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Within the framework of dispersion theory, we analyze the dipion transitions between the lightest ϒ
states, ϒðnSÞ → ϒðmSÞππ with m < n ≤ 3. In particular, we consider the possible effects of two
intermediate bottomoniumlike exotic states Zbð10610Þ and Zbð10650Þ. The ππ rescattering effects are
taken into account in a model-independent way using dispersion theory. We confirm that matching the
dispersive representation to the leading chiral amplitude alone cannot reproduce the peculiar two-peak ππ
mass spectrum of the decay ϒð3SÞ → ϒð1SÞππ. The existence of the bottomoniumlike Zb states can
naturally explain this anomaly. We also point out the necessity of a proper extraction of the coupling
strengths for the Zb states to ϒðnSÞπ, which is only possible if a Flatté-like parametrization is used in the
data analysis for the Zb states.
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I. INTRODUCTION

The hadronic transitions ϒðnSÞ → ϒðmSÞππ between ϒ
states of different radial excitation numbers n, m are
important processes for the understanding of systems with
both heavy-quarkonium dynamics and low-energy QCD.
Because of the large b quark mass, bottomonia as non-
relativistic bb̄ bound states are expected to be compact. The
light hadrons such as pions emitted in the transitions
between two bottomonia are normally expected to be due
to the hadronization of soft gluons. Thus, the method of
QCD multipole expansion together with soft-pion theorems
[1–4] is often used to study these transitions. This means that
such a method can be used to describe transitions where
nonmultipole effects, such as coupled-channel effects and
intermediate resonances, are small and the pions are very
soft, such that the ππ final-state interaction (FSI) can be
neglected. A characteristic of this method explored by the
Cornell [5–7] and Orsay [8–10] groups is that the decay
amplitudes are oscillatory functions of the decay momen-
tum, which is a direct consequence of the radial node
structure in the parent quarkonia wave functions. This can
explain the ratio of partial decay widths Γðϒð3SÞ→
ϒð1SÞππÞ=Γðϒð2SÞ→ϒð1SÞππÞ≃0.16, though the phase
space in the ϒð3SÞ → ϒð1SÞππ process is much larger than
that in ϒð2SÞ → ϒð1SÞππ, instead of interpretations of
the initial quarkonia states as Bð�Þ–B̄ð�Þ molecules as in
Ref. [11]. The ππ mass spectra of the transitions between
2S and 1S heavy quarkonia can also be well described by

such a method.1 However, there has been a well-known
anomaly for the dipion transitions: the data for the decay
ϒð3SÞ → ϒð1SÞππ has a two-hump behavior, while a naive
application of the formula [14] that worked well for the
2S → 1S and 3S → 2S transitions would only give a single
peak at large dipion invariant masses. Many mechanisms
have been studied to explain this discrepancy, such as
(i) coupled-channel effects with open-bottom intermediate
states [15–17], (ii) the existence of a hypothetical resonance
which couples to ϒπ [18–20], (iii) the ππ resonance [the
f0ð500Þ or σ meson] or strong ππ final-state interaction
[20–26], (iv) relativistic corrections [27], etc. Among these
mechanisms, the hypothetical ϒπ resonance is in fact a
tetraquark state with quark content bb̄qq̄ and quantum
numbers IGðJPÞ ¼ 1þð1þÞ. The discovery of two Zb
resonances in channels including both ϒð1SÞπ and
ϒð3SÞπ by the Belle Collaboration in 2011 [28,29] with
such quantum numbers necessitates a reanalysis of
ϒð3SÞ → ϒð1SÞππ, taking into account these resonances

*chen@hiskp.uni‑bonn.de

1The dipion invariant mass distributions for both ϒð2SÞ →
ϒð1SÞππ and ψð2SÞ → J=ψππ can be well described regardless
of whether the ππ FSI is included; see Ref. [12]. This is due to the
simple shape of the ππ invariant mass distributions in these cases
and does not mean that the FSI is not important. We also want to
point out that the formula derived from the QCD multiple
expansion together with the soft-pion theorem was used very
often by experimentalists to fit their excellent data on the dipion
transitions between various heavy quarkonia. However, this is
often unjustified since the pions in these transitions are not
always soft. A good example is the decay ϒð4SÞ → ϒð1SÞππ,
where the dipion invariant mass can take values of more than
1 GeV, so that the FSI should not be neglected [13].
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with their measured properties. Furthermore, since the
dipion invariant mass reaches almost 900 MeV in such a
decay, and the ππS-wave FSI is known to be strong in this
energy range, it is thus also necessary to account for the ππ
FSI properly. Therefore, in the present paper we will use a
formalism incorporating mechanisms ii and iii above, with ii
upgraded to include the Zb states with measured properties
given in the next paragraph, and iii such that the ππ FSI is
treated in a model-independent way consistent with the ππ
scattering data. The coupled-channel effects will be com-
mented upon very briefly at the end of the paper; since we
will use the leading-order heavy-quark expansion, we will
neglect any relativistic corrections.
The two charged bottomoniumlike resonances

Zbð10610Þ� and Zbð10650Þ� were observed in the decay
processes ϒð5SÞ→ϒðnSÞπþπ− (n ¼ 1, 2, 3) and ϒð5SÞ →
hbðmPÞπþπ− (m ¼ 1, 2) [28,29]. Their quantum numbers
are indeed IGðJPÞ ¼ 1þð1þÞ, and their masses and
widths have been determined to be MðZbð10610ÞÞ¼
ð10607.4�2.0ÞMeV, ΓðZbð10610ÞÞ¼ð18.4�2.4ÞMeV,
andMðZbð10650ÞÞ¼ð10652.2�1.5ÞMeV, ΓðZbð10650ÞÞ¼
ð11.5�2.2ÞMeV, respectively. Preliminary results
for the branching fractions of Zbð10610Þ and Zbð10650Þ
decays into ϒðnSÞπþ (n ¼ 1, 2, 3) were also reported [30].
We will therefore study the decays ϒðnSÞ → ϒðmSÞππ

(m < n ≤ 3), considering effects of the Zb states. We will
use dispersion theory in the form of modified Omnès
solutions to take into account the ππ FSIs. Herein, the
Zb-exchange amplitudes provide a left-hand-cut contribution
to the dispersion integral. With the constraints of unitarity
and analyticity, the decay amplitude is determined up to a
few subtraction functions, which can be matched to the
leading chiral tree-level amplitude in the low-energy region.
We adopt the leading chiral Lagrangian for the coupling of
two S-wave heavy quarkonia to an even number of pions
from Ref. [31], constructed in the spirit of chiral perturba-
tion theory and the heavy-quark nonrelativistic expansion.
The theoretical framework is described in detail in Sec. II.
In Sec. III, we fit the decay amplitudes to the data for the
dipion transitions between two ϒðnSÞ states. Through
fitting the experimental data of the ππ invariant mass
distribution and the pion helicity angular distribution, the
low-energy constants (LECs) in the chiral Lagrangian and
the product of couplings for Zbϒπ and Zbϒ0π [here we use
ϒ and ϒ0 to refer to the ϒðnSÞ in the final and initial states,
respectively] are determined. A brief summary and dis-
cussion will be presented in Sec. IV. Some details related to
the matching of the dispersive representation as well as the
Flatté parametrization are relegated to Appendixes A and B,
respectively.

II. THEORETICAL FRAMEWORK

A. Tree-level amplitudes

The decay amplitude for

ϒðnSÞðpaÞ → ϒðmSÞðpbÞπðpcÞπðpdÞ ð1Þ
is described in terms of the Mandelstam variables

s ¼ ðpc þ pdÞ2; t ¼ ðpa − pcÞ2; u ¼ ðpa − pdÞ2;
3s0 ≡ sþ tþ u ¼ m2

ϒðnSÞ þm2
ϒðmSÞ þ 2m2

π: ð2Þ

For the πþπ− final state, the helicity angle θ is defined as
the angle between the 3-momentum of the πþ in the rest
frame of the ππ system and that of the ππ system in the rest
frame of the initial ϒðnSÞ, where cos θ ∈ ½−1; 1�. The
helicity angle for the π0π0 final state is defined similarly;
however, due to the indistinguishability of the two neutral
pions, we take cos θ ∈ ½0; 1� [32]. t and u can be expressed
in terms of s and θ according to

t ¼ 1

2
½3s0 − sþ κðsÞ cos θ�;

u ¼ 1

2
½3s0 − s − κðsÞ cos θ�;

κðsÞ≡ σπλ
1=2ðm2

ϒðnSÞ; m
2
ϒðmSÞ; sÞ;

σπ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

s

r
; ð3Þ

where λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ðabþ acþ bcÞ. We
define q as the 3-momentum of the final vector meson
in the rest frame of the initial state with

jqj ¼ 1

2mϒðnSÞ
λ1=2ðm2

ϒðnSÞ; m
2
ϒðmSÞ; sÞ: ð4Þ

The results of the QCD multipole expansion together
with the soft-pion theorem can be reproduced by con-
structing a chiral effective Lagrangian for the ϒðnSÞ →
ϒðmSÞππ transition. Since the spin of the heavy quarks
decouples in the heavy-quark limit, it is convenient to
express the heavy quarkonia in term of spin multiplets, and
one has J ≡ ϒ · σ þ ηb, where σ contains the Pauli matrices
and ϒ and ηb annihilate the ϒ and ηb states, respectively
(see, e.g., Ref. [33]). For the contact ϒϒ0ππ interaction, the
effective Lagrangian to leading order in the chiral as well as
the heavy-quark nonrelativistic expansion reads [31]

Lϒϒ0ππ ¼
c1
2
hJ†J0ihuμuμi þ

c2
2
hJ†J0ihuμuνivμvν þ H:c:;

ð5Þ
where vμ ¼ ð1; 0Þ is the velocity of the heavy quark.2

The pions as Goldstone bosons of the spontaneous break-
ing of the approximate chiral symmetry can be parame-
trized according to

2A further chirally invariant term c0
2
hJ†J0ihχþi þ H:c:, with

χþ ¼ u†χu† þ uχ†u, χ ¼ 2Bdiagðmu;mdÞ þ…, includes a term
∝ Bðmu þmdÞϒ†ϒ0 þ H:c:, which will be eliminated upon
diagonalization of the mass matrix for the ϒ and ϒ0 states and
therefore cannot contribute to the decay amplitude.
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uμ ¼ iðu†∂μu − u∂μu†Þ; u2 ¼ eiΦ=Fπ ;

Φ ¼
 

π0
ffiffiffi
2

p
πþffiffiffi

2
p

π− −π0

!
; ð6Þ

where Fπ ¼ 92.2 MeV denotes the pion decay constant.
We need to define a Zbϒπ interaction Lagrangian to

calculate the contribution of the virtual intermediate Zb
states, ϒðnSÞ → Zbπ → ϒðmSÞππ. The leading-order term
is proportional to the pion energy [33],

LZbϒπ ¼ CZϒihZi†uμivμ þ H:c:; ð7Þ

where

Zi ¼
� 1ffiffi

2
p Z0i Zþi

Z−i − 1ffiffi
2

p Z0i

�
: ð8Þ

In the following, we will use Zb1 and Zb2 to refer to
Zbð10610Þ and Zbð10650Þ, respectively, and use CZbiϒðnSÞπ
to denote the coupling constants for the ZbiϒðnSÞπ
vertices.
We briefly comment on the mass dimensions of the LECs

and coupling constants in Eqs. (5) and (7). As the fields for
the bottomonia and the Zb states are treated nonrelativisti-
cally, in principle they should be normalized in a non-
relativistic manner, leading to fields of mass dimension 3=2.
The difference to the usual relativistic normalization is a
factor of

ffiffiffiffiffi
M

p
, with M the mass of the heavy particle; since

this difference is only a constant, we choose to absorb it into
the definition of the coupling constants in the Lagrangians
for simplicity, so that the heavy fields carry the usual
relativistic normalization instead. Thus, the ci are dimen-
sionless, while the CZ have mass dimension 1.
Note furthermore that, in order to preserve the analytic

structure of the amplitudes exactly, we keep fully relativ-
istic propagators for the Zb exchange graphs.
The widths of the Zb states are of the order of 10 MeV

and are much smaller than the difference between the Zb
masses and theϒðnSÞπ thresholds. Thus, they can be safely
neglected in the processes under investigation. Using the
effective Lagrangians in Eqs. (5) and (7), the tree amplitude
of the ϒðnSÞ → ϒðmSÞππ processes as shown in Fig. 1 can
be written as

Mtreeðs; t; uÞ ¼ −
4

F2
π
ϵϒðnSÞ · ϵϒðmSÞ

�
c1pc · pd þ c2p0

cp0
d

þ
X
i¼1;2

Cnm;i

2
p0
cp0

d

�
1

t−m2
Zbi

þ 1

u −m2
Zbi

��
;

ð9Þ

where ϵϒðnSÞ and ϵϒðmSÞ are polarization vectors, p0
c and p0

d
denote the energies of the pions in the lab frame, and

Cnm;i ≡ CZbiϒðnSÞπCZbiϒðmSÞπ is the product of the coupling
constants for the exchange of the Zbi. Here, we have
neglected terms suppressed by pcpd=m2

Zbi
.

The partial-wave decomposition of Mtree can be easily
performed by using Eq. (3) as well as the relation

p0
cp0

d ¼
1

4
ðsþ q2Þ − 1

4
q2σ2πcos2θ: ð10Þ

In view of the following treatment of pion-pion FSIs using
dispersive methods, it is useful to further decompose the
partial waves into contact terms derived from the chiral
Lagrangian Eq. (5), Mχ

l ðsÞ, and the projected Zb-exchange
terms, M̂lðsÞ, in the form

Mtreeðs; cos θÞ

¼ ϵϒðnSÞ · ϵϒðmSÞ
X∞
l¼0

½Mχ
l ðsÞ þ M̂lðsÞ�Plðcos θÞ; ð11Þ

where Plðcos θÞ are the standard Legendre polynomials.
Since parity conservation (or isospin conservation com-
bined with Bose symmetry) requires the pions to have even
relative angular momentum l, only even partial waves
contribute, and we only take into account the S- and
D-wave components in this study, neglecting the effects
of yet higher partial waves. Explicitly, the two parts of the
S-wave projection of the tree amplitude read

Mχ
0ðsÞ ¼ −

2

F2
π

�
c1ðs − 2m2

πÞ þ
c2
2

�
sþ q2

�
1 −

σ2π
3

���
;

ð12Þ

M̂0ðsÞ ¼ −
2

F2
πκðsÞ

X
i¼1;2

Cnm;ifðsþ q2ÞQ0ðyiÞ

− q2σ2π½y2i Q0ðyiÞ − yi�g
≡ X

i¼1;2

Cnm;iM̄0iðsÞ; ð13Þ

where yi ≡ ð3s0 − s − 2m2
Zbi
Þ=κðsÞ, and Q0ðyÞ is a

Legendre function of the second kind,

FIG. 1. Tree diagrams relevant to the decays ϒðnSÞ →
ϒðmSÞππ: (a) contact terms induced by the chiral Lagrangian;
(b) Zb pole graphs. The crossed pole diagram is not shown
explicitly.
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Q0ðyÞ ¼
1

2

Z
1

−1

dz
y − z

P0ðzÞ ¼
1

2
log

yþ 1

y − 1
: ð14Þ

The D-wave projections are given by

Mχ
2ðsÞ ¼

2

3F2
π
c2q2σ2π; ð15Þ

M̂2ðsÞ ¼ −
5

F2
πκðsÞ

X
i¼1;2

Cnm;iðsþ q2 − q2σ2πy2i Þ½ð3y2i − 1Þ

×Q0ðyiÞ − 3yi�
≡ X

i¼1;2

Cnm;iM̄2iðsÞ: ð16Þ

B. Final-state interactions with dispersion relations

The ππ system undergoes strong FSIs in particular in the
isospin-0 S-wave already at rather moderate energies above
threshold, which has to be included in a theoretical
calculation. A model-independent method to take FSIs
into account is given by dispersion theory. Based on
unitarity and analyticity, it determines the amplitudes up
to certain subtraction constants, which can be obtained by
matching to the results of chiral effective theory. For the
processes ϒðnSÞ → ϒðmSÞππ (m < n ≤ 3) studied here,
the invariant mass of the pion pair is well below the KK̄
threshold. Thus, it is not necessary to consider multichan-
nel rescattering effects explicitly.3

Wewrite the partial-wave expansion of the full amplitude4

including the ππ FSI according to

Mfullðs; cos θÞ

¼ ϵϒðnSÞ · ϵϒðmSÞ
X∞
l¼0

½MlðsÞ þ M̂lðsÞ�Plðcos θÞ: ð17Þ

Here, MlðsÞ contains the right-hand cut and accounts for
s-channel rescattering. On the other hand, M̂lðsÞ represents
(partial-wave projected) left-hand-cut contributions, be it due
to crossed-channel pole terms or rescattering effects. In the
present study, we approximate the left-hand cuts by Zb
exchange only. The functions M̂lðsÞ are therefore given
precisely by the expressions in Eqs. (13) and (16) already
quoted in the previous section. By construction, they are real
and free of discontinuities along the right-hand cut, such that

in the regime of elastic ππ rescattering, the partial-wave
unitarity conditions read

ImMlðsÞ ¼ ½MlðsÞ þ M̂lðsÞ� sin δ0l ðsÞe−iδ
0
l ðsÞ: ð18Þ

Below the inelastic threshold (here the KK̄ threshold), the
phases of the partial-wave amplitude δ0l , of isospin I ¼ 0 and
angular momentum l, coincide with the ππ elastic phase
shifts, as required by Watson’s theorem [35,36]. To solve
Eq. (18), first we define the Omnès function [37],

ΩI
lðsÞ ¼ exp

�
s
π

Z
∞

4m2
π

dx
x
δIlðxÞ
x − s

�
; ð19Þ

which obeys ΩI
lðsþ iϵÞ ¼ e2iδ

I
lΩI

lðs − iϵÞ. Then the dis-
continuity of the function mlðsÞ≡MlðsÞ=Ω0

l ðsÞ can be
obtained with the help of Eq. (18) as

mlðsþ iϵÞ−mlðs − iϵÞ
2i

¼ Mlðsþ iϵÞe−iδ0l −Mlðs − iϵÞeiδ0l
2ijΩ0

l j

¼ sin δ0l M̂l

jΩ0
l j

: ð20Þ

From the dispersion relation for the function mlðsÞ, we then
obtain the solution of Eq. (18) [38],

MlðsÞ ¼ Ω0
l ðsÞ

�
Pn−1
l ðsÞ þ sn

π

Z
∞

4m2
π

dx
xn

M̂lðxÞ sin δ0l ðxÞ
jΩ0

l ðxÞjðx − sÞ
�
;

ð21Þ

where the polynomial Pn−1
l ðsÞ is a subtraction function. In

the absence of the inhomogeneous terms, M̂lðsÞ in the
unitarity condition, i.e., without left-hand cuts, we would
have found a standard Omnès solution for a form factor
Pn−1
l ðsÞΩI

lðsÞ, which is valid in the case where the pro-
duction of the two pions can be thought to originate from a
point source; see Fig 2(a). The modified solution in Eq. (21)
contains a dispersion integral over the inhomogeneities
M̂lðsÞ, which represents the rescattering including the
production from a pole term, see Fig 2(b), and provides
the crossed-channel Zb exchange graph with the correct

FIG. 2. Pion-pion final-state interactions (a) with the two pions
originating from a point source, denoted by the black dot, and
(b) with pions produced by a Zb pole term. The gray blob denotes
pion-pion rescattering.

3We have checked that including the KK̄ channel in a two-
channel Muskhelishvili-Omnès formalism (see Ref. [34] for an
application in the context of heavy-meson decays, as well as
references therein) would not lead to any significant change in
our numerical results.

4In accordance with the tree-level amplitude, we neglect all
terms with other contractions of the polarization vectors, which
are suppressed in the heavy-quark nonrelativistic expansion.
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phase in accordance with Watson’s theorem. Very similar
methods to include resonance exchange as an approximation
to left-hand-cut structures have been applied recently to
processes such as γγ → ππ [39], η → ππγ [40], or B →
ππlνl [41].
In order to determine the necessary number of subtrac-

tions in Eq. (21), we need to make sure that the dispersive
integral over the inhomogeneities converges and hence
have to investigate the high-energy behavior of the inte-
grand. We first remark that for a phase shift δIlðsÞ reaching
kπ at high energies, the corresponding Omnès function falls
off asymptotically as s−k. Assuming that both the S-wave
and D-wave ππ scattering phase shifts, δ00;2ðsÞ, approach π
for high energies, we have Ω0

0;2ðsÞ ∼ 1=s for large s.

Second, we have checked that in an intermediate energy
range of 1 GeV2 ≲ s ≪ m2

ϒ, both inhomogeneities grow at
most linearly in s. We conclude that in the dispersive
representations forM0ðsÞ andM2ðsÞ, three subtractions are
sufficient to render the dispersive integrals convergent.
At low energies, i.e., close to or even below threshold,

M0ðsÞ and M2ðsÞ can be matched to the chiral representa-
tion. We perform the matching in the limit of ππ rescatter-
ing being switched off, i.e., Ω0

l ðsÞ≡ 1, so that the
subtraction functions can be identified exactly with the
expressions given in Eqs. (12) and (15). As bothMχ

0ðsÞ and
Mχ

2ðsÞ grow no faster than ∼s2, the degree of the sub-
traction polynomial covers these terms. Therefore, the
integral equations take the form

M0ðsÞ ¼ Ω0
0ðsÞ

�
−

2

F2
π

�
c1ðs − 2m2

πÞ þ
c2
2

�
sþ q2

�
1 −

σ2π
3

���
þ
X
i¼1;2

Cnm;i
s3

π

Z
∞

4m2
π

dx
x3

M̄0iðxÞ sin δ00ðxÞ
jΩ0

0ðxÞjðx − sÞ
�
;

M2ðsÞ ¼ Ω0
2ðsÞ

�
2

3F2
π
c2q2σ2π þ

X
i¼1;2

Cnm;i
s3

π

Z
∞

4m2
π

dx
x3

M̄2iðxÞ sin δ02ðxÞ
jΩ0

2ðxÞjðx − sÞ
�
: ð22Þ

A subtlety in this prescription concerns the kinematically
singular parts of the subtraction functions ∝ 1=s that derive
from the similarly singular inhomogeneities: the subtrac-
tions functions in Eq. (22) are not actually subtraction
polynomials. These are an artifact of the partial-wave
decomposition: the complete (polynomial) chiral amplitude
as contained in Eq. (9) is obviously nonsingular, and due to
Ω0

0ð0Þ ¼ Ω0
2ð0Þ ¼ 1, this cancellation in the combination of

partial waves is preserved in the dispersive representation.
We show how to argue for the representation (22) more
rigorously in Appendix A.
It is then straightforward to calculate the ππ invariant

mass spectrum and helicity angular distribution for
ϒðnSÞ → ϒðmSÞπþπ− using

dΓ
d
ffiffiffi
s

p
d cos θ

¼
ffiffiffi
s

p
σπjqj

128π3m2
ϒðnSÞ

× jM0 þ M̂0 þ ðM2 þ M̂2ÞP2ðcos θÞj2;
ð23Þ

where we have made use of
P

λ;λ0 jϵðλÞϒðnSÞ · ϵ
ðλ0Þ
ϒðmSÞj2 ≈ 3,

which is an approximation accurate to a few per mil.
For the neutral-pion process ϒðnSÞ → ϒðmSÞπ0π0,
Eq. (23) needs to be multiplied by 1=2 in order to account
for the indistinguishable neutral pions in the final state.

III. PHENOMENOLOGICAL DISCUSSION

We first discuss the ππ phase shifts used in the
calculation of the Omnès functions and the dispersion
integrals. As we describe the S-wave in a single-channel

approximation, i.e., without taking inelasticities due to
KK̄ intermediate states into account explicitly, we employ
the phase of the nonstrange pion scalar form factor (as
determined in Ref. [42] from the solution of the coupled-
channel Muskhelishvili-Omnès problem) instead of δ00,
which yields a good description at least below the onset
of the KK̄ threshold. For the D-wave, we use the para-
metrization for δ02 given by the Madrid-Kraków collabora-
tion [43]. Both phases are guided smoothly to the assumed
asymptotic values δ00ðsÞ, δ02ðsÞ → π for s → ∞. In practice,
the dispersion integrals over the inhomogeneities in Eq. (22)
are cut off at s ¼ ð3 GeVÞ2; above that point, the phases are
so close to π already that the contributions to the dispersive
integrals in Eq. (22) can be neglected.
All the LECs in the chiral Lagrangian Eq. (5) are

unknown and will be fitted to the experimental data for
the ϒðnSÞ → ϒðmSÞππ transitions. These LECs are differ-
ent for processes with different values of n andm, since there
is no symmetry connecting different radial excitations of the
bottomonium states. The experimental data that we will use
include the ππ invariant mass distributions and the helicity
angular distributions for the ϒðnSÞ → ϒðmSÞππðm <
n ≤ 3Þ processes measured by the CLEO Collaboration in
Ref. [32]. For the transitions from ϒð3SÞ to ϒð1SÞ and from
ϒð2SÞ to ϒð1SÞ, we simultaneously fit to the data of the
π0π0 and the πþπ− final state. For the transition from ϒð3SÞ
to ϒð2SÞ, we only fit the data of the π0π0 final state due to
the limited statistics of the ϒð3SÞ → ϒð2SÞπþπ− process
(the event number is almost 1 order of magnitude smaller
than the one for the π0π0 channel).
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In principle, the ZbiϒðnSÞπ coupling strengths can be
extracted from measuring the partial widths of both Zb
states into ϒðnSÞπ (n ≤ 3) using

jCZj ¼
�
4πF2

πm2
Zb
ΓZb→ϒπ

jpfjðm2
π þ p2

fÞ
�1

2

; ð24Þ

where jpfj≡ λ1=2ðm2
Zb
; m2

ϒ; m
2
πÞ=ð2mZb

Þ, and ΓZb→ϒπ is the
partial width for the Zb → ϒπ decay. Thus, the coupling
strengths can be obtained if the partial widths are known.
In fact, there are preliminary results for the branching
fractions of the decays of both Zb states into ϒðnSÞπ
(n ≤ 3) [30], where the Zb line shapes were described using
Breit-Wigner forms. All branching fractions are found to be
of the order of a few per cent. If we naively calculated the
partial widths by multiplying these branching fractions by
the measured width of the Zb states, we would obtain5

jCnaive
Zb1ϒð1SÞπj ¼ 0.024� 0.003;

jCnaive
Zb1ϒð2SÞπj ¼ 0.23� 0.03;

jCnaive
Zb1ϒð3SÞπj ¼ 0.60� 0.08;

jCnaive
Zb2ϒð1SÞπj ¼ 0.013� 0.002;

jCnaive
Zb2ϒð2SÞπj ¼ 0.11� 0.01;

jCnaive
Zb2ϒð3SÞπj ¼ 0.28� 0.03 ð25Þ

(all in units of GeV), and the products of couplings relevant
for the process ϒð3SÞ → ϒð1SÞππ are

jCnaive
31;1 j ¼ ð0.014� 0.004Þ GeV2;

jCnaive
31;2 j ¼ ð0.004� 0.001Þ GeV2: ð26Þ

Here all the extractions are labeled by a superscript
“naive” because this is not the appropriate way of
extracting the coupling strengths in this case; the Zb

structures are very close to the Bð�ÞB̄� thresholds, and thus
a Flatté parametrization should be used, which will lead to
much larger partial widths into ϒπ (and hbπ) and thus the
relevant coupling strengths. As discussed in Appendix B,
the sum of the partial widths of the Zbð10610Þ other than
that for the BB̄� channel should be larger than the nominal
width, which is about 20 MeV. This would require at
least some of the couplings to the ðbb̄Þπ channels to be
significantly larger than the values indicated by naive
calculation using branching fractions. Taking the
Zbð10610Þ as an example, summing over all the

ϒðnSÞπðn ¼ 1; 2; 3Þ and hbðmPÞπðm ¼ 1; 2Þ branching
fractions in Ref. [30] gives about 14% or 3 MeV in terms
of partial widths. We therefore expect jCZb1ϒðnSÞπj2 to be
roughly 1 order of magnitude larger than those from
Eq. (25),6 and thus

jC31;1j ¼ Oð0.1 GeV2Þ: ð27Þ

Because ϒð3SÞ → ϒð1SÞππ is of particular interest for
its unusual shape of the dipion invariant mass distribution,
we will focus on this decay mode first. We try to fit to the
dipion invariant mass distribution and the helicity angular
distribution simultaneously without including any of the Zb
states. The results of the best fit are shown as the solid
(dashed) curves for the πþπ− (π0π0) mode in Fig. 3. It is
obvious that the double-bump behavior of the invariant
mass spectrum is not reproduced, although the angular
distribution is described well. This calls for a new mecha-
nism in addition to the ππ FSIs. We then include both Zb
states. Since the coupling constants for the Zbϒπ vertices
extracted using the Flatté form are not available, we try to
fix them to the central values in Eq. (26). The results are
shown as the dotted (dot-dashed) curves in the same figure.
Obviously, the best fits in both cases are very similar to
each other.
It is interesting to see what happens if we treat the

couplings of the Zb states to the ϒπ as free parameters as
well. However, the mass difference between the two Zb
states, about only 40 MeV, is much smaller than the gap

FIG. 3. Simultaneous fit to the ππ invariant mass distributions
and the helicity angle distributions in ϒð3SÞ → ϒð1SÞππ. The
solid (dashed) and dotted (dot-dashed) curves show the best fit
results without considering the Zb and using central values of the
ZbiϒðnSÞπ couplings, given in Eq. (25), extracted from the Zb
branching fractions. Solid and open circles refer to data points for
the charged- and neutral-pion final states, respectively.

5The branching fractions for Zbð10650Þ decays in Table V
of Ref. [30] are divided by 1.33, as mentioned at the end of
the experimental paper, to account for the decay mode
Zbð10650Þ → BB̄�.

6The extraction of these coupling constants using a Flatté-like
parametrization requires a detailed analysis of the data for all the
mentioned Zb decay channels and is beyond the scope of this
paper. We notice that such a procedure was recently proposed in
Ref. [44].
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between their masses and the ϒðnSÞπðn ¼ 1; 2; 3Þ
thresholds; they have the same quantum numbers and
thus the same coupling structure as dictated by Eq. (7). It
is therefore very difficult to distinguish their effects from
each other in the processes under investigation. In prac-
tice, this means that the couplings for the Zbð10610Þ
and Zbð10650Þ are strongly correlated in the fit, and
it is impossible to obtain a sensible uncertainty for them.
Therefore, we use only one Zb state, by setting Cnm;2 ¼ 0,
and take its mass to be that of the Zbð10610Þ. With three
free parameters c1, c2, and C31;1, we are able to achieve a
very good agreement with the data for both the invariant
mass and helicity angular distribution, as can be seen from
the upper panel of Fig. 4. In addition, the data for the
processes ϒð2SÞ → ϒð1SÞππ and ϒð3SÞ → ϒð2SÞππ are

also fitted, shown as the middle and lower panels in
Fig. 4, respectively. It is not surprising that the invariant
mass distributions for both of these two processes are
described well, as their phase spaces are not large enough
to allow for nontrivial structures comparable to the one for
ϒð3SÞ → ϒð1SÞππ. Still, the agreement with the data for the
angular distribution for ϒð2SÞ → ϒð1SÞππ is not as good.
This is mainly because of the discrepancy between the
data for the modes with charged and neutral pions. This
discrepancy was attributed to different efficiencies for
reconstruction and resolutions, as well as the folding of
the neutral angle in the experimental paper [32], which are
not available and thus not considered in our fit. The resulting
values of the parameters as well as the χ2 per degree of
freedom are shown in Table I. Note that the fitting results

FIG. 4. Fit results for the decays ϒð3SÞ → ϒð1SÞππ, ϒð2SÞ → ϒð1SÞππ, and ϒð3SÞ → ϒð2SÞπ0π0 (from top to bottom). The left
panels display the ππ invariant mass spectra, while the right panels show the cos θ distributions. The solid and open circles denote the
charged and neutral decay mode data, respectively; full and dashed lines show the theoretical fit results for charged- and neutral-pion
final states.

TABLE I. The parameter results from the fits of the ϒðnSÞ → ϒðmSÞππ processes. For the transitions from ϒð3SÞ
to ϒð1SÞ and from ϒð2SÞ to ϒð1SÞ, we simultaneously fit the data of the π0π0 final state and the πþπ− final state.
For the transition from ϒð3SÞ to ϒð2SÞ, we only fit the data of the π0π0 final state, due to the limited statistics of the
ϒð3SÞ → ϒð2SÞπþπ− process.

ϒð3SÞ → ϒð1SÞππ ϒð2SÞ → ϒð1SÞππ ϒð3SÞ → ϒð2SÞπ0π0
c1 −0.025� 0.001 0.09� 0.05 −0.6� 0.1
c2 0.026� 0.001 0.04� 0.08 0.2� 0.3
Cnm;1 [GeV2] 0.145� 0.006 1.3� 1.4 3.7� 2.6
χ2

d:o:f
108.18
87−3 ¼ 1.29 101.68

40−3 ¼ 2.75 12.18
11−3 ¼ 1.52
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are invariant under a sign change of all parameters simulta-
neously, as can be seen from Eq. (23). The resulting values of
the LECs ci are very different for different transitions. These
parameters are determined by short-distance physics, that is,
the structure of the involved ϒðnSÞ states. Thus, such a
differencemaybeexplainedby thenode structuresofdifferent
radial bottomonium excitations [3,7]. We also notice that the
node structure affects the coupling constants that are deter-
mined by the internal bottomonium structure but do not
have an impact on the dipion invariant mass distribution.
We observe that the product of the Zb couplings to

ϒð3SÞπ and ϒð1SÞπ, C31;1, is well constrained, while the
values of C21;1 and C32;1 are consistent with zero (within
1.5 standard deviations for the latter). The value of C31;1
extracted in this way is 1 order of magnitude larger than the
naive value given in Eq. (26); however, it is of the same
order as the expectation in Eq. (27). Notice that we have
switched off the higher Zb in the fit, and thus the extracted
coupling constant should be understood as containing
effects from both Zb states.
Since the value ofC31;1 is well constrained, it is instructive

to analyze different partial-wave components of the decay
amplitude for ϒð3SÞ → ϒð1SÞππ. In Fig. 5, we plot the
moduli of the S-wave and D-wave amplitudes from the ci
terms and the Zbð10610Þ state for this process. Notice that,
while the c1 term is a pure S-wave, the c2 term contributes to
both S- and D-waves, and the Zb-exchange in principle
affects all partial waves. One observes that the D-wave
contribution from the Zb-exchange is much smaller than that
from the c2 term. This means that the curved behavior of
the observed angular distribution is mainly due to the c2
term. It should be mentioned that this observation is different
from the one in Ref. [20], where the intermediate tetraquark
state, analogous to the Zb here, is found to be dominant in
the angular distribution. The reason is that in Ref. [20] the
mass of the tetraquark is fitted to 10.08 GeV, located
between the masses of the ϒð3SÞ and ϒð1SÞ states. If we

fix the Zb mass to such a low value, we indeed find that
the ratio of the D- to S-wave components of the pure
Zb-exchange mechanism significantly increases. For the
S-wave amplitudes, the contribution from the ci terms
and that from the Zb-exchange are of the same order, and
both of them have a zero in the energy region of interest,
responsible for the dip in the invariant mass distribution.

IV. CONCLUSIONS

We have used dispersion theory to study FSIs in the
decays ϒðnSÞ → ϒðmSÞππ (m < n ≤ 3). In particular, we
have analyzed the role of the Zbð10610Þ and Zbð10650Þ
states in these transitions. Pion-pion FSIs have been
considered in a model-independent way, and the leading
chiral amplitude acts as the subtraction function in the
modified Omnès solution. Through fitting the data of
the ππ mass spectra and the angular cos θ distributions,
the couplings of the ϒϒ0ππ vertex as well as the product of
couplings of the Zbϒπ vertex and the Zbϒ0π vertex are
determined. We find that the Zb effects in ϒð2SÞ →
ϒð1SÞππ and ϒð3SÞ → ϒð2SÞπ0π0 are very small, while
they play a significant role in the ϒð3SÞ → ϒð1SÞππ decay,
which has a double-peak ππ mass spectrum. The product of
couplings CZb1ϒð3SÞπCZb1ϒð1SÞπ obtained here is much larger
than the one extracted naively from the branching fractions
of the Breit-Wigner–parametrized Zbð10610Þ decays to
ϒðnSÞπþðn ¼ 1; 3Þ in Ref. [30]. It is, however, consistent
with a rough estimate based on a Flatté parametrization for
the Zbð10610Þ, which is in fact more appropriate for near-
threshold states. This analysis calls for a detailed study for
the partial widths of Zbð10610; 10650Þ → ϒð1S; 3SÞπ by
analyzing the data forϒð5SÞ → ϒð1S; 3SÞππ, together with
other processes where the Zb structures were observed,
using, e.g., the formalism presented in Ref. [44].
Therefore, our results show the necessity to analyze the

dipion decays of the ϒðnSÞðn ¼ 3; 4; 5Þ states simultane-
ously, taking into account all the effects from ππ strong
FSIs, the Zb states, and intermediate bottom mesons. The
latter were neglected here because the ϒð3SÞ is well below
the BB̄ threshold and the left-hand-cut contribution due to
the Zbð10610Þ, located near the Bð�ÞB̄ð�Þ thresholds, could
mimic the effects of the intermediate bottom mesons. Such
a combined study, taking pion-pion final-state interactions
into account consistently in the formalism laid out in this
article, while allowing for more general intermediate states
as left-hand-cut structures, should be pursued in the future.
It would be most valuable to finally understand the peculiar
behavior of the ϒð3SÞ → ϒð1SÞππ decays on the one hand
and to learn more about the Zb structures on the other.
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APPENDIX A: SINGULAR INHOMOGENEITIES

The contribution ∝ c2 in the tree amplitude in Eq. (9) has
the property of yielding S- and D-wave projections that
diverge at s ¼ 0, while the combined expression is of
course a polynomial in the Mandelstam variables s, t, and
u: it can be written as (without changing the essence of the
issue, we leave out all polarization vectors and overall
prefactors such as coupling constants)

sþ q2 − q2

�
1 −

4m2
π

s

�
cos2θ

¼ sþ q2 −
1

4m2
ϒðnSÞ

ðt − uÞ2

¼ sþ q2 þ s2

4m2
ϒðnSÞ

−
1

2m2
ϒðnSÞ

×

��
t2 − 3s0tþ

9

4
s20

�
þ
�
u2 − 3s0uþ 9

4
s20

��
:

ðA1Þ

In the main text, we have claimed that these singular
partial-wave projections can be included in a subtraction
function of the Omnès representation, although these
clearly do not constitute a subtraction polynomial. In this
Appendix, we show how this can be justified.
The two terms in the curly brackets of Eq. (A1) can be

interpreted as (polynomial) S-wave amplitudes in the t- and
u-channels of the decay. The projection of these onto s-
channel partial waves yields additional contributions
δM̂lðsÞ, l ¼ 0, 2, to the hat functions, on top of the terms
stemming from projected Zb pole terms. These additional
contributions can be calculated easily:

δM̂0ðsÞ∝−
1

4m2
ϒðnSÞ

Z
1

−1
dcosθ

��
t2−3s0tþ

9

4
s20

�

þ
�
u2−3s0uþ

9

4
s20

��
¼−

κ2ðsÞþ3s2

12m2
ϒðnSÞ

;

δM̂2ðsÞ∝−
5

4m2
ϒðnSÞ

Z
1

−1
dcosθP2ðcosθÞ

��
t2−3s0tþ

9

4
s20

�

þ
�
u2−3s0uþ

9

4
s20

��
¼−

κ2ðsÞ
6m2

ϒðnSÞ
: ðA2Þ

We note that, with s ≪ m2
ϒðnSÞ, the term ∝ s2 can be

neglected, and we can use the approximation

κ2ðsÞ ≈ ðmϒðnSÞ þmϒðmSÞÞ2½ðmϒðnSÞ −mϒðmSÞÞ2 − s�

×

�
1 −

4m2
π

s

�
; ðA3Þ

such that the δM̂lðsÞ only grow linearly with s for large (but
not too large to be comparable with the ϒmasses) energies.
With a polynomial inhomogeneity, the dispersive inte-

gral can be performed analytically, using dispersive repre-
sentations of the inverse of the Omnès function (see, e.g.,
Ref. [45]); we define

InðsÞ ¼ −
1

π

Z
∞

4m2
π

dx
xn

sin δðxÞ
jΩðxÞjðx − sÞ ðA4Þ

and find

Ω−1ðsÞ ¼ 1 − s _Ωð0Þ þ s2I2ðsÞ

¼ 1 − s _Ωð0Þ − s2

2
½Ω̈ð0Þ − 2 _Ω2ð0Þ� þ s3I3ðsÞ

¼ 1 − s _Ωð0Þ − s2

2
½Ω̈ð0Þ − 2 _Ω2ð0Þ�

−
s3

6
½Ω
…
ð0Þ − 6Ω̈ð0Þ _Ωð0Þ þ 6 _Ω3ð0Þ� þ s4I4ðsÞ

ðA5Þ

(assuming ΩðsÞ ∼ 1=s for large s), which can be solved for
the InðsÞ. The full contribution of the additional inhomo-
geneities to the partial-wave amplitudes is then given by

δM̂ðsÞ þ ΩðsÞ s
3

π

Z
∞

4m2
π

dx
x3

δM̂ðxÞ sin δðxÞ
jΩðxÞjðx − sÞ : ðA6Þ

If we write δM̂ðsÞ ¼ m1sþm0 þm−1=s, the terms involv-
ing Ω−1ðsÞ in the solutions of Eq. (A5) for InðsÞ exactly
cancel δM̂ðsÞ. One ends up with a partial-wave contribution,

ΩðsÞ
�
m1sð1 − s _Ωð0ÞÞ

þm0

�
1 − s _Ωð0Þ − s2

2
½Ω̈ð0Þ − 2 _Ω2ð0Þ�

�

þm−1

s

�
1 − s _Ωð0Þ − s2

2
½Ω̈ð0Þ − 2 _Ω2ð0Þ�

−
s3

6
½Ω
…
ð0Þ − 6Ω̈ð0Þ _Ωð0Þ þ 6 _Ω3ð0Þ�

��
¼ ΩðsÞfδM̂ðsÞ þ ½quadratic subtraction polynomial�g:

ðA7Þ
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The first part acts as the subtraction function in the
dispersion integral, including the singular term in
κ2ðsÞ ∝ 1=s. The remainder—the subtraction terms obtained
from derivatives of the Omnès function at zero—can be
discarded based on arguments on the high-energy behavior
in analogy to Appendix B of Ref. [41].

APPENDIX B: FLATTÉ PARAMETRIZATION

In this Appendix, we briefly illustrate the effect of close-
by thresholds on the apparent width of a resonance signal.
To be specific, we will concentrate on the Zbð10610Þ; yet,
the discussion applies in general for any structure located
very close to a strongly coupled threshold. Thus, a similar
argument can also be used for the Zbð10650Þ. The
discussion is based on the Flatté parametrization [46]
and is not new. It has been emphasized in the case of
the f0ð980Þ [47] (for discussions of the f0ð980Þ=a0ð980Þ
states using the Flatté formalism, see also Ref. [48]).
In addition to BB̄�, the Zbð10610Þ has several two-body

decay channels such as ϒðnSÞπ, hbðmPÞπ, as well as the
so-far unobserved ηbρ. All these bottomonium channels
have thresholds much lower than the BB̄� one, and thus the
sum of their partial widths can be approximated by a
constant width Γ1. Then the Flatté parametrization for the
Zb spectral function is proportional to [46]

1

js −m2
Zb1

þ imZb1
½Γ1 þ ΓBB̄� ðsÞ�j2 ; ðB1Þ

where

ΓBB̄� ðsÞ ¼ g2

8πm2
Zb1

½kθð ffiffiffi
s

p
−mB −mB� Þ

þ iκθð− ffiffiffi
s

p þmB þmB� Þ�; ðB2Þ

with g the coupling constant of the Zb1BB̄� vertex, k the
center-of-mass momentum of the B meson, and κ ¼ jkj. It is
easy to see that for either

ffiffiffi
s

p
> mB þmB� or

ffiffiffi
s

p
< mB þ

mB� the denominator in Eq. (B1) becomes larger when g
increases. Therefore, if the pole is located very close to the
BB̄� threshold, which should be the case for the Zbð10610Þ,
a coupling to BB̄� makes the Zb spectral function narrower
than Γ1. This can be seen from Fig. 6 where the spectral
function of the Zbð10610Þ is shown in arbitrary units.7 Thus,
we are led to conclude that Γ1, the sum of the partial decay
widths other than that into BB̄�, in the Flatté parametrization
should be larger than the nominal width of the structure
observed in the invariant mass distributions.
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