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We investigate the impact of unquenching effects on QCD Green’s functions, in the form of quark-loop
contributions to both the gluon propagator and three-gluon vertex, in a three-loop inspired truncation of the
three-particle irreducible (3PI) effective action. The fully coupled system of Dyson-Schwinger equations
for the quark-gluon, ghost-gluon and three-gluon vertices, together with the quark propagator, are solved
self-consistently; our only input are the ghost and gluon propagators themselves that are constrained by
calculations within lattice QCD. We find that the two different unquenching effects have roughly equal, but
opposite, impact on the quark-gluon vertex and quark propagator, with an overall negative impact on the
latter. By taking further derivatives of the 3PI effective action, we construct the corresponding quark-
antiquark kernel of the Bethe-Salpeter equation for mesons. The leading component is gluon exchange
between two fully dressed quark-gluon vertices, thus introducing for the first time an obvious scalar-scalar
component to the binding. We gain access to time-like properties of bound states by analytically continuing
the coupled system of Dyson-Schwinger equations to the complex plane. We observe that the vector axial-
vector splitting is in accord with experiment and that the lightest quark-antiquark scalar meson is above
1 GeV in mass.
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I. INTRODUCTION

The plethora of experimental phenomena related to the
global properties and the internal structure of hadronic
bound states and resonances are generated from the under-
lying nonperturbative interaction of quarks and gluons
described by QCD. These relations can be made apparent
using functional methods such as the framework of Dyson-
Schwinger and Bethe-Salpeter equations or the functional
renormalization group; see Refs. [1–6] for reviews.
One of the long-standing goals within the Dyson-

Schwinger/Bethe-Salpeter framework is to establish robust
truncation schemes that can be systematically applied to the
calculation of bound-state properties. Such constructions
can be approached from two different perspectives: bottom-
up or top-down. While the former employs phenomeno-
logical input in order to construct models and constrain their
parameters, the latter requires a robust theoretical founda-
tion upon which to build [2]. Consequently there is a rich
and diverse history regarding truncations, ranging from
schemes that adhere to computational prudence [7,8], setups
that employ symmetries and identities to constrain Green’s
functions beyond propagators [9–11], to recent investiga-
tions wherein vertices are solved for explicitly [12–25].
Obtaining a suitable description of QCD within the

functional approach is relevant for several diverse reasons.
Aside from studying intrinsic properties of Green’s func-
tions and their connection to confinement, one can explore

properties of the fundamental quark and gluon degrees of
freedom in medium, thus providing a handle on the QCD
phase diagram. Additionally, composite systems can be
constructed in the form of mesons [26,27], baryons [28,29],
glueballs [30] and tetraquarks [31,32], with their mass
spectra, decays and electromagnetic interactions explored
[33–35]. This of course necessitates that key symmetries
are maintained—a principle difficulty in constructing
viable truncations—as we shall discuss later.
Furthermore, detailed lattice calculations of QCD in

Landau gauge are by now sufficiently advanced that they
can serve to provide auxiliary information. This not only
enables one to judge the efficacy of existing truncations,
but also to provide key ingredients or missing informa-
tion. Finding coincidence or convergence between these
complementary nonperturbative approaches enables
hybrid constructions to be developed along the lines of
Refs. [36,37], wherein the difficulties of one approach (such
as the sign problem) can be circumvented.
In this article, we explore one of the most important

ingredients in nonperturbative studies of QCD that couple
together the gauge andmatter sector: the quark-gluonvertex.
However, rather than following the customary approach
of truncating the one-particle irreducible (1PI) Dyson-
Schwinger equations at the level of vertex functions, we
take here a more pragmatic (and arguably more systematic)
approach by truncating the nPI effective action to a given
loop order. In particular, we take the three-particle irreduc-
ible (3PI) effective action to three loops, such that all two-
and three-point functions are dynamical quantities. This is a
natural step beyond the system explored in Refs. [38,39]
which is analogous to a three-loop truncation of the
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two-particle irreducible (2PI) effective action. The resulting
system of equations is still extremely complex and expen-
sive in numerical terms, in particular due to the two-loop
structure of the resulting Dyson-Schwinger equation (DSE)
for thegluon propagator.We therefore solve theDSEs for the
ghost and gluon propagator in a separate truncation provid-
ing solutions that are close to corresponding (quenched and
unquenched) lattice results. These are then used as input into
the remaining 3PI equations for the primitively divergent
three-point vertices together with the quark propagator. We
solve these self-consistently and discuss the impact of
unquenching effects on the quark-gluon and three-gluon
vertices. Finally, we apply our approach to the Bethe-
Salpeter description of mesons and determine a number
of observables consistent with the axial Ward-Takahashi
identity. In general, our top-down approach is similar in
spirit to a corresponding effort within the framework of the
functional renormalization group [22,23].
This paper is organized as follows. In Sec. II we

introduce in brief the 3PI effective action of QCD at
three-loop order and present the relevant dynamical quan-
tities, the propagators and vertices, together with their
equations of motion in closed form. In Sec. III we give our
results for each Green’s function and discuss the impact of
quark loops on the three-gluon vertex. We apply the
formalism to the calculation of meson observables in a
symmetry-preserving truncation of the Bethe-Salpeter
equation. In Sec. IV we conclude; some technical details
are relegated to an Appendix A.

II. FRAMEWORK

In the functional approach, the Dyson-Schwinger equa-
tions are the equations of motion corresponding to the 1PI
effective action. They are comprised of coupled integral
equations that form exact relations between the theory’s
infinite tower of n-point Green’s functions. The effective
action, Γ½ϕ�, is obtained from the generating functional of
connected Green’s functionsW½J� by a Legendre transform

Γ½ϕ� ¼ W½J� − Jiϕi; ð1Þ

from which n-point correlation functions are defined as

GðnÞðp1;…; pnÞ ¼
δnΓ½ϕ�

δϕ1 � � � δϕn
; ð2Þ

by taking functional derivatives. Then, the DSE for a 1PI
Green’s function can be derived from the functional
identity

δΓ½ϕ�
δϕi

−
δS
δϕi

�
ϕþ δ2W½J�

δJδJk

δ

δϕk

�
¼ 0: ð3Þ

However, by themselves the DSEs do not form a closed
system and require truncation. Typically this involves

specifying the behavior of higher-order n-point functions
and collapsing the infinite tower to a manageable set of
coupled equations.
Another approach is to work with a different resumma-

tion of the effective action by performing additional
Legendre transformations of the action (1), this time with
respect to propagators and vertices [40]. Here we consider
the 3PI effective action which in compact notation [41–43]
reads

Γ½ϕ;D;U� ¼ Scl½ϕ� þ
i
2
TrLnD−1 þ i

2
Tr½D−1

ð0ÞD�
− iΦ0½ϕ;D;U�− iΦint½ϕ;D;U� þ const: ð4Þ

The superfield ϕ represents all fields in the action, andD,U
are the corresponding propagators and three-point vertices.
As usual, the equations of motion are obtained by taking
functional derivatives

δΓ½ϕ; D;U�
δD

¼ δΓ½ϕ; D;U�
δU

¼ 0: ð5Þ

The resulting set of equations for the propagators and
vertices is then closed. In the case of QCD, the non-
interacting part, Φ0½ϕ; D;U� is given in Fig. 1, and the
interacting part Φint½ϕ; D;U� in Fig. 2.
Note that throughout this paper we work in Euclidean

space, wherein space-like momenta are those for which
p2 ≥ 0. To compute time-like properties of bound states we
must analytically continue to complex momenta; we will

FIG. 1. Noninteracting part of the 3PI effective action, to three
loops. All propagators are considered dressed. Throughout the
paper springs describe gluons, dashed lines Faddeev-Popov
ghosts and solid lines quarks. Small filled circles describe bare
and large filled circles describe dressed vertices.

FIG. 2. Interacting part of the 3PI effective action, to
three loops.
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discuss this later in brief. For the sake of brevity we will
drop the majority of (easily determinable) momentum
arguments in the equations that follow.

A. Ghost and gluon propagators

The ghost propagator in Landau gauge is defined as

DGðpÞ ¼ −
Gðp2Þ
p2

; ð6Þ

where Gðp2Þ is the ghost dressing function. Similarly, the
gluon propagator is

DμνðpÞ ¼ Tμν
ðpÞDZðp2Þ ¼ Tμν

ðpÞ
Zðp2Þ
p2

; ð7Þ

where Zðp2Þ is a momentum-dependent dressing function.
The tensor structure is given by the transverse projector

Tμν
ðpÞ ¼ δμν −

pμpν

p2
: ð8Þ

From Eqs. (4)–(5) and Figs. 1 and 2 we can derive the
(truncated) DSE for the ghost and gluon propagators,
displayed in Fig. 13 in Appendix A 1. Unfortunately, in
contrast to the other DSEs considered in this work, these
feature two-loop diagrams with squint and sunset topology
that pose a significant calculational challenge. This pre-
vents a complete self-consistent solution together with the
DSEs for the vertices.1 On the other hand, we need
quantitatively correct ghost and gluon propagators as input
for the other DSEs we wish to solve, i.e. the one for the
ghost-gluon vertex, the three-gluon vertex, the quark-gluon
vertex and the quark.
To bypass this difficulty, we employ the framework of

Refs. [15,47,48] and solve a coupled system of ghost, gluon
and (in the case of Nf ≠ 0) quark propagators using model
Ansätze for the three-point vertices, while neglecting all
diagrams that involve the four-gluon vertex (i.e. the two-
loop diagrams). The Ansätze are chosen such that lattice
data for the ghost and gluon propagators for Nf ¼ 0

(quenched) and Nf ¼ 2 (unquenched) quark flavors are
reproduced. The advantages of this procedure over just
using the lattice data for the ghost and gluon in the other
DSEs are twofold. First, we are able to use continuous
solutions for the ghost and gluon propagators as input
without the need to interpolate and extrapolate the lattice
data. Second, we can set up and use a consistent renorm-
alization scheme for all DSEs with appropriate renormal-
ization factors Z3ðμ;ΛÞ and ~Z3ðμ;ΛÞ at a consistent
renormalization point μ and numerical cutoff Λ.

However, this comes at a price: neglecting the two-loop
diagrams but still reproducing the results of the lattice
calculations means that we have to use effective ghost-
gluon, three-gluon and (to a lesser extent) quark-gluon
vertex models in the ghost-gluon DSEs that make up for the
neglected contributions. These are then no longer quanti-
tatively consistent with the explicit vertices determined in
this work.
Relegating all technical details to Appendix A 1 we only

discuss the resulting ghost and gluon dressing functions
Gðp2Þ and Zðp2Þ and compare them with corresponding
lattice data in Fig. 3. In the figure, the data are taken from
Refs. [49,50]. Similar data from other groups have been
discussed in Refs. [51,52]. The agreement in the quenched
case is almost perfect, and for the unquenched case is very
good on the level of a few percent. This is certainly
sufficient for our study.

B. Quark propagator

The quark propagator in vacuum has the general
decomposition

S−1ðpÞ ¼ Z−1
f ðp2Þ½ipþMðp2Þ�; ð9Þ

where Zfðp2Þ and Mðp2Þ are the quark wave function and
mass function, respectively. They are obtained by solving
the quark gap equation see Fig. 4, which reads

S−1 ¼ Z2S−1ð0Þ þ Z1fCFg2s

Z
k
γμSΓν

qgDμν; ð10Þ

where
R
k ¼ d4k=ð2πÞ4 is the integration measure, CF ¼

4=3 is the result of the color trace, and S−1ð0Þ is the bare

inverse propagator. The quark and quark-gluon vertex
renormalizations are Z2, Z1f respectively. The quark-gluon
vertex Γν

qg is detailed in the next subsection.

0 1 2 3 4 5 6 7
p [GeV]

0

1

2

3

4 N
f
=0, Sternbeck et al (2005)

N
f
=2, Sternbeck (2015)

N
f
=0

N
f
=2

N
f
=0, Sternbeck et al (2005)

N
f
=2, Sternbeck (2015)

N
f
=0

N
f
=2

Z(p
2
)

G(p
2
)

FIG. 3. Ghost and gluon dressing functions for the quenched
(Nf ¼ 0) and unquenched system (Nf ¼ 2) compared with
lattice data from Refs. [49,50].

1Though see Refs. [24,44–46] for some progress within
simpler truncation schemes.
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C. Quark-gluon vertex

The quark-gluon vertex can be decomposed into a set of
Dirac-Lorentz covariants Xμ

i and scalar dressings hi

Γμ
qgðl; kÞ ¼

X
i

hiX
μ
i ðl; kÞ: ð11Þ

The covariants are any linear combination of the following
twelve elements: γμ, γμk, γμl, γμkl, kμ, kμk, kμl, kμkl, lμ, lμk,
lμl, lμkl. In Landau gauge, however, it is more convenient
to work with the transversely projected vertex where each
element transforms correctly under charge conjugation.
Just eight components suffice

Tμν
ðkÞΓ

νðl; kÞ ¼ h1γ
μ
T þ h2l

μ
Tlþ h3il

μ
T

þ h4ðl · kÞ
i
2
½γμT; l� þ h5

i
2
½γμ; k�

þ h6
1

6
f½γμ; l�kþ ½l; k�γμ þ ½k; γμ�lg

þ h7t
μν
ðklÞðl · kÞγν þ h8t

μν
ðklÞ

i
2
½γν; l�: ð12Þ

Here, the incoming gluon momentum is kμ, and lμ is the
relative quark momentum. Quantities with a subscript T are
contracted with the transverse projector Tμν

ðkÞ, [see Eq. (8)]

and τμνðklÞ ¼ ðl · kÞδμν − lμkν.

The DSE for the vertex, following the three-loop
truncation of the 3PI effective action, is given in Fig. 5.
It consists of two vertex corrections which we refer to as the
non-Abelian (since it involves gluon self-interaction) and
Abelian diagrams

Γμ
qg ¼ Z1fγ

μ þ Λμ
qg;NA þ Λμ

qg;AB: ð13Þ

Explicitly their contributions are

Λμ
qg;NA ¼ g2sNc

2

Z
k
Γα
qgSΓ

β
qgΓαβμ

3g DZDZ; ð14Þ

Λμ
qg;AB ¼ −g2s

2Nc

Z
k
Γα
qgSΓ

μ
qgSΓα

qgDZ: ð15Þ

Since the quark-gluon vertex is defined transverse with
respect to its gluon momentum, it suffices to write only the
scalar part of the gluon propagators, DZ. Thus far the only
component that has not been introduced is the three-gluon
vertex Γμνρ

3g , which we discuss later.
When solving the Abelian diagram, it is useful to

make the substitution χμqg ¼ SΓμ
qgS, for the top-most vertex,

which significantly reduces the complexity of the resulting
trace algebra. Despite the seeming complexity of the
system, each iteration of the quark-gluon vertex takes
about a minute on a standard desktop CPU.

D. Ghost-gluon vertex

For the ghost-gluon vertex in Landau gauge, there is just
the one dressing function, fðl; qÞ and corresponding tensor
structure

Γμ
ghðl; qÞ ¼ fðl; qÞTμν

ðqÞl
ν ð16Þ

where l ¼ ðp1 þ p2Þ=2 is the relative ghost momentum
and q is the gluon momentum. The DSE, given in Fig. 6, is
similar in form to that of the quark-gluon vertex

Γμ
gh ¼ ~Z1l

μ
T þ Λμ

gh;NA þ Λμ
gh;AB; ð17Þ

where ~Z1 ¼ 1 in Landau gauge. The individual contribu-
tions are given by

Λμ
gh;NA ¼ g2sNc

2

Z
k
Γα
ghΓ

αβμ
3g Γβ

ghDZDZDG; ð18Þ

Λμ
gh;AB ¼ g2sNc

2

Z
k
Γα
ghΓ

μ
ghΓα

ghDGDGDZ: ð19Þ

This system is sufficiently simple that we make no further
comment upon its solution here.

E. Three-gluon vertex

The DSE for the three-gluon vertex from the 3PI
effective action to three loops, shown in Fig. 7 is

Γμνρ
3g ¼ Z1Γ

μνρ
3gð0Þ þ Λμνρ

3g;GH þ Λμνρ
3g;GL þ Λμνρ

3g;SF þ Λμνρ
3g;QL;

ð20Þ
FIG. 4. Diagrammatic representation of the quark DSE. Blobs
on propagators indicate they are dressed.

FIG. 5. Diagrammatic representation of the quark-gluon
vertex DSE.

FIG. 6. Diagrammatic representation of the ghost-gluon
vertex DSE.
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where Z1 ¼ Z3= ~Z3 is the three-gluon vertex renormaliza-
tion constant. The components for the ghost loop (GH),
gluon loop (GL), swordfish (SF) and quark loop (QL) are

Λμνρ
3g;GH ¼ −NCg2s

Z
q
DGDGDGΓ

ρ
ghΓν

ghΓ
μ
gh; ð21Þ

Λμνρ
3g;GL ¼ NCg2s

2

Z
q
DZDZDZΓ

βαρ
3g Γαγρ

3g Γγβρ
3g ; ð22Þ

Λμνρ
3g;SF ¼ −ð3Þ 3NCg2s

4

Z
q
DZDZΓ

βαρ
3g Γμνβα

4gð0Þ; ð23Þ

Λμνρ
3g;QL ¼ −

g2s
2

X
i

Z
q
Tr½Γρ

qgSΓν
qgSΓ

μ
qgS�: ð24Þ

The prefactors are the combination of symmetry factors
(1=2 for the swordfish and 2 each for the ghost and quark
loop) and color factors. The (3) for the swordfish denotes
that there are three distinct permutations of the diagram that
must be considered. Note also that the quark-loop con-
tribution must be summed over each quark flavor.
Following Ref. [18] where it was shown that the

dominant tensor structure is the tree-level one, we use a
reduced basis to describe the dressed three-gluon vertex

Γμνρ
3g ðp1; p2; p3Þ ¼ F1T

μα
ðp1ÞT

νβ
ðp2ÞT

ργ
ðp3ÞΓ

αβγ
3gð0Þðp1; p2; p3Þ;

ð25Þ

with F1 ¼ F1ðp2
1; p

2
2; p

2
3Þ. We can furthermore arrange

p2
1; p

2
2; p

2
3 into a set of S3 permutation group variables

(see Appendix A 2), and exploit the observation that s0 ¼
ðp2

1 þ p2
2 þ p2

3Þ=6 is the dominant variable. Finally,

Γαβγ
3gð0Þðp1; p2; p3Þ ¼ δαβðp1 − p2Þγ þ δβγðp2 − p3Þα

þ δγαðp3 − p1Þβ; ð26Þ

is the tree-level tensor structure of the three-gluon vertex.

III. RESULTS

All our calculations for the three-point functions are
performed with full momentum dependencies. For the
presentation of results, however, we concentrate on the
soft-gluon limit in which one gluon momentum is vanish-
ing, p3 ¼ 0, while the remaining two legs carry the same
momentum, p1 ¼ p2 ¼ p. This enables us to easily com-
pare with existing and future lattice calculations. In terms of
S3 permutation group variables, this corresponds to the top
of the Mandelstam triangle (see Fig. 14 in Appendix A 2),
with s0 ¼ p2=3, a ¼ 0, s ¼ 1. For the three-gluon vertex,
where the dressing function is nearly independent of all but
the variable s0 ¼ ðp2

1 þ p2
2 þ p2

3Þ=6, one may make use of
s0 and p interchangeably up to the obvious rescaling; this
observation could be used to combine multiple phase-space
slices obtained on the lattice.

A. Quark propagator

In Fig. 8 we show the quark mass function and wave
function obtained from the three-loop truncation of the 3PI
effective action. We show DSE results for the quenched
and the unquenched case with Nf ¼ 2. In the latter case

FIG. 7. Diagrammatic representation of the three-gluon vertex
DSE. The last diagram containing a bare four-gluon vertex is
cyclically permuted.
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FIG. 8. The (top) quark mass function and (bottom) quark wave
function calculated from the 3PI effective action, compared to
quenched and unquenched lattice data [53].
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quark-loop effects in the ghost and gluon propagators as
well as in the vertex DSEs are taken into account. The DSE
results are compared to quenched and unquenched lattice
calculations [53]. Note the unquenched lattice data is for
2þ 1 flavors. However, since the majority of the
unquenching effects stem from the two light quarks, the
comparison is still meaningful. Within error bars, we find
very good agreement between our results and the lattice
data, with about the right size of unquenching effect seen in
the mass function and still room for the inclusion of a third
quark flavor as well as for additional unquenching effects.
These may evolve e.g. from the inclusion of a pion cloud
[54] and only become apparent at higher order than the 3PI
truncation considered here. Note also that the wave
function of the quenched propagator crosses that of the
unquenched one, around p ¼ 0.4 GeV. This is a feature
suggested by the lattice data that has not been seen in a DSE
study before. We attribute this feature to the interplay of the
different tensor structures of the fully dressed quark-gluon
vertex that is only accessible in a self-consistent diagram-
matic calculation.

B. Quark-gluon vertex

In the following we report only results for the quark-
gluon vertex upon neglecting the Abelian contribution; this
is to provide consistency with the application to bound
states considered later (see Sec. III E). We explicitly
checked, however, that the inclusion of the Abelian con-
tribution has very little impact on the system of propagators
and vertices (on the level of a few percent).
In the soft-gluon limit the quark-gluon vertex reduces

(after adapting to our conventions), to the form

Γμ
qgðp; p; 0Þ ¼ λ1γ

μ − 4λ2ppμ þ 2iλ3pμ; ð27Þ

where λi ¼ λiðp; p; 0Þ. This is the usual Ball-Chiu con-
struction of the vertex [55]. These dressing functions are
related to those of our vertex in Eq. (12) by λ1 ¼ h1,
λ2 ¼ −h2=4, and λ3 ¼ h3=2.
In the top of Fig. 9 we show the result of our calculation

of the quenched quark-gluon vertex, transformed to the
Ball-Chiu basis and compared with the lattice data of
Ref. [56]. While the λ1 and λ3 components are comparable
(we introduced a vertical multiplicative shift in λ1 to
account for differences in the renormalization scheme),
no agreement is seen in the λ2 terms. This component is
notoriously difficult to extract on the lattice (the product
4p2λ2 should vanish at the origin) and consequently
obtained large error bars. It remains to be seen whether
future more precise lattice calculations still retain this
discrepancy. In the bottom of Fig. 9 we show our result
for the unquenched quark-gluon vertex for the basis
employed in Eq. (12); for the purposes of plotting, we
reversed the sign of the h2 component. At present there are
no available lattice data for the unquenched quark-gluon

vertex with which to make a comparison. However, our
results are not dissimilar to those reported in Ref. [20]
which corresponds to a three-loop expansion of the 2PI
effective action. It would be interesting to compare with
other truncations of the quark-gluon vertex in the DSE
approach [24,25] and from the functional renormalization
group [22]. However, the results therein have not yet been
reported in a form that enables us to easily make a direct
comparison. This is therefore relegated to future work.

C. Ghost-gluon vertex

For completeness we determine the dressing of the
ghost-gluon vertex, in spite of the deviation of its tree-
level term being small in Landau gauge. The result, for
both the quenched and unquenched systems, is shown in
Fig. 10 and compared to extant lattice data. There is good
agreement between our determination and that of the
larger 484 lattice [57,58], although clearly more work
needs to be done to reduce the statistical errors. The impact
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FIG. 9. (top) Calculated quark-gluon vertex compared to lattice
calculations [56] in the soft-gluon limit for quenched QCD.
(bottom) The components of our unquenched quark-gluon vertex,
also in the soft-gluon limit (the quenched results are similar).
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of unquenching on the system is somewhat negligible; thus
the often employed approximation that the ghost-gluon
vertex can be taken bare remains a good one. Compared
with previous DSE studies [15,59], the deviation of our
ghost-gluon vertex from one is a factor of 2 or 3 smaller,
which is a result of the three-gluon vertex being dressed in
the 3PI approach.

D. Three-gluon vertex

The leading component of the three-gluon vertex, for
both quenched and unquenched configurations, is shown in
the top panel of Fig. 11. In both cases, there is a zero
crossing present below p ¼ 0.2 GeV in the soft-gluon
kinematics. This is too low to have a discernible impact
on the properties of hadrons. Nevertheless, the strong
running of the vertex from its ultraviolet perturbative
momentum dependence down to values close to zero in
the infrared clearly shows that the dynamics of this vertex is
an important ingredient in any calculations and may not be
neglected. Curiously, while the impact of quark loops on
the gluon propagator is a reduction in its strength (see
Fig. 1), the opposite appears true in the three-gluon vertex
where unquenching effects are clearly additive2; see the
lower panel of Fig. 11.
In general, gluon propagators and three-gluon vertices

appear in combinations on the right-hand sides of the DSEs
for the three-gluon and the quark-gluon vertex. Thus the
unquenching effects in the gluon propagator compete
against their sister contributions in the three-gluon vertex.
Within the three-gluon vertex DSE we find that

unquenching in the three-gluon vertex wins—at least for
two quark flavors—and consequently the unquenched
three-gluon vertex is less suppressed, as compared to its
tree-level value, than the quenched system. For this reason,
unquenching effects in the gluon propagator and the three-
gluon vertex partly balance each other also in the DSE for
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lattice data from Refs. [57,58].
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2Note that this is in contradiction to the preliminary results
reported in Ref. [60]. We attribute this to a potential global sign
error in their quark-loop contribution. We checked explicitly that
our sign leads to the correct flavor dependence of the anomalous
dimension of the vertex [61].
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the quark-gluon vertex. Thus, the net unquenching effect on
the quark-gluon vertex and quark mass function is not as
dramatic as one may expect from the gluon propaga-
tor alone.

E. Application to bound states

Before we present results for the bound states, it is
appropriate to discuss some of the implications of choosing
the top-down approach wherein the emphasis is upon
reproducing the Green’s functions of QCD (i.e. those that
are in agreement with lattice calculations). Since the system
we consider is ultimately a truncation of the effective action
it is not guaranteed that the resulting meson spectrum will
be in agreement with experiment. That is, the scales
inherited from the lattice ghost and gluon propagators
may not yield a phenomenologically precise value e.g. for
the pion decay constant. Nonetheless, as the first work that
incorporates a self-consistently solved 3PI system includ-
ing bound states, we choose the top-down approach and
relegate a thorough discussion of the realization of sym-
metry constraints and their impact on the low-lying meson/
baryon spectrum to a future paper.
The Bethe-Salpeter kernel corresponding to the trunca-

tion at hand can readily be derived from the 3PI effective
action [38,40,41,62–64]. In the case of the Bethe-Salpeter
equation (BSE) for a meson, its quark-antiquark kernel is
obtained by differentiating twice with respect to the quark
propagator S; in Appendix A 3 we discuss how consistency
with the axial-vector Ward-Takahashi identity leads to
the appearance of a Goldstone boson in the chiral limit
and the formation of the Gell-Mann-Oakes-Renner relation.
The result, following simplification upon imposing the
stationary condition, is given in Fig. 12 and features a one-
gluon exchange contribution and a crossed-ladder
exchange, with all propagators and vertices fully dressed.
Though the crossed-ladder diagram is N2

c suppressed with
respect to the leading gluon exchange (similar to the
Abelian vs non-Abelian diagram in the quark-gluon ver-
tex), it may yet be relevant due to the dynamical enhance-
ment contained within the vertices. However, for reasons of
expediency (i.e. to avoid a complicated two-loop term in
the BS equation) we will not include the crossed-ladder
term here. This can easily be made consistent at the level of

the effective action by also dropping the corresponding
diagram.
It follows that the Bethe-Salpeter equation is

Γ ¼ CFg2s

Z
k
Γμ
qgSΓSΓμ

qgDZ; ð28Þ

where once again we have omitted momentum arguments
for brevity. The quantum numbers of the amplitude under
consideration, Γðp;PÞ, are dictated by its tensor decom-
position [26,65,66]. In a compact notation, we can solve
this homogeneous equation

Γi ¼ λðP2ÞKijΓj; ð29Þ

as an eigenvalue equation, where λðP2Þ ¼ 1 gives solutions
at discrete values of the bound-state total momentum
squared, P2 ¼ −M2

i . The matrix Kij represents the integral
kernel in the BSE.
As noted previously, access to time-like properties of

bound states (such as their masses), requires an analytic
continuation to complex momenta. By carefully choosing
the momentum routing, we can arrange the coupled system
of DSEs to be such that only the quark and quark-gluon
vertex need to be analytically continued to the complex
plane. The subsequent evaluation of the quark and quark-
gluon vertex is accomplished using a combination of the
Cauchy contour method [48,67], and the shell method [54].
Combining these two techniques together proves to be not
only reliable, but also efficient.
The results of our calculation in the 3PI effective action

at three loops (3PI-3L) are detailed in Table I and contrasted
with typical results from rainbow-ladder (RL) [68], a recent
study of mesons (and baryons) in the framework of the 2PI
effective action at three loops (2PI-3L) [39], and of course
their experimentally known values from the Particle Data
Group (PDG) [69]. We use the unquenched NF ¼ 2 system
throughout.
We see that the pion appears as a pseudo-Goldstone

boson in all truncations; its mass is fitted to 140 MeV in
each case so as to determine the light quark mass used as

FIG. 12. Symmetry-preserving Bethe-Salpeter equation corre-
sponding to the truncation of the quark-gluon vertex in Fig. 5.
The crossed-ladder term, stemming from the Abelian diagram
in the vertex DSE, is displayed but discarded for the calculation of
the bound states.

TABLE I. Meson masses and pion decay constant in GeV as
calculated in rainbow-ladder (RL) [68], the 2PI effective action at
three loops (2PI-3L) [39] and in the 3PI effective action at three
loops (3PI-3L) truncation as detailed here, compared to values
from the PDG [69]. Results affixed with † are fitted values.

RL 2PI-3L 3PI-3L PDG

0−þðπÞ 0.14† 0.14† 0.14† 0.14
0þþðσÞ 0.64 0.52 1.1(1) 0.48(8)
1−−ðρÞ 0.74 0.77 0.74 0.78
1þþða1Þ 0.97 0.96 1.3(1) 1.23(4)
1þ−ðb1Þ 0.85 1.1 1.3(1) 1.23
fπ 0.092† 0.103 0.105 0.092
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input. As has been previously noted, that the system
exhibits the correct chiral dynamics ensures that the mass
of the vector meson is reproduced on the level of 5%.
One of the problems with the rainbow-ladder approach is

its inability to reproduce the correct splitting of the axial-
vectors and the ρ meson; that is, the axial-vectors are
typically too light by several hundred MeV. This was
partially remedied by including three-loop corrections in
the 2PI effective action, lifting the size of one of the axial-
vectors and thus suggesting that tensor structures in the
quark-gluon vertex beyond the tree level play an important
role. Here, we find that the vector axial-vector splitting is
0.56(10) GeV for both charge-conjugation states; this is of
the same order as expected from experiment.
Similarly, while in RL and the 2PI-3L calculations there

remains a light scalar around 0.5–0.6 GeV (without a
width) that complicates the interpretation of the f0ð500Þ as
a four-quark state [10], the present calculation lifts the
lightest scalar to be 1.1(1) GeVin linewith our expectations.
These results agree with those of the bottom-up approach of
Ref. [9], where an effective quark-gluon interaction was
constructed to reproduce the vector–axial-vector splitting
with a heavy scalar. It will be interesting to see how our
calculated top-down approach compares to the phenomeno-
logically constrained one in detail.
Since the components of our 3PI quark-gluon vertex are

similar to those of the 2PI-3L truncation, it appears that it is
the difference in the structure of the kernel itself that leads
to these improvements. Indeed, since the leading part of the
kernel is a gluon ladder that connects two fully dressed
quark-gluon vertices, we have for the first time included
explicit scalar-scalar terms in addition to the usual vector-
vector and, recently, vector-scalar ones considered thus far.
It will be the topic of a future study to see how these effects
impact upon the excited-state spectrum, in particular that
of charmonium, and what the consequences will be for
baryons.

IV. CONCLUSION

We calculated the quark-gluon vertex in the three-loop
truncation of the 3PI effective action, neglecting for now
the backcoupling of the calculated vertices on the under-
lying ghost and gluon propagators, which were instead
fixed separately such that agreement with the lattice is
obtained. We found that the leading part of the vertex is
strongly enhanced for light quarks, as seen in previous
studies, and that the subleading components are already
quite stable in comparison to, for example, a 2PI truncation
of the effective action to third loop order.
In addition, we investigated the impact of including

unquenching effects in the form of quark-loop corrections
to both the gluon propagators and three-gluon vertex. We
found that they are sizable in the latter, introducing amaterial
shift in the location of the zero crossing to momenta deeper
in the infrared. We also observed that the effects of

unquenching in the three-gluon vertex act in opposition
to those in the gluon propagator; as a consequence, the
overall impact on the quark propagator and quark-gluon
vertex are smaller than one would naively expect.
By neglecting the Abelian contribution to the quark-

gluon vertex—which by itself can be calculated without
difficulty—we were able to apply the present framework to
the calculation of quark-antiquark bound states via the
Bethe-Salpeter equations, the kernel of which was derived
from the 3PI effective action and is used in accordance with
the axial Ward-Takahashi identity to ensure the appearance
of the pion as aGoldstone boson in the chiral limit. To obtain
bound-state masses in the time-like region, we analytically
continued the quark and quark-gluon vertices to complex
momenta. In contrast to previous top-down studieswe found
that the lightest scalar is above 1 GeV, thus adding further
evidence in support of the tetraquark picture of the f0ð500Þ
[31,32], as well as reproducing the correct mass splitting
between vector and axial-vector states.
To improve upon the present work, we would have to

include solutions of the ghost and gluon propagators
obtained self-consistently from the 3PI effective action.
This would require that the inherent two-loop gluon polar-
izations be included. Additionally, the Abelian contribution
to the quark-gluon vertex should be included with the
difficult crossed-ladder term incorporated into the Bethe-
Salpeter kernel. All of these tasks pose sizable challenges—
towards which we have made significant progress—and are
thus relegated to a future work.
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APPENDIX A: TECHNICAL DETAILS

1. Ghost and gluon propagators

In the main text we explained the need to solve the DSEs
for the quenched and unquenched ghost and gluon propa-
gators using effective three-point vertices that incorporate
the missing two-loop diagrams in the gluon DSE. The
resulting system of equations is shown in Fig. 13. Here, we
specify the vertex models used to solve this system of
equations as well as the corresponding renormalization
conditions. We choose αðμ2Þ ¼ 0.124 at the renormaliza-
tion point μ ¼ 57 GeV together with the MiniMOM
condition for the renormalization factor of the ghost-gluon
vertex, ~Z1 ¼ 1 [70]. Moreover, we need to single out one
instance of the one-parameter family of decoupling
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solutions; see Refs. [71,72] for details. This is done by
imposing the condition Gð0Þ ¼ 3.8 on the ghost dressing.
These coupling and renormalization constants are carried
over to the whole system of DSEs that are solved in the
main body of this work, where the calculated ghost and
gluon propagators serve as input.
For the ghost-gluon vertex model we use the simplest

possible choice: the bare vertex. This choice is well
justified in Landau gauge, as also discussed in the main
text. For the three-gluon vertex we use the Bose-symmetric
model suggested by Huber and Smekal in Ref. [15]

Γμνρ
3g ðp1; p2; p3Þ
¼ Z−1

1 Γμνρ
3g;0D

A3;UVðp1; p2; p3ÞDA3ðp1; p2; p3Þ; ðA1Þ

DA3;UVðp1; p2; p3Þ ¼ ½Gð3s0Þ�3þ1=δ; ðA2Þ

DA3ðp1; p2; p3Þ
¼ DA3;UVðp1; p2; p3Þ þDA3;IRðp1; p2; p3Þ; ðA3Þ

DA3;IRðp1; p2; p3Þ
¼ hIR½Gð6s0Þ�3½f3gðp2

1Þf3gðp2
2Þf3gðp2

3Þ�4: ðA4Þ

Here s0 ¼ ðp2
1 þ p2

2 þ p2
3Þ=6 parametrizes the leading

scale dependence, and f3gðxÞ ¼ ð1þ x=Λ2
3gÞ−1 is an infra-

red damping factor. The tensor structure of the bare three-
gluon vertex is Γμνρ

3g;0, the vertex renormalization factor is Z1,
and δ ¼ −9Nc=ð44Nc − 8NfÞ is the anomalous dimension

of the ghost. The contribution DA3;UV ensures the correct
ultraviolet running of the vertex and DA3;IR its damping in
the infrared in agreement with the lattice data of the vertex
and the numerical results, cf. Refs. [17,18,73] and our
results in the main body of this work. The damping is
controlled by two parameters, hIR, Λ3g, for which we

choose hIR ¼ −1, Λ3g ¼ 1.3 GeV in the quenched case
and in accordance with Ref. [15]. For the unquenched
calculation (Nf ¼ 2) we had to modify these values to
hIR ¼ −0.1, Λ3g ¼ 3.6 GeV. Interestingly, these changes
are qualitatively in agreement with the corresponding
changes in our numerical results for the three-gluon vertex
from its 3PI-DSE, discussed in Sec. III D.
For the quark-gluon vertex we employ a vertex ansatz

that has been introduced in Refs. [47,48] and is constructed
along the (leading part) of the Slavnov-Taylor identity for
the vertex. With quark momenta p1 and p2 and gluon
momentum p3 it reads

Γμ
qgðp1; p2; p3Þ ¼ γμAðp2

3ÞG2ðp2
3Þ ~Z3

ðGðp2
3Þ ~Z3Þ−2d−d=δ

ðZðp2
3ÞZ3Þd

:

ðA5Þ

The construction is such that the ultraviolet momentum
running of the vertex is the same for all values of the
parameter d, leading to the correct ultraviolet running of the
quark propagator in agreement with resummed perturbation
theory. For our two-flavor calculations we choose d ¼ 1.3 It
has been noted already in Refs. [47,48] that such a vertex
model needs to have different momentum assignments
when employed in the quark DSE and in the quark loop of
the gluon DSE. This can be shown strictly using multipli-
cative renormalizability. Thus we use

Γμ
qgðp1; p2; p3Þ ¼ γμ

Aðp2
1Þ þ Aðp2

2Þ
2

Gðp2
1ÞGðp2

2Þ

× ~Z3

ðGðp2
1ÞGðp2

2ÞÞ−d−d=ð2δÞ ~Z−2d−d=δ
3

ðZðp2
1ÞZðp2

2ÞÞd=2Zd
3

;

ðA6Þ

in the quark loop which leads to the correct running of the
ghost and gluon propagators in the ultraviolet momentum
region.
Finally we need to specify the bare quark masses for the

two light quarks. Here we chose two chiral quarks for
simplicity. We explicitly checked that only very tiny
changes result for the ghost and gluon propagators when
these values are modified to ones in the physical range, i.e.
those that lead to the experimental pion mass.

2. Phase space and vertices: S3 permutation group

Useful in the study of three-point functions is the
expression of momenta p1, p2 and p3 in accord to the
S3 permutation group. While this is of direct relevance for

FIG. 13. The DSEs for the ghost and gluon propagators. In our
truncation we neglect any contributions from the four-gluon
vertex, i.e. the two-loop graphs are not included.

3Note that previous unquenched calculations of ghost and
gluon propagators with the so-called scaling infrared behavior
resulted in values of d around d ¼ 0 [47]. With decoupling, as
adopted here, this value changes substantially.
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the three-gluon vertex [18], owing to Bose symmetry, it
remains a useful representation also for both the ghost-
gluon and quark-gluon vertices. In all cases, we arrange the
momenta into the variables

s0 ¼
p2
1 þ p2

2 þ p2
3

6
; ðA7Þ

a ¼
ffiffiffi
3

p ðp2
2 − p2

1Þ
6s0

; ðA8Þ

s ¼ p2
1 þ p2

2 − 2p2
3

6s0
: ðA9Þ

It is straightforward to see that the doublet ða; sÞ forms the
inside of a circle (see Fig. 14), while the singlet s0 carries an
overall momentum scale. For actual calculations, instead of
ða; sÞ a more natural parametrization of the circle in the
polar coordinates ðr;ψÞ is chosen.
Consequently, symmetry properties of the vertex (pro-

vided a suitable basis is constructed) are reflected in the
phase-space variables. For example, Bose symmetry of
the three-gluon vertex manifests as a 2π=3 periodicity in the
angular variables ψ . For the quark-gluon vertex (ghost-
gluon vertex), charge conjugation (Bose symmetry in the
ghost legs) manifests as reflection symmetry in the s axis.

3. Axial Ward-Takahashi identity

In order for the system to feature a massless pion in the
chiral limit and in the presence of dynamical chiral
symmetry breaking, the interaction kernel of the Bethe-
Salpeter equation and the self-energy of the quark must
obey the axial-vector Ward-Takahashi identity. In the
framework of Dyson-Schwinger and Bethe-Salpeter equa-
tions, this relation reads [74]

δ2Γ
δSδS

fγ5; Sg ¼ 0; ðA10Þ

where the curly brackets indicate an anticommutator. For a
given effective action Γ, it is sufficient that the effective
action is invariant under a global chiral transformation4; for
the 3PI effective action used in this work, chiral symmetry
appears to be invariant by inspection. What is not obvious
is the mechanism by which the invariance of the action is
connected to the existence of a Goldstone boson. Following
the steps in Ref. [74], we start with the global chiral
transformation properties of the quark S and the quark-
gluon vertex Γμ

qg

S0 ¼ eiγ5τ
lθSeiγ5τ

lθ;

Γμ0
qg ¼ e−iγ5τ

lθΓμ
qge−iγ5τ

lθ; ðA11Þ

where τl is a generator of the flavor group and θ is the real
transformation angle. We checked explicitly that the quark
DSE and vertex DSE are indeed invariant under such a
combined transformation. Performing an infinitesimal chi-
ral transformation of the effective action, which is zero by
invariance, and subsequently taking a derivative with
respect to the quark, the following relation is obtained:

δ2Γ
δSδS

fγ5; Sg −
δ2Γ

δSδΓμ
qg
fγ5;Γμ

qgg ¼ 0; ðA12Þ

where for brevity we have dropped all indices and
momentum/space-time arguments. The first term is the
sought-after Goldstone boson, where the anticommutator is
the wave function of the pion and the second derivative of
the effective action represents the BSE operator. Thus, at
first glance the second term seems to spoil the existence of a
Goldstone boson. However, after a lengthy calculation that
repeatedly employs the equation of motion of the quark-
gluon vertex (see Fig. 5), and the constraint imposed by the
axial Ward identity, the following can be shown

2
δ2Γ
δSδS

fγ5; Sg ¼ 0: ðA13Þ

Thus, the truncated 3PI system features a massless pion.
Further details of the systematics involved in this derivation
will be given in a separate publication.

FIG. 14. Permutation group variables arranged into a Mandel-
stam plane.

4See however Refs. [75,76] in the case where chiral symmetry
is broken by truncation artifacts.
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