
Coupled-channel model for K̄N scattering in the resonant region

C. Fernández-Ramírez,1,2,* I. V. Danilkin,1,3 D. M. Manley,4 V. Mathieu,5,6 and A. P. Szczepaniak1,5,6

(Joint Physics Analysis Center)

1Theory Center, Thomas Jefferson National Accelerator Facility,
12000 Jefferson Avenue, Newport News, Virginia 23606, USA

2Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,
A.P. 70-543, México D.F. 04510, México

3Institut für Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg Universität,
D-55099 Mainz, Germany

4Department of Physics, Kent State University, Kent, Ohio 44242, USA
5Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47403, USA

6Physics Department, Indiana University, Bloomington, Indiana 47405, USA
(Received 26 October 2015; published 18 February 2016)

We present a unitary multichannel model for K̄N scattering in the resonance region that fulfills unitarity.
It has the correct analytical properties for the amplitudes once they are extended to the complex s-plane and
the partial waves have the right threshold behavior. To determine the parameters of the model, we have
fitted single-energy partial waves up to J ¼ 7=2 and up to 2.15 GeV of energy in the center-of-mass
reference frame obtaining the poles of the Λ� and Σ� resonances, which are compared to previous analyses.
We provide the most comprehensive picture of the S ¼ −1 hyperon spectrum to date. Important differences
are found between the available analyses, making the gathering of further experimental information on K̄N
scattering mandatory to make progress in the assessment of the hyperon spectrum.
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I. INTRODUCTION

The comprehensive understanding of strong interactions
in the resonance region is an important unresolved issue in
particle and nuclear physics. Nonperturbative aspects of
QCD related to the question of how quarks and gluons
aggregate to build hadrons can be investigated by analyzing
the excited baryon spectrum. Several experiments were
devoted in the past to the measurement of πN and K̄N
scattering as well as meson photoproduction to garner
information on the baryon spectrum. The amount of
experimental data on hyperon resonances with S ¼ −1
(Y� ¼ Λ�, Σ�) is not as large as in the case of strangeness
zero (S ¼ 0) nucleon excitations, and, as a consequence,
the hyperon spectrum is somewhat less understood. For
example, only recently, following developments in models
for K̄N scattering [1–3] and kaon electroproduction [4], the
Review of Particle Physics (RPP) [5] began to report Y�

resonance pole positions. The K̄N → K̄N reaction ampli-
tudes, besides their importance for studies of the Y�
spectrum, play a role in the amplitude analysis of more
complicated reactions, which include, for example, three-
body decays, pentaquark searches [6], or KK̄ pair photo-
production [7,8]. For example, recent observation of two
pentaquark states in Λ0

b → J=ψK−p decay [6] uses a
specific model to incorporate Y� resonances in the K−p

channel. Studies of systematic uncertainties should, how-
ever, involve comparison with other models of K̄N inter-
actions. Real and quasireal diffractive photoproduction of
KK̄ pairs can produce the poorly known strangeonia, i.e.,
mesons containing ss̄ pairs that also include exotic mesons
with hidden strangeness. To factorize the KK̄ photopro-
duction vertex requires, however, the separation of target
fragmentation at the amplitude level. Hence, the provision
of amplitudes describing the K̄N interactions in target
fragmentation is relevant to future partial-wave analyses
of the γp → KK̄p process. At Jefferson Lab [8], both
CLAS12 (Hall B) and GluEx (Hall D) experiments will
devote part of their efforts to studying this reaction.
In this article we present a coupled-channel model for

K̄N partial waves that incorporates a number of relevant
channels, including, for example, πΣ and πΛ. The approach
is based on the K-matrix formalism, and we pay special
attention to the analytical properties of the amplitudes
determined by the square-root unitary branch points. This
enables the continuation of partial waves to the complex
s-plane and permits a search for amplitude poles
(resonances).
The poles of the amplitude that are close to the physical

axis in unphysical Riemann sheets determine the behavior
of partial waves in the physical region. Identification of
baryon resonance poles is one of the goals of meson-
baryon amplitude analysis. In recent years, poles of K̄N
scattering amplitudes have been reported, initially for the*cesar@jlab.org
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narrow-width Λð1520Þ [4], and subsequently from a
comprehensive analysis by Zhang et al. [1]. Other recent
results come from a dynamical coupled-channel model by
Kamano et al. [2,3]. Both [1] and [3] analyses are in a fair
agreement for most of the resonances with a four-star status
assigned in the RPP.
This article is organized as follows. In Sec. II we describe

the details of the theoretical model for the partial waves
based on the analytical, coupled-channel K-matrix repre-
sentation. In Sec. III we discuss the fits to the single-energy
partial waves, extraction of resonance parameters, and
comparison with experimentally measured observables.
We also compare with other extractions of Λ� and Σ�
resonance parameters. Finally, in Sec. IV we present our
conclusions and outlook.

II. MODEL

We construct an analytical model that relies on unitarity
that enforces square-root singularities at thresholds.
Amplitudes are constructed by means of an analytical K-
matrix representation. A summary of the construction is
given below with more details given in Appendix A.

A. Observables and definition of partial waves

The differential cross section and polarization for the
processes involving S ¼ −1 meson-baryon states, which
include K̄N; πΣ;… → K̄N; πΣ;…, are given by [9]

dσ
dΩ

ðs; θÞ ¼ 1

q2
½jfðs; θÞj2 þ jgðs; θÞj2�; ð1Þ

Pðs; θÞ ¼ 2Im½fðs; θÞg�ðs; θÞ�
jfðs; θÞj2 þ jgðs; θÞj2 ; ð2Þ

where q is the magnitude of the relative momentum in the
center-of-momentum frame and θ is the scattering angle.
The amplitudes fðs; θÞ and gðs; θÞ correspond to no-spin-
flip and spin-flip contributions, respectively. These ampli-
tudes are related to the s-channel isospin I ¼ 0 and I ¼ 1
amplitudes through a general relation,

fðs; θÞ ¼ α0f0kjðs; θÞ þ α1f1kjðs; θÞ; ð3Þ

gðs; θÞ ¼ α0g0kjðs; θÞ þ α1g1kjðs; θÞ; ð4Þ

where fIkjðs; θÞ and gIkjðs; θÞ are the isospin amplitudes.
Here α0 and α1 are the corresponding Clebsch-Gordan
coefficients for isospin zero and 1, and kj label the initial
(k) and final (j) states, respectively. Specifically, in this
work we consider the following cases, for which data are
available

fK
−p→K−p ¼ 1

2
f1K̄N→K̄N þ 1

2
f0K̄N→K̄N; ð5Þ

fK
−p→K̄0n ¼ 1

2
f1K̄N→K̄N − 1

2
f0K̄N→K̄N; ð6Þ

fK
−p→π−Σþ ¼ − 1

2
f1K̄N→πΣ −

1ffiffiffi
6

p f0K̄N→πΣ; ð7Þ

fK
−p→πþΣ− ¼ 1

2
f1K̄N→πΣ −

1ffiffiffi
6

p f0K̄N→πΣ; ð8Þ

fK
−p→π0Σ0 ¼ 1ffiffiffi

6
p f0K̄N→πΣ; ð9Þ

fK
−p→π0Λ ¼ 1ffiffiffi

2
p f1K̄N→πΛ; ð10Þ

and similarly for gðs; θÞ. Partial-wave expansion of isospin
amplitudes is given by

fIkjðs; θÞ ¼
X∞
l¼0

½ðlþ 1ÞRI;kj
lþ ðsÞ þ lRI;kj

l− ðsÞ�PlðθÞ; ð11Þ

gIkjðs; θÞ ¼
X∞
l¼1

½RI;kj
lþ ðsÞ − RI;kj

l− ðsÞ�P1
lðθÞ; ð12Þ

where PlðθÞ is a Legendre polynomial and P1
lðθÞ ¼

sin θdPlðθÞ=d cos θ. The partial waves RI;kj
lτ ðsÞ (τ ¼ �)

are to be considered as kj elements of the channel-space
matrix RlðsÞ as defined below in Eq. (14). In a given
meson-baryon channel l labels the relative orbital angular
momentum, and the total angular momentum is given by
J ¼ lþ τ=2. The orbital angular momentum l coincides
with the orbital angular momentum of the initial K̄N state
in RI;kj

lτ ðsÞ, but it is not necessarily the orbital angular
momentum of the other possible states. For example, for
the I ¼ 1, l ¼ 0 partial wave it is possible to have
K̄Δð1232Þ in a D wave state (L ¼ 2). A complete list of
included channels is given in Sec. III A. In terms of partial
waves, the total cross section is given by

σðsÞ ¼ 4π

q2
X∞
l¼0

½ðlþ 1ÞjRlþðsÞj2 þ ljRl−ðsÞj2�; ð13Þ

where RlτðsÞ ¼ α0R0;kj
lτ ðsÞ þ α1R1;kj

lτ ðsÞ.

B. Partial-wave scattering matrix

For a given partial wave we write the scattering ampli-
tude as a matrix in the channel space,

Sl ¼ Iþ 2iRlðsÞ ¼ Iþ 2i½ClðsÞ�1=2TlðsÞ½ClðsÞ�1=2;
ð14Þ

where I is the identity matrix, ClðsÞ is a diagonal matrix
that accounts for the phase space, and TlðsÞ is the
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analytical partial-wave amplitude matrix. We write TlðsÞ in
terms of a K matrix [10] to ensure unitarity,

TlðsÞ ¼ ½KðsÞ−1 − iρðs;lÞ�−1: ð15Þ
For real s, KðsÞ is a real symmetric matrix, and ρðs;lÞ is a
diagonal matrix. To ensure that ρðs;lÞ is free from
kinematical cuts and has only the square-root branch point
demanded by unitarity, we write it as a dispersive integral
over the phase-space matrix ClðsÞ, also known as the
Chew-Mandelstam representation,

iρðs;lÞ ¼ s − sk
π

Z
∞

sk

Clðs0Þ
s0 − s

ds0

s0 − sk
: ð16Þ

Here sk is the threshold center-of-mass energy squared of
the corresponding channel k, and we define

ClðsÞ ¼
qkðsÞ
q0

�
r2q2kðsÞ

1þ r2q2kðsÞ
�
l

: ð17Þ

The first factor on the rhs of Eq. (17) is related to the
breakup momentum near threshold. For a meson-
baryon pair with masses m1 and m2, respectively,
sk ¼ ðm1 þm2Þ2, and

qkðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − ðm1 þm2Þ2Þðs − ðm1 −m2Þ2Þ

p
2

ffiffiffi
s

p

≃
ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p
ðm1 þm2Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
s − sk

p
: ð18Þ

The term in the square bracket ensures the threshold
behavior and introduces the effective interaction range
parameter, r ¼ 1 fm. Finally, q0 ¼ 2 GeV is a normaliza-
tion factor for the momentum in the resonance region.
Evaluation of the integral in Eq. (16) yields

iρðs;lÞ ¼ 1

q0r

�
− alþ1=2

k ðs − skÞl ffiffiffiffiffiffiffiffiffiffiffiffi
sk − s

p
½1þ akðs − skÞ�l

þ Γðlþ 1
2
Þffiffiffi

π
p

Γðlþ 1Þ

×

�
½1þ akðs − skÞ�2F1

�
1;lþ 1

2
;− 1

2
;

1

akðsk − sÞ
�
−½3þ 2lþ akðs − skÞ�2F1

�
1;lþ 1

2
;
1

2
;

1

akðsk − sÞ
���

;

ð19Þ

where ak ¼ m1m2r2=ðm1 þm2Þ2. Notice that Eq. (19)
does not require l to be an integer; hence our amplitudes
can be analytically continued both in the s and l complex
planes [11]. The physical limit of the amplitudes corre-
sponds to sþ i0, and hence resonances close to the
physical region (sp poles in the T matrix) appear at negative
values of Ims when s is continued below the unitary cut of
ρðs;lÞ. In Secs. II C and II D we introduce the building
blocks of the K matrix, and in Sec. II E we show how these
matrices are combined to build the T matrix.

C. Single pole in the K matrix

The formalism of Manley et al. [12] serves as a starting
point for our model. Given a partial wave that appears in
nC channels, it is straightforward to write the elements of
the K matrix that may lead to a pole in the amplitude,

½KPðsÞ�kj ¼ xPk
MP

M2
P − s

xPj : ð20Þ

Here P labels the pole part of K. The pole is at a real value
of s ¼ M2

P, and the residue is given in terms of couplings
xPk that may be related to partial-decay widths. To this end
we write

xPk ¼ yPk =½jClðM2
PÞ�kk; ð21Þ

where ðyPk Þ2 ≡ ΓP
k is to be related to the Breit-Wigner

partial-decay width. To see this, we define

ΣPðs;lÞ ¼
XnC
k¼1

ΣP
k ðs;lÞ ¼

XnC
k¼1

½ρðs;lÞ�kkðxPk Þ2 ð22Þ

and

ΓPðsÞ ¼
XnC
k¼1

ΓP
k ðsÞ ¼

XnC
k¼1

θðM2
P − skÞReΣP

k ðs;lÞ; ð23Þ

which at s ¼ M2
P reduces to

ΓP ¼
XnC
k¼1

ΓP
k ¼

XnC
k¼1

ðyPk Þ2θðM2
P − skÞ: ð24Þ

From the relation between K- and T-matrices in Eq. (15), it
follows that the T matrix can be written

½TlðsÞ�kj ¼ xPkT PðsÞxPj ; ð25Þ
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where

T PðsÞ ¼
MP

M2
P − s − iMPΣPðs;lÞ

: ð26Þ

Thus ΓP
k ðsÞ in Eq. (23) is the energy-dependent Breit-

Wigner partial width for decay to the kth channel. The
K-matrix pole mass MP and the couplings xPk are real
parameters that will be fitted by comparing the resulting
T-matrix elements to the data. The resonance pole of the T
matrix is given by the solution of equation M2

P − s −
iMPΣPðs;lÞ ¼ 0 with Ims < 0 on the Riemann sheet
analytically connected to the physical region Ims → 0þ.
We note that iMPΣPðs;lÞ contributes to both the real and
the imaginary parts of the resonance pole.

D. Background contribution to the K matrix

In addition to resonance poles, which are constrained by
the direct channel unitarity, partial-wave amplitudes have
dynamical cuts, also known as left-hand cuts, which arise
when unitarity cuts in the cross-channels are projected onto
the direct channel partial waves. In the direct channel
physical region, in the absence of anomalous thresholds,
these nonresonant contributions add up to a smoothly
varying background. A simple parametrization of these
singularities in the direct channel is to use an expression
analogous to that in Eq. (20); i.e., use

½KBðsÞ�kj ¼ xBk
MB

M2
B þ s

xBj : ð27Þ

The label B distinguishes it from the pole contribution to
the K matrix. The coefficients xBk are defined by

xBk ¼ yBk =½Clð4 GeV2Þ�kk; ð28Þ

where yBk is a real number that will be fitted. The parameters
yBk are normalized by the phase-space factor as was done for
the pole KP-matrix parameters, evaluated at an arbitrarily
chosen scale of 4 GeV2. If Eq. (27) is used in place of KP,
then the T matrix becomes

T BðsÞ ¼
MB

M2
B þ s − iMBΣBðs;lÞ

; ð29Þ

where

ΣBðs;lÞ ¼
XnC
k¼1

ΣB
k ðs;lÞ ¼

XnC
k¼1

½ρðs;lÞ�kkðxBk Þ2: ð30Þ

It follows that Eq. (29) has a pole on the real axis at a
negative value of s. As discussed above this becomes
an effective parametrization of nonresonant singularities
that originate from exchange processes. Unlike MP, the

parameterMB in the background parametrization ofKB can
have any sign (which roughly corresponds to the attractive
or repulsive effect of the exchange forces).

E. General case: Addition of several K matrices

In general more than one pole and/or background term is
needed in a given partial wave. Let us first spell out the
result of the addition of two K matrices (we drop the l
index in what follows),

½KðsÞ�kj ¼ x1kK1ðsÞx1j þ x2kK2ðsÞx2j : ð31Þ

The corresponding T matrix is given by [12]

½TðsÞ�kj ¼
1

D2ðsÞ
½x1kc11ðsÞx1j þ x1kc12ðsÞx2j

þ x2kc21ðsÞx1j þ x2kc22ðsÞx2j �; ð32Þ

where

c11ðsÞ ¼ T 1ðsÞ; ð33Þ

c22ðsÞ ¼ T 2ðsÞ; ð34Þ

c12ðsÞ ¼ c21ðsÞ ¼ iϵ12ðsÞT 1ðsÞT 2ðsÞ; ð35Þ

D2ðsÞ ¼ 1þ ðϵ12ðsÞÞ2T 1ðsÞT 2ðsÞ; ð36Þ

and T 1ðsÞ and T 2ðsÞ are given by either Eq. (26) or by
Eq. (29) depending on whetherK1;2 corresponds to the pole
or the background parametrization, respectively, and

ϵ11ðsÞ ¼
XnC
k¼1

½ρðs;lÞ�kkðx1kÞ2 ¼ Σ1ðs;lÞ; ð37Þ

ϵ22ðsÞ ¼
XnC
k¼1

½ρðs;lÞ�kkðx2kÞ2 ¼ Σ2ðs;lÞ; ð38Þ

ϵ12ðsÞ ¼ ϵ21ðsÞ ¼
XnC
k¼1

½ρðs;lÞ�kkx1kx2k: ð39Þ

The generalization to several pole/background components

½KðsÞ�kj ¼
X
a

xakKaðsÞxaj ð40Þ

yields

½TðsÞ�kj ¼
1

DðsÞ
X
a;b

xakcabðsÞxbj ; ð41Þ

where DðsÞ and cabðsÞ are given by the solution of the
system of equations
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caaðsÞ ¼ T aðsÞ
�
DðsÞ þ i

X
b

ð1 − δabÞcabðsÞϵabðsÞ
�
;

ð42Þ

cabðsÞ ¼ iT aðsÞ
�
caaðsÞϵabðsÞ

þ
X
d

ð1 − δadÞð1 − δbdÞcadðsÞϵbdðsÞ
�
;

a ≠ b; ð43Þ

where cabðsÞ ¼ cbaðsÞ and

ϵabðsÞ ¼ ϵbaðsÞ ¼
XnC
k¼1

½ρðs;lÞ�kkxakxbk: ð44Þ

In fits we use up to six pole and background components,
Ka, of the K matrix and up to 13 channels, cf. Table I. We
note that resonance poles in the T matrix are determined by
solutions of DðsÞ ¼ 0 in the unphysical Riemann sheets.
It encapsulates the difference between K-matrix poles and
T-matrix poles. Explicit solutions of Eqs. (42) and (43) are
given in Appendix A.

F. Analytic structure of the T matrix

The T matrix of the model has the following singular-
ities. It has right-hand cuts due to unitarity of which
the branch points are placed at corresponding channel
thresholds, sk. Unitarity gives the discontinuity of the
T-matrix elements across the right-hand cuts and

determines continuation to complex values of s below
the real axis where resonance poles are located. There
should be no complex poles on the first Riemann sheet, so
the equationDðsÞ ¼ 0 should have no complex solutions in
the physical, first sheet. The left-hand cuts are represented
by poles, on the real axis on the first sheet below direct
channel thresholds. For a single-pole K matrix, as shown in
Sec. II C, the resonance pole of the T matrix is simply
related to that of K. The background model of KB results in
a pole at a real negative value of s, approximating the left-
hand cut. In the general case,DðsÞ has a rather complicated
structure, and the best we can do is to check numerically
that the singularities of T are consistent with those
described above. In the fits we enforce that any first-sheet
pole is far away from the physical region; i.e., we require
that it lies at s < 1 GeV2. When several pole and back-
ground terms are combined, matching between a certain
pole inKP and a resonance pole in T is, in general, lost. Not
even the number of resonance poles of T has to be the same
as the number of input poles in KP. We have taken
advantage of this freedom by allowing for various combi-
nations of pole vs background terms and to assess the
sensitivity of the data to the presence of certain resonances.

III. RESULTS

A. Fits to the single-energy partial waves

The experimental database in the resonance region with
2.19 < s < 4.70 GeV2, which corresponds to kaon lab
momentum of 0.288 < plab < 1.820 GeV=c [13–32], con-
tains approximately 8000 data points for the K̄N → K̄N
channel (K−p → K−p and K−p → K̄0n), 4500 for the
K̄N → πΛ channel (K−p → π0Λ), and 5000 for the
K̄N → πΣ channel (K−p → π0Σ0, K−p → π−Σþ, and
K−p → πþΣ−). This data set was analyzed in Ref. [33],
and single-energy partial waves were obtained for (lI2J) up
to J ¼ 7=2, namely S01, P01, P03, D03, D05, F05, F07, G07,
S11, P11, P13,D13, D15, F15, F17, and G17. In Ref. [1] these
partial waves were described in terms of a K-matrix model,
which, in what follows, we refer to as the KSU model.
From the model the Λ� and Σ� spectrum was determined in
terms of T-matrix poles. Our model is similar to the KSU
approach as far as parametrization of the pole K matrix but
differs in construction of the background. Furthermore, in
the KSU model unitarity constrains amplitudes only on the
real axis, while in the present analysis unitarity is imple-
mented in an analytical way, enabling unique continuation
of the amplitudes beyond the physical sheet. We compare
our results (resonances) to the KSU model in Sec. III B.

1. Channels

We fit the T-matrix elements to single-energy partial
waves. When evaluating fit uncertainties one should keep
in mind that the extraction of partial waves from exper-
imental data also carries some model dependence [1,33].

TABLE I. Summary of the fitted single-energy partial waves.
Notation: nP: number of pole K matrices; nB: number of
background K matrices; nC: number of channels; N: number
of fitted single-energy points; np: number of parameters;
dof ¼ N − np: degrees of freedom.

lI2J nP nB nC N np dof χ2=N χ2=dof

S01 4 2 7 360 43 317 7.64 8.62
P01 4 2 6 358 42 316 3.11 3.53
P03 2 2 8 508 36 472 1.52 1.64
D03 3 1 6 372 28 344 2.25 2.43
D05 2 1 5 302 18 284 0.67 0.71
F05 2 1 8 460 27 433 1.32 1.41
F07 1 1 4 208 10 198 0.11 0.11
G07 1 1 6 350 14 336 1.24 1.29
S11 4 2 10 546 66 480 8.53 9.70
P11 2 3 9 546 50 496 1.68 1.84
P13 2 4 11 722 72 650 0.75 0.83
D13 1 2 13 814 42 772 0.88 0.93
D15 2 1 11 714 36 678 1.09 1.15
F15 2 1 12 782 39 743 0.29 0.30
F17 1 1 11 704 24 680 0.49 0.51
G17 1 0 10 580 11 569 0.10 0.10
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Consequently, in each partial wave we consider the same
set of channels as employed in Refs. [1,33]. The possible
initial (final) states correspond to the k (j) labels in the

RI;kj
lτ ðsÞ matrix. All the channels are treated as two-body

(meson-baryon) states and are labeled as follows:
(i) If the state has the same orbital angular momentum

(l) as the partial wave, the channel is identified by
the names of the meson and the baryon, e.g., K̄N
or πΣ.

(ii) If the baryon has spin 3=2, as it is in the case of
Σð1385Þ, Δð1232Þ, and Λð1520Þ (in what follows
Σ�, Δ, and Λ�, respectively), the orbital angular
momentum of the initial state does not correspond to
l, and a subindex L is added denoting the angular
momentum of the initial (final) state. For example, in
the K̄N system the S01 denotes the isoscalar, l ¼ 0
partial wave with total spin J ¼ 1=2. It may couple
to πΣ� with orbital angular momentum L ¼ 2 (D
wave) which we label as ½πΣ��D;

(ii) If the state contains a spin-1 K̄� and a nucleon, they
can couple to spin 1=2, which we name K̄�

1N, or to
spin 3=2, which we name K̄�

3N. The K̄�
1N state has

the same orbital angular momentum as the K̄N and
the partial wave, but the K̄�

3N does not; hence we add
a L subindex to the last. For example, the S01 partial
wave has as possible states K̄�

1N and ½K̄�
3N�D.

For every partial wave we include an additional meson-
hyperon channel that collectively accounts for any missing
inelasticity arising from channels not included explicitly. The
kinematical variables for such a dummy channel are chosen
arbitrarily as if it were a two-pionΛ orΣ state labeled as ππΛ
for I ¼ 0 and ππΣ for I ¼ 1 partial waves. All the channels
incorporated in the model have single-energy partial-wave
data to fit except for the dummy channels ππΛ and ππΣ and
the ηΛ and ηΣ channels in the Swaves. The full list of initial
(final) states for each partial wave is
S01: K̄N, πΣ, ηΛ, K̄�

1N, ½K̄�
3N�D, ½πΣ��D, ππΛ;

P01: K̄N, πΣ, K̄�
1N, ½K̄�

3N�P, ½πΣ��P, ππΛ;
P03: K̄N, πΣ, K̄�

1N, ½K̄�
3N�P, ½K̄�

3N�F, ½πΣ��P, ½πΣ��F, ππΛ;
D03: K̄N, πΣ, K̄�

1N, ½πΣ��S, ½πΣ��D, ππΛ;
D05: K̄N, πΣ, ½πΣ��D, ½πΣ��G, ππΛ;
F05: K̄N, πΣ, K̄�

1N, ½K̄�
3N�P, ½K̄�

3N�F, ½πΣ��P, ½πΣ��F, ππΛ;
F07: K̄N, πΣ, K̄�

1N, ππΛ;
G07: K̄N, πΣ, K̄�

1N, ½K̄�
3N�D, ½K̄�

3N�G, ππΛ;
S11: K̄N, πΣ, πΛ, ηΣ, K̄�

1N, ½K̄�
3N�D, ½πΣ��D, ½πΛ��P,

½K̄Δ�D, ππΣ;
P11: K̄N, πΣ, πΛ, K̄�

1N, ½K̄�
3N�P, ½πΣ��P, ½πΛ��D,

½K̄Δ�P, ππΣ;
P13: K̄N, πΣ, πΛ, K̄�

1N, ½K̄�
3N�P, ½πΣ��P, ½πΛ��D, ½πΣ��F,

½πΛ��S, ½K̄Δ�P, ππΣ;
D13: K̄N, πΣ, πΛ, K̄�

1N, ½K̄�
3N�S, ½K̄�

3N�D, ½πΣ��S, ½πΣ��D,
½πΛ��P, ½πΛ��F, ½K̄Δ�S, ½K̄Δ�D, ππΣ;
D15: K̄N, πΣ, πΛ, K̄�

1N, ½K̄�
3N�D, ½πΣ��D, ½πΣ��G, ½πΛ��P,

½πΛ��F, ½K̄Δ�D, ππΣ;

F15: K̄N, πΣ, πΛ, K̄�
1N, ½K̄�

3N�P, ½K̄�
3N�F, ½πΣ��P, ½πΣ��F,

½πΛ��D, ½πΛ��G, ½K̄Δ�P, ππΣ;
F17: K̄N, πΣ, πΛ, K̄�

1N, ½K̄�
3N�F, ½K̄�

3N�H, ½πΣ��F, ½πΛ��D,
½πΛ��G, ½K̄Δ�F, ππΣ;
G17: K̄N, πΣ, πΛ, K̄�

1N, ½K̄�
3N�G, ½πΛ��F, ½πΛ��H, ½K̄Δ�D,

½K̄Δ�G, ππΣ.
The KΞ channel is not considered in our model because

it was not included in the single-energy partial-wave
analysis of Ref. [33]. This channel was not incorporated
in Ref. [33] because the amount of experimental data for
that reaction does not allow to perform a reliable partial-
wave extraction.

2. Parameters and fitting strategy

The parameters of the model that are fitted to the single-
energy partial-wave data are the K-matrix parameters, i.e.,
MP’s for pole and MB’s for background, and the pole and
background couplings yPi ’s, y

B
i ’s, as given in cf. Eqs. (20)

and (27). The summary of the fit results is given in Table I,
where for each partial wave we provide the number of
background (nB) and pole (nP) K terms, the number of
channels (nC), the number of data points (N), the total
number of parameters (np), the number of degrees of
freedom (dof), and the resulting χ2’s. Due to the large
number of parameters, fits have been performed with
different strategies and optimization methods until a suffi-
ciently satisfactory solution was obtained. Most of the
partial waves, i.e., P13, D03, D05, D13, D15, F05, F07, F15,
F17, G07, andG17, could be fitted using MINUIT [34] only,
while the other, i.e., S01, S11, P01, P11, and P03, required
more sophisticated methods based on a genetic algorithm
[35] combined with MINUIT to increase accuracy as
described in Ref. [35]. The masses and couplings of the
pole K matrices have been guided to yield optimal values
for MP and ΓP in Eq. (24) penalizing fits that yielded
unnatural parameters (such as disproportionate values for
the couplings), while the background parameters have been
allowed to run freely.

3. Error estimation

We have computed the statistical errors of the partial-wave
parameters and T-matrix poles employing the
bootstrap technique [36]. This calculation is rather straight-
forward but computationally demanding. It consists of
generating, in our case, 50 data sets by randomly sampling
the experimental points according to their uncertainties and
independently fitting each data sample. The uncertainty for
each fitted parameter is given by the standard deviation from
the average in 50 fits. For each set of parameters we compute
the partial waves, observables, and T-matrix poles, and,
again, we estimate the error as the standard deviation.
If the model has problems reproducing a specific partial

wave (reflected in large χ2=dof values), we perform an
additional error estimation by pruning this partial wave.
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That is, we randomly remove 20% of the data points and fit
the remaining 80% of the data. This procedure is repeated
20 times, and the standard deviation gives an estimate of the
systematic error; these systematic errors have not been
propagated to either observables or poles.
Finally, due to the fact that we are fitting single-energy

partial waves, our error analysis misses correlations
between partial waves as well as systematic uncertainties
in the measured differential cross sections and polarization
observables. The latter, in those experiments that report
them, average to approximately �10%.

4. Fits

In Figs. 1–4 we compare our fits to the KSU single-
energy partial waves for the channels where there are
experimental data available, namely K̄N → πΛ for I ¼ 1

and K̄N → K̄N and K̄N → πΣ for both isospins. The
bottom plots in each figure show the position of the T-
matrix, resonance poles in the Riemann sheet closest to the
threshold for the given channel. The values of the pole

parameters are given in Tables II and III and discussed in
Sec. III B.
The χ2=dof s for most of the fits are quite reasonable (see

Table I) and provide a good description of the data as
shown in Figs. 1–4. The exceptions are the S01, S11, P01,
and D03 partial waves.
The S01 and S11 fits were specially cumbersome. Even

with the aid of a genetic algorithm the parameters could get
trapped in a local minima, and fits needed to be repeated
more than 30 times to reach the χ2’s presented in Table I. It
is worth noting that these two partial waves are the most
affected by systematic errors and database inconsistencies.
For both partial waves we estimate the systematic uncer-
tainty by data pruning and refitting as was described in
Sec. III A 3. These systematic errors are shown in Figs. 1
and 3 as vertical bars (see figure captions for more details).
The S01 for K̄N → K̄N has a complicated shape. It is

rather flat, and between 2 and 3 GeV2 the imaginary part
suddenly drops, which is followed by a bump and another
drop. These variations are difficult to reproduce with an
analytical parametrization and result in the large χ2=dof.
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FIG. 1. Partial waves S01 (left column), P01 (center-left column), P03 (center-right column), and D03 (right column) together with the
T-matrix pole positions (last row) compared to the single-energy partial waves from the KSU analysis [33] for channels K̄N → K̄N and
K̄N → πΣ (real part: red triangles; imaginary part: green squares). The red band stands for the real part of the partial wave and the green
band for the imaginary part of our model. For the S01 and P01 waves we provide an estimation of the systematic error: bottom-red
histogram for the real part of the partial wave and top-green for the imaginary. The resonances (poles of the T matrix) computed are the
closest to the physical axis in the corresponding Riemann sheet. One additional pole in the S01 partial wave at 2.45 − i0.47 GeV2 is not
shown and believed to be an artifact of the fits (see Sec. III B 1). Another pole in the D03 partial wave at ð4.24� 0.48Þ −
ið2.38� 0.58Þ GeV2 is not shown in the bottom-right figure. Error bars for Λð1520Þ, Λð1690Þ and Λð1890Þ are smaller than the size of
the dots.
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FIG. 2. Same as in Fig. 1 for D05 (left column), F05 (center-left column), F07 (center-right column), and G07 (right column) partial
waves. An additional pole in the D05 partial wave at ð4.75� 0.19Þ − ið1.24� 0.41Þ GeV2 is not shown in the bottom-left figure. The
Λð1820Þ state is found to be highly correlated with a close resonance Λð2110Þ located at higher energy and deeper in the complex plane.
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FIG. 3. Partial waves S11 (left column), P11 (center-left column), P13 (center-right column), and D13 (right column) together with the
pole positions (last row) compared to single-energy partial waves from the KSU analysis for channels K̄N → K̄N, K̄N → πΣ, and
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Nevertheless, the model seems to describe the general
features of both K̄N → K̄N and K̄N → πΣ.
One of the main features of the S01 partial wave is the

appearance of the Λð1405Þ resonance below the K̄N
threshold [5]. This behavior of the S01 wave in this mass
region is often attributed to the existence of two poles
[37,38], located at 1429þ8−7 − i12þ2−3 MeV and 1325þ15−15 −
i90þ12−18 MeV [38,39]. Our model is built to cover a wide
energy range and cannot account for the fine details of the
near-threshold effects. For example, the detailed analysis
the poles in Λð1405Þ region required constraints from
πΣKþ photoproduction off the proton [38]. If we do not
restrict the fit to obtain a resonance in the region where
Λð1405Þ should appear, we obtain χ2=dof ∼ 6, while no
resonance poles appear in the Λð1405Þ region. Hence, we
enforce an effective Λð1405Þ resonance that accounts for
both states by penalizing fits that do not generate a pole in
this region. The enforcement of this pole results in a more
rigid model and a larger χ2.
The S11 partial wave has the highest χ2=dof. Overall, out

of the three channels shown in Fig. 3, only the data K̄N →
K̄N can be reasonably well described, except for the real
part in the region between 2.5 and 3 GeV2. The K̄N → πΣ
channel of the S11 partial wave is reproduced in shape but
not in magnitude. The same is true for K̄N → πΛ. Because
of the disagreement with the S11 data, we cannot accurately

reproduce the total cross section data for K−p → π0Λ and
s < 3 GeV2 (cf. Sec. III C).
The difficulties encountered when using a highly con-

strained analytical model can have several origins. There
could be missing resonances or background features in the
model, or other channels, or there could be inherent
problems related to the single-energy extraction. For exam-
ple, the rapid variation of the partial waves in certain energy
regions that the model tries to smear out may have under-
estimated uncertainties. The single-energy partial waves
were obtained from experimental data in 10 MeV bins, and
hence rapid variations from one bin to another should be
takenwith care because a different binning of the datawould
impact the variation. The uncertainties associated to binning
can be assessed by pruning the data and refitting them aswas
described in Sec. III A 3. Finallywe note that our channel set
overlaps with that of Ref. [1], which is, for example, not the
same as that used by Kamano et al. [2].
When uncertainties and visual inspection are considered,

P01 and D03 (Fig. 1) yield acceptable results. P01 shows
large uncertainties mostly derived from the difficulty of the
imaginary parts to follow the several oscillations of single-
energy partial waves in the 2.5 − 4 GeV2 range for the
K̄N → K̄N and K̄N → πΣ channels, that the model tries to
average. In the case of the D03 partial wave most of the
χ2=dof is due to the difficulties of the model to follow the
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FIG. 4. Same as in Fig. 3 for D15 (left column), F15 (center-left column), F17 (center-right column), and G17 (right column) partial
waves. An additional pole in the F15 partial wave at ð4.346� 0.026Þ − ið0.993� 0.018Þ GeV2 is not shown in the bottom center-left
figure.
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rapid variation of the single-energy partial-wave data points
in the region of theΛð1520Þ. The change in the partial wave
is more rapid than that produced by the model. We will
return to this discrepancy in D03 when comparing to
K−p → K−p observables in Sec. III C.
Some of the partial waves show clear signs of overfitting

(very low χ2=dof), e.g., F07, F15, F17, and G17. The F07

and G17 are straightforward to understand, as the data have
large uncertainties. The F15 and F17 cases are different.
Because the number of channels for each partial wave is
fixed by the single-energy data, the only freedom is in the
number of pole and background K matrices. We cannot
change the number of parameters one by one until we get
the optimal amount of them. For example, the partial wave
F17 with 11 channels and twoK matrices has 24 parameters
(two masses and 22 couplings). If we remove one K matrix
we drop the number of parameters to 12 (one mass and 11
couplings). With this newmodel the partial wave still yields

a good χ2=dof ∼ 0.9, but the most relevant channels that
are straightforwardly connected to experimental data, i.e.,
K̄N → K̄N, K̄N → πΣ, and K̄N → πΛ, are poorly
described (χ2=dof ∼ 2.5). Hence, we prefer the model with
two K matrices. A similar situation happens with the F15

partial wave.
In Sec. III B additional details on the fitting procedure

and results are discussed in connection with the T-matrix
poles determination.

B. T-matrix poles

The structure found in the partial waves is due to the
appearance of poles (resonances) in the T matrix when
extended to the unphysical Riemann sheets. These reso-
nances are shown at the bottom in Figs. 1–4. The poles are
obtained by computing zeros of DðsÞ ¼ 0 in the nearest
unphysical Riemann sheet defined by the crossing of all the

TABLE II. Summary of Λ� pole masses (Mp ¼ Re ffiffiffiffiffispp ) and widths (Γp ¼ −2Im ffiffiffiffiffispp ) in MeV. Our poles are depicted in Fig. 5 unless
they have a very large imaginary part or are considered artifacts. In Ref. [4] the Λð1520Þ pole was obtained at (Mp ¼ 1518.8,
Γp ¼ 17.2). Reference [3] implements two models labeled as KA and KB (see the text). I stands for isospin, η for naturality, J for total
angular momentum, P for parity, and l for orbital angular momentum. For baryons, η ¼ þ, natural parity, if P ¼ ð−1ÞJ−1=2, and η ¼ −,
unnatural parity, if P ¼ −ð−1ÞJ−1=2.

This work KSU from Ref. [1] KA from Ref. [3] KB from Ref. [3] RPP [5]

IηJPl Mp Γp Mp Γp Mp Γp Mp Γp Name Status

0−1
2
−S 1435.8� 5.9† 279� 16 1402 49 � � � � � � � � � � � � Λð1405Þ ****

1573‡ 300 � � � � � � � � � � � � 1512 370 � � � � � �
1636.0� 9.4† 211� 35 1667 26 1669 18 1667 24 Λð1670Þ ****

� � � � � � 1729 198 � � � � � � � � � � � � Λð1800Þ ***
1983� 21

†
282� 22 1984 233 � � � � � � � � � � � � Λð2000Þ *

2043� 39†† 350� 29 � � � � � � � � � � � � � � � � � � � � � � � �
0þ1

2
þP 1568� 12 132� 22 1572 138 1544 112 1548 164 Λð1600Þ ***

1685� 29
†

59� 34 1688 166 � � � � � � � � � � � � Λð1710Þ *
1835� 10

‡
180� 22 � � � � � � � � � � � � � � � � � � � � � � � �

1837.2� 3.4† 58.7� 6.5 1780 64 � � � � � � 1841 62 Λð1810Þ ***
� � � � � � 2135 296 2097 166 � � � � � � � � � � � �

0−3
2
þP 1690.3� 3.8 46.4� 11.0 � � � � � � � � � � � � 1671 10 � � � � � �

1846.36� 0.81 70.0� 6.0 1876 145 1859 112 � � � � � � Λð1890Þ ****
� � � � � � 2001 994 � � � � � � � � � � � � � � � � � �

0þ3
2
−D 1519.33� 0.34 17.8� 1.1 1518 16 1517 16 1517 16 Λð1520Þ ****

1687.40� 0.79 66.2� 2.3 1689 53 1697 66 1697 74 Λð1690Þ ****
2051� 20 269� 35 1985 447 � � � � � � � � � � � � Λð2050Þ *
2133� 120

‡
1110� 280 � � � � � � � � � � � � � � � � � � Λð2325Þ *

0−5
2
−D 1821.4� 4.3 102.3� 8.6 1809 109 1766 212 � � � � � � Λð1830Þ ****

� � � � � � 1970 350 1899 80 1924 90 � � � � � �
2199� 52 570� 180 � � � � � � � � � � � � � � � � � � � � � � � �

0þ5
2
þF 1817� 57 85� 54 1814 85 1824 78 1821 64 Λð1820Þ ****

1931� 25 189� 36 1970 350 � � � � � � � � � � � � Λð2110Þ ***
0−7

2
þF � � � � � � � � � � � � 1757 146 � � � � � � � � � � � �

2012� 81 210� 120 1999 146 � � � � � � 2041 238 Λð2020Þ *
0þ7

2
−G 2079.9� 8.3 216.7� 6.8 2023 239 � � � � � � � � � � � � Λð2100Þ ****

†Resonances marked with are unreliable due to systematics and the lack of good-quality χ2=dof.
‡Resonances marked with are most likely artifacts of the fits.
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available unitarity cuts. DðsÞ is defined in Eq. (A3). In
Tables II and III we summarized the obtained pole
positions, in the usual notation of masses and widths,
and we compare our results to the KSU model [1] and
models A and B from Kamano et al. [3] (referred to as the
KA and KB models in what follows). We also give a
possible relation to the resonances listed by the RPP [5].
The poles in the analyses of Kamano et al. are based on a
dynamical coupled-channel model described in Ref. [2].
Because we use the same single-energy partial waves as the
KSU model, one would expect a fairly good agreement
between the two analyses. There indeed is an agreement
for some of the well-established resonances, but several
important discrepancies are found in the remaining states,
which we discuss in this section. In Fig. 5 we show the
resonances from Tables II and III (except those with a very
large imaginary part and those believed to be artifacts of
the fits), and in Fig. 6 we show the real part of the pole
positions on the Chew-Frautschi plot.
As explained in Sec. II F, in our model there are no poles

on the first Riemann sheet except for those on the real axis
below thresholds parametrizing the left-hand cut. These
poles, in most of the cases, were found to be far away from

the physical region. The poles closest to the physical region
are found in F05 at −0.45 GeV2, D13 at −0.41 GeV2, P03

at 0.08 GeV2, S11 at 0.31 GeV2, S01 at 0.38 GeV2, and P13

at 0.88 GeV2, and they all produce a smooth behavior in
the physical region.
The resonance poles are mainly responsible for giving

structure to the partial waves on the real axis. Therefore,
when the fit is not very good the model tries to smear the
structures that it is not able to reproduce. If we take a set of
parameters (far from the best-fit parameters but not too far)
in a certain partial wave and we do a pole search, it is likely
that we find fewer resonances than for the best fit. As
χ2=dof improves, more resonances appear. If we overfit the
data, we start to identify as structure some variations in the
data that could potentially be identified as a statistical noise
instead of genuine resonances. Hence, pole extraction from
underfitted and overfitted waves has to be treated with care.

1. Λ� resonances

All the Λ� resonances obtained are summarized in
Table II, and almost all are displayed in Figs. 5(a) and
6(a) (see the respective captions for details). Throughout

TABLE III. Summary of Σ� pole masses (Mp ¼ Re ffiffiffiffiffispp ) and widths (Γp ¼ −2Im ffiffiffiffiffispp ) in MeV. Our poles are depicted in Fig. 5 unless
they have a very large imaginary part. The notation is the same as in Table II.

This work KSU from Ref. [1] KA from Ref. [3] KB from Ref. [3] RPP [5]

IηJPl Mp Γp Mp Γp Mp Γp Mp Γp Name Status

1−1
2
−S � � � � � � 1501 171 � � � � � � 1551 376 Σð1620Þ *

� � � � � � 1708 158 1704 86 � � � � � � Σð1750Þ ***
1813� 32

†
227� 43 � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � 1887 187 � � � � � � � � � � � � Σð1900Þ *
1990.8� 4.3† 173.1� 5.4 � � � � � � � � � � � � 1940 172 Σð2000Þ *

� � � � � � 2040 295 � � � � � � � � � � � � � � � � � �
1þ1

2
þP 1567.3� 5.7 88.4� 7.0 � � � � � � 1547 184 1457 78 Σð1560Þ **

� � � � � � � � � � � � � � � � � � � � � � � � Σð1660Þ ***
1707.7� 6.6 122.1� 8.5 1693 163 1706 102 � � � � � � Σð1770Þ *

� � � � � � 1776 270 � � � � � � � � � � � � Σð1880Þ **
� � � � � � � � � � � � � � � � � � 2014 140 � � � � � �

1−3
2
þP 1574.1� 7.2 99� 19 � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � 1683 243 � � � � � � � � � � � � � � � � � �
� � � � � � 1874 349 � � � � � � � � � � � � � � � � � �

1980� 26 429� 18 � � � � � � � � � � � � � � � � � � � � � � � �
1þ3

2
−D � � � � � � � � � � � � 1607 252 1492 138 Σð1580Þ *

1666.3� 7.0 26� 19 1674 54 1669 64 1672 66 Σð1670Þ ****
� � � � � � � � � � � � � � � � � � � � � � � � Σð1940Þ ***

1−5
2
−D 1744� 11 165.7� 9.0 1759 118 1767 128 1765 128 Σð1775Þ ****

1952� 21 88� 28 2183 296 � � � � � � � � � � � � � � � � � �
1þ5

2
þF � � � � � � � � � � � � � � � � � � 1695 194 � � � � � �

1893.9� 7.2 59� 42 1897 133 1890 99 � � � � � � Σð1915Þ ****
2098.2� 5.8 474� 10 2084 319 � � � � � � � � � � � � Σð2070Þ *

1−7
2
þF 2024� 11 189.5� 8.1 1993 176 2025 130 2014 206 Σð2030Þ ****

1þ7
2
−G 2177� 12 156� 19 2252 290 � � � � � � � � � � � � Σð2100Þ *

†Resonances marked with are unreliable due to systematics and the lack of good-quality χ2=dof.
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this section pole masses and widths are reported in MeV
unless stated otherwise.
S01 poles.—Besides the Λð1405Þ (which was imposed as

explained in Sec. III A) we find four resonances in our best
fit of the S01 partial wave. The first one at 1573 − i300=2 is
close to the one obtained by model KB at 1512 − i370=2
and is not obtained by any other model. We believe it is an
artifact of the fit because, when we perform the bootstrap to
obtain the error bars, it disappears from most of the fits.
Hence, we do not quote an error bar for it in Table II, and
we do not show it in Figs. 1, 5(a), and 6(a). Two of the other
poles can be associated with Λð1670Þ and Λð2000Þ states in
the RPP. The Λð2000Þ pole agrees with the KSU analysis

and is not found either by KA or KB. The Λð1670Þ has a
four-star status in the RPP. The mass we obtain is within
a reasonable range when compared to the KSU, KA, and
KB analyses, although our width is larger with a sizable
uncertainty. This pole appears in the energy region where
our model does not reproduce properly the abrupt change
in the K̄N → πΣ channel around 2.8 GeV2 (see the left
column in Fig. 1), so the width we obtain is not very
reliable. We also find a higher-energy resonance that no
other analysis finds. Further confirmation of its existence is
needed. Neither we nor KA nor KB finds a pole close to the
1729 − i198=2, Λð1800Þ, found in the KSU analysis. This
pole has a three-star status, and, considering the large
systematic uncertainties of the S01 wave, its status might
need to be reconsidered in the RPP. Nevertheless, because
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FIG. 5. Poles for I ¼ 0 (a) and I ¼ 1 (b) partial waves from
Tables II and III except those with a very large imaginary part and
those marked with ‡ (believed to be artifacts of the fits). Poles are
computed in the unphysical Riemann sheet where all the available
cuts have been crossed (nearest Riemann sheet to the physical
amplitude), and their lI2J quantum numbers are provided. The
different thresholds are highlighted as vertical dashed lines and in
the physical axis as filled black boxes where K� stands for
K�ð892Þ, Δ for Δð1232Þ, Σ� for Σð1385Þ, and Λ� for Λð1520Þ.
The last is treated as a stable state and therefore an accessible
decay channel in the I ¼ 1 channels, although in the I ¼ 0 it is a
resonance of which the properties emerge from our analysis.
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FIG. 6. Chew-Frautschi plot for the Λ� (a) and Σ� (b) reso-
nances. Poles are displayed according to positive (natural) or
negative (unnatural) naturality (η). Poles colored in red, i.e.,
Λð1116Þ, Σð1192Þ and Σð1385Þ, are taken from RPP [5]. The
Λð1405Þ is displayed in blue to highlight that in our approach it is
an effective state that mimics two actual resonances (see the text).
Dashed lines are displayed to guide the eye through the Regge
trajectories. Blue lines guide the eye through the parent Regge
trajectories while red and green guide through the daughter
trajectories.
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of the systematic uncertainties and the high χ2=dof, we
cannot make definitive statements on the S01 pole locations.
P01 poles.—In the P01 partial wave we find four

resonances. The lowest lying is at 1568 − i132=2, which
corresponds to the three-star Λð1600Þ. All the analyses,
KSU, KA, KB, and ours, agree on the location of this
resonance within their uncertainties, making it a very well-
established state. However, when we try to identify which
Regge trajectory it belongs to [see Fig. 6(a)], it looks like it
does not match the general pattern. This signals that the
Λð1600Þ resonance is of a different nature than the other
resonances we are finding and that it is not an ordinary
three-quark state. The Λð1710Þ state was first introduced by
KSU analysis, and we find a pole at similar mass but closer
to the real axis. This state needs further confirmation
through an independent analysis given that we obtain a
smaller width than KSU model and we both fit the same
single-energy partial waves. However, our result together
with those of KSU and Ref. [40] reinforces the hypothesis
that there are two poles in the P01 partial wave forffiffiffi
s

p
< 1.9 GeV. In Ref. [40] a non-three-quark nature is

suggested for both states. We also obtain a pole at 1837.2 −
i58.7=2 that can be identified as the Λð1810Þ state and
is in very good agreement with the pole at 1841 − i62=2
obtained by the KB model. The reliability of the Λð1810Þ
pole position can be questioned due to the appearance of a
pole at 1835 − i180=2 that looks like an artifact linked to
the opening of the K̄�N threshold. The Λð1710Þ and
Λð1810Þ extractions are not very reliable given the high
value of the χ2=dof, the discrepancies with other analyses,
and how they do not fit within the Regge trajectories in
Fig. 6(a) (J ¼ 1=2, natural parity) while the higher-lying
resonances do.
P03 poles.—The P03 is a very interesting case regarding

the interplay of resonances, fits, and Regge trajectories.
First it has to be noted that this particular partial wave is
dominated by inelasticities, which make the extraction
of the single-energy partial waves and the poles very
challenging. This is notorious if we see how scattered
the data are in the K̄N → πΣ channel in Fig. 1 (center-right
column). During the fitting process we first obtained a
solution with χ2=dof ¼ 1.65 with poles located at 3.580 −
i0.213 GeV2 (1893 − i113=2) and 3.3169 − i1.450 GeV2

(1862 − i779=2). In the KSU analysis, two poles were also
obtained, located at 1876 − i145=2 and 2001− i994=2.
This first solution was smoother than the one we report, and
it did not show the apparent peak at 3 GeV2 in the K̄N →
πΣ channel. The first pole is a good candidate for the
Λð1890Þ state and is compatible with the KSU analysis.
The second looks like an artifact because its mass is smaller
than for the first pole and its width is larger. Also, it is very
different from what was obtained by the KSU model,
suggesting that this second pole may be an artifact in both
analyses. Hence, we exchanged one of the pole K matrices
with a background K matrix to check what the effect was in

the χ2 and the appearance of poles in the T matrix. The
results were systematically worse, and the T matrix still
presented two poles. So, we conclude that the data require
the existence of two poles. The location of the second pole
was not satisfactory, so we performed a new fit influenced
by the expected Regge behavior in Fig. 6(a), guiding the fit
to provide a pole with M2

p within 2 and 3 GeV2 that would
fill in the 3=2þ gap in the unnatural parity parent trajectory.
We note that we did not impose any restriction in the
imaginary part of the pole. In this way we obtained the
solution presented in Fig. 1 with a marginally better
χ2=dof ¼ 1.64 and the resonances shown in Fig. 5 with
more reasonable widths. The real part of the parent Regge
trajectory was slightly improved, although, as shown in
Fig. 6(a), there is some tension between what we expect
from linear Regge behavior. For all these reasons, we
consider this second fit to be more reliable, and it is the one
we report. If we compare our P03 poles to those in KSU and
KA, we find a reasonable agreement with the masses for the
four-star Λð1890Þ state, although our width is significantly
smaller than in the other analyses. Guided by our Regge
analysis we report a P03 state at 1690 MeV. In Ref. [41] a
similar P03 state with mass 1680 MeV was found, although
with a larger width. The KB model reports a state close in
mass, at 1671 MeV with a very small width; however, this
result should be taken with care because for the same model
no Λð1890Þ is obtained. We found no evidence of the large-
width state at 2001 MeV reported by the KSU analysis. As
a conclusion, we are convinced that the two poles have to
be present in this partial wave and lie in the regions where
we obtained them, although the error bars might be
underestimated, given that the χ2=dof is larger than 1.
D03 poles.—This partial wave is modeled with three

pole K matrices and one background K matrix. Four T-
matrix poles are obtained. Two of them correspond to well-
established states: Λð1520Þ and Λð1690Þ. These extractions
agree very well with those in KSU, KA, KB, and Ref. [4]
[which only computes Λð1520Þ], as it should be for such
well-established states. Any difference can be associated
with model details. The third pole obtained can be matched
to the Λð2050Þ state, which was first obtained in the KSU
analysis although it is not found in either KA or KB.
However, we obtain a very different pole position, which
can be understood if we realize that the deeper in the
complex plane we need to go to find a resonance, the more
important analyticity and model dependence become.
Finally, we obtain a higher-energy and deep in the complex
plane pole (Mp ¼ 2133, Γp ¼ 1110). It is likely that this
state is an artifact of the fits although its quantum numbers
and mass would befit the one-star Λð2325Þ in RPP (but not
its width, which is reported to be ∼150 MeV).
D05 poles.—The four-star Λð1830Þ is obtained in the

D05 partial wave, and our result agrees with the one
obtained by the KSU model. Model KA also obtains this
pole, although at smaller mass (1766) and larger width
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(Γp=2 ¼ 106þ47−31). However, the associated uncertainties
are not small enough to consider the disagreement worri-
some. We obtain a second pole as the KA and KSU model
do, but the three analyses find this pole at very different
locations. Hence, we can conclude that this second pole in
the partial wave does exist but its exact position is
debatable.
F05 poles.—According to the RPP, the F05 partial wave

contains one four-star resonance, Λð1820Þ, and one three-
star resonance, Λð2110Þ. This is not obvious from Fig. 2
because the partial wave looks like one well-isolated
resonance instead of the combination of two states. All
the analyses find the Λð1820Þ at the same location within
uncertainties. The Λð2110Þ is a good example of how a
resonance can show up in a partial wave without a bump
when it is deep in the complex plane. The fact that both our
analysis and KSU require the Λð2110Þ ratifies its three-star
status, although the exact location is debatable.
F07 and G07 poles.—Both the KSU model and we fit the

same single-energy partial waves from Ref. [33], and hence
we are both biased by such extraction, and we should be
obtaining similar results for the simplest cases. F07 andG07

partial waves present a clear resonant structure (see Fig. 2)
that can be well reproduced with just one poleK matrix and
one background K matrix. Both analyses yield similar
resonance positions compatible within uncertainties. The
Λð2020Þ (F07) state obtained in KSU, awarded a one-star
status by the RPP, gains further confirmation on the
existence and pole position by both our analysis and KB.

2. Σ� resonances

All the Σ� resonances obtained are summarized in
Table III and displayed in Figs. 5(b) and 6(b) (see the
respective captions for details). Throughout this section
pole masses and widths are reported in MeV unless stated
otherwise.
S11 poles.—Our fit to the S11 partial wave has large

uncertainties. Hence, resonances existence, their location,
and errors should be taken with care. For example, the
resonance that we get at 1813− i227=2 has large error bars
both for the real and the imaginary parts, and no other
analysis finds a similar state. It is a state that should not be
taken as well founded. Contrary to KSU and KB (KA)
analyses we find no evidence of the Σð1620Þ (Σð1750Þ)
state. Also in Ref. [42] no evidence of Σð1620Þ was found.
We find a resonance compatible with the KB analysis of
which the most likely RPP assignment is Σð2000Þ, and we
do not find any evidence of the Σð1900Þ state. Our model
does not incorporate ρ-hyperon channels, which were
found in the model of Ref. [40] to couple strongly to
Σð1620Þ, Σð1750Þ, and Σð1900Þ states. This fact could be
the reason why we do not find such states in our analysis.
P11 poles.—In the P11 partial wave we find two

resonances that we match to the Σð1560Þ and the
Σð1770Þ states in RPP. The KSU analysis does not find

a resonance that can be matched to Σð1560Þ, while our
analysis, KA, and KB do, although with very different
values of the mass and the width. The Σð1770Þ state is also
found by the KSU and KA models, the latter agreeing with
our analysis for both the mass and the width. The KSU
analysis provides a larger width and a smaller mass, but not
far from ours. None of the analyses finds evidence of the
three-star state Σð1660Þ. However, as suggested by
Ref. [43], additional information from three-body decay
channels (e.g., πK̄N and ππΣ) might be important to
establish the existence/properties of Σð1660Þ. In
Ref. [42] a Σð1635Þ is found to be necessary, while we
find two states in the same energy region at 1567 and
1708 MeV. Neither our calculation nor KA nor KB find the
higher-energy state that KSU assigns to Σð1880Þ.
P13 poles.—States that contribute to the P13 are con-

troversial. We find two resonances in this partial wave;
KSU also finds two resonances at different locations, and
KA and KB find no resonances. The strongest argument
in favor of the existence of these states comes from the
unnatural parity daughter Σ� Regge trajectories in Fig. 6(b),
which requires two states at the approximate masses we
report.
D13 poles.—To describe the D13 partial wave we

employed one pole and two background K matrices. We
find only one resonance at 1666.3 − i26=2 that corresponds
to the four-star Σð1670Þ resonance. The same state is also
found in the KSU, KA, and KB analyses with a larger width
on average, although all compatible within errors. In
Ref. [3] a low-lying state in both the KA and KB models
with very large width was found, that can be matched to
one-star resonance Σð1580Þ. Neither we nor the other
analyses, KSU, KA, nor KB, obtain the three-star
Σð1940Þ state, which sheds doubts on its existence.
However, Fig. 6(b) presents a gap in the natural parity
daughter trajectory suggesting that Σð1940Þ should be
there. In Ref. [40], Σð1940Þ was found to couple to the
K�Ξ channel, which was not included in either in the KSU,
KA, KB, or present analyses. This could explain why none
of the global K̄N coupled-channel analyses finds it. This
state requires further experimental information and analysis
before any definitive statement can be made.
D15 poles.—We find two resonances in the D15 partial

wave. One corresponds to the four-star Σð1775Þ state,
which was also found by KSU, KA, and KB. KSU also
finds a second resonance in this partial wave, but it appears
at a very different location. Hence, the existence of this
second state is dubious.
F15 poles.—KSU, KA, and we agree within errors on the

Σð1915Þ state for the F15 partial wave, and we get a similar
result for Σð2070Þ as the one of KSU.
F17 poles.—The F17 partial wave provides a very clean

resonant signal, and all the analyses obtain reasonably
compatible results as expected for Σð2030Þ, a four-
star state.

C. FERNÁNDEZ-RAMÍREZ et al. PHYSICAL REVIEW D 93, 034029 (2016)

034029-14



G17 poles.—The G17 partial wave has too large uncer-
tainties to be able to make a conclusive determination.
However, the mass we obtain fits very nicely within the
natural parity Regge trajectory in Fig. 6(b).

3. Regge trajectories

From Fig. 6 it is apparent that there is an alignment of the
resonances in Regge trajectories. We are employing the real
part of the extracted poles and not Breit-Wigner masses as
has been customary [44]. It should be noted that each line
displayed in Fig. 6 actually contains two degenerate Regge
trajectories, e.g., in Fig. 6(a) the parent trajectory, Iη ¼ 0þ
Λð1116Þ, and Λð1820Þ correspond to one trajectory, and
Λð1520Þ and Λð2100Þ correspond to another. The con-
clusions we can derive from Fig. 6 are as follows:

(i) We have a fairly accurate and comprehensive picture
of the Y� spectrum for the parent Regge trajectories
up to J ¼ 7=2.

(ii) Our knowledge of the first daughter Regge trajecto-
ries up to J ¼ 5=2 is also good except for the lowest
(J ¼ 1=2) natural parity Λ� state associated to the
P01 partial wave, for the gap at J ¼ 3=2 [connected
to the Σð1940Þ resonance] in the Σ� natural trajec-
tory associated to the D13 partial wave, and the
possible existence of the a S11 state that would
constitute its lowest-energy state.

(iii) The Λð1600Þ pole position is very well established,
and it does not fit within the daughter 0þ linear
Regge trajectory. Its nature seems to be different
from that of the other resonances that do follow the
linear Regge trajectories, signaling a non-three-
quark nature.

C. Comparison to experimental data

In this section we compare our model to the data on total
cross sections (Sec. III C 1, Figs. 7,8, and 9), differential
cross sections, and polarization observables (Sec. III C 2,
Figs. 10–19) for processes K̄N → K̄N [13–26], K̄N → πΛ
[21–30], and K̄N → πΣ [21–26,28–32].
Because we have fitted the single-energy partial waves,

their correlations are not incorporated in our analysis,
which translates into missing an important piece of the
error estimation in the observables. In order to account
partly for that, we performed the following simulation.
(i) For each partial wave we have picked randomly one of
the 50 sets of parameters available from the bootstrap fits
(cf. Sec. III A). (ii) We have computed each partial wave.
(iii) We have computed the observable. We have repeated
this algorithm 1000 times to generate an average and
standard deviation. Systematics are not considered in either
the theoretical or the experimental error bars displayed and
might be of importance with regard to the cross sections,
where a �10% normalization effect is within experimental
uncertainty.
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FIG. 7. Cross sections for K−p → K−p, K̄0n processes. The
vertical dashed lines mark the energy range where the single-
energy partial waves have been fitted.
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1. Total cross sections

Figure 7 shows the total cross sections for K−p → K−p
and K−p → K̄0n, which are the ones that matter the most
for the future analysis of heavy meson decays and quasireal
diffractive photoproduction of KK̄ on the proton at GluEx
and CLAS12 [8]. Both processes are well reproduced in the
whole energy range. The K−p → K−p is underestimated
below plab ¼ 300 MeV=c, although the general trend of the
data is well described. We will revisit this discrepancy in
Sec. III C 2 where we compare to differential cross sections
and polarizations.
Our results for K−p → π0Λ and K−p → π0Σ0 total cross

sections are shown in Fig. 8. The uncertainties in theK−p →
π0Σ0 process are very large, and our model reproduces the
total cross section very nicely except at plab ≃ 600 MeV=c,
where we underestimate the observable. We obtain the
general trend of the K−p → π0Λ data, but they are poorly
reproduced for plab < 800 MeV=c and plab >
1300 MeV=c as a direct consequence of our difficulties
in describing the S11 partial wave for s < 3 GeV2 and s >
3.9 GeV2 as shown in Fig. 3. From the theoretical point of
view, the K−p → π0Λ and K−p → π0Σ0 processes are very
interesting. The first has only isospin-1 contributions (Σ�’s),
and the second has only isospin-0 contributions (Λ�’s). This
selectivity allows us to decouple both sets of resonances and
partial waves. However, in practice, both channels are
difficult to separate experimentally [24,26,32], which leads

to systematic uncertainties in the data analysis. This is very
well exposed if we compare total cross sections for two
experimental data sets: Armenteros et al. [25] and the most
recent by Prakhov et al. [26] in the energy region between
plab ¼ 450 and 800 MeV=c. For K−p → K̄0n the agree-
ment between both data sets is excellent as shown in Fig. 10
in Ref. [26]. This indicates that uncertainties are well under
control in both experiments for this reaction. However, for
K−p → π0Σ0, Armenteros et al. show a certain structure in
the total cross section that, with better statistics and better
control on the systematics, disappears in the work by
Prakhov et al., showing a flatter total cross section.
In Fig. 9 we display the K−p → π�Σ∓ reactions. The

K−p → πþΣ− total cross section is very well reproduced
except for the peak at plab ¼ 750 MeV=c and the energy
region between 1400 and 1750 MeV=c where the observ-
able is underestimated. The shape of the K−p → π−Σþ
total cross section is well reproduced, although the absolute
value of the observable is largely underestimated. The main
source of disagreement is the inability of the model to
provide a good description of the S11 partial wave for the
K̄N → πΣ channel (Fig. 3) below s ¼ 3 GeV2.
We find a certain level of inconsistency between the total

cross section data for K−p → πþΣ−, K−p → π0Σ0, and
K−p → π−Σþ reactions. We reproduce K−p → π0Σ0 data,
which have only isospin-1 contributions—-see Eq. (9)—
and we also reproduce K−p → πþΣ− data of which the
amplitude is obtained as the isospin-1 amplitude minus the
isospin-zero amplitude. Hence, we should be able to predict
correctly the K−p → π−Σþ cross section, which corre-
sponds to the addition of the two isospin amplitudes—-see
Eq. (7). Instead, we underestimate the K−p → π−Σþ total
cross section.

2. Differential cross sections and polarizations

In this section we compare with the differential cross
section and polarization data. Almost all of the database is
from experiments performed during the late 1960s and
the 1970s except for Refs. [26] and [32] published in 2009
and 2008, respectively. These two data sets come from the
same experiment at Brookhaven National Laboratory and
report measurements on the differential cross sections and
polarizations forK−p → π0Σ0 [26,32] and forK−p → K̄0n
and K−p → π0Λ [26] for eight antikaon momenta. There
are some discrepancies between these two data sets that will
be apparent in the discussion of the K−p → π0Σ0

polarization.
We first compare to K−p → K−p and K−p → K̄0n

because one of our main interests is the K̄N → K̄N
amplitude due to its importance in the rescattering of
heavy-baryon decays and KK̄ photoproduction experi-
ments. The K̄N → K̄N data constitute almost half of the
experimental database. However, the amount of polariza-
tion data is small with no data below plab ¼ 865 MeV=c
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FIG. 9. Cross sections for K−p → π−Σþ, πþΣ− processes. The
vertical dashed lines mark the energy range where the single-
energy partial waves have been fitted.
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[15]. In Figs. 10 and 11 we compare our results to a wide
sample of the K−p → K−p database. It is the best known
reaction under consideration in this paper, and the general
description we obtain is excellent for both differential
cross sections and polarizations. The only exceptions
happen at low momenta, around plab ≃ 400 MeV=c, and
at very high momentum, plab ¼ 1815 MeV=c. At low
momentum we do not expect that a model like ours, built
to describe the whole resonant region, provides an
accurate description of the amplitude because we lack
additional constraints like chiral symmetry that drives the
physics at low energies. In the region around plab ≃
400 MeV=c [Λð1520Þ region], we capture the main
behavior of the differential cross section, although our
model is not able to keep up with the rapid falloff of the
cross section at forward and backward angles. This
happens because, as shown in Sec. III A, the variation
of the single-energy partial-wave data is faster than the
variation of the model, making it difficult to capture the
full extent of the partial wave in such a region. At very
high energy (plab > 1800 MeV=c), our model overesti-
mates the differential cross section and is no longer very
accurate, although it reproduces the trend of the data. We
note the forward-angle behavior as the energy increases,
which is the expected trend from Regge physics [45].

We compare to K−p → K̄0n differential cross sections in
Fig. 12 (no polarization data are available). The overall
agreement is very good. At plab ¼ 345 MeV=c we find a
large discrepancy at forward angles. The forward peak in
the amplitude is due to the constructive interference
between P01, P03, andD03 partial waves, while at backward
angles the interference between P waves and D03 is
destructive. As for K−p → K−p, the rapid variation of
the amplitude due to the presence of theΛð1520Þ is not well
reproduced and impacts the description of the data. The
same explanation applies for the plab ¼ 405 MeV=c data.
Data points at plab ¼ 560, 629, 687, and 750 MeV=c and
solid dots at plab ¼ 514 MeV=c are from the most recent
experiment in Ref. [26]. These data have small statistical
error bars, and they were not used in the single-energy
partial-wave amplitudes in Ref. [1] that we are fitting. We
systematically underestimate the plab ¼ 629 MeV=c and
687 MeV=c data, and we fail to reproduce the 750 MeV=c
data, where we find a larger forward contribution from the
P01, P03 and especially D03, Λð1690Þ contribution, that
the other partial waves cannot compensate. In Ref. [26], the
differential cross sections were fitted to Legendre poly-
nomials expansion up to order 5, rendering excellent fits
for the K−p → K̄0n data except for plab ¼ 560, 687, and
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FIG. 10. Differential cross section (dσ=dΩ), for the K−p → K−p process in terms of the cosine of the center-of-mass scattering angle
θ. The widths of the theory bands correspond to the errors propagated from the partial waves to the observables as explained in the text.
The momentum of the incoming K− in the laboratory frame is shown for each plot. Data are from Refs. [14–17,19,24,25].
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750 MeV=c. Hence, although we do not reproduce the
750 MeV=c data, it is not worrisome because the data
themselves might not be as good as they look according to
their error bars. As the energy increases, experimental data
are very well described.
The comparison to K−p → π0Λ differential cross sec-

tions is provided in Fig. 13 and to polarizations in Fig. 14.
Only isospin-1 partial waves contribute to this reaction, and
as expected from the comparison to the total cross section,
the energy region above plab ¼ 790 MeV=c is very well
described for differential cross sections except at plab ¼
1740 MeV=c (s ¼ 4.52 GeV2=c2). This energy corre-
sponds to the upper limit of the fitted energy region, and
neither the magnitude nor the shape of the cross section is
properly reproduced. The shape of the low-energy cross
sections is correctly obtained, but we fail to recover the
right magnitude, mainly due to our poor description of the
S11 partial wave.
We have a good description of the polarization data in

Fig. 14 with the exception of plab ¼ 514, 960, and
750 MeV=c. Despite the fact that we do not obtain the
correct magnitude of the differential cross section or
polarization at 514 and 750 MeV=c, we do obtain both

the magnitude and shape for the P dσ
dΩ observable. This is

specially puzzling in the case of 750 MeV=c where the
discrepancy between theory and experiment is very
apparent.
Polarization data are experimentally very challenging

for the K−p → π0Λ and K−p → π0Σ0. These difficulties
become obvious when we compare to K−p → π0Σ0 polari-
zation data from Refs. [26,32]. For P dσ

dΩ we compare to
data from Ref. [25] for plab ¼ 455, 514, 554, 719, and
773 MeV=c, and we construct the observable from the
differential cross section and the polarization observable
from the most recent data in Ref. [26] for the closest
possible momenta plab ¼ 514, 560, 714, and 750 MeV=c.
In this way it is possible to observe the improvement
these latest data constitute. For example, at plab ¼ 554
ð560Þ MeV=c the forward and backward structures dis-
appear, obtaining a flatter distribution, and at 719 (714)
and 773 ð750Þ MeV=c any disagreement between theory
and experiment vanishes. Hence, disagreements at 960 and
1285 MeV=c for P and at 455 MeV=c for P dσ

dΩ are not
worrisome.
The measurement of the K−p → π0Σ0 reaction is very

challenging. An excellent example of the difficulties is
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FIG. 11. Differential cross section (dσdΩ, left and left-center columns), polarization asymmetry (P, right-center column), and P dσ
dΩ (right

column) for the K−p → K−p process in terms of the cosine of the center-of-mass scattering angle θ. The widths of the theory bands
correspond to the errors propagated from the partial waves to the observables as explained in the text. The momentum of the incoming
K− in the laboratory frame is shown for each plot. Differential cross section data are from Refs. [13–15,18,23,24], polarization data are
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FIG. 12. Same as Fig. 10 for the K−p → K̄0n process. Data are from Refs. [13,19,20,22–26].
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FIG. 13. Same as Fig. 10 for the K−p → π0Σ0 process. Data are from Refs. [21–27,29].
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provided by the only two experimental papers in the last
35 years on K−p scattering, which have tried to tackle this
reaction, i.e., Manweiler et al. [32] and Prakhov et al. [26].
Both analyses were performed on the same experimental
data at eight incident K− momenta (plab ¼ 514, 560, 581,
629, 659, 687, 714, and 750 MeV=c), reporting overall
normalization uncertainties of �7% [26] and �10% [32]
with serious disagreements on the systematic uncertainties
treatment and their results, especially at forward angles.
Figure 15 shows a sample of K−p → π0Σ0 differential
cross sections and in particular data from these two
analyses at six momenta. Both analyses agree for the lower
energies, but the discrepancies are very apparent at the
higher energies. This situation gets worse if we compare the
polarization results as we do in the first column in Fig. 16,
where they disagree even in the sign of the polarization at
every momenta except at 750 MeV=c, which has very large
error bars. The KSU single-energy partial waves that we
have fitted incorporated the data from Ref. [32] but not the
data from Ref. [26] in their extraction. This explains why
our model has better agreement with the polarization data
from Ref. [32]. In Fig. 16 we also compare to the P dσ

dΩ from
Ref. [25], although the large error bars make difficult any

meaningful comparison between theory and experiment.
At high energies, the differential cross section is not well
reproduced as is obvious from the fourth column in Fig. 15.
The KSU single-energy partial waves we have fitted do not
reproduce these high-energy K−p → π0Σ0 data, and hence
we do not expect to reproduce them with our model.
As expected from the results on the total cross section,

the differential cross sections are systematically under-
estimated at low energies for the K−p → π−Σþ reaction as
it is shown in Fig. 17. We underestimate the peak at
cos θ≃ 0.7 that shows up for plab from ∼790 MeV=c to
∼1100 MeV=c. The peak shape is generated by the F05

partial wave and its magnitude by its interference with P03

wave. If we compare both partial waves for the K̄N → πΣ
channel in the energy range between 2 and 3 GeV2 in
Figs. 1 (second row, third column) and 2 (second row,
second column), we find that there is a sizable under-
estimation of the single-energy partial waves by our fits
that are responsible for the result we obtain for the
differential cross sections. This explains also the deviation
from the P dσ

dΩ data in Fig. 18 at the same energies (although
polarization data are fairly well reproduced). The rest of the
polarization and P dσ

dΩ data are well reproduced considering
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FIG. 14. Polarization asymmetry (P, left, left-center, and right-center columns) and P dσ
dΩ (right column) for the K−p → π0Λ process in

terms of the cosine of the center-of-mass scattering angle θ. Polarization data are from Ref. [26] for the left column, from Ref. [24] for
the left-center column, and from Ref. [23] for the right-center column. P dσ

dΩ data are from Refs. [25] (solid circles) and [26] (empty
circles). For the last we have computed the error bars using standard error propagation from the P and dσ=dΩ data. For plots where data
are shown at two different energies, the theory band has been computed at both energies.
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FIG. 15. Same as Fig. 10 for the K−p → π0Σ0 process. Data at plab ¼ 514, 560, 659, 687, 714, and 750 MeV=c are from Ref. [26]
(solid circles), from Ref. [32] (empty circles), and from Ref. [25] (solid triangles only at 514 MeV=c). The remainder of the data are
from Refs. [25,28,29].
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FIG. 16. Polarization asymmetry (P, left column) and P dσ
dΩ (left-center, right-center, and right columns) for the K−p → π0Σ0 process

in terms of the cosine of the center-of-mass scattering angle θ. Polarization data are from Ref. [26] (solid circles) and Ref. [32] (empty
circles). P dσ

dΩ data are from Ref. [25].
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FIG. 17. Same as Fig. 10 for the K−p → πþΣ− process. Data are from Refs. [21–25,31].
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FIG. 18. Polarization asymmetry (P, left and left-center columns) andP dσ
dΩ (right-center and right columns) for theK−p → π−Σþ process

in terms of the cosine of the center-of-mass scattering angle θ. Polarization data are from Refs. [22,24], and P dσ
dΩ data are from Ref. [25].
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the large uncertainties and that many experimental data
points have unphysical values of jPj > 1. Unfortunately, in
the angular region for the polarization data (cos θ≃−0.25)
where the most interesting structure shows up, we lack
experimental information.
The comparison to K−p → πþΣ− differential cross

sections is presented in Fig. 19. No polarization data are
available for this reaction. The agreement between theory
and experiment is excellent for all energies and angles
except for the forward region at low energies (see
plab ¼ 436, 455, and 495 MeV=c) where the reduction
of the differential cross section can be achieved through the
interference of D05 with higher-order partial waves; how-
ever, the D03 contribution compensates D05 and P01, and
P13 andD13 contribute to the large overestimation shown in
the plots. Nevertheless, all the low-energy experimental
points come from the same experiment in Ref. [25], and
further independent experimental information would be
useful.

IV. CONCLUSIONS AND OUTLOOK

We have presented a coupled-channel model for
K̄N; πΣ;… → K̄N; πΣ;… processes in the resonant region
(up to s ¼ 4.70 GeV2) incorporating all the relevant
channels. The approach presented is based on K-matrix
formalism and Breit-Wigner parametrizations. The T
matrix is analytical, and the first Riemann sheet has no

poles (at least in a very wide area that envelopes the
physical region of interest). Unitarity gives the disconti-
nuity of the T-matrix elements across the right-hand cuts
and determines the continuation to complex values of s
below the real axis where resonance poles are located in the
unphysical Riemann sheets. Analytical amplitudes enable
the application of dispersion relations to connect the
resonance region with the high-energy domain that is
dominated by Regge poles in cross-channels, e.g., in a
similar fashion to that used recently in the analysis of πN
scattering [45]. The construction of amplitudes valid in a
wide range of energies is required in the analysis of
processes that have K̄N in the final states, e.g., three-body
decays to K̄N þmeson in pentaquark searches [6] and real
and quasireal diffractive photoproduction of KK̄ pairs on
the proton in the search for strangeonia and exotic mesons
with hidden strangeness [8].
For simplicity and computational reasons we have fitted

our model to the single-energy partial waves from
Ref. [33]. We present the results of our fits in Table I
and Figs. 1–4. Statistical errors have been estimated by
means of the bootstrap technique. In general the fits
obtained are very good except for S01, P01, and S11 partial
waves, the resonance extraction of which is less reliable
than for other partial waves. For these three partial waves
we have performed additional analyses on systematic errors
by randomly pruning and refitting the database. Due to
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FIG. 19. Same as Fig. 10 for the K−p → πþΣ− process. Data are from Refs. [21–25,31].
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their nature, these systematic uncertainties have not been
propagated to the resonances nor observables error
estimation.
We have reported the most comprehensive analysis of

the Y� spectrum to date. All the obtained resonances are
summarized in Tables II and III together with their
uncertainties and a comparison to previous pole extractions
by Zhang et al. [1] and Kamano et al. [3]. We provide
graphical representations of the location of the resonances
in Fig. 5 (T-matrix pole positions in the unphysical
Riemann sheets) and Fig. 6 (Regge trajectories). The
Regge trajectories provide additional insight into the nature
of the hyperon spectrum. Gaps in the trajectories provide
hints on possible missing states and the shape of the
trajectories and their (non)linearity information on the
quark-gluon dynamics [44]. We find that most of the states
fit within linear trajectories, implying a three-quark state
nature. An exception is the Λð1600Þ, of which the mass and
width are very well established and which does not fit
within the daughter natural parity linear Regge trajectory.
Hence, it is likely that its nature is not that of a three-quark
state. We report a 3=2þ state in the P03 partial wave with a
mass of 1690 MeVand a narrow width of 46 MeV that fills
in the gap in the parent 0− Regge trajectory [see Fig. 6(a)].
A similar P03 state was found in Ref. [3] at Mp ¼
1671 MeV and Γp ¼ 10 MeV, although with a model that
does not obtain the four-star Λð1830Þ state also present in
the P03 partial wave. Neither present nor Refs. [1,3]
analyses find evidence of the three-star Σð1940Þ state in
the D13 partial wave; however, the structure of the Regge
trajectories in Fig. 6(b) suggests that this state is necessary
to fill in a gap in the 1þ daughter Regge trajectory, and
further studies are mandatory.
Finally, we have compared our model predictions to the

experimental observables for K−p → K−p, K̄0n, π0Λ,
π0Σ0, π−Σþ, πþΣ− reactions, namely, total and differential
cross sections, polarizations, and P dσ

dΩ. The K−p → K−p
and K−p → K̄0n data are well reproduced, and our
amplitudes are an adequate input for K̄Nþ meson decays
and γp → KK̄p partial-wave analyses. The model also
provides a general good description for K−p → πþΣ− and
K−p → π0Σ0 processes and a not-so-good description of
the K−p → π−Σþ and K−p → π0Λ reactions depending on
the energy range under consideration. The reasons for
discrepancies, database inconsistencies, and systematics
have been addressed in Sec. III C.
The next step in a comprehensive description and

analysis of the hyperon spectrum consists of fitting directly
the experimental data as done in Ref. [2] bypassing the
single-energy partial waves from Ref. [33]. The partial
waves presented in this paper can be used as starting point
in the fitting process. The examination of the experimental
database shows how in dire need of new data we are due to
discrepancies encountered between different experimental

analyses. Considering how increasingly important K̄N
amplitudes are becoming in the data analysis for hadron
spectroscopy research programs at LHCb [6] and Jefferson
Lab [8], an ambitious experimental program should be
seriously considered in the future experimental research
programs at hadron beam facilities [46].
The codes employed to compute the partial waves and

the observables are available for downloading as well as in
an interactive form online at the Joint Physics Analysis
Center web page [47].
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APPENDIX: SOLUTION TO EQS. (42) and (43)

In this Appendix we provide the analytic expressions of
cabðsÞ and DðsÞ for the case of six K matrices that satisfy
the system of equations defined by Eqs. (42) and (43).
Throughout this Appendix we drop the s dependence in the
equations. The solution reads

caa ¼ T a

�
1þ 2ifbcdefT bcdef þ

X
fj;kg

εjkT jk

þ 2i
X
fj;k;lg

fjklT jkl þ
X

fj;k;l;mg
fjklmT jklm

�
; ðA1Þ

cab ¼ iεabT aT b

�
1þ

X
fj;kg

εjkT jk þ 2i
X
fj;k;lg

fjklT jkl

þ
X

fj;k;l;mg
fjklmT jklm þ 2ifjklmT jklm

�
;

a ≠ b; ðA2Þ
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D ¼ 1þ
X
fj;kg

ε2jkT jk þ 2i
X
fj;k;lg

fjklT jkl þ
X

fj;k;l;mg
fjklmT jklm

þ 2i
X

fj;k;l;m;ng
fjklmT jklm þ f123456T 123456; ðA3Þ

where we define fj; kg, fj; k; lg, fj; k; l; mg, and
fj; k; l; m; ng as the set of combinations without repetition
of six elements taken in sets of two, three, four, and five
elements at a time, respectively, where 1 to 6 label each one
of the Ka matrices. In Eqs. (A1) and (A2) a, b ≠ j, k, l, m,
n. εij is defined by Eq. (44). The T ’s are defined by

T 123456 ¼ T 1T 2T 3T 4T 5T 6; ðA4Þ

T jklm ¼ T jT kT lT mT n; ðA5Þ

T jklm ¼ T jT kT lT m; ðA6Þ

T jkl ¼ T jT kT l; ðA7Þ

T jk ¼ T jT k; ðA8Þ
where T j is defined by Eq. (26) if j denotes a poleK matrix
and by Eq. (29) if j denotes a background K matrix.
The f functions are defined as follows,

fjkl ¼ εjkεklεlj; ðA10Þ

fijkl ¼ ε2ilε
2
jk þ ε2ijε

2
kl þ ε2ikε

2
jl − 2εijεikεjlεkl

− 2εikεilεjkεjl − 2εijεilεjkεkl; ðA11Þ

fijklm ¼ ε2imεjkεjlεkl þ εikεilε
2
jmεkl þ εijεimεjmε

2
kl

þ εikεimε
2
jlεkm þ ε2ilεjkεjmεkm þ εijεilεjlε

2
km

þ εilεimε
2
jkεlm þ ε2ikεjlεjmεlm þ ε2ijεklεkmεlm

þ εijεikεjkε
2
lm − εilεimεjkεjmεkl − εikεimεjlεjmεkl

− εilεimεjkεjlεkm − εikεilεjlεjmεkm

− εijεimεjlεklεkm − εijεilεjmεklεkm

− εikεimεjkεjlεlm − εikεilεjkεjmεlm

− εijεimεjkεklεlm − εijεikεjmεklεlm

− εijεilεjkεkmεlm − εijεikεjlεkmεlm; ðA12Þ

f123456 ¼ α − 4β þ 2ðγ1 þ γ2 − δ1 − δ2Þ; ðA13Þ

where

α ¼ ε216ε
2
25ε

2
34 þ ε215ε

2
26ε

2
34 þ ε216ε

2
24ε

2
35 þ ε214ε

2
26ε

2
35

þ ε215ε
2
24ε

2
36 þ ε214ε

2
25ε

2
36 þ ε212ε

2
35ε

2
46 þ ε213ε

2
24ε

2
56

þ ε216ε
2
23ε

2
45 þ ε212ε

2
36ε

2
45 þ ε213ε

2
26ε

2
45 þ ε212ε

2
34ε

2
56

þ ε214ε
2
23ε

2
56 þ ε213ε

2
25ε

2
46 þ ε215ε

2
23ε

2
46; ðA14Þ

β ¼ ε12ε13ε23ε45ε46ε56 þ ε12ε14ε24ε35ε36ε56

þ ε12ε16ε26ε34ε35ε45 þ ε13ε16ε24ε25ε36ε45

þ ε14ε15ε23ε26ε36ε45 þ ε14ε16ε23ε25ε35ε46

þ ε13ε15ε24ε26ε35ε46 þ ε12ε15ε25ε34ε36ε46

þ ε15ε16ε23ε24ε34ε56 þ ε13ε14ε25ε26ε34ε56; ðA15Þ

γ1 ¼ ε15ε16ε24ε26ε34ε35 þ ε14ε16ε25ε26ε34ε35

þ ε15ε16ε24ε25ε34ε36 þ ε14ε15ε25ε26ε34ε36

þ ε14ε16ε24ε25ε35ε36 þ ε14ε15ε24ε26ε35ε36

þ ε15ε16ε23ε26ε34ε45 þ ε13ε16ε25ε26ε34ε45

þ ε15ε16ε23ε24ε36ε45 þ ε14ε16ε23ε25ε36ε45

þ ε13ε15ε24ε26ε36ε45 þ ε13ε14ε25ε26ε36ε45

þ ε12ε16ε25ε34ε36ε45 þ ε12ε15ε26ε34ε36ε45

þ ε12ε16ε24ε35ε36ε45 þ ε12ε14ε26ε35ε36ε45

þ ε13ε15ε25ε26ε34ε46 þ ε15ε16ε23ε24ε35ε46

þ ε13ε16ε24ε25ε35ε46 þ ε14ε15ε23ε26ε35ε46

þ ε13ε14ε25ε26ε35ε46 þ ε12ε16ε25ε34ε35ε46

þ ε15ε16ε23ε25ε34ε46 þ ε12ε15ε26ε34ε35ε46

þ ε14ε15ε23ε25ε36ε46 þ ε13ε15ε24ε25ε36ε46

þ ε14ε16ε23ε26ε35ε45 þ ε13ε16ε24ε26ε35ε45

þ ε12ε15ε24ε35ε36ε46 þ ε12ε14ε25ε35ε36ε46; ðA16Þ

γ2 ¼ ε13ε15ε23ε26ε45ε46 þ ε13ε16ε23ε25ε45ε46

þ ε12ε16ε23ε35ε45ε46 þ ε12ε13ε26ε35ε45ε46

þ ε12ε15ε23ε36ε45ε46 þ ε12ε13ε25ε36ε45ε46

þ ε14ε16ε23ε25ε34ε56 þ ε13ε16ε24ε25ε34ε56

þ ε14ε15ε23ε26ε34ε56 þ ε13ε15ε24ε26ε34ε56

þ ε14ε16ε23ε24ε35ε56 þ ε13ε14ε24ε26ε35ε56

þ ε12ε16ε24ε34ε35ε56 þ ε12ε14ε26ε34ε35ε56

þ ε14ε15ε23ε24ε36ε56 þ ε13ε14ε24ε25ε36ε56

þ ε12ε14ε23ε36ε45ε56 þ ε12ε13ε24ε36ε45ε56

þ ε12ε15ε24ε34ε36ε56 þ ε12ε14ε25ε34ε36ε56

þ ε12ε13ε25ε34ε46ε56 þ ε13ε16ε23ε24ε45ε56

þ ε13ε14ε23ε26ε45ε56 þ ε12ε16ε23ε34ε45ε56

þ ε12ε14ε23ε35ε46ε56 þ ε12ε13ε26ε34ε45ε56

þ ε13ε15ε23ε24ε46ε56 þ ε13ε14ε23ε25ε46ε56

þ ε12ε13ε24ε35ε46ε56 þ ε12ε15ε23ε34ε46ε56; ðA17Þ
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δ1 ¼ ε12ε13ε25ε35ε
2
46 þ ε12ε15ε23ε35ε

2
46 þ ε213ε24ε25ε46ε56

þ ε12ε13ε24ε34ε
2
56 þ ε13ε14ε

2
25ε36ε46 þ ε12ε14ε23ε34ε

2
56

þ ε14ε15ε
2
23ε46ε56 þ ε15ε16ε25ε26ε

2
34

þ ε15ε16ε
2
24ε35ε36 þ ε216ε24ε25ε34ε35

þ ε214ε23ε26ε35ε56 þ ε13ε14ε23ε24ε
2
56

þ ε212ε34ε35ε46ε56 þ ε214ε25ε26ε35ε36

þ ε213ε25ε26ε45ε46 þ ε13ε16ε
2
24ε35ε56

þ ε15ε16ε
2
23ε45ε46 þ ε213ε24ε26ε45ε56

þ ε14ε15ε24ε25ε
2
36 þ ε12ε16ε25ε

2
34ε56

þ ε12ε15ε26ε
2
34ε56 þ ε12ε14ε26ε

2
35ε46

þ ε215ε23ε24ε36ε46 þ ε14ε16ε
2
25ε34ε36; ðA18Þ

δ2 ¼ ε215ε23ε26ε34ε46 þ ε12ε15ε24ε
2
36ε45 þ ε12ε14ε25ε

2
36ε45

þ ε13ε14ε
2
26ε35ε45 þ ε13ε16ε23ε26ε

2
45

þ ε12ε16ε23ε36ε
2
45 þ ε13ε15ε

2
24ε36ε56

þ ε12ε16ε24ε
2
35ε46 þ ε13ε15ε23ε25ε

2
46

þ ε214ε23ε25ε36ε56 þ ε212ε34ε36ε45ε56

þ ε14ε16ε
2
23ε45ε56 þ ε13ε15ε

2
26ε34ε45

þ ε212ε35ε36ε45ε46 þ ε216ε23ε24ε35ε45

þ ε12ε13ε26ε36ε
2
45 þ ε216ε23ε25ε34ε45

þ ε14ε15ε
2
26ε34ε35 þ ε14ε16ε24ε26ε

2
35

þ ε212ε35ε36ε45ε46 þ ε13ε15ε23ε25ε
2
46

þ ε13ε16ε
2
25ε34ε46: ðA19Þ
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