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I. INTRODUCTION

Hard exclusive processes give us a unique possibility to
study the internal structure of hadrons. The theoretical
description of exclusive processes is based on the QCD
factorization approach [1-6]. Scattering amplitudes (decay
amplitudes) in this approach are given by convolution of
the coefficient function which can be calculated perturba-
tively with nonperturbative functions—the distribution
amplitudes (DAs). In the infinite momentum frame DAs
can be interpreted as the momentum fraction distributions
of partons in hadrons.

The DAs are usually classified according to their twist.
In the QCD factorization approach, where the relevant
Q? is large, the dominant contributions to an amplitude
come from DAs of lowest possible twist. The higher-
twist DAs give rise to the power-suppressed corrections.
The factorization approach works quite well for the
mesons but for baryons it encounters conceptual diffi-
culties. Namely, it has been shown in Refs. [7-10] that
the soft rescattering processes produce contributions
that break the factorization theorems; see for a detailed
discussion Refs. [11-13].

A quantitative description of the nucleon electromag-
netic form factors has been achieved in the framework of
the light-cone rules [14-16] by taking into account the
power-suppressed [17-20] and next-to-leading-order
[21,22] corrections. As it has been shown, the power-
suppressed corrections, which are parameterized by the
higher-twist nucleon DAs, give a sizable contribution for
moderate Q2 ~2-5 GeV.

Unfortunately, our knowledge of the nucleon
(baryon) DAs is quite limited. Only the leading-twist
nucleon DA is known with some degree of certainty,
while the estimates of the higher-twist nucleon DAs are
very poor (see e.g. Refs. [18,19,22,23], and references
therein).

At the same time, the higher-twist DAs contain the
contributions that are related to the lower-twist DAs—the
so-called Wandzura-Wilczek (WW) contributions [24].
For mesons, the genuine higher-twist DAs often appear
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to be smaller than the corresponding WW terms (see, for
example, [25,26]). In many cases, keeping only the WW
terms one gets a quite good approximation for the higher-
twist DAs (the so-called WW approximation).

The lowest-twist meson DAs are defined by matrix
elements of two-particle (quark-antiquark or gluon)
light-ray operators. For such operators the WW contribu-
tions were calculated long ago. A detailed discussion of the
method can be found in Ref. [25]. We also mention that
WW corrections to the generalized parton distributions
have been derived in [27-31] and the relevant problem of
WW contributions has been considered in Refs. [32-37].

The situation with baryon DAs is more complicated
because they are determined by matrix elements of three-
particle (three-quark) operators. Until now the WW cor-
rections were only known for the first few moments of the
nucleon DAs [17,18].

The effective technique that allows one to calculate
the WW terms for the multiparticle DAs was developed
in [38,39]. The approach is based on the spinor formalism
and conformal wave expansion for the light-ray
operators. Using this technique the WW corrections to the
three-particle nucleon DAs were calculated up to twist
5 [38.,39].

In the recent paper [40] the first results of the lattice
calculation of the baryon octet DAs moments have been
presented. Keeping in mind ongoing progress in lattice
calculations, one can expect that information on higher-
twist DAs will be available soon. Therefore, in the present
paper, we derive the WW corrections to the higher-twist
baryon octet DAs.

The paper is organized as follows: in Sec. II we recall
the basics of the spinor formalism and fix our notations.
In Sec. III, we give the definitions of the DAs for the
baryon octet. Sections IIIA and IIIB contain the
analysis of the mixed chirality DAs up to twist 5
and in Sec. [l C we consider the chiral DAs of twist 4
and 5. The Appendixes contain the SUg(3) relations
between different DAs and explicit expressions for the
few first polynomials entering the expansion of baryon
DAs.

© 2016 American Physical Society
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I1. SPINOR CONVENTIONS

We closely follow the notations of Ref. [41]. In the Weyl
representation, the Dirac y matrices take the following

form:
v < 0 0”) ()
vt = & 0 )

where
o = (1,6),

and ¢ are the Pauli matrices The ys matrix and the charge
conjugation matrix C = iy?y? are defined, respectively, as

Y e )

The Dirac spinor is constructed from two Weyl spinors:

(-G e

Here ¢*(") = 1 (1  y5)q are the left- (right-) handed quark
fields, respectively.

An arbitrary vector a
matrix as

, can be mapped to a 2x2

g — dz

—a, +ia
Aoy = ClﬂGZd = < : ? ) . (5)

—Cll —_ ia2 do + 03

In the studies of hard processes, the lightlike vectors n
and 7i [n*> =i* =0, (n-7) # 0] are usually introduced.
They can be parameterized by two auxiliary Weyl spinors 1
and p as

Nog = ﬂ'aida Nag = Halli- (6)

The rules for rising (lowering) spinor indices read

where the antisymmetric Levi-Civita tensors are normal-
ized as €, = €'? €'2 = 1. The products of
Weyl spinors are defined as

= €=

(M) = Mg = =(ud).  (AR) =Aet® = —(a2).  (7)

In the following we use shorthand notation for the quark
field projections onto the auxiliary spinors:
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gt = (aqY).
gl = (q"),

qt = (ug').
ql = (aq"). (8)

The quark fields can be written in the form

(A)qh = daqt —paqt. (ARl =aal —fzql. (9)
Constructing the light-ray operators it is useful to ascribe
two quantum numbers—twist and helicity—to the quark
field projections (8). The plus components, qi( have the
collinear twist equal to 1, while the mlnus components,

( , have twist 2. The helicity of the q M g1 projections is

—, whereas qi, q¢ have helicity +2, see Ref. [38] for
detalls We recall here that the collinear twist is defined as
the difference of the canonical dimension and spin projec-
tion on the light-cone direction.

ITII. BARYON OCTET DISTRIBUTION
AMPLITUDES

A. Twist-3 distribution amplitudes

In this paper we study the three-quark distribution
amplitudes of the baryon octet,

A 0 +
B=| = S-% a . (10
=— =0 _ 2 AO
= = \/gA

in the isospin symmetry limit. It is helpful to recall
the quark content of the isospin multiplets: (p,n)~
(uud, udd), (,%°,%7) ~ (uus,uds,dds), (Z°,Z7)~
(uss, dss) and A° ~ uds.

The leading-twist distribution amplitudes are defined by
the matrix elements of the twist-3 three-quark operator:

0y ., (z) = € q, (21)q 7, (22)q 1, (23).  (11)

Here z = {z,,2,, 23}, m = {my, my, m3}. m, are the flavor
indices, m; = u, d, s and i, j, k are the color indices.
The matrix element of (11) takes the form

—(up) /Dxe ”’*Z“’CI)B’%( ),

(0103 ;,(2)|B) =
(12)

where ®! ")1( ) is the corresponding DA, up stands for the
Dirac spinor of the baryon B, p denotes its momentum,
p+ = (pn) and the integration measure is defined as
follows:

Dx = dxdx,dx36(1 — x; — x5 — x3). (13)
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It is clear that the matrix element is nonzero only if the
flavor indices of the operator match the flavor content of the
baryon. Invariance of the operator under the permutation
(z1,my) <> (z3,m3) together with the isospin symmetry
allows one to express all DAs in terms of seven independent
functions. We choose them as

=0

cb(fu)ud (I)(Z+) (I)(: ) (I)(A)

3.uus 3,s5U 3,uds

We mark the DAs by their positions in this table and do not
specify the flavor indices explicitly; i.e. <I>( >( ) denote
the DAs of the baryon B in the kth row (k =1, 2).

One can easily see that the functions in the second row
have certain parity with respect to x; <> x3 permutations.

Namely, the DAs (Dgzﬂz) (x) and @ggo

while CIJgM) (x) is antisymmetric under this permutation.

2) (x) are symmetric

The DAs in the first row, <I>§B’l>(x), do not possess any
symmetries under permutations of the arguments. The

proton DAs, <I>(p 2 = @gp u) 4u» 10 the second row are absent
because this function is not independent and can be

expressed in term of tIJgp b namely,

O (x) = =@V (x), x5, x3) = O (303,05, x,). (15

The DAs (14) are related to the vector, axial-vector and
tensor twist-3 DAs, V4, A;, T which appear in the
decomposition of the three-quark operator with open spinor
indices [23]:

40l gl o (211) ), 5(221) @y (237) | B(p))
= Vo, VE(Z) + aup, AV (Z) + 145, T (2) + ... (16)

where the dots stand for higher-twist terms and
Ua[)’ y — (ﬁc)aﬂ(yS M+(P))y,

Aoy = (1775 ) ( (P))w
a[)’y (lO' C)a[}(}'lj_},SMJr(P))y' (17)

As usual, the DAs in momentum space are defined by the
Fourier transform

FiZ) = / Dxe™ P 253 F(y). (18)

Projecting both sides of Eq. (16) onto the auxiliary spinors
A, A one derives

o (x) = VB(x) — AB(x) (19)

and [cf. Eq. (15)]
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B2
q)g )(XI,XZ,X3) = —2T?(X1,X3,X2). (20)
The conformal wave expansion of the DAs (14) goes over
polynomials Py, which are solutions of the renormaliza-
tion group (RG) equations,

Bk (x H) = x1x2x3Z¢Nq PNq( x), (21)

where y is the renormalization scale. The common pre-
factor is fixed by the conformal spins of the fields. The
functions Py,(x) are the homogeneous polynomials of
degree N, Py,(sx) = sV Py,(x), that form an orthogonal
system

/Dxx1x2x3PNq(x)Pjvq, (x) = 84q Chp- (22)

The index g enumerates different polynomials of the same
degree. The polynomials Py, can be obtained as solutions
of the one-loop RG equation for twist-3 three quark
operators. Note that these polynomials do not depend on
the flavor content of the three-quark operator because the
evolution kernels are flavor-blind. Each polynomial Py, is
either symmetric or antisymmetric under permutations of
the first and third arguments:

+ +
Pj(vq)(xl,xz,)@) = :*:PI(Vq)(X3,X2,X1>. (23)
The reduced matrix element ¢§5q’k) can be expressed as a
convolution integral:

589 =y, / DePf, ()2 (). (24)

To the one-loop accuracy, the reduced matrix elements
¢n, (1) have an autonomous scale dependence Evidently,

for the DAs <I>g:0'2), <I>( %) and <I> %) the sum in (27) goes
over the symmetric (annsymmetnc) polynomials only. The
first few polynomials with the corresponding anomalous
dimensions are given in Appendix B. More details can be
found in Refs. [38,42-44].

For later convenience we split the DAs @gB’l)(x) into
symmetric and antisymmetric parts with respect to x; <> x3

permutation:
B.1 B.1 B.1-
o () = o) + 2 (25)

and introduce the notation <I> (x) where the label A
takes the values A = {1+,2}. Let us assign the signature
factor x(B,A):
x(B,1+) = &£,

x(B#A\,2) = x(A2) = -

(26)
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to each DA. The signature factor defines parity of the
polynomials P,T,q that enter the conformal expansion for the
corresponding DA, namely,

O (xo ) = xreaxs g (WPl (x). (27)
N.,q

As we see in the next section the higher-twist DAs can be
written in a quite similar form.

B. Mixed chirality higher-twist distribution
amplitudes

We define the higher-twist three-quark operators of
mixed chirality as

O} - (2) = g%, (2008}, (22) 35 (23).

0! 4(2) = ¢4 m (21)a i (22)q8 1y (z3). (28)

where it is tacitly assumed that color indices are contracted
w1th the antisymmetric tensor. We also recall that

= (uq*), q1 = (aq"). The operators @ - and @ -
have helicities 4+1/2 and —1/2, respectlvely'

In the proton case matrix elements of these operators
define the functions ®,, ¥, and ®5, U5 [23]. For all other
baryons in the octet (except neutron) there are three
independent DAs related to the matrix elements of these
operators.

Twist-4 and -5 DAs can be defined as

(0/0] 1 (2)1B) =" (i) (u}) / Do Lnol®) (x),

(0[0Y,,(2)|B) = ”i (uh)- [ e Tl ).
(29)

There are altogether 11 independent DAs for the p, =+, Z°
and A baryons for each twist t =4, 5:

+ =0 A
g s s P
+ =0 A
(ﬁgisz{ q)f‘,su)s <I)z<‘,u>sd
+ =0 A
q)g,’;i)uu (I)EESML CI)E,HQS <I)S,sziu (30)

Similar to the twist-3 case we introduce the notation
<I>(B’A)(x), with the index A taking the values (1+,2).
The function <I>

of Table (30) while <I>5 ) is given by the combination of
DAs in the first and last row, namely,

(x) stands for the DA in the second row

o) = (@ () eV (x).  (31)

N[ =
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We want to stress here that contrary to the twist-3 functions,

the higher-twist functions @§B'A)

under the argument permutation.
In this notation the conventional proton DAs of twist 4
and 5 [23] take the following form:

(x) are not symmetric

Dys)(x) = ‘I’Et( 1) )(xlvxz,?%) + ‘I’A(@;_)(xlaxz,xﬁv
Wys)(x) = @21(75’§+)(x3,x1,x2) - ‘I)E;?éﬁ_)(x3,x1,xz)- (32)

The higher-twist DAs <I>§B’A)(x) contain contributions
from both the operators of the geometrical twist-t (we recall
that the geometrical twist is defined as t = 7" — s, where
£ is the canonical scaling dimension of an operator and s
is its Lorentz spin) and the lower-twist operators.
Therefore, we represent the higher-twist DAs in the
following form:

@gB’A)(X) — (PEB’A),!/( )+ (p(B,A),WW:; (x)’
q)gB,A)(x) _ (I)(BA 9(x) + o (B.A),WW; (x) + (I)gB,A),WWA;(x).
(33)

The conformal wave expansion of the genuine twist-4 DAs,
®\"9(x), takes the form

o —xlxzzn WRy (), (34)

where the signature factor x(B, A) is defined in (26).

The polynomials Rgviq are the eigenfunctions of the
evolution kernel for twist-4 operators; see Ref. [38] for a
general discussion. Index N stands for a degree of the
polynomial Rqu) (sx) = sV R,(\,q)(sx) and ¢ enumerates dif-
ferent polynomials of the same degree. Several lowest
polynomials with the corresponding anomalous dimensions
can be found in Appendix B. Here, we note that there exists
only one polynomial of the degree N =0, R(<)5> = 1.
Therefore, the expansion of the positive signature DAs,
ie. <I>( 2 with x(B, A) = +, goes over the polynomials of
degree N> 1.

The genuine twist-5 distributions have a similar
expansion:

) =2 Y e T (). (35)

N>lg

The form of this expansion is dictated by the flavor
blindness of the RG equations for operators (28). We
emphasize, however, that neither the polynomials Tﬁq nor
the anomalous dimensions have been calculated so far.

The structure of the WW contributions to the DAs (33)
and (34) does not depend on the flavor content of baryons
and can be easily extracted from the results of Ref. [39].
We derive

034024-4



BARYON OCTET DISTRIBUTION AMPLITUDES IN ...

Py (1)
oM (x) :‘XIXZZ N+N2q )(N +3)

X [N +2 -8, JxPye?(x),  (36)
where summation goes over the polynomials of the
parity x(B, A).

For the twist-5 DAs, the WW terms of twist 3 and twist 4
have the form

g (k)

o () ZN+2 N+3)[ (N +2)?
+(N+1=0,)(N+2-0,)]
X xlszf\,(f'A) (x) (37)
and
(B.A) Wi ’7Nq )
s = *Z (N+1)(N +3)
X [N+1- axl]szNi, A) (x3, X2, x1), (38)
respectively.

C. Chiral distribution amplitudes

We now define the chiral three-quark operators as

0} ;(2) = g4, (20)a" y (22)0" 1, (23).
0!.(2) = g% (21)a my(22)q my(z3).  (39)

They are constructed from the left-handed chiral quarks and
they have the helicity —1/2 and +1/2, respectively. The
DAs related to these operators are defined by

(00 ;,(2)|B) =

(0104, (2)18) = =" ) uh) [ et T2l x),

For each twist, there are 7 independent DAs which can be
chosen as follows:

:‘(P) :‘(Z+)
—tuud —tuus

=(E) =)

—t.ssu —tuds

':'(Z+) :(EO) ':'(A) (41)

—tsuu  —=tuss =t sdu

Similarly to the previous case, we denote the DA of the
baryon B in the kth row (see the table) by _5 “ The proton
DAs coincide with the conventional definitions of
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Ref. [23], i.e. _EPI)(x) =Z,(x). The first two DAs in

A
the second row, :SZ 2) (x) and :t (x) are obviously
symmetric under interchange of the two last arguments,

while the EﬁA’z) (x) is antisymmetric under x, <> x3. The

(p2)

nucleon DA =" is not independent:

—(p2 1
=" () = ~(1+ Pr)E" (2). (42)
and, therefore, it is not listed in the table.

The conformal wave expansion for the nucleon DA
Ey’ 1) was worked out in Ref. [38]. The eigenfunctions of
the evolution kernel for the higher-twist chiral three-
quark operators are characterized by parity (which is
e = {1,e*2%/3}) under the combined cyclic permutations
in the position and flavor spaces. The conformal expansion

of the nucleon chiral DA, Egp ’1), goes over the certain
combination of the eigenfunctions with parity e*?>/3. The
expansion of the chiral DAs for the other baryons involves
the eigenfunctions of the parity e =1 as well. A more
detailed discussion can be found in Ref. [38]. Here, we
present the final results only. The expansions for the A
baryon as compared to all other baryons in the octet have a
slightly different form. Namely,

—_ Ak
=7 )
B k B
- {zfsﬁv; WD) + 30 () <x>] ,
Ng Nq
— (A k
=M

- {2&5&} WAY () + 0 (A% (x)} . (3)

In the last formula, the signs “+” correspond to k =1, 2,

respectively. The polynomials H%(;(x) A](\l,{; (x) are related

to the eigenfunctions Iy, (x) of the parity e = ¢*7/3,

which were calculated in Ref. [38],

Ty, (x) = Ty, (x),

I (x) = —(1 + Pa3)Iy, (x),

AG)(x) = (1 +2P53)y, (x),

AI(\%;(") = —(1 = Pp3)Ty,(x), (44)

where P,3 is the permutation operator:

Posf(x1,x2,x3) = f(x1, X3, x2). (45)
The eigenfunctions Hg\, and A belong to the parity
sector € = 1 and they are (antl)symmetn'c under x, < x3
permutation:
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+ +
Pylly) (x) =TI (x),

Pos A, (x) = —A§) (x). (46)

Notice that for the proton 0%2 (u) = 0 by symmetry.
In order to write down the WW contributions to the
twist-5 amplitudes, we define the following functions:

50

—P N+1
u2:N+1N+$K +

— d3)x3 1Ty, (x)

(N +1-0))x 15 (%),

Nx)= P12Z Nfli’q (N)+3) [(N+1—83)x3A§\}31(X)

+<N+1—al>x1A£2,<x>L (47)

and

Wi)(x) = _PIZNZLIW((;)"'S) (N +1-05)x;

+ (N +1=8)x ]I (x),

122 qu <N>—|— 3) [(N+1=05)x;3
(N 1= 0 ]AG) (). (48)

With the help of Eqgs. (47) and (48), the WW contributions
to the twist-5 DA can be written in the following form:

_gB DWW () = x, (W®) (x) + W(f)(x)),

EEMW () = x, (=(1 4 Py )W) (x) + WP (x)),
.—gA,l)WW(x) = x5 (W (x) + W) (x)),

EADWW () = x1((1 = Pay) W (x) — W (x)). (49)

The first few polynomials ITy,, HZ(VJ;), Agv_g) are given in

Appendix B
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APPENDIX A: ISOSPIN RELATIONS

The isospin symmetry allows one to express DAs for any
baryon in the octet in terms of the DAs discussed in the

main part of the paper. We recall that the DAs @flf;l), =(5)

t,m

depend on the flavor indices m, m,, ms of the quark fields

PHYSICAL REVIEW D 93, 034024 (2016)

in the corresponding light-ray operators; see Egs. (12), (29)
and (34).

The independent DAs for p, X7, =00 A baryons are
collected in Tables (14), (30) and (41). Defining distribu-
tion amplitudes for the remaining members of the octet we
have to specify the flavor indices of the corresponding DAs.
For the X° baryon DAs we simply take over the flavor
indices of A baryon but the corresponding distribution
amplitudes differ from each other.

The n, £~, =~ baryon DAs inherit flavor indices from the
corresponding DAs for p, Tt, Z° baryons with the
substitution u <> d. For example, the twist-3 DAs that

have to be added to the first row of Table (14) are @g’zdu,

) HE) (=)
D3 4ds> P3ysq and P g

We accept the same phase conventions for the baryons in
octet as in Ref. [40] (see Appendix A there). Then the

following relations hold:

(A1)
between the DAs of the same type, e.g. [see Table (30)]

(I)<Z+) (x) =

S5,uus

_q)g dds( ) \/—(I)S uds( )

Below we present the relations between the functions used
in the present paper and those introduced in Ref. [40]:

1 B.I
Pt (x) = 5 (14 Pr) @5 (x).
1

2
Mg () = =5 25" (@), (A2)
where P35 is the permutation operator and
1 Al
Dy () = \/;(1 + Pp3) @4 (x),
3 Al
By () = —\/20 — P3) @8 (x),
3.(A2
M () = - 28070, (A3)

The normalization factors in Eqs. (A2) and (A3) ensure that
in the limit of SU(3) flavor symmetry the following
relations hold [40,45]:

>- = A _ =
Pl = o = Doy = fiops = Mgy = M-
- =0
Plio- = Plio- = Pio- = Plig— = M- (A4)
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APPENDIX B: POLYNOMIALS

In this Appendix, we list the lowest polynomials which
enter the expansion of the baryon DAs of different twists.
We also give the anomalous dimensions of the coefficients
that accompany these polynomials.

The twist-3 polynomials have the forms

Pgo(x) =1,

Pio(x) = (x1 —x3)/2

Py (x) = (x + x3 —2x2)/2

Poo(x) = 3x7 — 3xyxy + 2x3 — 6x1x3 — 3xpx3 + 3x3,

Py (x) = (x1 = x3)(x1 + X3 = 3x2),

Poyy(x) = x3 +x3 — 12xx3 + 9xy(x; + x3) —6x3.  (B1)

The corresponding one-loop anomalous dimensions are (in
units of a,/2x)

(B2)

_ [2 26 10 38 46 16
Na=139°3°9°9"3

The mixed chirality twist-4 polynomials are given by

Ryp(x) =1,

Rl‘o(x) =X +Xx3 —EXQ,

1
Ry(x) =x; —x3 — 3%
Ry (x) = x5 — x3 = 2x12, + 33123 — gx%,
REO(‘X)) 2 4
= X2 4+ — (=5 4+ V43)xyx3 + x2
<R51()C) 2 9( ) 243 3

2 1
5 (1 F 2\/—)X1XZ — 5 (17 + 2\/—)X1X3

4
+ 77 (4 + V/43)x3. (B3)
The corresponding anomalous dimensions are [38]
2 32 2(14 —/43) 2(14 4 /43)
W= \TRglg T g T g ‘
(B4)

The chiral twist-4 polynomials take the form

PHYSICAL REVIEW D 93, 034024 (2016)

My (x) = 1,
3
Io(x) = x; + x3 —5%2

Io(x) = x7 — 4x;x; + 235 + 2x;x3 — 4xpx3 +x3. (BS)
These polynomials correspond to yy, = {—2,4/3,4/3}.
Finally, for the polynomials A* and ITT we get

(B6)

XN xp(xy + x3)

with the anomalous dimensions yy, = {-2/3.4,4}.

We also write down here the first nonzero terms of the
WW contributions for the mixed chirality DAs. For the
twist-4 DAs one gets

1
@iB.A)WW(x) = gqﬁ(()g‘A)Xle(l —_ 2.X3) + ceey

(B.

By _ Pio
o) ="
-

X126 (xp (1 = 3x3) = x3(2 = 3x3))

for the positive and negative signature DAs, respectively.
For the twist-5 functions one gets

(I)gB'A)W% (x) _ ¢og
(B.A)
(I)gB,A)WW4 (x) Mo

x3(1 =2x; — x5 (1 4 2x)) +
X3(1 — 2X3 —)Cz(l +X1 - 3X3))
+ ...

for the positive signature and

BAYWW 1 (A 1
(I)g ) 3(_X) = Eqb(l() )X3(X1 —§X3 +XZ(X3 - 2X1)

3 3
+§X1(.X3 x1)+§x1x2(x3—xl))+...,
1
PLPAWWa () — 3;755“) x3(1=x) + ...

for the negative signature DAs.
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