorem via a component which
is local both in label space as well as in the residual
coordinate, as has been also pointed out in Ref. [17]. The
remaining relevant low-energy modes contribute to the
measurement of x or equivalently to the squared invariant
mass ∼Q2ð1 − xÞ via a component n · p ∼Qð1 − xÞ (i.e.

they have to lie on the vertical line below the n-coll. modes
in Fig. 1). In fact all such modes give vanishing contribu-
tions in perturbation theory, since no physical scale is
associated with the other momentum components which
results in scaleless integrals. This holds in particular also
for ultrasoft modes scaling as Qð1 − x; 1 − x; 1 − xÞ as
stated e.g. in Refs. [12,13,18]. Thus any additional relevant
modes can only be nonperturbative and scale like
pμ
cs ∼ ðQð1 − xÞ;Λ2

QCD=Qð1 − xÞ;ΛQCDÞ. They encode
interference effects between soft initial- and final-state
radiation. Note that in contrast to the case
1 − x ∼ ΛQCD=Q, where the corresponding modes adopt
the soft scaling pμ

s ∼ ΛQCDð1; 1; 1Þ, these modes are now
also boosted in the Breit frame, and therefore referred to as
collinear-soft (csoft) modes. They are separated by the
rapidity factor (1 − x) from the n̄-collinear modes. These
types of modes have recently received some attention in the
context of multidifferential cross sections and have been
incorporated systematically into a modified version of
SCET, called SCETþ [19,20]. We will discuss here the
DIS factorization theorem in the same spirit using a
multistage matching procedure. However, our case is
simpler, since no relevant softer mode is present with
which the csoft mode can potentially interact.4

To derive the factorization theorem we employ the
multistep matching procedure sketched in Fig. 2. We
emphasize that other ways to order some of the matching
steps are possible and one may even work in a framework
containing the csoft modes from the beginning. Here we
first match the QCD current to the usual SCET I current

JμQCD → JμSCET I ¼ CðQ; μÞχ̄nY†
nγμYn̄χn̄; ð6Þ

with χn̄ ≡W†
n̄ξn̄ and χ̄n ≡ ξ̄nWn, whereWn andWn̄ denote

collinear Wilson lines. The ultrasoft Wilson lines Yn and Yn̄
appear in the current after the Bauer-Pirjol-Stewart (BPS)
field redefinition [21] that disentangles the collinear and
ultrasoft sectors in the Lagrangian. SCET I describes
collinear fluctuations at the invariant mass scale
Q

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
with residual momenta of order Qð1 − xÞ.

When lowering the virtualities the n-collinear final-state
modes need to be integrated out, and the ultrasoft sector is
being resolved with momentum components ∼Qð1 − xÞ
becoming labels. We call the corresponding theory with
csoft modes of virtuality ≳ΛQCD and n̄-collinear modes of
virtuality ≳ΛQCD=

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
≫ ΛQCD SCET Iþ.

5 Here
ΛQCD=

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
is the invariant mass scale of the collinear

modes at which they can still interact with the csoft modes

FIG. 1. Relevant momentum modes for inclusive DIS in the
end-point region x → 1 with 1 − x ≫ ΛQCD=Q.

3We disagree with the mode setup in Ref. [13] which assumes
nonperturbative messenger modes for the beam remnants at the
invariant mass scale ΛQCD

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
≪ ΛQCD, while Ref. [18] never

explicitly displays the scaling of the modes.

4Here only the separation in rapidity matters, i.e. the “softness”
of the csoft mode with respect to the n̄-collinear mode, while the
boost of the csoft mode in the Breit frame is actually irrelevant.

5We do not consider ultrasoft modes in SCET Iþ since they do
not contribute to any measurement as stated before.
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via the momentum component n̄ · pn̄ ∼ Λ2
QCD=ðQð1 − xÞÞ.

The matching coefficient between the two theories is the
quark jet function Jðs; μÞ, a vacuum correlator of the hard
collinear fields in SCET I describing the production rate of
an inclusive jet with invariant mass s. It is defined in terms
of the n-collinear fields as

JðQrþn ;μÞ≡ −1
2πNcQ

× Im

�
i
Z

d4zeirn·zh0jT
�
χ̄n;Qð0Þ

n̄
2
χnðzÞ

�
j0i

�
;

ð7Þ

where the invariant mass is r2n ≃Qrþn and χn;Q ≡ δn̄·P;Qχn
with Pμ denoting the label momentum operator. All color
and spin indices are traced implicitly. Here and in the
following all expressions are only given for initial-state
quarks. For antiquarks the corresponding expressions are
completely analogous. The matrix element in SCET Iþ is
the quark PDF given by

ϕq=P

�
l
Q
; μ

�
¼ hPjχ̄n̄X†

n̄Vn̄
n
2
δðl − n · p̂ÞV†

n̄Xn̄χn̄;QjPi:

ð8Þ

Here Vn̄ and Xn̄ are Wilson lines of the label and small
component of the csoft fields required by gauge invariance,
written in the notation of Refs. [19,20].6 In our matching
procedure they originate directly from boosting the ultra-
soft Wilson lines in SCET I

Y†
n → V†

n̄ ¼ P exp

�
ig
Z

∞

0

dsn · Acsðsnμ þ xμÞ
�
; ð9Þ

Yn̄ → Xn̄ ¼ P exp

�
ig
Z

0

−∞
dsn̄ · Acsðsn̄μ þ xμÞ

�
: ð10Þ

The change of the modes in the soft sector involves in
principle an additional matching coefficient. However,
since the ultrasoft sector in SCET I and the csoft sector
in SCET Iþ are fully decoupled from any other sector and
this matching only involves a single sector in both theories,
for which we can use the QCD Lagrangian, the form of
Eqs. (9) and (10) makes clear that no nontrivial matching
coefficient is generated. As a last step the fluctuations at the
invariant mass scale ΛQCD=

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
need to be integrated

out to describe the physics at the scale ∼ΛQCD, the invariant
mass of the initial-state proton, in terms of the final EFT,
which we call SCET IIþ. Since the interactions between the
n̄-collinear and csoft sectors are already fully disentangled
there is no matching coefficient originating from the
collinear sector and the transition from SCET Iþ to
SCET IIþ, where these two types of modes cannot interact
with each other, and can be achieved simply by lowering
the virtuality of the n̄-collinear modes, in analogy to the
matching between SCET I and SCET II [22]. The PDF in
SCET IIþ can be written as7

ϕq=Pð1 − z; μÞ ¼ Q
Z

dlgq=PðQð1 − zÞ − l; μÞScðl; μÞ;

ð11Þ

FIG. 2. Schematic picture of the multistage matching procedure for 1 − x ≫ ΛQCD=Q described in the text.

6In Refs. [19,20] these were obtained by resolving the collinear
sector. Integrating out off-shell fluctuations of virtuality
∼Q2ð1 − xÞ generate Vn̄ (in analogy to the hard collinear Wilson
lineWn̄) and the BPS field redefinition leads to the emergence of
Xn̄ (in analogy to the ultrasoft Wilson line Yn̄).

7Here the convolution is in fact spurious due to the overall
delta distribution in the collinear function gq=P in Eq. (12), such
that the PDF ϕq=P could be also written as a simple product.
However, the form in Eq. (11) will be more convenient for
discussing explicit results since the two functions Sc and gq=P
have the same dimension.
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where gq=Pðl; μÞ denotes a local collinear matrix element

gq=Pðl; μÞ ¼
1

Q
hPjχ̄n̄ð0Þ

n
2
χn̄;Qð0ÞjPiδðlÞ; ð12Þ

and Scðl; μÞ denotes a vacuum expectation value in terms
of csoft fields, the csoft function

Scðl; μÞ ¼
1

Nc

X
Xcs

h0jX†
n̄Vn̄ð0Þδðl − n · p̂ÞV†

n̄Xn̄ð0Þj0i;

ð13Þ

where again all color indices are traced implicity. We will
see explicitly that both gi=Pðl; μÞ and Scðl; μÞ individually
contain rapidity divergences which cancel in the total
PDF in Eq. (11). The appearance of the csoft function in
Eq. (13) is the only deviation with respect to the case
1 − x ∼ ΛQCD=Q, where instead the analogue matrix
element with soft fields appears, which reads

Sðl; μÞ ¼ 1

Nc
h0jS†n̄Snð0Þδðl − n · p̂ÞS†nSn̄ð0Þj0i: ð14Þ

Note that the structure of the Wilson lines in Scðl; μÞ and
Sðl; μÞ is identical (Xn̄↔Sn̄, V

†
n̄↔S†n only related by a

common boost) and the lack of additional relevant softer
modes in SCET IIþ implies that the Lagrangian in the csoft
sector can be replaced by the full QCD Lagrangian. Thus
the interactions for csoft and soft modes are equivalent. So
Scðl; μÞ and Sðl; μÞ give the same result (which we will
demonstrate explicitly in Sec. VA) and we will not
distinguish them any more in the following discussion of
the factorization theorems. Since this concerns the only
potential difference for the two scaling hierarchies 1 − x ≫
ΛQCD=Q and 1 − x ∼ ΛQCD=Q, we obtain that the factori-
zation theorem in the complete end-point region is always
the same for any 1 − x≳ ΛQCD=Q.
We emphasize that in contrast to the OPE regime 1 −

x ∼Oð1Þ the end-point PDF does not encode only collinear
initial-state radiation, but also (c)soft interference effects
between initial- and final-state radiation. Therefore, the
PDF at the end point may not be interpreted only as a
description of the momentum distribution inside the proton
before the hard interaction.
The full factorization theorem reads (to all orders in αs

and at leading order in 1 − x)

F1ðx;QÞ ¼ 1

2x
F2ðx;QÞ ¼

X
i¼q;q̄

e2i
2
HðnfÞðQ; μÞ

×
Z

dsJðnfÞðs; μÞϕðnfÞ
i=P

�
1 − x −

s
Q2

; μ

�
; ð15Þ

where the superscript ðnfÞ indicates the number of active
quark flavors relevant for the RG evolution of all

renormalized structures including in particular also the
strong coupling constant. Here the hard function
HðnfÞðQ; μÞ is the square of the matching coefficient
between the SCET and the QCD currents CðnfÞðQ; μÞ in
Eq. (6), while the jet function JðnfÞðs; μÞ and the PDF

ϕ
ðnfÞ
i=P ðl; μÞ are defined in Eq. (7) and Eq. (11) respectively.

Note that the hadronic tensor becomes transverse in the limit
x → 1, such that FLðx;QÞ ¼ 0 and the Callan-Gross rela-
tion F2ðx;QÞ ¼ 2xF1ðx;QÞ is satisfied to all orders in αs.
The massless fixed-order hard and jet functions,

HðnfÞðQ; μHÞ and JðnfÞðs; μJÞ, are known up to Oðα3sÞ
and Oðα2sÞ, respectively, and the anomalous dimensions
are known up to Oðα3sÞ. Explicit expressions can be found
e.g. in Ref. [13]. For the hard function we write

HðnfÞðQ; μÞ ¼ 1þHðnf;1ÞðQ; μÞ þ ½Hðnf;2Þ
CF

ðQ; μÞ
þH

ðnf;2Þ
CA

ðQ; μÞ þ nfH
ðnf;2Þ
TF

ðQ; μÞ� þOðα3sÞ;
ð16Þ

where Hðnf;1Þ, H
ðnf;2Þ
CF

, H
ðnf;2Þ
CA

and H
ðnf;2Þ
TF

denote the
contributions at OðαsÞ, Oðα2sC2

FÞ, Oðα2sCFCAÞ and
Oðα2sCFTFÞ, respectively. We use an analogous notation
for all other perturbative expressions throughout this paper.
The additional dependence on a finite quark mass will be
indicated in the arguments.
The factorization theorem of Eq. (15) is written with all

its components at the common renormalization scale μ,
which can be chosen independently from the respective
characteristic scales μH ∼Q for the hard function, μJ ∼
Q

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
for the jet function and μϕ ∼ ΛQCD for the PDF.

Since the choice of μ necessarily differs widely from at
least two of the characteristic scales, it is mandatory to sum
large logarithmic terms using the RG equations. This is
achieved by writing each component of the factorization
theorem as a function that is defined at the respective
characteristic scale μH, μJ or μϕ supplemented by a RG
evolution factor that sums the logarithms between the
characteristic scales and the common scale μ8:

HðnfÞðQ; μÞ ¼ HðnfÞðQ; μHÞUðnfÞ
H ðQ; μH; μÞ; ð17Þ

JðnfÞðs; μÞ ¼
Z

ds0JðnfÞðs − s0; μJÞUðnfÞ
J ðs0; μ; μJÞ;

ð18Þ

ϕðnfÞð1 − z; μÞ ¼
Z

dz0ϕðnfÞðz0 − z; μϕÞUðnfÞ
ϕ ð1 − z0; μ; μϕÞ:

ð19Þ

8Note the convention concerning the ordering of the arguments
of the evolution factors for the hard function in comparison to the
jet and PDF functions.
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The individual functions at the respective characteristic
scales μH, μJ and μϕ, which are free of any large
logarithmic terms, serve as the initial conditions of the
respective RG evolution which follows the RG equations

μ
d
dμ

U
ðnfÞ
H ðQ; μH; μÞ ¼ γ

ðnfÞ
H ðQ; μÞ

×U
ðnfÞ
H ðQ; μH; μÞ; ð20Þ

μ
d
dμ

U
ðnfÞ
J ðs; μ; μJÞ ¼

Z
ds0γðnfÞJ ðs − s0; μÞ

×U
ðnfÞ
J ðs0; μ; μJÞ; ð21Þ

μ
d
dμ

U
ðnfÞ
ϕ ð1 − z; μ; μϕÞ ¼

Z
dz0γðnfÞϕ ðz0 − z; μÞ

×U
ðnfÞ
ϕ ð1 − z0; μ; μϕÞ: ð22Þ

The superscript ðnfÞ for all components of the factorization
theorem (including RG factors) is a reminder that a
renormalization scheme with nf dynamic running quark
flavors is used, associated to an nf-flavor scheme. For the
hard and jet functions and the PDF this scheme is
implemented through the common MS subtraction scheme
for all corrections coming from nf quarks. Subsequently
this scheme implies that all these quarks enter the RG
equations via a global nf dependence. We recall that the
anomalous dimensions can be determined from the coun-
terterm factors Z that arise in the renormalization procedure
of the individual functions. For massless quarks they are
defined in the MS scheme. For example, for the PDF one
has

γϕð1 − z; μÞ ¼ −
Z

dz0Z−1
ϕ ðz0 − z; μÞμ d

dμ
Zϕð1 − z0; μÞ:

ð23Þ

In Eq. (15) the choice of μ is arbitrary, and the
dependence on μ cancels exactly working to any given
order in perturbation theory. The fact that any other
choice for μ can be implemented leads to a consistency
relation between the renormalization group factors, which
reads [13]

Q2U
ðnfÞ
H ðQ; μ0; μÞUðnfÞ

J ðQ2ð1 − zÞ; μ; μ0Þ
¼ U

ðnfÞ
ϕ ð1 − z; μ0; μÞ; ð24Þ

and a corresponding relation for the anomalous
dimensions.
Accounting for massive quarks the factorization theorem

(15) stays valid with some modifications. This concerns the
mass dependence of the hard and jet functions, which will

be indicated in the arguments, and a modified RG evolution
with an adapted flavor number according to the hierarchy
between the renormalization scale μ and the mass scale
μm ∼m, as described below. The consistency relation (24)
remains intact since the UV divergences are mass inde-
pendent. However, additional consistency relations emerge
between threshold corrections arising when massive quark
modes are integrated out. In the following sections we will
discuss these points in detail.
An important feature of the factorization theorem in

Eq. (15) is that there are no flavor-mixing terms between
quarks and gluons in any of the EFT contributions in the
hard current matching, the jet function, the PDF and their
evolution factors. One can easily explain this using the
possible interactions in SCETat leading order in the power-
counting parameter. For example, for the PDF evolution
one can make the following argument: flavor mixing
requires the splitting of an initial-state collinear quark or
gluon into two partons. To stay in the end-point regime one
of the final partons has to carry the longitudinal momentum
fraction ξ > x ≈ 1, i.e. almost the whole momentum,
implying that the remaining parton is (ultra)soft. The only
available interaction of this kind at leading order in SCET is
the emission of an (ultra)soft gluon from a collinear quark,
whereas the splitting of a collinear gluon into a collinear
and (ultra)soft quark is suppressed by Oð1 − xÞ. This
means that the parton extracted out of the PDF at the
low scale ∼ΛQCD is also the one interacting with the hard
photon and entering the final-state jet, and thus cannot be a
gluon. Since we assume m ≫ ΛQCD, so that the heavy
quarks are not produced nonperturbatively out of the
proton, this has the consequence that massive quarks enter
the EFT components of the factorization theorem only via
secondary corrections, i.e. via contributions which are
initiated by massless quarks and where massive quarks
are produced through the radiation of virtual gluons that
split into a massive quark-antiquark pair; see Fig. 3. We
mention that in the full QCD current there are also flavor-
mixing corrections with massive quarks which in general
start contributing also at Oðα2sÞ like the secondary correc-
tions. Since these types of corrections do not have a
corresponding EFT counterpart, they can be easily included
in the hard matching coefficient, and we will not consider
them specifically in our discussion. In fact, due to Furry’s
theorem, for the case of the electromagnetic vector current
these effects do not show up at Oðα2sCFTFÞ relevant for

FIG. 3. Exemplary diagrams for secondary massive quark
production in DIS at Oðα2sCFTFÞ.
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N3LL resummation, which is the order where we give
explicit results.

III. MASSIVE QUARK CORRECTIONS
FOR ALL COMPONENTS

In this section we summarize all ingredients of the
VFNS for secondary massive quark effects for the most
singular terms in inclusive DIS in the end-point region
x → 1. We consider a setup with nl massless flavors and
one massive quark species with mass m ≫ ΛQCD, which
we want to incorporate into the factorization theorem of
Eq. (15).9 This can be easily generalized to the case of
several massive quark flavors with different masses
appearing in practical considerations where the masses
of both the charm and bottom quarks may be relevant.
We do not impose any restriction concerning the relation
of the mass m to any of the hard, jet, or PDF scales. The
massive quark flavor will never be integrated out (in a
strict EFT sense) and is thus contained in the full QCD
description (relevant for the matching computation for the
hard function) as well as in the collinear and soft/usoft
sectors of SCET. Compared to Eq. (15) the factorization
theorem for the form factors F1;2 has an additional
dependence on the mass m:

F1ðx;Q;mÞ ¼ 1

2x
F2ðx;Q;mÞ

¼
X
i¼q;q̄

e2i
2
HðnfÞðQ;m; μÞ

Z
dsJðnfÞðs;m; μÞ

× ϕ
ðnfÞ
i=P

�
1 − x −

s
Q2

; m; μ

�
: ð25Þ

The factorization theoremhas an additional residual depend-
ence on the flavor thresholdmatching scale μm. The scale μm
is chosen close to the quarkmassm, μm ∼m, but otherwise it
is arbitrary and represents the scale at which we switch
between the ðnlÞ and the ðnl þ 1Þ running flavor schemes.
To be specific, we employ for all components of the
factorization scheme depending on the relation of the
common scale μ with respect to μm

(i) the ðnfÞ ¼ ðnlÞ flavor scheme for μ < μm and
(ii) the ðnfÞ ¼ ðnl þ 1Þ flavor scheme for μ > μm.

These two flavor schemes are implemented independently
for each of the components in Eq. (25) by either using an OS
or the MS subtraction prescription for UV-divergent secon-
dary massive quark-loop corrections.
In addition, there are flavor threshold matching con-

ditions arising from the difference of the subtraction
prescriptions of the two schemes whenever the RG

evolution requires a transition through μm. The overall
RG invariance of the factorization theorem concerning
changes of the renormalization scales and the consistency
of properly employing OS and MS subtraction for the
secondary massive quark corrections ensure that the
factorization theorem is continuous at the RG transition
through the threshold scale μm.

A. VFNS for the hard function

The hard function HðnfÞðQ;m; μÞ appearing in the
factorization theorem of Eq. (25) is in the ðnfÞ¼ðnlþ1Þ
flavor scheme if μ is above μm and in the ðnfÞ ¼ ðnlÞ flavor
scheme if μ is below μm:

HðnfÞðQ;m; μÞ ¼
�
Hðnlþ1ÞðQ;m; μÞ for μ > μm;

HðnlÞðQ;m; μÞ for μ < μm:
ð26Þ

The common renormalization scale μ is in general different
from the characteristic scale μH ∼Q of the hard function,
so we specify the hard function at the common scale μ by
the hard function at the scale μH, which is free of any large
logarithmic terms, multiplying a RG-evolution factor that
resums the logarithms between the scales μH and μ. The
hard function at the scale μH serves as the initial condition
of this RG evolution, and the flavor scheme that is
employed for the initial condition depends again on the
relation of μH to the flavor matching scale μm:

HðnfÞðQ;m; μHÞ ¼
�
Hðnlþ1ÞðQ;m; μHÞ for μH > μm;

HðnlÞðQ;m; μHÞ for μH < μm;

ð27Þ

where

HðnlÞðQ;m; μHÞ ¼ HðnlÞðQ; μHÞ þ 2F̂ðnl;2Þ
m ðQ;mÞ; ð28Þ

Hðnlþ1ÞðQ;m; μHÞ ¼ Hðnlþ1ÞðQ; μHÞ þ 2F̂ðnlþ1;2Þ
Δm ðQ;mÞ:

ð29Þ

The functions HðnlÞðQ; μHÞ and Hðnlþ1ÞðQ; μHÞ are the
hard functions for massless quarks in the ðnlÞ and ðnl þ 1Þ
flavor scheme respectively in the notation of Eq. (16). The

term F̂ðnl;2Þ
m represents the massive quark-loop contribu-

tion to the QCD current form factor with OS subtraction
in the ðnlÞ scheme; see the first diagram in Fig. 3. In fact,
for the case of DIS in the end-point region all mass-
dependent corrections at Oðα2sCFTFÞ can be directly
inferred from the matching calculations carried out for
thrust in Ref. [6] due to the fact that the hard coefficients
are the same up to an analytic continuation from the
timelike to the spacelike process. We write the result as

[αðnlÞs ¼ αðnlÞs ðμHÞ]

9We remark that we will not consider the possibility of having
an intrinsic charm contribution with m ∼ ΛQCD. In this case the
mass effects in the perturbative corrections are anyway power
suppressed.
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F̂ðnl;2Þ
m ðQ;mÞ ¼ ðαðnlÞs Þ2CFTF

16π2
fð2Þm ðQ;mÞ ð30Þ

with the function fð2Þm ðQ;mÞ given by

fð2Þm ðQ;mÞ

¼
��

46

9
r3 þ 10

3
r

��
Li2

�
r − 1

rþ 1

�
− Li2

�
rþ 1

r − 1

��

þ
�
−r4 þ 2r2 þ 5

3

��
Li3

�
rþ 1

r − 1

�
þ Li3

�
r − 1

rþ 1

�
− 2ζ3

�

þ
�
110

9
r2 þ 200

27

�
ln

�
1 − r2

4

�
þ 238

9
r2 þ 1213

81

�
;

ð31Þ

where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m̂2

p
; ð32Þ

and m̂ ¼ m=Q. Due to the imposed OS renormalization
condition this correction decouples for large masses, i.e.

F̂ðnl;2Þ
m ðQ;mÞ → 0 for m̂≡m=Q → ∞. For small masses

the function fð2Þm ðQ;mÞ reads

fð2Þm ðQ;mÞ⟶m̂→0 4

9
ln3ðm̂2Þ þ 38

9
ln2ðm̂2Þ

þ
�
530

27
þ 4π2

9

�
lnðm̂2Þ

þ 3355

81
þ 38π2

27
−
16

3
ζ3; ð33Þ

which exhibits mass singularities and is therefore not
suitable in the small-mass regime. The term

F̂ðnlþ1;2Þ
Δm ðQ;mÞ represents the corrections due to the

nonvanishing mass of the heavy quark in the ðnl þ 1Þ-
flavor result and can be cast into the simple form

F̂ðnlþ1;2Þ
Δm ðQ;mÞ ¼ ðαðnlþ1Þ

s Þ2CFTF

16π2
½fð2Þm ðm̂Þ − fð2Þm ðm̂Þjm→0�;

ð34Þ

which can be read off explicitly from Eqs. (31) and (33).

Due to the fact that F̂ðnlþ1;2Þ
Δm ðQ;mÞ → 0 for m̂≡m=Q→0

the massless limit is recovered in the hard function for a
vanishing quark mass. The form of Eq. (34) is a direct
consequence of the fact that the leading IR dependence
has to cancel in the SCET matching (in MS).
The RG evolution from μH to the common scale μ in the

VFNS proceeds in the ðnl þ 1Þ flavor scheme as long as the
scale is above μm and in the ðnlÞ flavor scheme if the scale
is below μm, according to Eq. (20). Finally, if the RG

evolution crosses the flavor matching scale μm, one has to
account for a threshold correction factor which we callMþ

H
if RG evolution crosses from the ðnlÞ flavor scheme to the
ðnl þ 1Þ flavor scheme and M−

H if RG evolution crosses
from the ðnl þ 1Þ flavor scheme to the ðnlÞ flavor scheme.
They are the inverse of each other since they are just the
ratios of the hard function of Eq. (27) in the two flavor
schemes:

Mþ
HðQ;m; μmÞ ¼

Hðnlþ1ÞðQ;m; μmÞ
HðnlÞðQ;m; μmÞ

; ð35Þ

M−
HðQ;m; μmÞ ¼

HðnlÞðQ;m; μmÞ
Hðnlþ1ÞðQ;m; μmÞ

: ð36Þ

Here the ratios should be expanded with a common choice

of either αðnlÞs ðμmÞ or αðnlþ1Þ
s ðμmÞ. The threshold correction

factor for the hard function at fixed Oðα2sÞ reads
[Lm ¼ lnðm2=μ2Þ]

M−ð2Þ
H ðQ;m; μmÞjFO

¼ α2sCFTF

16π2

��
8

3
L2
m þ 80

9
Lm þ 224

27

�
ln

�
m2

Q2

�
−
16

9
L3
m

−
4

9
L2
mþ

�
260

27
þ 4π2

3

�
Lm þ 875

27
þ 10π2

9
−
104

9
ζ3

�
;

ð37Þ

where αs can be either written in the nl or nl þ 1 scheme

and Mþð2Þ
H ¼ −M−ð2Þ

H . The corrections at fixed OðαsÞ are
zero, i.e. M�

HðQ;m; μmÞ ¼ 1þM�ð2Þ
H þOðα3sÞ. Note that

the threshold corrections M�
H involve the logarithm

lnðm2=Q2Þ. It is directly related to the rapidity divergences
arising in the computation of the SCET current with
collinear and soft fluctuations tied to the mass shell of
the secondary massive quarks; see Ref. [5]. In the loga-
rithmic counting Oðαs lnðm2=Q2ÞÞ ∼Oð1Þ one therefore
has to include also the terms at Oðα3s lnðm2=Q2ÞÞ and
Oðα4s ln2ðm2=Q2ÞÞ for a computation of M�

H at precision
Oðα2sÞ. In Sec. V we will show how to obtain these terms
via consistency from the PDF threshold correction, for
which we will also demonstrate explicitly the exponentia-
tion property of the rapidity logarithms.

B. VFNS for the jet function

The VFNS for the jet function can be set up in a way
analogous to the hard function. The jet function
JðnfÞðs;m; μÞ is in the ðnfÞ ¼ ðnl þ 1Þ flavor scheme if
μ is above μm and in the ðnfÞ ¼ ðnlÞ flavor scheme if μ is
below μm:
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JðnfÞðs;m; μÞ ¼
�
Jðnlþ1Þðs;m; μÞ for μ > μm;

JðnlÞðs;m; μÞ for μ < μm:
ð38Þ

The common renormalization scale μ is in general
different from the characteristic scale μJ ∼Q

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
of

the jet function, so we specify the jet function at the
common scale μ by the jet function at the scale μJ, which
is free of any large logarithmic terms, convoluted with an
RG-evolution factor that resums the logarithms between
the scales μJ and μ. The jet function at the scale μJ
serves as the initial condition of this RG evolution, and
the flavor scheme that is employed for the initial
condition depends again on the relation of μJ to the
flavor matching scale μm:

JðnfÞðs;m; μJÞ ¼
�
Jðnlþ1Þðs;m; μJÞ for μJ > μm;

JðnlÞðs;m; μJÞ for μJ < μm;
ð39Þ

where

JðnlÞðs;m; μÞ ¼ JðnlÞðs; μÞ þ Jðnl;2Þm;realðs;mÞ; ð40Þ

Jðnlþ1Þðs;m; μÞ ¼ Jðnlþ1Þðs; μÞ þ Jðnlþ1;2Þ
Δm;dist ðs;m; μÞ

þ Jðnlþ1;2Þ
m;real ðs;mÞ: ð41Þ

All mass-dependent corrections at Oðα2sCFTFÞ can be
directly inferred from the results computed in Ref. [6]
due to the fact that the thrust jet function is decomposed
out of two hemisphere jet functions each of which are the

same as the one in DIS. The terms Jðnl;2Þm;realðs;mÞ and

Jðnlþ1;2Þ
m;real ðs;mÞ in Eq. (41) contribute only when the jet

invariant mass is above the threshold 4m2 and thus
correspond to real production of the massive quarks.
They are given by

J
ðnf;2Þ
m;realðs;mÞ

¼ ðαðnfÞs Þ2CFTF

16π2
1

s
θðs − 4m2Þ

×

�
−
32

3
Li2

�
b − 1

1þ b

�
þ 16

3
ln

�
1 − b2

4

�
ln

�
1 − b
1þ b

�

−
8

3
ln2

�
1 − b
1þ b

�
þ
�
1

2
b4 − b2 þ 241

18

�
ln

�
1 − b
1þ b

�

−
5

27
b3 þ 241

9
b −

8π2

9

�
; ð42Þ

for both nf ¼ nl and nf ¼ nl þ 1 with

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

s

r
: ð43Þ

Note that Jðnl;2Þm;realðs;mÞ is zero at the threshold s ¼ 4m2

and that it decouples for m → ∞ automatically due to the
threshold Θ function, as required by the OS prescription.

The expression for Jðnlþ1;2Þ
Δm;dist ðs;m; μÞ contains only dis-

tributions and corresponds to collinear massive virtual
corrections (including soft-bin subtractions) as well as
terms related to the subtraction of the massless quark
result already contained in Jðnlþ1Þðs; μÞ. Its renormalized
expression reads (s̄ ¼ s=μ2)

μ2Jðnlþ1;2Þ
Δm;dist ðs;m; μÞ

¼ ðαðnlþ1Þ
s Þ2CFTF

16π2

�
δðs̄Þ

�
8

9
L3
m

þ 58

9
L2
m þ

�
718

27
−
8π2

9

�
Lm þ 4325

81
−
58π2

27
−
32

3
ζ3

�

þ
�
θðs̄Þ
s̄

�
þ

�
−
8

3
L2
m −

116

9
Lm −

718

27
þ 8π2

9

�

þ
�
θðs̄Þ ln s̄

s̄

�
þ

�
16

3
Lm þ 116

9

�
−
8

3

�
θðs̄Þln2s̄

s̄

�
þ

�
: ð44Þ

The jet function in the ðnl þ 1Þ scheme reaches the
massless limit, i.e. Jðnlþ1Þðs;m; μÞ → Jðnlþ1Þðs; μÞ for
m → 0.
The RG evolution from μJ to the common scale μ in

the VFNS proceeds in the ðnl þ 1Þ flavor scheme if the
scale is above μm and in the ðnlÞ flavor scheme if
the scale is below μm, according to Eq. (21). Finally, if
the RG evolution crosses the flavor matching scale μm,
one has to account for a threshold correction factor which
we call Mþ

J if RG evolution crosses from the ðnlÞ flavor
scheme to the ðnl þ 1Þ flavor scheme and M−

J if RG
evolution crosses from the ðnl þ 1Þ flavor scheme to the
ðnlÞ flavor scheme. They are the inverse of each other
since they are just convolutions of the jet function of
Eq. (39) in the two flavor schemes:

Mþ
J ðs;m; μmÞ

¼
Z

ds0Jðnlþ1Þðs − s0; m; μmÞðJðnlÞÞ−1ðs0; m; μmÞ; ð45Þ

M−
J ðs;m; μmÞ

¼
Z

ds0JðnlÞðs − s0; m; μmÞðJðnlþ1ÞÞ−1ðs0; m; μmÞ: ð46Þ

The threshold correction factor for the jet function at
fixed Oðα2sÞ reads
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μ2mM
−ð2Þ
J ðs;m; μmÞjFO

¼ α2sCFTF

16π2

�
δðs̄Þ

�
−
8

9
L3
m −

58

9
L2
m −

�
466

27
þ 4π2

9

�
Lm

−
1531

54
−
10π2

27
þ 80

9
ζ3

�

þ
�
θðs̄Þ
s̄

�
þ

�
8

3
L2
m þ 80

9
Lm þ 224

27

��
; ð47Þ

where αs can be either written in the ðnlÞ or ðnl þ 1Þ
scheme and Mþð2Þ

J ¼ −M−ð2Þ
J . The corrections at fixed

OðαsÞ are zero, i.e. M�
J ðs;m; μmÞ ¼ δðsÞ þM�ð2Þ

J þ
Oðα3sÞ. Note that M�

J implicitly contain a logarithm
∼ lnðm2=sÞ that becomes large for m ≪

ffiffiffi
s

p
∼Q

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
or m ≫

ffiffiffi
s

p
. Its presence becomes more manifest when

using the natural scaling variable ~s ¼ s=ν2J ∼Oð1Þ with
νJ ∼Q

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
instead of s̄ ¼ s=μ2m,

ν2JM
−ð2Þ
J ðs;m; μm; νJÞjFO

¼ α2sCFTF

16π2

�
δð~sÞ

�
−
8

9
L3
m −

58

9
L2
m −

�
466

27
þ 4π2

9

�
Lm

−
1531

54
−
10π2

27
þ 80

9
ζ3

�
þ
��

θð~sÞ
~s

�
þ
þ ln

�
ν2J
μ2m

�
δð~sÞ

�

×

�
8

3
L2
m þ 80

9
Lm þ 224

27

��
: ð48Þ

In the logarithmic counting Oðαs lnðm2=sÞÞ ∼Oð1Þ one
therefore has to include also the terms at Oðα3s lnðm2=sÞÞ
and Oðα4s ln2ðm2=sÞÞ for a computation of M�

J at Oðα2sÞ.
The corresponding results will be discussed in Sec. V
where we show how to obtain these terms via consistency
from the PDF threshold correction.

C. VFNS for the PDF

Analogous to the case of the hard and the jet function one
can set up the VFNS for the PDF. The PDF ϕðnfÞð1 − z; μÞ
is in the ðnfÞ ¼ ðnl þ 1Þ flavor scheme if μ is above μm and
in the ðnfÞ ¼ ðnlÞ flavor scheme if μ is below μm:

ϕðnfÞð1 − z;m; μÞ ¼
�
ϕðnlþ1Þð1 − z;m; μÞ for μ > μm;

ϕðnlÞð1 − z; μÞ for μ < μm:

ð49Þ

Note that in the ðnlÞ scheme the dependence on the quark
mass vanishes for m ≫ ΛQCD. The common renormaliza-
tion scale μ is in general different from the characteristic
scale μϕ ∼ ΛQCD of the PDF, so we specify the PDF at the
common scale μ by the PDF at the scale μϕ, convoluted
with an RG-evolution factor. The PDF at the scale μϕ serves
as an initial condition for the RG evolution and since we

consider effects of heavy quarks with a mass m ≫ ΛQCD,
the mass scale is always above the scale of the PDF, i.e.
μm > μϕ, so that the PDF at μϕ is always in the ðnlÞ flavor
scheme. This is independent of the scaling of (1 − x) with
respect to ΛQCD=Q.
The RG evolution from μϕ to the common scale μ in the

VFNS proceeds in the ðnl þ 1Þ flavor scheme if the scale is
above μm and in the ðnlÞ flavor scheme if the scale is below
μm, according to Eq. (22). Finally, if the RG evolution
crosses the flavor matching scale μm, one has to account for
a threshold correction factor Mþ

ϕ ,

Mþ
ϕ ð1 − z;m; μmÞ

¼
Z

dz0ϕðnlþ1Þðz0 − z;m; μmÞðϕðnlÞÞ−1ð1 − z0; m; μmÞ:

ð50Þ

Since we always assume μm > μϕ, only the transition from
the ðnlÞ to the ðnl þ 1Þ flavor scheme is relevant for the
PDF. The results for Mþ

ϕ ð1 − z;m; μÞ in the end-point
region can be easily obtained from the well-known PDF
threshold factor in the OPE region calculated in Ref. [9]
and for convenience also given in Eq. (A11) of Appendix A
by expanding for z → 1, which yields

Mþð2Þ
ϕ ð1 − z;m; μmÞjFO

¼ α2sCFTF

ð4πÞ2
�
δð1 − zÞ

�
2L2

m þ
�
2

3
þ 8π2

9

�
Lm þ 73

18
þ 20π2

27

−
8

3
ζ3

�
þ
�
θð1 − zÞ
1 − z

�
þ

�
8

3
L2
m þ 80

9
Lm þ 224

27

��
; ð51Þ

where αs can be either written in the ðnlÞ or ðnl þ 1Þ
scheme. The corrections at fixed OðαsÞ are zero, i.e.

Mþ
ϕ ð1−z;m;μmÞ¼δð1−zÞþMþð2Þ

ϕ þOðα3sÞ. In Sec. V
we will also compute this result directly from the definition
in Eq. (11) for the PDF in the end-point region. Mþ

ϕ

contains a large logarithm ∼ ln ð1 − zÞ that is manifest
when rescaling the plus distribution in terms of the
normalized soft momentum variable ~l≡ l=νϕ with l ¼
Qð1 − zÞ and νϕ ∼Qð1 − zÞ,

νϕ
Q

Mþð2Þ
ϕ

�
l
Q
;m;Q; μm; νϕ

�				
FO

¼ α2sCFTF

ð4πÞ2
�
δð ~lÞ

��
8

3
L2
m þ 80

9
Lm þ 224

27

�
ln

�
νϕ
Q

�

þ 2L2
m þ

�
2

3
þ 8π2

9

�
Lm þ 73

18
þ 20π2

27
−
8

3
ζ3

�

þ
�
θð ~lÞ
~l

�
þ

�
8

3
L2
m þ 80

9
Lm þ 224

27

��
: ð52Þ

VARIABLE FLAVOR NUMBER SCHEME FOR FINAL STATE … PHYSICAL REVIEW D 93, 034034 (2016)

034034-11



The large logarithms lnð1 − zÞ arise from rapidity diver-
gences in the collinear PDF function gi=P and the soft
function S (or csoft function Sc) and cannot be resummed
in the usual RG evolution. In Sec. V it will be shown how
these logarithms can be resummed using rapidity RG
methods as in Refs. [10,11] enabling us to evaluate the
matching coefficient Mþ

ϕ at N3LL order.

IV. PRACTICAL IMPLEMENTATION AND
CONSISTENCY RELATIONS

In this section we specify explicitly the RG properties
of the individual matrix elements in the factorization
theorem of Eq. (25) in the presence of massive quark
corrections for all hierarchies between the mass scale and
the kinematic scales. All of the factorization theorems are
valid up to power corrections of Oð1 − xÞ, independent of
the hierarchy between the mass and the kinematic scales,
since the change between the OS and MS renormalization

prescriptions does not generate any power corrections
involving the mass. Furthermore, we investigate the con-
ceptual implications of using different final renormalization
scales which all of the matrix elements are jointly evolved
to, which leads to consistency relations among the thresh-
old corrections.

A. Explicit factorization theorems with massive quarks

We apply the prescriptions given in Sec. III and use first
for definiteness a common renormalization scale μ < μm.
This implies that the matrix elements and couplings are
renormalized in the ðnlÞ scheme at the common μ. If the RG
evolution from the natural scale of the matrix element μi
(for i ¼ H; J) to the final scale μ crosses the scale μm, the
scheme is changed leading to the threshold correction M−

i
and the number of active flavors in the evolution changes
from nl þ 1 to nl. Thus the hard and jet functions can be
written as

HðnlÞðQ;m; μÞ ¼
�
Hðnlþ1ÞðQ;m; μHÞUðnlþ1Þ

H ðQ; μH; μmÞM−
HðQ;m; μmÞUðnlÞ

H ðQ; μm; μÞ for μH > μm;

HðnlÞðQ;m; μHÞUðnlÞ
H ðQ; μH; μÞ for μH < μm;

ð53Þ

JðnlÞðs;m; μÞ ¼

8>><
>>:

R
ds0

R
ds00

R
ds000JðnlÞðs − s0; m; μJÞUðnlÞ

J ðs0 − s00; μm; μJÞ
× M−

J ðs00 − s000; m; μmÞUðnlÞ
J ðs000 − s00; μ; μmÞ for μJ > μm;R

ds0JðnlÞðs − s0; m; μJÞUðnlÞ
J ðs0; μ; μJÞ for μJ < μm:

ð54Þ

Note that the PDF is never evolved in the (nl þ 1) flavor scheme for μ < μm because we always assume
m ∼ μm > μϕ ∼ ΛQCD, so that Eq. (19) holds with nf ¼ nl. The explicit description of the complete factorization theorem
with all evolution factors written out thus adopts three different forms depending on the hierarchy between μm on the one
hand and μH and μJ on the other. For simplicity we set here μ ¼ μϕ, so that the RG factor for the PDF can be dropped. For
μm > μH we get

FI
1ðx;Q;mÞ ¼

X
i¼q;q̄

e2i
2
HðnlÞðQ;m; μHÞUðnlÞ

H ðQ; μH; μϕÞ
Z

ds
Z

ds0JðnlÞðs0; m; μJÞUðnlÞ
J ðs − s0; μϕ; μJÞ

× ϕðnlÞ
i=P

�
1 − x −

s
Q2

; μϕ

�
: ð55Þ

This factorization theorem covers in particular the region, where the massive quark decouples and therefore for all
renormalizable quantities the OS scheme is used for the secondary massive quark effects. In this regime mass effects in the

jet function are power suppressed by OðQ2ð1−xÞ
m2 Þ ≲Oð1 − xÞ and might be dropped due to their small size.10 For μH >

μm > μJ one gets

FII
1 ðx;Q;mÞ ¼

X
i¼q;q̄

e2i
2
Hðnlþ1ÞðQ;m; μHÞUðnlþ1Þ

H ðQ; μH; μmÞM−
HðQ;m; μmÞUðnlÞ

H ðQ; μm; μϕÞ

×
Z

ds
Z

ds0JðnlÞðs0; m; μJÞUðnlÞ
J ðs − s0; μϕ; μJÞϕðnlÞ

i=P

�
1 − x −

s
Q2

; μϕ

�
: ð56Þ

10Since mass effects in the jet sector appear only in the real radiation correction JðnlÞm;real containing a kinematic threshold, they can in
practice anyway not contribute.
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Here we use both the MS and OS renormalization prescriptions for the secondary massive quark effects in the evolution of
the hard function. In particular the MS scheme allows us to reach the massless limit for the fixed-order hard coefficient
Hðnlþ1ÞðQ;m; μHÞ. Since μm > μJ the jet function is still always evolved in the ðnlÞ scheme. It is easy to see that for
μm ¼ μH the two factorization theorems in Eqs. (55) and (56) agree due to the matching relation (36). So there is a
(perturbatively) continuous transition between the two scaling hierarchies described by FI

1 and FII
1 .

Finally, for μJ > μm > μϕ the explicit factorization theorem reads

FIII
1 ðx;Q;mÞ ¼

X
i¼q;q̄

e2i
2
Hðnlþ1ÞðQ;m; μHÞUðnlþ1Þ

H ðQ; μH; μmÞM−
HðQ;m; μmÞUðnlÞ

H ðQ; μm; μϕÞ

×
Z

ds
Z

ds0
Z

ds00
Z

ds000Jðnlþ1Þðs000; m; μJÞUðnlþ1Þ
J ðs00 − s000; μm; μJÞM−

J ðs0 − s00; m; μmÞ

×UðnlÞ
J ðs − s0; μϕ; μmÞϕðnlÞ

i=P

�
1 − x −

s
Q2

; μϕ

�
: ð57Þ

Now in addition both renormalization prescriptions are
also used for the jet function allowing us to reach
the massless limit for the fixed-order structure
Jðnlþ1Þðs;m; μJÞ. In this regime mass corrections in the
hard function are power suppressed by Oðm2

Q2Þ≲Oð1 − xÞ
and taking the massless limit might be suitable. Again, it
is easy to see that for μm ¼ μJ the two factorization
theorems in Eqs. (56) and (57) agree due to the matching
relation (46). So there is a (perturbatively) continuous
transition between the two scaling hierarchies described
by FII

1 and FIII
1 .

B. Consistency conditions

The equivalence of the factorization theorem for differ-
ent choices of the common renormalization scale μ con-
cerning physical predictions leads to statements about the
intrinsic relations between its components. On the one
hand, they imply the well-known consistency conditions
between the RG evolution factors UH, UJ and Uϕ; see
Eq. (24). On the other hand, in the context of the RG

evolution crossing a massive quark threshold they also
imply a consistency relation between the threshold factors
for the hard, jet and parton distribution functions, M�

H,
M�

J andMþ
ϕ . Apart from providing consistency checks of

theoretical calculations, these relations have also computa-
tional power, as they can be used to calculate properties of
independent gauge-invariant field-theoretic objects once it
has become clear that they represent building blocks of a
factorization theorem. Hereby, one of the most interesting
aspects is that the various building blocks can appear in
different factorization theorems, and one may gain insights
into the mass singularities of apparently unrelated
quantities.
In the previous subsection we have discussed the

renormalization of the matrix elements for μ < μm. An
equivalent choice would have been μ > μm, where all
renormalized quantities are evaluated in the ðnl þ 1Þ
scheme at the common scale μ. Here the RG evolution
of the hard and jet functions and the PDF reads

Hðnlþ1ÞðQ;m; μÞ ¼
�
Hðnlþ1ÞðQ;m; μHÞUðnlþ1Þ

H ðQ; μH; μÞ for μH > μm;

HðnlÞðQ;m; μHÞUðnlÞ
H ðQ; μH; μmÞMþ

HðQ;m; μmÞUðnlþ1Þ
H ðQ; μm; μÞ for μH < μm;

ð58Þ

Jðnlþ1Þðs;m; μÞ ¼

8>><
>>:

R
ds0Jðnlþ1Þðs − s0; m; μJÞUðnlþ1Þ

J ðs0; μ; μJÞ for μJ > μm;R
ds0

R
ds00

R
ds00

R
ds000JðnlÞðs − s0; m; μJÞUðnlÞ

J ðs0 − s00; μm; μJÞ
× Mþ

J ðs00 − s000; m; μmÞUðnlþ1Þ
J ðs000 − s00; μ; μmÞ for μJ < μm;

ð59Þ

ϕðnlþ1Þð1 − z;m; μÞ ¼
Z

dz0dz00dz000ϕðnlÞðz0 − z; μϕÞUðnlÞ
ϕ ðz00 − z0; μm; μϕÞ

×Mþ
ϕ ðz000 − z00; m; μmÞUðnlþ1Þ

ϕ ð1 − z000; μ; μmÞ: ð60Þ

Here the threshold factor Mþ
ϕ ð1 − z;m; μmÞ arises since the RG evolution of the PDF ϕ necessarily crosses the massive

quark threshold.
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In Fig. 4 we show an illustration of the two equivalent choices for μJ > μm, i.e. we display the situations where the
common renormalization scale μ lies (a) between the mass and the PDF scales or (b) between the jet and the mass scales. To
discuss the implications let us consider the complete factorization theorem for this specific hierarchy in case (b) with μ ¼ μJ
set for simplicity,

FIII
1 ðx;Q;mÞ ¼

X
i¼q;q̄

e2i
2
Hðnlþ1ÞðQ;m; μHÞUðnlþ1Þ

H ðQ; μH; μJÞ
Z

dsJðnlþ1Þðs;m; μJÞ
Z

dzUðnlþ1Þ
ϕ ðz − x; μJ; μmÞ

×
Z

dz0
Z

dz00Mþ
ϕ ðz0 − z;m; μmÞUðnlÞ

ϕ ðz00 − z0; μm; μϕÞϕðnlÞ
i=P

�
1 − z00 −

s
Q2

; μϕ

�
: ð61Þ

The equivalence of the factorization theorems in Eqs. (57)
and (61) implies, besides the relation between the evolution
factors and anomalous dimensions shown in Eq. (24) for
nf ¼ nl and nl þ 1, also a relation between the threshold
correction factors,

Mþ
ϕ ð1 − z;m; μÞ ¼ Q2M−

HðQ;m; μÞM−
J ðQ2ð1 − zÞ; m; μÞ

ð62Þ

or equivalently

δð1 − zÞ ¼ Q2Mþ
HðQ;m; μÞ

Z
dz0Mþ

J ðQ2ð1 − z0Þ; m; μÞ

×Mþ
ϕ ðz0 − z;m; μÞ: ð63Þ

These relations imply in particular that the rapidity loga-
rithms (and singularities) that arise in the hard, collinear and
soft sectors are intrinsically related to each other. We can
explicitly check that the consistency relation is satisfied at
Oðα2sÞ in the fixed-order expansion. Inserting Eqs. (37), (47)
and (51) confirmsEq. (62).We emphasize that for Eq. (51) to
be satisfied for arbitrary masses the coefficients of the
rapidity logarithms lnðm2=Q2Þ in M�

H, lnðQ2ð1 − xÞ=m2Þ
in M�

J and lnð1 − xÞ in Mþ
ϕ need to be equivalent.

V. CALCULATION OF THE PDF
THRESHOLD CORRECTION

As already indicated in Eq. (50), the PDF threshold
correction Mþ

ϕ ð1 − z;m; μÞ is given by the ratio of the
PDFs in the (nl þ 1) and (nl) schemes, i.e.

(a) (b)

FIG. 4. Illustration of the different RG setups for the hierarchy μJ > μm > μϕ leading to the consistency
relations mentioned in the text. We display the cases where the common renormalization scale μ satisfies (a) μm > μ > μϕ and
(b) μJ > μ > μm.
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Mþ
ϕ ð1 − z;m; μmÞ

¼
Z

dz0ϕðnlþ1Þð1 − z0; m; μmÞðϕðnlÞÞ−1ðz0 − z;m; μmÞ

¼
Z

dz0ZðnlÞ
ϕ ð1 − z0; m; μmÞðZðnlþ1Þ

ϕ Þ−1ðz0 − z; μmÞ;

ð64Þ

where the second equality arises from the universality of
the unrenormalized bare PDF. Note that in Eq. (64) the
calculation of the PDFs can be performed with partonic
initial states (i.e. quarks) since the different renormalization
conditions are not affected by the infrared behavior. This
can be also seen from the second equality which only
involves the renormalization factors.
Since the PDF in the end-point region is decomposed out

of a soft function S [or a csoft function Sc, depending on the
scaling of (1 − x) with respect to ΛQCD=Q] and a collinear
function g [see Eq. (11)], the analogous relations to Eq. (64)
hold also for the corresponding matching coefficients MS

and Mg, which are related to Mþ
ϕ via11

Mþ
ϕ ð1 − z;m; μmÞ ¼ Q

Z
dlMSðl; m; μm; νÞ

×MgðQð1 − zÞ − l; Q;m; μm; νÞ:
ð65Þ

An important technical point is that we encounter rapidity
divergences in the calculation of the collinear and soft PDF
functions which are not associated to the UVor IR behavior
and are not regularized by dimensional regularization. To
regulate these divergences we need an additional regulator
that breaks boost invariance. Here we display the corre-
sponding results for individual diagrams employing the “η
regulator” [10,11] for the collinear, soft and csoft Wilson
lines, i.e.

Wn̄ ¼
X
perms

exp

�
−

g
n · P

jn · Pj−η
ν−η

n · An̄

�
; ð66Þ

Sn̄ ¼
X
perms

exp
�
−

g
n̄ · P

j2P3j−η=2
ν−η=2

n̄ · As

�
; ð67Þ

Xn̄ ¼
X
perms

exp

�
−

g
n̄ · P

jn · Pj−η=2
ν−η=2

n̄ · Acs

�
; ð68Þ

and similarly for Sn and Vn̄, where due to the boost of the
csoft modes with respect to the soft modes j2P3j is replaced
by jn · Pj. In this context the scale ν is an auxiliary scale to
maintain the dimensions of the regulated integrals which

adopts a similar role as the μ scale in dimensional
regularization. In particular, also the strong coupling adopts
a ν scaling proportional to η.
We follow the method of Refs. [10,11] for setting up the

rapidity RG evolution. The summation of the rapidity
logarithms can be carried out independently after the μ
evolution has been settled which is the approach we are
adopting here. We will show that the decomposition in
Eq. (65) provides a way to resum rapidity logarithms
∼ lnð1 − xÞ in terms of a RG evolution in ν. A similar
factorization in rapidity is used in the hard current matching
computation for massive primary quarks of Ref. [23] which
also discusses the rapidity RG evolution due to secondary
massive quark effects in detail.
For sufficiently inclusive observables dispersion rela-

tions can be used to obtain the results for secondary
massive quark radiation (with mass m) at Oðα2sCFTFÞ
from the results for “massive gluon” radiation (with mass
M) at OðαsÞ, which allows us to deal with the technically
simpler one-loop computations for the latter instead of
performing the two-loop integration directly. The
dispersion method has been discussed in detail in
Ref. [6] and we refer to Sec. IVA therein for the notations
and the explicit relations involved. For the following
computations we use always Feynman gauge.

A. One-loop results for the PDF soft and collinear
functions with a massive gluon

For the computation of the PDF threshold correction we
have to consider both the collinear PDF function gq=Pðl; μÞ
defined in Eq. (12) and the csoft or soft function Scðl; μÞ
and Sðl; μÞ defined in Eqs. (13) and (14), respectively. As
already argued in Sec. II B the csoft and soft functions are
related by a common boost of the Wilson lines and are
therefore in fact equivalent, which we will explicitly show
here at the one-loop level. Since we are interested in the
matching correction related to different employed renorm-
alization schemes, we can perform the computation with
partonic initial states. In this subsection we consider only
the massive gluon contributions. A similar calculation has
been performed in Ref. [17] within the context of using the
gluon mass as an IR regulator.
Let us start with the computation of the partonic collinear

contribution ĝð1Þq=q. Since this is a local matrix element, no
real radiation diagrams can contribute.12 Therefore the only
contribution (besides the wave-function renormalization)
for massive gluon radiation at OðαsÞ is given by the virtual
gluon contribution of the diagram in Fig. 5 and its
symmetric configuration, which we denote together by
gn̄. For convenience, we use a frame where the
perpendicular component of the initial on-shell quark

11For notational simplicity we use here the soft matching
coefficient MS, which is identical to the csoft matching coef-
ficient MSc .

12To stay in the end-point region 1 − x ≪ 1 the emitted gluon
would need to be soft, a contribution that is excluded from the
collinear matrix elements by zero-bin subtractions.
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momentum vanishes, i.e. pμ ¼ ðpþ; p−; p⊥Þ ¼ ðQ; 0; 0Þ.
We then obtain

gn̄ ¼ 4ig2CF ~μ
2ϵνηδðlÞ

Z
ddk
ð2πÞd

Q − kþ

ðkþÞ1þη

×
1

½kþk− − ~k2⊥ −Qk− þ iϵ�
1

½kþk− − ~k2⊥ −M2 þ iϵ�
:

ð69Þ

After performing the k− and k⊥ integrations we get

gn̄ ¼ −
αsCF

π
δðlÞΓ

�
2 −

d
2

��
μ2eγE

M2

�
2−d

2

νη

×
Z

Q

0

dkþ

ðkþÞ1þη

�
1 −

kþ

Q

�d
2
−1
: ð70Þ

This contribution is not regularized by dimensional regu-
larization alone (i.e. for η ¼ 0) and there is no collinear real
radiation contribution to cancel the corresponding rapidity
divergence [in contrast to the OPE region 1 − x ∼Oð1Þ].
Expanding for η → 0 gives

gn̄ ¼
αsCF

π
δðlÞΓ

�
2 −

d
2

��
μ2eγE

M2

�
2−d

2

×

�
1

η
þ ln

�
ν

Q

�
þHd

2
−1

�
; ð71Þ

where Hα ¼ ψð1þ αÞ þ γE is the harmonic number. The
corresponding soft-bin subtractions gn̄;0M have to be taken
into account, which in general yield some additional
corrections. However, for the η regulator they vanish.
Including the contribution from the wave-function renorm-
alization, given by

Zð1Þ
ξ ¼ αsCF

4π
Γ
�
2 −

d
2

��
μ2eγE

M2

�
2−d

2 2ðd − 2Þ
d

; ð72Þ

we obtain in total for the bare partonic collinear function

ĝðbare;1Þq=q ðl;M;Q; μ; νÞ
¼ ðgn̄ − gn̄;0MÞ − Zð1Þ

ξ δðlÞ

¼ αsCF

4π
δðlÞΓ

�
2 −

d
2

��
μ2eγE

M2

�
2−d

2

×
�
4

η
þ 4 ln

�
ν

Q

�
þ 4Hd

2
−1 −

2ðd − 2Þ
d

�
: ð73Þ

This is in agreement with the results given in Refs. [11,17].
Let us turn to the computation of the (partonic) soft

matrix element Ŝð1Þ, where the corresponding diagrams are
shown in Fig. 6. The virtual diagrams Svirt with the η
regulator employed for both Wilson lines read (including
symmetric configurations)

Svirt ¼ − 4ig2CF ~μ
2ϵνηδðlÞ

×
Z

ddk
ð2πÞd

jkþ − k−j−η
½k− − iϵ�½kþ − iϵ�

1

½k2 −M2 þ iϵ� : ð74Þ

A simple way to evaluate this is to first perform the k0
integration by contours and afterwards the remaining k3
and k⊥ integrations, which yields in agreement with
Refs. [11,17]

Svirt ¼ −
αsCF

π
δðlÞΓ

�
2 −

d
2

��
μ2eγE

M2

�
2−d

2

×

�
2

η
þ 2 ln

�
ν

M

�
þH1−d

2

�
: ð75Þ

The real radiation diagrams Sreal yield

Sreal ¼ 4ig2CF ~μ
2ϵνη

Z
ddk
ð2πÞd

jkþ − k−j−η
½k− − iϵ�½kþ − iϵ�

× ð−2πiÞδðk2 −M2Þδðl − kþÞ: ð76Þ

After performing the trivial kþ and k⊥ integrations this
reads

FIG. 6. Nonvanishing Feynman diagrams for the computation
of the one-loop massive gluon contributions to the soft function
Sðl; μÞ. The corresponding symmetric configurations are
implied.

FIG. 5. Feynman diagram for the collinear PDF function with a
massless quark field in the initial state and a massive gluon at
OðαsÞ. The symmetric diagram and wave-function corrections
have to be added.

ANDRE H. HOANG, PIOTR PIETRULEWICZ, and DANIEL SAMITZ PHYSICAL REVIEW D 93, 034034 (2016)

034034-16



Sreal ¼
αsCF

π

ðμ2eγEÞ2−d
2

Γðd
2
− 1Þ

θðlÞ
l

νη

×
Z

∞

M2

l

dk−

k−
ðlk− −M2Þd2−2jl − k−j−η: ð77Þ

Finally, expanding in η after the k− integration yields (with
l̄≡ l=ν)

νSreal ¼
αsCF

π
Γ
�
2 −

d
2

��
μ2eγE

M2

�
2−d

2

×

�
δðl̄Þ

�
1

η
þ 2 ln

�
ν

M

�
þH1−d

2

�
þ
�
θðl̄Þ
l̄

�
þ

�
:

ð78Þ

We note that our computation of Sreal differs from Ref. [17]
which uses the same regularization methods in several ways.
First, our prescription for theWilson lines in the soft function
differs from theirs resulting in a relative sign in Eq. (76).
Second, the result of the phase-space integrations in Eq. (35)
ofRef. [17] does not agreewithEq. (78). Third,we emphasize
that in the computation of the soft diagrams we do not
encounter any nonvanishing collinear-bin subtractions, in
contrast to such a statement given there. However, overall
these three deviations cancel each other giving the same result
for the total soft real radiation correction in our Eq. (78).
Summing up all contributions the bare soft function

reads in terms of ~l≡ l=νϕ with νϕ ∼Qð1 − xÞ

νϕSðbare;1Þðl;M; μ; νÞ
¼ νϕðSvirt þ SrealÞ

¼ αsCF

4π
Γ
�
2 −

d
2

��
μ2eγE

M2

�
2−d

2

×

�
δð ~lÞ

�
−
4

η
− 4 ln

�
ν

νϕ

��
þ 4

�
θð ~lÞ
~l

�
þ

�
ð79Þ

in agreement with the result in Ref. [17].
Next we will also calculate the csoft function Sc to show

that this leads to the same result as for the soft function S
above. Here only the rapidity regularization prescription
changes; see Eq. (68) compared to Eq. (67). This gives a
scaleless contribution for the virtual diagram, such that
Sc;virt ¼ 0. The real radiation diagrams for the csoft
function then give

Sc;real ¼
αsCF

π

ðμ2eγEÞ2−d
2

Γðd
2
− 1Þ

θðlÞ
l1þη ν

η ×
Z

∞

M2

l

dk−

k−
ðlk− −M2Þd2−2

¼ αsCF

π
Γ
�
2 −

d
2

��
μ2eγE

M2

�
2−d

2 θðlÞνη
l1þη ; ð80Þ

which slightly differs from Eq. (77) concerning the
dependence on the η regulator. Expanded in η gives exactly

the same result as shown in Eq. (79). Finally, we remark
that at one loop the η regulator for the csoft function acts in
the same way as the α regulator suggested in Ref. [24]
applied to the large light-cone component,

dkþ

kþ
→ να

dkþ

ðkþÞ1þα : ð81Þ

Since the α regulator is boost independent, it gives
automatically the same result for the virtual and real
radiation diagrams of the soft and csoft functions. For
the collinear function gn̄ both regulators are anyway
identical, which thus also implies that the η regulator needs
to yield the same result for the soft and csoft functions. We
will therefore not distinguish between the soft and the csoft
functions anymore in the following.
Expanding Eqs. (73) and (79) for d → 4 gives the

unrenormalized corrections13 [LM¼ lnðM2=μ2Þ, ~l ¼ l=νϕ]

ĝðbare;1Þq=q ðl;M;Q; μ; νÞ

¼ αsCF

4π
δðlÞ

�
4

η

�
1

ϵ
− LM þOðϵÞ

�
þ 1

ϵ

�
4 ln

�
ν

Q

�
þ 3

�

−4LM ln

�
ν

Q

�
− 3LM þ 9

2
−
2π2

3

�
; ð82Þ

νϕSðbare;1Þðl;M; μ; νÞ

¼ αsCF

4π

�
δð ~lÞ

�
−
1

η

�
4

ϵ
− 4LM þOðϵÞ

�
−
�
4

ϵ
− 4LM

�

× ln

�
ν

νϕ

��
þ
�
θð ~lÞ
~l

�
þ

�
4

ϵ
− 4LM

��
: ð83Þ

We see that ĝð1Þq=q and Ŝð1Þ are free of large logarithms for
ν ¼ νg ∼Q and ν ¼ νS ∼ νϕ ∼Qð1 − xÞ, respectively. For
later reference we also give the resulting MS-type counter-
terms (subtracting the 1=ϵ and 1=η divergences)

νϕZ
ð1Þ
g ¼ αsCF

4π
δð ~lÞ

�
4

η

�
1

ϵ
− LM þOðϵÞ

�

þ 1

ϵ

�
4 ln

�
ν

Q

�
þ 3

��
; ð84Þ

νϕZ
ð1Þ
S ¼ αsCF

4π

�
δð ~lÞ

�
−
4

η

�
1

ϵ
− LM þOðϵÞ

�

−
4

ϵ
ln
�
ν

νϕ

��
þ 4

ϵ

�
θð ~lÞ
~l

�
þ

�
: ð85Þ

13Here the ϵ dependence in the expression proportional to 1=η
should be in principle kept unexpanded to avoid terms going like
ϵ=η in the μ-anomalous dimension. However, for convenience we
show only the terms up to Oðϵ0Þ.
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B. Two-loop results for the PDF soft and
collinear functions

We calculate the secondary massive quark corrections at
Oðα2sCFTFÞ for the PDF soft and collinear functions in the
ðnl þ 1Þ flavor scheme using the (partonic) results for the
real and virtual radiation of a massive gluon at OðαsÞ in
Eqs. (73) and (79). Applying dispersion relations as
discussed in Sec. IVA of Ref. [6] yields

ĝðnlþ1;bare;2Þ
q=q;TF

ðl; m;Q;Λ; μ; νÞ

¼ 1

π

Z
dM2

M2
ĝðbare;1Þq=q ðl;M;Q; μ; νÞIm½Πðm2;M2Þ�

−
�
Πðm2; 0Þ − αðnlþ1Þ

s TF

3π

1

ϵ

�
ĝðbare;1Þq=q ðl;Λ; Q; μ; νÞ;

ð86Þ

Ŝðnlþ1;bare;2Þ
TF

ðl; m;Λ; μ; νÞ

¼ 1

π

Z
dM2

M2
Ŝðbare;1Þðl;M; μ; νÞIm½Πðm2;M2Þ�

−
�
Πðm2; 0Þ − αðnlþ1Þ

s TF

3π

1

ϵ

�
Ŝðbare;1Þðl;Λ; μ; νÞ; ð87Þ

with the imaginary part of the vacuum polarization
function Πðm2; p2Þ and its value at zero momentum
given by

Im½Πðm2; p2Þ� ¼ θðp2 − 4m2Þg2TF ~μ
2ϵðp2Þðd−4Þ=2

×
23−2dπð3−dÞ=2

Γðdþ1
2
Þ

�
d − 2þ 4m2

p2

�

×

�
1 −

4m2

p2

�ðd−3Þ=2
; ð88Þ

Πðm2; 0Þ ¼ αsTF

3π

�
μ2eγE

m2

�
2−d

2

Γ
�
2 −

d
2

�
: ð89Þ

For the scheme change contributions in the respective
second terms of Eqs. (86) and (87) we use a gluon mass
Λ ≪ m as an infrared regulator which allows us to
factorize also these corrections with respect to rapidity
and to use the results from Sec. VA. The total bare
results at Oðα2sCFTFÞ for the partonic collinear and soft
functions then read

νĝðnlþ1;bare;2Þ
q=q;TF

¼ ðαðnlþ1Þ
s Þ2CFTF

16π2
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þ 20π2
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−
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3
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�
; ð90Þ

νŜðnlþ1;bare;2Þ
ϕ;TF

¼ ðαðnlþ1Þ
s Þ2CFTF

16π2
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1

η
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−
40

9ϵ
−
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3
LmLΛ þ 8

3
L2
m þ 80

9
Lm þ 224

27

��
ð91Þ

with l̄ ¼ l=ν, Lm ¼ lnðm2=μ2Þ and LΛ ¼ lnðΛ2=μ2Þ. Therefore, the nonvanishing two-loop counterterm contributions in
MS renormalization (subtracting also the 1=η divergences), which are used in the ðnl þ 1Þ flavor scheme above the quark
mass threshold, read14

νZðnlþ1;2Þ
g;TF

¼ αðnlþ1Þ
s ðμ; νÞαðnlþ1Þ

s ðμÞCFTF

16π2
δðl̄Þ

�
1

η

�
8

3ϵ2
−
40

9ϵ
−
16

3
LmLΛ þ 8

3
L2
m þ 80

9
Lm þ 224

27
þOðϵÞ

�

þ 1

ϵ2

�
8

3
ln

�
ν

Q

�
þ 2

�
þ 1

ϵ

�
−
40

9
ln

�
ν

Q

�
−
1

3
−
4π2

9

��
; ð92Þ

14We indicate explicitly that only the strong coupling related to the interactions of the gluon to the primary quarks is affected by the
rapidity regularization procedure and adopts a ν dependence. The interactions due to gluon splitting within a single sector do not contain
any rapidity divergences and therefore do not need additional regularization. We note that the renormalized strong coupling depends on
the scale ν only due to the dimensional extension of the k− integration and satisfies dαsðμ; νÞ=d ln ν ¼ −ηαsðμ; νÞ to all orders.
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νZðnlþ1;2Þ
S;TF

¼ αðnlþ1Þ
s ðμ; νÞαðnlþ1Þ

s ðμÞCFTF

16π2

�
1

η
δðl̄Þ
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8

3ϵ2
þ 40

9ϵ
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3
L2
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þOðϵÞ
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þ
�
θðl̄Þ
l̄

�
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�
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3ϵ2
−
40

9ϵ

��
: ð93Þ

The sum of the individual counterterm contributions gives
the complete PDF counterterm atOðα2sÞ with respect to one
flavor,

Zðnlþ1;2Þ
ϕ;TF

�
l
Q

¼ 1 − z; μ

�
¼ QðZðnlþ1;2Þ

g;TF
þ Zðnlþ1;2Þ

S;TF
Þ

¼ ðαðnlþ1Þ
s Þ2CFTF

16π2

�
δð1 − zÞ

�
2

ϵ2
−
1

ϵ

�
1

3
þ 4π2

9

��

þ
�
θð1 − zÞ
1 − z

�
þ

�
8

3ϵ2
−
40

9ϵ

��
: ð94Þ

This yields, using also the corresponding contributions
at OðαsÞ in Eqs. (84) and (85) the correct Oðα2sCFTFÞ
contribution to the μ-anomalous dimension for the
PDF,

γðnlþ1;2Þ
ϕ;TF

ð1 − z; μÞ ¼ ðαðnlþ1Þ
s Þ2CFTF

16π2

�
2Γð2Þ

TF

�
θð1 − zÞ
1 − z

�
þ

−
�
4

3
þ 16π2

9

�
δð1 − zÞ

�
ð95Þ

with Γð2Þ
TF

¼ −80=9 being theOðα2sCFTFÞ coefficient of the
cusp anomalous dimension ΓðnfÞ

cusp.
Below the mass threshold in the ðnlÞ flavor scheme the

OS subtraction prescription is employed for both the strong
coupling and the massive quark contribution to the collin-
ear and soft PDF functions. The OS prescription implies
that the secondary massive quark corrections decouple in
the limit m → ∞. Since the bare result given in Eq. (90)
agrees with its large-mass limit it can be easily seen that the
Oðα2sCFTFÞmassive quark corrections are subtracted away
entirely by the OS counterterm. For the PDF threshold
corrections at Oðα2sCFTFÞ we therefore obtain

Mð2Þ
g ðl; m;Q; μm; νÞ ¼

Z
dl0ĝðnlþ1Þ

q=q ðl − l0; m;Q;Λ; μm; νÞðĝðnlÞq=qÞ−1ðl0; Q;Λ; μm; νÞj
Oðα2sÞ

¼ ĝðnlþ1;bare;2Þ
q=q;TF

− Zðnlþ1;2Þ
g;TF

−
αðnlþ1Þ
s TF

3π
Lmðĝðbare;1Þq=q − Zðnlþ1;1Þ

g Þ; ð96Þ

Mð2Þ
S ðl; m; μm; νÞ ¼

Z
dl0Ŝðnlþ1Þðl − l0; m;Λ; μm; νÞðŜðnlÞÞ−1ðl0;Λ; μm; νÞj

Oðα2sÞ

¼ Ŝðnlþ1;bare;2Þ
TF

− Zðnlþ1;2Þ
S;TF

−
αðnlþ1Þ
s TF

3π
LmðŜðbare;1Þ − Zðnlþ1;1Þ

S Þ: ð97Þ

Note that the difference of the scheme for αs in ĝ
ðnlÞ
q=q, Ŝ

ðnlÞ and ĝðnlþ1Þ
q=q , Ŝðnlþ1Þ affects the terms atOðα2sCFTFÞ and leads to the

third term in the last equality of Eqs. (96) and (97), respectively. Using the two-loop results in Eqs. (90)–(93) and the one-
loop results in Eqs. (82)–(85) with a gluon mass Λ as an infrared regulator we obtain

νϕM
ð2Þ
g ðl; m;Q; μm; νÞ ¼

ðαðnlþ1Þ
s Þ2CFTF

16π2
δð ~lÞ

��
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3
L2
m þ 80

9
Lm þ 224
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�
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�
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�
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m

þ
�
2

3
þ 8π2

9

�
Lm þ 73

18
þ 20π2

27
−
8

3
ζ3

�
; ð98Þ

νϕM
ð2Þ
S ðl; m; μm; νÞ ¼

ðαðnlþ1Þ
s Þ2CFTF

16π2

�
δð ~lÞ ln

�
νϕ
ν

�
þ
�
θð ~lÞ
~l

�
þ

��
8

3
L2
m þ 80

9
Lm þ 224

27

�
; ð99Þ

where the dependence on the IR regulator Λ has dropped out. Upon summing up Mð2Þ
g and Mð2Þ

S we obtain the total PDF
threshold correction already given in Eq. (51).
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The RGE for the ν evolution of the threshold corrections
reads (i ¼ g; S)

ν
d
dν

Miðl; m;Q; μ; νÞ≡ γMi
Miðl; m;Q; μ; νÞ: ð100Þ

The ν-anomalous dimensions γMg
and γMS

can be directly
read off from Eqs. (98) and (99) or equivalently from the
ratio of the counterterms in the (nl) and (nl þ 1) scheme for
g and S in analogy to the last equality in Eq. (64), which
gives

γMg
¼ −γMS

¼ α2sCFTF

16π2

�
8

3
L2
m þ 80

9
Lm þ 224

27

�
þOðα3sÞ: ð101Þ

The solution of the rapidity RGE in Eq. (100) is a simple
exponentiation of the rapidity logarithm, i.e. setting ν ¼ νg
in Mg and ν ¼ νϕ ¼ νS in MS we get

Mϕð1 − z;m; μmÞ

¼ Q
Z

dlMSðl; m; μm; νSÞ

×MgðQð1 − zÞ − l; Q;m; μm; νgÞ
�
νS
νg

�
γMg

: ð102Þ

In order to allow for an arbitrary evolution path in μ − ν
space one can generalize this expression to resum the
logarithms lnðm2=μÞ in the ν-anomalous dimension by
integrating the latter in μ as discussed in Refs. [11,23]. The
variations of the scales νS and νg may be used as an
additional input for the perturbative uncertainty estimate.
Finally, we remark that by setting νg ¼ Q and νS ¼ νϕ one
can obtain the compact all-order expression

Mþ
ϕ ð1 − z;m; μmÞ ¼

�
θð1 − zÞ

ð1 − zÞ1−γMg

�
þ
γMg

Mϕ;δ; ð103Þ

where γMg
is the ν-anomalous dimension with the two-

loop contribution given in Eq. (101). Mϕ;δ denotes the
coefficient of the δ distributions in the PDF threshold
correction, i.e.

Mϕ;δ ¼ 1þ α2sCFTF

ð4πÞ2
�
2L2

m þ
�
2

3
þ 8π2

9

�
Lm

þ 73

18
þ 20π2

27
−
8

3
ζ3

�
þOðα3sÞ: ð104Þ

The noninteger plus distribution in Eq. (103) is defined as
the analytic continuation of θð1 − zÞ=ð1 − zÞ1−γMg ; see the
appendix of Ref. [6] for details. Expanding Eq. (103) in αs
allows one to easily tead off the distributive structure of
Mþ

ϕ at any order in the strong coupling in terms of the
anomalous dimension γMg

.

C. Threshold corrections for N3LL analysis

For a complete analysis at N3LL we need the terms at
Oðα4s ln2ð1 − xÞÞ and Oðα3s lnð1 − xÞÞ both counting as
Oðα2sÞ for αs lnð1 − xÞ ∼ 1. The former can be easily
obtained from the exponentiation property of the rap-
idity logarithm. The latter can be read off from the
nonsinglet PDF threshold correction in the OPE region
that has been recently computed up to Oðα3sÞ in
Ref. [25]. The corresponding expanded result for
x → 1 [Eq. (5.60) in Ref. [25]] fully agrees with
our computation for the μm-dependent terms at
Oðα3s lnð1 − xÞÞ [which are obtained from the ratio of
the evolution factors in the ðnlÞ and ðnl þ 1Þ flavor
schemes], but in addition allows us to extract the
relevant μm-independent term.
The complete result for the PDF threshold correction in

the logarithmic counting αs lnð1 − xÞ ∼ 1 at N3LL
reads, [ ~l ¼ l=νS;l ∼ νS ∼ νϕ ∼Qð1 − xÞ; νg ∼Q]

νS
Q
Mþ

ϕ

�
l
Q
;m;Q; μm; νg; νS

�
¼ δð ~lÞ þ

�ðαðnlþ1Þ
s Þ2
ð4πÞ2 δð ~lÞ ln

�
νS
νg

�
Mð2Þ

ϕ;lnðm; μmÞ
�
OðαsÞ

þ
�ðαðnlþ1Þ

s Þ2
ð4πÞ2

�
δð ~lÞMð2Þ

ϕ;1ðQ;m; μm; νϕ; νgÞ þ
�
θð ~lÞ
~l

�
þ
Mð2Þ

ϕ;lnðm; μmÞ
�

þ ðαðnlþ1Þ
s Þ3
ð4πÞ3 δð ~lÞ ln

�
νS
νg

�
Mð3Þ

ϕ;lnðm; μmÞ

þ ðαðnlþ1Þ
s Þ4
ð4πÞ4 δð ~lÞln2

�
νS
νg

�
Mð4Þ

ϕ;ln2
ðm; μmÞ

�
Oðα2sÞ

þOðα3sÞ; ð105Þ

where the second term in the first line counts formally as OðαsÞ and is therefore already relevant at N2LL. The (universal)
functions related to the rapidity logarithms read [Lm ¼ lnðm2=μ2mÞ]

ANDRE H. HOANG, PIOTR PIETRULEWICZ, and DANIEL SAMITZ PHYSICAL REVIEW D 93, 034034 (2016)

034034-20



Mð2Þ
ϕ;lnðm; μmÞ ¼ CFTF
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Mð3Þ
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Mð4Þ
ϕ;ln2

ðm; μmÞ ¼
ðMð2Þ

ϕ;lnðm; μmÞÞ2
2

¼ C2
FT

2
F

�
32

9
L4
m þ 640

27
L3
m þ 1664

27
L2
m þ 17920

243
Lm þ 25088

729

�
; ð108Þ

where

B4 ¼
2

3
ln4ð2Þ − 2π2

3
ln2ð2Þ − 13π4

180
þ 16Li4

�
1

2

�
: ð109Þ

The PDF specific function at Oðα2sÞ, which is not multiplied by a rapidity log, reads

Mð2Þ
ϕ;1ðQ;m; μm; νϕ; νgÞ ¼ CFTF

�
Mð2Þ

ϕ;lnðm; μmÞ ln
�
νg
Q

�
þ 2L2

m þ
�
2

3
þ 8π2

9

�
Lm þ 73
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þ 20π2

27
−
8

3
ζ3

�
: ð110Þ

For completeness we display also the threshold corrections for the hard and jet functions. As discussed in Ref. [5] the
characteristic rapidity scales for the mass-shell fluctuations in M−

H are νH1 ∼Q and νH2 ≡ νm ∼m (with the symmetric η
regulator), while in M−

J they are νJ1 ∼Q and νJ2 ∼m2=ðQð1 − xÞÞ. To account for correlations between these scales we set
νH1 ¼ νJ1 ¼ νg and νJ2 ¼ ν2m=νS. With these choices the results at N3LL have the form

M−
HðQ;m; μm; νg; νmÞ ¼ 1þ
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s Þ3
ð4πÞ3 ln

�
ν2m
ν2g

�
Mð3Þ

H;lnðm; μmÞ

þ ðαðnlþ1Þ
s Þ4
ð4πÞ4 ln2

�
ν2m
ν2g

�
Mð4Þ

H;ln2ðm; μmÞ
�
Oðα2sÞ

þOðα3sÞ; ð111Þ

and [~s ¼ s=ðνgνSÞ]

νgνSM−
J

�
s;m; μm; νg;

ν2m
νS

�
¼ δð~sÞ þ

�ðαðnlþ1Þ
s Þ2
ð4πÞ2 δð~sÞ ln

�
νgνS
ν2m

�
Mð2Þ

J;lnðm; μmÞ
�
OðαsÞ

þ
�ðαðnlþ1Þ

s Þ2
ð4πÞ2

�
δð~sÞMð2Þ

J;1ðm; μm; νmÞ þ
�
θð~sÞ
~s

�
þ
Mð2Þ

J;lnðm; μmÞ
�

þ ðαðnlþ1Þ
s Þ3
ð4πÞ3 δð~sÞ ln

�
νgνS
ν2m

�
Mð3Þ

J;lnðm; μmÞ

þ ðαðnlþ1Þ
s Þ4
ð4πÞ4 δð~sÞln2

�
νgνS
ν2m

�
Mð4Þ

J;ln2
ðm; μmÞ

�
Oðα2sÞ

þOðα3sÞ: ð112Þ
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As stated at the end of Sec. IV the consistency relation (62)
implies that the coefficients of the rapidity logarithms, i.e.
the ν-anomalous dimensions, are the same for all threshold
corrections, i.e.

Mð2Þ
H;lnðm; μmÞ ¼ Mð2Þ

J;lnðm; μmÞ ¼ Mð2Þ
ϕ;lnðm; μmÞ; ð113Þ

Mð3Þ
H;lnðm; μmÞ ¼ Mð3Þ

J;lnðm; μmÞ ¼ Mð3Þ
ϕ;lnðm; μmÞ; ð114Þ

Mð4Þ
H;ln2

ðm;μmÞ¼Mð4Þ
J;ln2

ðm;μmÞ¼Mð4Þ
ϕ;ln2

ðm;μmÞ; ð115Þ
which has been already used implicitly in Ref. [6]. Finally,
the remaining function-specific Oðα2sÞ corrections read

Mð2Þ
H;1ðQ;m; μm; νg; νmÞ

¼ CFTF

�
−
16

9
L3
m −

4

9
L2
mþ

�
260

27
þ 4π2

3

�
Lm þ 875

27

þ 10π2

9
−
104

9
ζ3þMð2Þ

H;lnðm; μmÞ

×
�
ln
�
ν2g
Q2

�
− ln

�
ν2m
m2

���
; ð116Þ

Mð2Þ
J;1ðm; μm; νmÞ

¼ CFTF

�
−
8

9
L3
m −

58

9
L2
m −

�
466

27
þ 4π2

9

�
Lm −

1531

54

−
10π2

27
þ 80

9
ζ3þMð2Þ

J;lnðm; μmÞ ln
�
ν2m
μ2m

��
: ð117Þ

Since hard and jet functions and PDFs are building blocks
of factorization theorems for many different processes at
hadron-hadron collisions, the results for the threshold
corrections can be directly applied there as well.

VI. CONCLUSIONS

In this work we have discussed how to set up a VFNS for
multiscale processes at hadronic collisions, where we have
taken inclusive DIS in the end-point region x → 1 as a
specific example. In this limit massive quarks do not
(predominantly) participate directly in the hard interaction
with the virtual photon and therefore mainly arise as
secondary radiation giving corrections starting at Oðα2sÞ
in the fixed-order expansion. Starting from the massless
factorization theorem we have shown how to systematically
incorporate the secondary massive quark effects by using
two kinds of renormalization conditions for the massive
quark corrections in the gauge-invariant components. The
use of the MS renormalization prescription in the small-
mass region and of the on-shell (low momentum subtrac-
tion) renormalization prescription in the large-mass region
imply automatically that all large logarithms are resummed

and that the respective correct limiting behavior is achieved
in the massless and the decoupling regions. The difference
between these two schemes manifests itself in additional
threshold matching corrections at the mass scale. We have
discussed some universal features of these threshold
corrections, which exhibit intrinsic relations among each
other due to the consistency of RG running. Here we have
also computed explicitly the PDF threshold correction for
x → 1 at Oðα2sÞ and showed how to resum a large
remaining logarithm therein that is related to the separation
of mass-shell fluctuations along rapidity and displayed final
expressions for a N3LL analysis. From a practical point of
view our VFNS in the end-point region of DIS can be
combined with a VFNS in the OPE region 1 − x ∼Oð1Þ by
adding the known associated nonsingular corrections
related to the difference between the full perturbative
QCD result and the fixed-order expressions for the com-
ponents of the SCET factorization theorem for x → 1. This
may have an effect also for moderate values of x due to
dynamical threshold enhancement (see e.g. Ref. [26]), an
effect which reinforces perturbative corrections close to the
partonic threshold due to the steep falloff of the PDFs for
momentum fractions close to one.
While we have concentrated in this work on DIS, the

concept of how to theoretically treat the effects of secon-
dary massive quarks within factorization is applicable for
more general processes including hadron-hadron collisions.
In particular, the massive quark threshold corrections
relevant for resummation of logarithms at N3LL order
determined for the massive components in the factorization
theorem (hard function, jet function, PDF) are universal
and can be employed in factorization theorems for other
processes where these components appear.
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APPENDIX A: SECONDARY MASSIVE QUARK
CORRECTIONS IN THE OPE REGION

We display explicit results for the perturbative correc-
tions due to secondary massive quarks at Oðα2sÞ in the
classical OPE region, where 1 − x ∼Oð1Þ. Here the famil-
iar factorization theorem for nf massless quarks reads

F1ðx;QÞ ¼
X
i¼q

e2i
2

X
j¼q;g

Z
1

x

dξ
ξ
H

ðnfÞ
ij

�
x
ξ
; μ

�
f
ðnfÞ
j=P ðξ; μÞ;

ðA1Þ
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where the index q includes both quarks and antiquarks. The
factorization theorem for F2ðx;QÞ is analogous. Note,
however, that the Callan-Gross relation F2 ¼ 2xF1 does
not hold in the OPE region beyond tree level. In the Breit

frame the PDFs f
ðnfÞ
j=P are forward matrix elements of SCET

operators decomposed out of collinear fields [27,28]. For
definiteness we set the final renormalization scale to be
μ ¼ μH. In the massive quark case one obtains

FI
1ðx;Q;mÞ ¼

X
i¼q;Q

e2i
2

X
j;k¼q;g

Z
dξ
ξ

Z
dξ0

ξ0

×HðnlÞ
ij

�
x
ξ
; Q;m; μH

�
UðnlÞ

f;jk

�
ξ

ξ0
; μH; μf

�
× fðnlÞk=Pðξ0; μfÞ ðA2Þ

for μm ≳ μH and

FII
1 ðx;Q;mÞ

¼
X
i¼q;Q

e2i
2

X
j;k¼q;Q;g

X
l;m¼q;g

Z
dξ
ξ

Z
dξ0

ξ0

Z
dξ00

ξ00

Z
dξ000

ξ000

×Hðnlþ1Þ
ij

�
x
ξ
; Q;m; μH

�
Uðnlþ1Þ

f;jk

�
ξ

ξ0
; μH; μm

�

×Mf;kl

�
ξ0

ξ00
; m; μm

�
UðnlÞ

f;lm

�
ξ00

ξ000
; μm; μf

�
fðnlÞm=Pðξ000; μfÞ

ðA3Þ

for μm ≲ μH. The secondary massive quark corrections to

the hard functions HðnlÞ
qq and Hðnlþ1Þ

qq at Oðα2sCFTFÞ can be
written as

HðnlÞ
qq ðz;Q;m; μÞ ¼ HðnlÞ

qq ðz;Q; μÞ þ F̂ðnl;2Þ
1;m ðz;Q;mÞ;

ðA4Þ

Hðnlþ1Þ
qq ðz;Q;m; μÞ ¼ Hðnlþ1Þ

qq ðz;Q; μÞ þ F̂ðnlþ1;2Þ
1;Δm ðz;Q;mÞ:

ðA5Þ

The full QCD result at Oðα2sCFTFÞ is both IR- and UV-
finite and can be decomposed into a purely virtual
correction and a real radiation correction with the kinematic
threshold z ¼ 1=ð1þ 4m̂2Þ,

F̂ðnl;2Þ
1;m ðz;Q;mÞ ¼ 2F̂ðnl;2Þ

m ðQ;mÞδð1 − zÞ
þ θðzÞθð1 − z − 4m̂2zÞF̂ðnl;2Þ

1;m;θðz;Q;mÞ;
ðA6Þ

where m̂ ¼ m=Q. The partonic QCD current form factor

F̂ðnl;2Þ
m ðQ;mÞ is given in Eq. (30). The real radiation

function F̂ðnl;2Þ
m;θ ðz;Q;mÞ was first computed in Ref. [9]

(and also checked by us) and reads

F̂ðnl;2Þ
m;θ ðz;Q;mÞ ¼ ðαðnlÞs Þ2CFTF

16π2
1

1 − z

�
8

3
½1þ z2 − 12m̂4z2ð1 − 3zþ 3z2Þ�

�
Li2

�
rz − wz

rz þ 1

�
þ Li2

�
rz þ wz

rz − 1

�

− Li2

�
rz − wz

rz − 1

�
− Li2

�
rz þ wz

rz þ 1

�
þ ln

�
1þ rz
1 − rz

�
ln

�
rz þ wz

rz − wz

��

þ 8

9
rz½−8 − 11z2 þ 2m̂2zð13 − 18zþ 28z2Þ� ln

�
rz þ wz

rz − wz

�

þ 4

3ð1 − zÞ2 ½1 − 3z2 þ 2z3 þ 6m̂4z2ð1 − 2zÞð7 − 12zþ 6z2Þ� ln
�
1þ wz

1 − wz

�

þ 2wz

27ð1 − zÞ ½151 − 265zþ 436z2 − 322z3 − 2m̂2zð491 − 1530zþ 2030z2 − 996z3Þ�
�
: ðA7Þ

Here we have used the abbreviations

rz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m̂2z

p
; wz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m̂2z
1 − z

s
: ðA8Þ

We remark that the QCD corrections decouple in the heavy quark limit using the nl scheme for αs, i.e. F̂
ðnl;2Þ
1;m ðz;Q;mÞ → 0

for m̂ → ∞. In the small-mass limit m̂ → 0, on the other hand, we obtain
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F̂ðnl;2Þ
1;m ðz;Q;mÞjm→0

¼ ðαðnlÞs Þ2CFTF

16π2
θðzÞθð1 − zÞ

�
δð1 − zÞ

�
2ln2ðm̂2Þ þ

�
38

3
þ 16π2

9

�
lnðm̂2Þ þ 265

9
þ 134π2

27

�

þ
�

1

1 − z

�
þ

�
8

3
ln2ðm̂2Þ þ 116

9
lnðm̂2Þ þ 718

27
−
8π2

9

�
þ
�
lnð1 − zÞ
1 − z

�
þ

�
−
16

3
lnðm̂2Þ − 116

9

�

þ 8

3

�
ln2ð1 − zÞ
1 − z

�
þ
−
8ð1þ z2Þ
3ð1 − zÞ Li2ð1 − zÞ þ 4ð1þ z2Þ

1 − z
ln2ðzÞ − 4

3
ð1þ zÞln2ð1 − zÞ

−
16ð1þ z2Þ
3ð1 − zÞ lnðzÞ lnð1 − zÞ þ 4

9ð1 − zÞ lnðzÞ½12ð1þ z2Þ lnðm̂2Þ þ 29 − 6zþ 44z2�

þ 8

9
lnð1 − zÞ½3ð1þ zÞ lnðm̂2Þ þ 8þ 11z� − 4

3
ð1þ zÞln2ðm̂2Þ − 8

9
ð8þ 11zÞ lnðm̂2Þ

−
416

27
−
644

27
zþ 4π2

9
ð1þ zÞ

�
: ðA9Þ

The function F̂ðnlþ1;2Þ
1;Δm represents the quark mass correction

to the massless quark result in the (nl þ 1) flavor scheme
and15

F̂ðnlþ1;2Þ
1;Δm ðz;Q;mÞ
¼ F̂ðnlþ1;2Þ

1;m ðz;Q;mÞ − F̂ðnlþ1;2Þ
1;m ðz;Q;mÞjm→0

; ðA10Þ

which vanishes in the massless limit.
The PDF threshold correction Mð2Þ

f;qq is given by [9]

Mð2Þ
f;qqðz;m; μmÞ

¼ α2sCFTF

ð4πÞ2 θðzÞθð1 − zÞ

×

�
δð1 − zÞ

�
2L2

m þ
�
2

3
þ 8π2

9

�
Lm þ 73

18
þ 20π2

27
−
8

3
ζ3

�

þ
�

1

1 − z

�
þ

�
8

3
L2
m þ 80

9
Lm þ 224

27

�
−
4

3
L2
mð1þ zÞ

þLm

�
8

9
−
88

9
zþ 8ð1þ z2Þ

3ð1 − zÞ lnðzÞ
�
þ 2ð1þ z2Þ

3ð1 − zÞ ln2ðzÞ

þ lnðzÞ
1 − z

�
44

9
−
16

3
zþ 44

9
z2
�
þ 44

27
−
268

27
z

�
; ðA11Þ

where the scheme for αs does not need to be specified at
this order.

APPENDIX B: EXPANSION FOR x → 1

The massive quark corrections to the factorization
theorem discussed in Sec. III represent the singular
Oðα2sCFTFÞ secondary massive quark corrections to the
structure function F1ðx;Q;mÞ in the fixed-order expansion
in full QCD. Besides the virtual contributions in QCD,

which are fully contained in the SCET description, the
singular perturbative fixed-order corrections also consist of
the collinear real radiation contributions which arise for
1 − x ∼m2=Q2 ≪ 1. Setting μ ¼ μH ¼ μJ ¼ μm in
Eq. (25) we obtain

F1ðx;Q;mÞjFO ¼
X
i¼q

e2i
2

Z
dξϕðnlÞ

i=P ðξ − x; μÞ

×Q2HðnlÞðQ;m; μÞJðnlÞðQ2ð1 − ξÞ; m; μÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡H

ðnlÞ
qq;z→1

ðξ;Q;m;μÞ

ðB1Þ

where the massive quark contributions to the fixed-order
hard function at Oðα2sCFTFÞ read

Hðnl;2Þ
qq;z→1;mðz;Q;mÞ ¼ 2F̂ðnl;2Þ

m ðQ;mÞδð1 − zÞ
þQ2Jðnl;2Þm;realðQ2ð1 − zÞ; mÞ ðB2Þ

with F̂ðnl;2Þ
m ðQ;mÞ and Jðnl;2Þm;realðs;mÞ given in Eqs. (30) and

(42) with αs ¼ αðnlÞs ðμÞ. We can obtain this result also from
the corresponding full QCD fixed-order result in
Appendix A. Since the virtual contributions multiplied
by the δð1 − zÞ distribution in the OPE and end-point
regions agree, we only have to consider the expansion of

the real radiation term F̂ðnl;2Þ
1;m;θðz;Q;mÞ in Eq. (A7) for

1 − z ∼ m̂2 ≪ 1 (with m̂ ¼ m=Q), which yields indeed the
correct term,

θð1 − z − 4m̂2zÞF̂ðnl;2Þ
1;m;θðz;Q;mÞ

⟶
z⟶1

Q2Jðnl;2Þm;realðQ2ð1 − zÞ; mÞ þOðð1 − zÞ0; m̂0Þ: ðB3Þ

In Fig. 7 we investigate how well the expansions work for
the specific scale ratio m̂ ¼ 0.1. The left panel shows the

15Here the superscript nl þ 1 indicates only that the (nl þ 1)
scheme for αs is used in the expressions (A6) and (A9).
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partonic result for the full QCD corrections (blue, solid),

i.e. F̂ðnl;2Þ
1 ðz;Q;mÞ in Eq. (A6), the singular result for the

end-point region at fixed order (red, dashed), i.e.

Hðnl;2Þ
qq;z→1;mðz;Q;mÞ in Eq. (B2), and the difference

describing the nonsingular corrections (green, dotted).
We see that for 1 − z≲ 4m2=Q2 the end-point corrections
encode the dominant behavior, but fail to give a good
description of the full QCD form factor below a certain
value, here z≲ 0.5. The right panel displays the absolute
value of the convolution between these partonic functions
and a common function fðxÞ ¼ ð1 − xÞ4 acting as a
dummy PDF at the end point which falls off steeply

for x → 1. The convoluted results for the full QCD and
singular terms are negative for x≳ 0.05. We see that at
this level the agreement between the singular and full
results is much better due to dynamical threshold
enhancement (see e.g. Ref. [26]), up to values signifi-
cantly lower than x ¼ 0.5. This may have the conse-
quence that end-point region effects can have an impact
even at smaller values of x probed at hadron-hadron
colliders. A recent analysis on this issue was carried out
in Ref. [29]. They found that the effect can be sizable
and may require the use of resummed PDFs for
resummed calculations.
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