PHYSICAL REVIEW D 93, 034021 (2016)

Three-flavor chiral effective model with four baryonic multiplets
within the mirror assignment

Lisa Olbrich,' Miklés Zétényi,'* Francesco Giacosa,'” and Dirk H. Rischke'

'Institute for Theoretical Physics, Goethe University, Max-von-Laue—Strafie 1,
D-60438 Frankfurt am Main, Germany
2Wigner Research Center for Physics, Konkoly Thege Miklos it 29-33, H-1121 Budapest, Hungary
JInstitute of Physics, Jan Kochanowski University, ul. Swietokrzyska 15, 25-406 Kielce, Poland
(Received 17 November 2015; published 10 February 2016)

In the case of three quark flavors, (pseudo)scalar diquarks transform as antiquarks under chiral
transformations. We construct four spin-1/2 baryonic multiplets from left- and right-handed quarks as well
as left- and right-handed diquarks. The fact that two of these multiplets transform in a “mirror” way allows
for chirally invariant mass terms. We then embed these baryonic multiplets into the Lagrangian of the so-
called extended linear sigma model, which features (pseudo)scalar and (axial-)vector mesons, as well as
glueballs. Reducing the Lagrangian to the two-flavor case, we obtain four doublets of nucleonic states.
These mix to produce four experimentally observed states with definite parity: the positive-parity nucleon
N(939) and Roper resonance N(1440), as well as the negative-parity resonances N(1535) and N(1650).
We determine the parameters of the nucleonic part of the Lagrangian from a fit to masses and decay
properties of the aforementioned states. Studying the limit of vanishing quark condensate, we conclude
that N(939) and N(1535), as well as N(1440) and N(1650), form pairs of chiral partners.
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I. INTRODUCTION

The strong interaction determines the masses of the
baryons and their interactions with mesons. At low
energies, chiral effective approaches play an important
role to describe these phenomena [1]. Most notably, one
can use chiral perturbation theory, which is based on the
nonlinear realization of chiral symmetry [2—4], or o-like
models, which are based on the linear realization of chiral
symmetry [5-10].

An effective model based on linearly realized chiral
symmetry as well as dilatation invariance has been con-
structed in Refs. [9-14]. This so-called extended linear
sigma model (eLSM) also contains anomalous, explicit,
and spontaneous symmetry-breaking (SSB) terms in order
to reproduce known features of the strong interaction. The
mesonic sector of the eLSM, first developed for two flavors
(N =2) [11] and further extended to N, = 3 [12,13] and
Ny =4 [14], includes scalar and pseudoscalar as well as
vector and axial-vector degrees of freedom. It is able to
describe mesonic masses and decays of quark-antiquark
mesons up to 1.7 GeV within reasonable accuracy [for
precursory models including (axial-)vector degrees of
freedom, see Ref. [15]]. Moreover, in agreement with
results from other approaches [16], the model implies
that the scalar quark-antiquark states are heavier than
1 GeV and that fy(1710) is predominantly gluonic [13].
As a consequence, the chiral partner of the pion is the
resonance f(1370) and not the light scalar state f,(500)
[which, together with the other light scalar mesons, is a
state made from (at least) four quarks, either a resonance
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dynamically generated in the pseudoscalar scattering
continuum or a diquark-diquark configuration; see e.g.
Refs. [17-21]].

In the standard linear sigma model with nucleons only,
chiral symmetry requires that the mass of the nucleon
be (apart from explicit symmetry-breaking effects from
the current quark masses) solely generated by the chiral
condensate, my « (gq). However, when one includes the
chiral partner of the nucleon, one can either assume that
the partner transforms as the nucleon under chiral trans-
formations (the so-called “naive” assignment), or that it
transforms in a “mirror” way (the so-called “mirror”
assignment) [22-26]. The latter allows for an additional
chirally invariant mass term, which physically parametrizes
the contribution to the nucleon mass that arises from
sources other than the chiral condensate (e.g. a gluon or
a four-quark condensate). Nucleons and their chiral part-
ners have been studied within the eLSM in the mirror
assignment in Refs. [9,10,27], indicating that the contri-
bution to the nucleon mass from these other sources is
sizable.

In this work, we extend the work of Refs. [9,10] to the
case of baryons with Ny = 3 flavors. This extension will
enable us to address in future work important problems
in hadron physics, such as scattering processes involving
strange hadrons [28-31], and in astrophysics, e.g. the
hyperon puzzle for compact stars [32,33].

For baryons, the extension to the N = 3 case is not as
straightforward as for mesons. In the N, =2 case, the
nucleon multiplet is described by a spinor isodoublet,
wy = (p,n)T, where p and n are the proton and the
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neutron, respectively. However, in the Ny =3 case the
JP = %* baryon octet is given by a 3 x 3 matrix,

A 0 +
\/g—i- 7 z p
- A _ X
= =0 27
- - NG
Adding the chiral partner J” = 1~ multiplet is also not

as straightforward as in the N, = 2 case. Here, we utilize
a quark-diquark “quasiparticle” picture for the baryonic
substructure. We assume that the diquark is a (pseudo)
scalar and lives in the color- and flavor-antitriplet repre-
sentation (a so-called “good” diquark in the nomenclature
of Jaffe [17]), such that it transforms as an antiquark. Then,
it is quite natural that J* = 1* baryonic fields, just like
quark-antiquark mesonic fields, are parametrized by 3 x 3
matrices. In a chirally symmetric approach, it is also
natural to construct baryons from quarks and diquarks
with definite behavior under chiral transformations, i.e.,
from left- and right-handed quarks and diquarks. If we want
to include states that transform in the mirror assignment,
such that we can construct chirally invariant mass terms in
the Lagrangian, we will show that we are then necessarily
led to consider four distinct baryonic multiplets. The
possibility to have four multiplets of chiral partners in
the mirror assignment was already discussed in the outlook
of Ref. [9]. Then, instead of only the ground-state baryon
(the nucleon doublet for Ny =2) and its chiral partner,
two positive-parity baryons [the nucleon and the Roper
N(1440) for N, =2] and two negative-parity states
[N(1535) and N(1650) for N, = 2] occur.

This paper is organized as follows: In Sec. II we present
our model and its implications. Namely, in Sec. Il A we
introduce the baryonic fields for Ny = 3, and in Sec. 1B
the corresponding Lagrangian. A full N, =3 analysis
with 32 = 8 x 4 baryonic resonances is very difficult.
Therefore, for the present work we decided to study a
simplified scenario by considering a reduction of the
N; =3 Lagrangian to the Ny =2 case. This reduction
is discussed in Sec. IIC. In Sec. IID the mass matrix
involving the four nucleonic states N(939), N(1440),
N(1535), and N(1650) is determined and diagonalized.
In Sec. III we perform a fit of the parameters of our model
to experimental data [34] for the masses, decay widths, and
axial coupling constants. In Sec. IV we discuss our results
and give an outlook to future work. Technical details are
relegated to various appendixes.

We use natural units, # = ¢ = 1, and the metric tensor

is (9) = diag(+. -, =, —).
1. THE MODEL AND ITS IMPLICATIONS

In this section we first construct the baryonic fields in a
chiral quark-diquark picture. We account for the fact that
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two of the four baryonic fields transform in a “mirror” way
as compared to the other two. We then present the complete
Lagrangian of the eLSM for N, = 3 flavors. A reduction to
N; =2 flavors is performed, and finally the mass matrix
for the four nucleonic states N(939), N(1440), N(1535),
and N(1650) is given.

A. Baryonic fields for Ny =3

In the two-flavor case, one works with isospin doublets
y;, where the upper field is proton-like, i.e., of the type
uud, and the lower field is neutron-like, i.e., of the type
udd. The right- and left-handed components y;z and y;;
behave either in a “naive” or in a mirror way under chiral
transformations. The naive transformation behavior implies
wir = Uryig and y,;; — Ury,;, while the mirror one
implies y;r — U w,g and y;; — Ugy,;, where the index i
labels the nucleonic doublets and the quantities Uy and U,
are 2 x 2 matrix representations of the chiral group
UR)gxU(2),.

As mentioned in the Introduction, for three flavors
JP = %* baryons are described by 3 x 3 matrices. In order to
construct these fields we use a chiral quark-diquark model
(see Ref. [35] and in particular Ref. [36]), i.e., baryons are
considered to be made of a quark and a diquark, where a
diquark is a (colored) state consisting of two quarks. We are
interested in so-called “good” diquarks [17,18,36], which are
(pseudo)scalar objects with antisymmetric color- and flavor-
wave functions. For N, = 3 there are three scalar, J P =0,
and three pseudoscalar diquarks, J” = 0~. Mathematically,
they can be expressed as follows [36]:

1 3

JP=0":D; = 7 (afCrai—alCrla;) =) Diew;
k=1
. 1
with D, = ﬁé‘klmqgcysql’
3 1 SI

JP=0": D= T(QJTC% - q1Cq;) = Dyey

2 k=1

. ~ 1
with Dy = ﬁeklquc%’ (2)

where D, is the scalar diquark current and D, is the
pseudoscalar diquark current. The indices i, j, k, [, and m
are flavor indices. The color structure of these objects is
formally identical to the flavor structure and thus suppressed
here. From the scalar and pseudoscalar diquarks (2) we can
construct left- and right-handed diquarks,

1~ 3 4 1 .
Dr:=—=(D+D)=)» DFA" with DX=—(D;+D,),
1 - 2 1
D, =——=(D-D)=Y D!A" with DF=——(D;-D,),
L \/E( ) ; i i \/i( )
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where (A;); = €;- Under U(3), x U(3)g chiral trans-
formations, they behave as

Dt —» DLU;, DR - DRUL, (3)

where U; and Uy are unitary 3 X 3 matrices. Thus, DiL(m
transforms as a left-(right-)handed antiquark.

In order to construct baryonic fields as quark-diquark
pairs, we have to combine D or D% with a quark, ¢;:

. I~

Ny = (Ny);;= Dfq; = %(Dj + Dj)qi,
. L~

N, = (N,);;= Dhq; = E(Dj - Dj)q;.

These two fields are obviously 3 x 3 matrices in flavor
space.

We now compute the left- and right-handed components
of these fields. To this end, one has to take into account that
the chiral projection operators act only on the quark fields
q;, because they carry a spinor index, while the diquarks are
scalars in Dirac space:

Nioyr = PrNy@2)= DR gy,
Ny = PLNi2)= DR(L)CIL-
Using the transformation behavior of a quark spinor and
Eq. (3), the chiral transformation of the baryonic fields can
be computed as
Nig = URNIRU}LQ,
Nag = UrNogUJ.

Ny — ULNILU};,
Ny, = U N, U} (4)

One observes that the chiral transformation from the left
follows the naive assignment, while the one from the
right results from the transformation of the diquark field
(1 < R, 2 <> L). Thus, the presence of two multiplets
which transform in a naive way (from the left) is quite
natural in the N, = 3 framework.

The behavior under parity and charge-conjugation trans-
formations is given by

Parity Charge conjugation
Nig —7'Ny (2, —x) —iy*(Nyp)*
Nip —7'Nog(t, —x) —iy*(Nag)* . (5)
Nog —y"N,. (2, —x) —iy*(Nip)*
Ny, —7"Nx(1,—x) —iy*(N1g)*

which shows that the fields N; and N, are not parity
eigenstates and cannot be directly associated with existing
resonances (even in the limit of vanishing mixing).
Furthermore, we introduce two baryonic matrices M
and M, whose chiral transformation from the left is
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“mirror-like.” These fields can be constructed in the same
way as N; and N,; however, we need to include an
additional Dirac matrix so that a left-(right-)handed pro-
jection operator is converted into a right-(left-)handed one
(due to the commutation relation [y, y#] = 0). Only then
one can act with a right-(left-)handed chiral transformation
Ukg(r) from the left onto Mg(1. To contract the additional
Lorentz index we also include a partial derivative. Conse-
quently, the mathematical structure of the “mirror-like”
fields is given by

. I -

M, = (M,),;= Dfy*0,q; = 7§(Dj +D;)r*0,4;,
. J

M, = (M;),;= Diy#d,q; = \E(D/’ - D;)r*9,q;.

Their chiral transformations are given by

Mg — U M gUb,
Mg — ULM2RU27

M — URMILU}E,
My, — URMzLUz’ (6)

where the left transformation is now mirror-like, while the
one from the right results from the transformation of the
diquark field (1 <> R, 2 <> L). Under parity they transform
just as Ny and N,, but under charge conjugation they
transform with a reversed sign:

Parity Charge conjugation
Mg —y"M, (1, —x) ir*(My)*
My —"Mog(t, —x) iy*(Mag)* - (N
Mg —r"M (1, —x) ir*(My,)*
My, —"M g(t, —x) ir*(Mg)*

The transformation laws (4)—(7) allow us to write down a
baryonic Lagrangian with chirally invariant mass terms; see
the next section and Appendix B.

Baryonic fields with definite behavior under parity
transformations are introduced as

B _M-N B Mt
N \/E ) Nx* \/z 5
M, —-M M M

By =——"2 _M + M (8)

) B * - = >
V2 " V2

where now By and B, have positive parity and By, and By,
have negative parity. In the limit of zero mixing, B describes
the ground-state baryonic fields of Eq. (1), i.e., {N(939),
A(1116), 2(1193), Z(1338)}; By, describes the positive-
parity fields {N(1440), A(1600), 2(1660), =(1690)}; By,
can be assigned to the negative-parity fields {N(1535),
A(1670),%(1620), =(?)}; and, finally, By, to {N(1650),
A(1800), %(1750), =(?)}. The detailed study of the mixing
will be performed below for the two-flavor case.
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B. The eL.SM Lagrangian for N =3
The mesonic part of the Lagrangian of the eLSM reads [12]

Lneson = Tr{(D#®)TD, )} — m3Tr{®T®} — 4, (Tr{®TB})? — 2,Tr{(D' D)2}

1 m}
- ZTr{LﬂDLMU + R, R*™} + Tr{ (71 + A> (L, L* + RﬂRﬂ)}

FTe{H(® + 1)} + c(detd — detd’)?

i (Te{L,, (L0 1) + Tr(R, (R, RT))

+ %Tr{@T(ID}Tr{L”L” + R,R*} + hyTr{(L,®)"(L*®) + (PR,)T(PR*)}

+ 2hsTr{®R®TL#} + g5(Tr{L,L,LFL"} + Tr{R,R, R*R"})
+ gu(Tr{L,L*L,L*} + Tr{R,R*R,R"}) + gsTr{L,L*} Tr{R,R"}
+ g6(Tr{L,L*}Tr{L,L"} + Tr{R,R*}Tr{R,R"}), (9)

with the covariant derivative D{® = OM® — ig(L*P — PR*) and the field-strength tensors RM = OMR* — O"RH,
L* = OFLY — &Y L*. The matrices ®, R*, and L represent the (pseudo)scalar and (axial-)vector nonets:

on+al+i(ny+r°)

8 1 73 aj +irt Kyt +iK*
b = ;(Sz +lPl)T1 =7§ aa—f—iﬂ_ w\/g”_”o) K30+1K0 s
Ky~ +ik™ K +iK" o5+ ing
o 0,
o w’l"l\—/}—ipoﬂ _ % p+ﬂ — aiH‘ K*+M _ Ki‘rﬂ
1
H — H_ AT, — _ _ o — O u_Ou .
R IZ:(;(VZ A1>T1 \/E pﬂ_a” N\/g _IN—\/;I KO'M—K(I)” ,
K+ H — Kl—ﬂ K*Ou _ I‘((l)ﬂ w{; _ f,;s
(1}”—&- Opt fll +u0p i
8 X R pM e KT K
Lr = ZO(V’: + AI:>T! = 7§ p—ﬂ + al_” “7,;\/\;50“ + f’;}:/_;?ﬂ K+0u n K(l)” ) (10)
K"+ K" K%KV wh+

Here, S; (i =0,...,8) represents the scalar, P; the pseu-
doscalar, V; the vector, and A; the axial-vector mesonic
fields. The quantities 7'; are the generators of U(3). Under
U(Ny)g x U(Ny),, chiral transformations ® behave as
> U L<I>U£, and the left- and right-handed vector fields
as R = UxR*U} and L* — U, LFU;.

For H = A = ¢ = 0, the Lagrangian L, is invariant
under global chiral U(3), x U(3),.(=U(3), x U(3),)
transformations. The U(1), anomaly of QCD is para-
metrized by ¢ # 0. The explicit breaking of U(3), due to
the nonzero quark masses in the (pseudo)scalar and (axial-)
vector sector is implemented by the terms proportional to H

and A, respectively. We assume isospin symmetry for the u
and d quarks to be exact. As a consequence, only the pure
nonstrange scalar-isoscalar field o) and the pure strange
scalar-isoscalar field oy, carrying the same quantum num-
bers as the vacuum, condense and have nonzero vacuum
expectation values (VEVs); for more details and for the
values of all relevant parameters, see Ref. [11].

To describe the baryonic degrees of freedom and
their interactions with mesons, we use the following
Lagrangian, which is invariant under global chiral
U(3)g x U(3), as well as parity and charge-conjugation
transformations:
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Ly, = Tr{NlLiVﬂDg]_NlL + NlRiVMD’fRNlR + NzLiVﬂDﬁ‘LNzL + NzkiYMDgRNzR}
+ Tr{M, iy, DM 1 + M giy, D5 Mg + My iy, DspMo; + Mogiy, DYy Mg}
— gNTH{N BN g + N g®'Ny + Ny ®Nog + Nop® Ny }
— guTr{M ®"M g + Mg @M + My O Mg + Mpp®My, }
—mo Tr{N Mg + MgN 1y + NogMop + Mo Nog}
— moyTe{N1gMy, + M Nig + Noy Mg + MygNo. }
— Kk Tr{N g ®" Ny, @ + Noy ON T} — K/lTr{NlL(I)NZR@ + Nog®'N, @}
— 1o Tr{M | g ®M ;D + M, DMz @} — KlzTr{MlL®TM2R¢ + Mg ®M,, @7}
— € (Tr{N L @} Tr{Nog®} + Tr{Nog @ }Tr{N,, & })
— & (Tr{M g ®}Tr{M,, ®} + Tr{M,, @'} Tr{M,z®"})
— e3Tr{® T O}Tr{N Mg + M gN1 + NogMy + M Nog}
— e4Tr{® O}Tr{NgM,, + M Nig + Noy Mg + MygNoL}, (11)

where the covariant derivatives are given by

Die = —iciRM, D = —icl¥, k=1,....4,

with dimensionless coupling constants cy, ..., c4, Which
determine the strength of baryon-baryon-(axial-)vector
interactions. The interactions of the baryonic fields with
(pseudo)scalar mesons are parametrized by gy and gy,
which are also dimensionless. The terms proportional to
K1.k, K}, Kk, (and €;) are included because otherwise the
baryonic fields become pairwise degenerate in mass (see
Appendix A). Terms parametrized by €; are proportional to
a product of two traces. Such terms are large-N . suppressed
(OZI rule) and will be neglected in the following
discussion. The explicit form of the Lagrangian in terms
of the parity eigenstates By, By., By, and By, is given in
Appendix B.

Note that the terms in the first four lines of Eq. (11) have
naive scaling dimension 4, and are thus dilatation invariant.
The terms in the fifth and sixth lines have naive scaling
dimension 3. Thus, they formally break dilatation sym-
metry, but can be made dilation invariant assuming that
mg, and mg, are proportional to a gluon and/or a four-
quark condensate (with a dimensionless proportionality
constant). Such terms arise from the (dilatation-invariant)
interaction of a glueball and/or a four-quark state with
baryons, assuming that a spontaneous or explicit sym-
metry-breaking mechanism induces a nonvanishing
VEV for the gluon and/or the four-quark field. For a
more detailed description of how one can render the mass
term dilation invariant by including a tetraquark, see
e.g. Ref. [18].

The terms in the seventh to twelfth lines of Eq. (11)
have naive scaling dimension 5 and therefore also break

[

dilatation symmetry. However, in this case the coupling
constants x;, x;/, and ¢; would need to be proportional to
inverse powers of a gluon and/or a four-quark conden-
sate. Such terms can only arise from nonanalytic inter-
action terms between baryons and glueballs/four-quark
states, which should be avoided in a Lagrangian pre-
scription. Nevertheless, these terms may also be consid-
ered as effective four-point interactions arising from two
(dilatation-invariant) three-point interaction vertices
between a meson, a baryon, and a heavier baryonic
resonance, where the vertices are connected by a propa-
gator of the latter. If the mass of the baryon resonance is
much larger than the typical energy scale where the
Lagrangian (11) is applicable, its propagator may be
considered to be static and homogeneous, resulting in the
four-point interactions proportional to «x;, k;/, and ¢;
in Eq. (11).

C. The Lagrangian for Ny = 2

In this section we reduce the N = 3 Lagrangian (11) to
N = 2 flavors. In order to achieve this reduction, we set all
strange quark fields s to zero. Only the (1 3) and (2 3)
elements of the baryonic matrices remain:

0 W 00 W,
By=lo o w2 |. By=|0 0o w2, |. (12
00 0 00 0
00 Wl 00 Wl
Byl o o w3, |. B0 0o w2 |. (13)
00 0 00 0
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where \Il}(2> (i = N,N*, M, Mx) are fields with quark content U!= uud and U?= udd. Applying the same to the meson
matrix ¢ and to the left- and right-handed (axial-)vector fields, L# and R*, we obtain

(on+on+ad)+ilny+r°)

0 1 V2 ag+i7[+ 0 ((I)Nf:2) 0
(I);ﬁ ay + in (5N+¢N_a\?})§+i('7N_”O) 0 = ]0 s (14)
0 0 os 0 0 5%
ol Apr0 +a"
s=0
RH — — _ - ah—p° a— = s 15
B pﬂ _all‘ N\/E/’”_ Mi/fl 0 . . 8 ( )
0 0 0
w;;/_,'_pyo ﬂNJrauO +
R pPrrar 0 (Ly,) 0
LF— — P+ a” w;;\;i/’”o_i_ "1‘1\:/‘;’140 = 0 (16)
0 0 0
0 0 0

Note that it is crucial to first consider the condensation of both scalar fields oy and oy and only then set the
mesons with s quarks to zero; otherwise one would lose the VEV gy of the field 5. For Ny = 2 it is common to
write the 2 x 2 meson matrices in the basis of the three SU(2) generators T = t/2, where T are the Pauli matrices,
and T° = 1,,,/2:

Dy, = (oy + @y + iny)T° + (ag + in) - T,
Rl = (@ — FOTO + (o —al) - T,
Ly, o = (@ + f))T° + (p* +a)) - T.

As already indicated in the notation, the fields are identified with the mesons listed in Ref. [34] in the following way. The
scalar resonances o and a are assigned to f(1370) and a,(1450). The second possibility {c,ay}= {f¢(500), ay(980)}
has to be excluded, because then our model cannot describe the scattering lengths and the decay ¢ — zx at the same time;

for more details, see Ref. [11]. The pseudoscalar 5y = (@u + dd)/+/2 is the SU(2) counterpart of the ; meson, and 7
corresponds to the pion triplet. The vectors w* and p* represent the resonances w(782) and p(770), and the axial-vector
fields f| and @/ are identified with the resonances f(1285) and a,(1260).

The resulting Lagrangian for the case N = 2 reads (for details, see Appendix B)

ENfzz = ‘i’NRi}’ﬂD%R‘I’NR + Uy iYMDlX/L‘I’NL + @N*RiYyD/;\]R\IlN*R + ‘IIN*LiyﬂDétVL YL

+ ‘i’MRiVyDlXu Uyr + Ur i},ﬂD'x/[R\IJML + ‘T’M*Ri}’ﬂDﬁu‘I’M*R + ‘T’M*LiVﬂDﬁ/[R‘I’M*L

+ CAN(‘T/NRW”R”‘I’N*R + ‘T’N*RiVyR”‘I’NR - ‘T’NLW”L”‘I’N*L - ‘I’N*Li}’yL”‘I’NL)

+ cay (Uprir, L Warg + Wariy, LYo = Wagr iy R pr g — W iy, ROV )

— gn(Unp®Wpg + Unp®@ Wy + U Wy + Unu T W)

— g (U @ W pp + Upr®Vpp + U DTk + Wag OWyyr)

_ Mo, + Moy
2

+ Y Wk + Ve Wne + Vi Unir + Vi Vi)

_ Mo, — Moo
2

VNt Vg + Yvir Wi + Yoo g — Yarr Vi)

(UneWur + UneVsr + Unir Uirr + Unig Vasar

(\I’NL‘IIM*R - @NRII’M*L - ‘i]ML\IJN*R + @MR\IIN*L
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K| + k1 @ - - - -
—-1 > 1\752 (=UN  PU N — Ung® Wy + Wy, PUp g + Uy g T Wy,, )
K| — K| @5 , = - - _
— T (T @ Wng = Ung® Wy, = Uy @ Upg + Uy ® W)
> V2
Ky+ Ky @ - - - -
-2 > : \/—SE (=Up @ pp = U@y + U D7y 4 Uy g @V, )
Ky, — Ky @5 = _ _ _
— 22 (U @ Wy = Uy ®Wprs = s @ Wprp + Vagp @) (17)

2 V2

[
where we suppress the subscript “N = 27 of the mesonic  describe the coupling of two baryons with different parity

fields and introduce the isovectors W, = (¥}, ¥2)7,  to (axial-)vector mesons.
k = N,Nx, M, Mx. The covariant derivatives are Interestingly, the number of parameters of this Ny = 2
Lagrangian obtained as a reduction of the more general
D'y = 0% — icy RV, DYy, = 0 — icyLF, N; = 3 Lagrangian is smaller than what one would obtain

by directly writing down the corresponding two-flavor

Djyg = 0" —icyR”, Dy, = 0" —icyL?, Lagrangian with four multiplets. This is due to the fact that
some terms are not allowed because of the more complex

with parity and charge-conjugation transformations of the bar-
yonic fields in the Ny =3 case. (Some terms which in

c;+c c3+cy principle have different coupling constants in the Ny =2

=TT and ¢y = Ty case [9] now have the same constants, as they transform

into each other under parity or charge conjugation.)
These two constants parametrize the coupling between

baryons of equal parity. The constants D. The mass matrix
After SSB in the meson sector (see Appendix C), the
o il B S ¢r = €3 —Cy following terms contribute to the mass matrix of the four
N M 2 fields Wy, Wy, Wy, and Wy, :

INGN K| T K - gvpN | Ky K -
Lo _ Iy0y — R
mass ( 5 e (/’N(pS> NYy < > + e onPs | YN ¥y

IuPn Ky + Ky ) = <9M(PN Ky + Ky ) =
- - U, U, - + W s
( ) 4\/5 PNPs M¥M 3 4\/§ PNPs Mx ¥ M

Ki —Ki I 5 T Ky — Ky I 5 T 5
Uy Uy, — Uy’ Uy) — 1 Uy — Vv
4\5 €0Nfﬂs( NY"¥N NxV N) 42 ones(Wyr Yy > W)

my1 +mys = T J J
- TR (U Wy + Uy By Ty Uy Uy D)
a w (U U + Un P Wy — Uy P Uy, — Wy 0y, (18)

where ¢y and @y are the VEVs of the o and o mesons, respectively. In order to determine the physical fields Ng39, N;535,
N 1440, and N g5 corresponding to the resonances N(939), N(1525), N(1535), and N(1640), we have to diagonalize the
Lagrangian. To this end, we define the vector

= (\I]NJ/S\IJN*? ‘I]M’75\I]M*)T = U= (‘i’zw _\I]N*Vs’ \PM’ —‘i’M*YS)- (19)
The additional y° matrices are introduced in order to avoid such matrices in the mass matrix (20). As a consequence, all four

components of the vector W have the same parity.
Rewriting Eq. (18) in matrix form, £, = —WM V¥, we obtain the mass matrix
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K +Ky K=Ky
INPN — 5 PNPs 273 PNPs mo,; + Mo, mo,1 — Mo
Ky =K Ky iy
M= 1 23 PNPs “INPN T 55 PNPs Mo — Mo —Mp,1 — M2 (20)
) K4k K, —k
2 Mo, + Mo Moa — Mo, IMPN — éﬁz PNPs é—ﬁzfﬂNfﬂs
Kh—k> KKy
Mo — Moo —Mo,1 — Mo 2 2/ PNPs “IuPN — 55 PNPs
At this point it is possible to compare to the Lagrangian of Ref. [9], which only describes the nucleon and its chiral
partner. If my; = —mq, and K2y = K/1<2>, the mass matrix is of the form
INPN — %CUN(PS 0 0 2my
Iy 1 0 —9INPN — %(PN(PS —2my, 0
decoupled 2 0 —2my IMPN — %(PN(/’S 0
2my 0 0 —9mMPN — %C”Nfﬂs

Obviously, the fields ¥y and W, completely decouple
from the fields ¥y, and ¥,,, and the diagonalization of the
two sets can be performed independently. However, it is not
clear which of the two states Wy, and V¥, should be
identified with the chiral partner of W, (the putative
nucleon field), because all states become degenerate in
mass (all masses are equal to m, ;) when chiral symmetry is
restored (@y, @s — 0).

In order to diagonalize the mass matrix (20), we have to
solve the eigenvalue problem

Muk = miuy,
Miiul = myui, (21)
where u; [k € {1,...,dim(M) = 4}] are the eigenvectors
and m are the four eigenvalues of the mass matrix M. Note

that a sum over j (but not over k) is understood. By
multiplying Eq. (21) with u; from the left-hand side, we find

i J_ i
M ;juy, = myuguy, = midy
for orthogonal eigenvectors, u; - u; = d;. Hence, the matrix
_ i

diagonalizes M:
U'MU = diag(m,, my, my, my)
= diag(moz9, —M1535, M 1440, —M1650)-

In the second equality, we take into account that, due to the
definitions (19) and (23), the masses of the negative-parity
states correspond to negative eigenvalues of M. Returning to
the Lagrangian (18), we now realize that it is diagonalized by

Liass = —VYUU MUUTW

= —\prhysdiag(ml , My, M3z, m4)\I/phyS,

|
with the physical fields

WP = UTW = (Ng39, 7" Nys35. N1aao- 7" Nigso) T (23)

The eigenvalues of M, which (up to a sign) correspond to the
masses of the physical fields Nosg, N535, N 1440, and Nyes0,
are determined by the roots of the equation

det |:M - m,-1]4x4} =0.

In the general case, this will be done numerically; see Sec. I11.
However, in the chiral limit, i.e., ¢, @5 — 0, one can easily
do this analytically. In this case, denoting M = (mg, +
my>)/2 and p = (mg; — mg5)/2, the mass matrix reads

0 0 M u
0 0 —u -M
M —u 0 0
u -M 0 0

M

chiral limit =

The eigenvalues of this matrix are 1) , = +(M +u) = +my |
and 134 = +(M — u) = £mg,. As expected, we have two
distinct sets of chiral partners. One set has the mass m ; and
the other the mass my,, which is in general different from
my ;. In order to decide which mass eigenstates are chiral
partners, we need to compute the transformation matrix U.
Somewhat surprisingly,

1 -1 1 1

1] -1 1 1 1
U=— =U",

1 1 1 -1

1 1 -1 1

which means that the mass eigenstates are uniform
mixtures of the fields Wy, ysUy,, Yy, and ysW,,,. The
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chiral partners with mass mg; are given by the linear
combinations Wy —ysWy, + (Vs +y5Vy,) and —Uy+
¥sUns + (Uas + 75 ¥y, ), while the chiral partners with mass
my, are given by Wy +ysWy, + (¥y —ys5V¥y,) and
Uy + 75Uy, — (U —y5Uyy,), respectively. Therefore, it
is impossible to decide whether N(1535) or N(1650) is the
chiral partner of the nucleon. The solution to this problem
will be presented in the next section, where we compute the
eigenvalues as a function of ¢y to trace whether the mass of
N(1535) or that of N(1650) approaches the nucleon mass in
the chiral limit.

III. RESULTS

The Lagrangian of the model in the Ny =2 case
[cf. Egs. (17) and (C1)] contains the following 12 param-
eters in the baryonic sector: the mass parameters m; and
m,, and the coupling constants cy, ¢y, Cay» Ca,,» IN> M-
K1. K2, K}, and k5. To determine these parameters, we use the
experimental values of the masses of the four baryonic
states; the partial decay widths of the baryonic resonances
into a nucleon and a pseudoscalar meson, Iy(is535)-nz

LCv(1535)= 89> Tn(1650)= N> TN (1650)=Ng» @0 Ty (1440)— N (939) 75

N(939)

and the axial coupling constant g, '; as well as lattice

PHYSICAL REVIEW D 93, 034021 (2016)

results [37] for g§(1440), gﬁ“ms), and gg(leso). In total, there

are 13 experimental values, which are fitted to 12 param-
eters. The parameters Z, w, ¢y, and ¢@g are already
determined by meson physics [11].

For the baryon masses, we use the values given by the
PDG [34]. Since our model does not contain isospin-
breaking effects, it is not expected to describe the baryon
masses to (in some cases very high) experimental precision.
Therefore, we assume a 5% uncertainty of the masses (a
strategy that was already followed in the fit of Ref. [12]).

The expressions for the decay widths into pseudoscalar
mesons and the axial coupling constants are given in
Appendixes D and E. The experimental values of the
decay widths are obtained from the total width and the
branching ratios given by the PDG [34]. The nucleon axial
coupling constant is also quoted by the PDG [34], while all
other axial coupling constants result from lattice-QCD
calculations [37].

Using a standard y?> procedure, we find that three
acceptable and almost equally deep minima exist. Their
corresponding parameter values are given in Table I. It is
interesting to note that the first two minima lead to small
values of m ; and my ,, while the third one features values
of these constants which are close to the vacuum mass of

TABLE I. The parameter values of the three y> minima and the comparison to experimental quantities.

Minimum 1 Minimum 2 Minimum 3 Experiment/lattice
mg 1[GeV] 0.1393 +0.0026 0.14 +0.11 —1.078 +0.017
mg,[GeV] —0.2069 +0.0027 -0.18 +0.12 0.894 +0.019
cn -2.071 +0.023 —2.83 +0.39 -33.6 +2.2
Cy 124 +1.3 11.7 +1.8 —19.1 +3.1
Ca, —1.00 +0.23 0.03 +0.40 —2.68 +0.80
Ca,, -51.0 +2.8 80 +41 =71.7 +6.5
gn 15.485 +0.012 15.24 +0.36 10.58 +0.24
Ium 17.96 +0.17 18.26 +0.52 13.07 +0.33
K [GeV™] 37.80 +0.26 59.9 +8.5 324 +4.2
K [GeV!] 57.12 +0.29 29.8 +6.6 55.2 +4.0
K, [GeV] 207 2.5 32 +13 -20 +13
K5 [GeV~!] 41.5 +3.2 -8 +13 48.9 +4.5
my[GeV] 0.9389 +0.0010 0.9389 £0.0010 0.9389 £0.0010 0.9389 £0.001
My (1440) [GeV] 1.430 +0.071 1.432 +0.073 1.429 +0.074 1.43 +0.07
My 1s35)[GeV] 1.561 +0.065 1.585 +0.069 1.559 +0.069 1.53 +0.08
My 1650)[GeV] 1.658 +0.076 1.619 +0.071 1.663 +0.081 1.65 +0.08
T n(1440)-nz[GeV] 0.195 +0.087 0.195 +0.088 0.196 +0.087 0.195 +0.087
Ty (1535)-nz[GeV] 0.072 +0.019 0.073 +0.019 0.072 +0.019 0.068 +0.019
Ty (1535)-n[GeV] 0.0055 +0.0025 0.0062 +0.0024 0.0055 +0.0027 0.063 +0.018
Tn(1650)-n7[GeV] 0.112 +0.033 0.114 +0.033 0.112 +0.033 0.105 +0.037
T n(1650)-ny [GeV] 0.0117 +0.0038 0.0109 +0.0038 0.0119 +0.0038 0.015 +0.008
7 1.2670 +0.0025 1.2670 £0.0025 1.2670 +0.0025 1.267 +0.003
92,(1440) 1.20 +0.20 1.19 +0.20 1.21 +0.21 1.2 +0.2
gX(IS-?S) 0.20 +0.30 0.21 +0.30 0.20 +0.31 0.2 +0.3
gXUﬁSO) 0.55 +0.20 0.55 +0.20 0.55 +0.20 0.55 +0.2
I 10.3 10.7 10.3

034021-9



OLBRICH, ZETENY], GIACOSA, and RISCHKE

the nucleon. Thus, for the first two minima, the main
contribution to all masses arises from chiral symmetry
breaking, while in the third minimum, most of the mass is
generated by another source, e.g. a gluon condensate.

The numerical results for the experimental quantities
obtained using the above parameters are also given in
Table 1. Most of these quantities are described by all
solutions of the model within one standard deviation. The
most important exception is the N(1535) — Ny decay
width, which deviates by about an order of magnitude
from the experimental value for all scenarios explored (in
fact, this deviation completely dominates the value of y2).
Note that this quantity was also not well described in the
study of Ref. [9]. Thus, including more multiplets does not
solve this problem, as was erroneously speculated in that
reference. Other ideas towards a solution are described in
the next section.

It is interesting to discuss the numerical results for the
mass matrix M and the mixing matrix U:

Minimum I: Using the parameters corresponding to
minimum 1, the mass matrix (20) reads

0.926 0.071 -0.034 0.173
0.071 -1.623 -0.173 0.034
Mmin 1= GeV.
—-0.034 -0.173 1.402 0.228
0.173 0.034  0.228 —1.555

Furthermore, with the numerical value for the transforma-
tion matrix U;; defined in Eq. (22) and composed of the
eigenvectors of the mass matrix, Eq. (23) can be written as

Noso
7’Nisas
Niaa0
7’ Nies0
-0.996 -0.025 -0.046 -0.074 Wy
0.075 -0492 0.039 -0.867 Uy,
- —0.050 -0.057 0995 0.073 Wy,
0.010 0.869 0.086 —0.488 e

(24)

Here one can see that, to a first approximation, No3¢ = Uy,
Nigao ® Wy, Niszs & Uy, and Nigso & Uy, Furthermore,
the two negative-parity states Ns35 and Ng50 mix appre-
ciably with each other; the mixing angle is ~30°.

In order to decide which states form chiral partners, we
also compute the masses as a function of ¢y, keeping ¢y at
its vacuum value. This allows us to trace the masses when
chiral symmetry is restored, ¢y — 0. [Note that ¢g only
appears together with a factor ¢, in the mass matrix (20)].
The result is shown in Fig. 1, from which we unanimously
conclude that N(939) and N (1535) are chiral partners, with
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FIG. 1. Masses as a function of ¢y for minimum 1.

acommon mass my; = 139 MeV when chiral symmetry is

restored. Consequently, N(1440) and N(1650) are chiral

partners with a mass |mg,| =207 MeV as ¢y — 0.
Minimum 2: In this case, the mass matrix reads

0.925 -0.111 -0.017 0.161
-0.111 -1.583 -0.161 0.017
M inr = GeV.
-0.017 -0.161 1415 -0.146
0.161 0.017 -0.146 -1.590

Furthermore, the second minimum has the following
transformation matrix:

No3g

7’Nisss

Nia40

7’ Nieso
—-0996 0.046 —-0.039 -0.061 Uy
—-0.002 0.806 0.072 0.587 Uy,

- —-0.038 —-0.052 0997 -0.051 Uy
0076 0588 —0.007 —0.805/ \ 5V,

(25)

As with minimum 1, the negative-parity states mix
strongly, but the mixing matrix is different. Here, we
may conclude that N(1650) can be predominantly assigned
to Uy,,.

In order to decide which states form chiral partners, we
again compute the masses as a function of ¢y, keeping ¢y
at its vacuum value. The result is shown in Fig. 2, from
which we again unanimously conclude that N(939) and
N(1535) are chiral partners, with a common mass m ; =
144 MeV when chiral symmetry is restored. Consequently,
N(1440) and N(1650) are chiral partners with a mass
|mgs| = 178 MeV as ¢y — 0.
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FIG. 2. Masses as a function of ¢ for minimum 2.

Minimum 3: In this case, the mass matrix reads

0.549 0.084 —-0.092 -0.986
0.084 —1.192 0.986 0.092
M yin3 = GeV.
—-0.092 0.986 0.970 0.253
—-0.986 0.092 0.253 —1.181

The transformation matrix of the third minimum has a form
thatis completely different from those of the other two minima:

Nozg
7’Nisss
Niag0
7’ Nigso
—-0.865 -0.163 -0.312 0.358 WUy
0.140 0830 -0.359 0404 Uy,
- —-0.292 0.327 0.875 0.207 Wy,
—-0384 0422 -0.093 -0.816 U,

(26)
In this case, all states mix strongly with each other.
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FIG. 3. Masses as a function of ¢y for minimum 3.
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In order to decide which states form chiral partners, we
again compute the masses as a function of ¢y, keeping ¢g
at its vacuum value. The result is shown in Fig. 3, from
which we again unanimously conclude that N(939) and
N(1535) are chiral partners, with a common mass mg, =
894 MeV when chiral symmetry is restored. Consequently,
N(1440) and N(1650) are chiral partners with a mass
|mg 1| = 1078 MeV as ¢y — 0.

IV. CONCLUSIONS AND OUTLOOK

In this work we have studied the generalization of the
eL.SM to the three-flavor case, thus including baryons with
strangeness (N = 3). We have found that, in a chiral quark-
diquark model for the baryons, we naturally need to consider
four baryonic multiplets, if we require the presence of
chirally invariant mass terms like in the mirror assignment.
Subsequently, we have reduced the model to the case Ny = 2
and performed a fit of the parameters of the model to the
masses and decay widths, as well as the axial coupling
constants of the nucleonic resonances N(939), N(1440),
N(1535), and N(1650). Masses and decay widths as well
as the axial coupling constant of the nucleon are experi-
mentally known [34]; for the axial coupling constants of the
other resonances we used lattice-QCD data [37].

From this fit, we found three minima which, with the
exception of the decay N(1535) — Ny, yield results for the
masses, for the decay widths, and for the axial coupling
constants that are in very good agreement with data; see
Table I. Studying the approach to chiral symmetry restora-
tion @y — 0, we were able to unanimously identify which
of the four nucleonic resonances form chiral partners. For
all three minima, these are the pairs N(939), N(1535), as
well as N(1440), N(1650).

Finally, let us discuss the issue with the decay width
N(1535) — Np. Our result that the theoretical value turns
out to be too small when compared to the experimental
value is stable under parameter variations. This implies that
further studies are needed to understand the resonance
N(1535). Some authors have argued that N(1535) may
contain a sizable amount of s5 [38—40]. Another interesting
possibility is to investigate the role of the chiral anomaly in
the baryonic sector [41], which can lead to an enhanced
coupling to the resonances 7 and 7.

In the very recent study of Ref. [42] a chiral baryonic
model with three flavors was constructed by making use of
parity doublets. There, a large variety of baryonic fields was
included (also, the decuplet is present), but no (axial-)
vector degrees of freedom were considered in the mesonic
sector. The chirally invariant contribution to the nucleon
mass is in the range 500-800 MeV, in agreement with our
result for minimum 3. Interestingly, in Ref. [42] upper
bounds for the axial coupling constants were derived which
fit well to our results.

Finally, in order to decide which of the three minima
that resulted from our fit is preferable, we plan to inves-
tigate the complete three-flavor case. Note that most of the
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parameters of the Lagrangian (11) are already determined
from the Ny =2 fit, but many more experimental data,
such as the masses of hyperons and their decay widths, are
available to discriminate between the three minima. The
obtained values for the coupling constants of hyperons to
(pseudo)scalar and (axial-)vector mesons will be relevant
for studies of scattering processes in the vacuum [28-31],
as well as for neutron stars [32,33]. In connection to the
latter topic, one can study nuclear matter at nonzero density
and inhomogeneous chiral condensation, thus extending
previous investigations on the subjects [27,43] in a more
complete framework.
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APPENDIX A: MASS DEGENERACY
IN THE CASE OF AN N, =2
LAGRANGIAN WITHOUT x TERMS

In this appendix, we want to clarify why it is mandatory
to include the x and e terms in the Lagrangian (11),
although they are not dilatation invariant. Therefore, we
consider the two-flavor case, given in Eq. (17) and in
Appendix C. Setting the constants k, k,, K}, &, (and €; with
i=1,2,3,4) to zero, the part of the Lagrangian which
contains the terms contributing to the mass matrix of the
four fields Wy, Wy,, ¥,,, and ¥,,, reads L, = —VM'V.
The definition of the vector ¥ is given in Eq. (19), and the
mass matrix is given by

INPN 0 Mo, + Moy Moy — Moo
M = l 0 —INPN Moo — My —Mg | — Moo
2\ moyp+moy moy—my, IMPN 0
Mo, — Moy  —Ng) — Moy 0 —gmPN

Evaluating det(M’ — m;14,4) = 0 and denoting Q, , = \/% (mo1 £ my2)? + 15 (9vF9um )@}, we find the eigenvalues

myp = Q) + £y = —my,

ms = Ql - Qz = —My. (A])

Due to the definition of the vectors ¥ given in Eq. (19) and the definition of physical states in Eq. (23), the physical masses
correspond to the eigenvalues as follows: mgzg = m and my 535 = —m,, as well as m 449 = m3 and m g5 = —my. Having
this in mind and considering the results for the eigenvalues given in Eq. (A1), it is clear that the masses of N(939) and
N(1535) as well as the masses of N(1440) and N(1650) would be degenerate. The only possibility to avoid a mass
degeneracy but still keep chiral symmetry is to introduce the x (and ¢) terms as shown in Eq. (11).

APPENDIX B: EXPLICIT LAGRANGIAN FOR Ny = 3 IN TERMS OF PARITY EIGENVALUES
From Eq. (8) and the Lagrangian (11), one obtains the following baryonic Lagrangian for Ny = 3 flavors as a function
of parity eigenstates:

Ly = Tr{Bxriy, D\ Bxr + Byiiy, Dy Byr + By.riv DRg Bsr + Byoriv, Dy By,
+ BMRi}/ﬂD;:/]LBMR + By iy, DhyirBur + BM*RWMDIX/]LBM*R + BM*LiYﬂDI&RBM*L}
+ CANTT{BNRW#R”BN*R =+ BN*RiVﬂR”BNR - BNLiYyLﬂBN*L - BN*LWyL”BNL}
+ CAMTr{BMRi}/ﬂL”BM*R + BM*RiVﬂL”BMR - BMLi}’ﬂR”BM*L - BM*Li}/ﬂR”BML}
— gNTr{By, PBxg + Bag @By, + By., ®By.g + By ®'By.g}
— guTr{By, ®'Byg + Byr®By + By "Bk + By PByrig }
- %Tr{_BNLq)BNRq)T — B\R®' By, @ + By, PByg® + By g ® By, P

— By ®By.g®" + B\R® By, @ + By PBar®' — By.r® By, P}
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- Kz_llTr{_BNL(I)BNR(I) — B\r® By @ + By, PBy.p® + By g® By, PF
+ By PBy,g® — Bap® By, T = By,  PB\® + By.g® By D7}

- %Tr{_BML(I)TBMRq)T — Byr®By® + By ® By g ® + By g @By, ®
— By @ Byig®" + Byr®Birr @ + Bygo, @ Byp®" — By g @By P}

- %Tr{_BML(I)TBMR(I) — Byr®By @7 + By, @' By g ® + By g @By @7

+ By ® By g® — Byr®By @7 — By @7 Byr® + By g @By BT}

Mgy +mgp
2

+ By Bar 4 ByrByr + By Bysr + Byr By }

my, —MmMoyo 5 = 5 5
- 'fTT{BNLBM*R — B\ Buysr, — Bur Bk + BurBnsr

— By, Byr + By.rBur + By BNr — ByirByi

Tr{By.Bur + BxgBur + By Bysr + ByrBussr

where the covariant derivatives are

Dhgr = O* —icyRF, Dy, = 0* —icyLF,
Dhyp = O —icy R, D, = 0% —icyLF,
with
cN:C';C2 and cM:C3;C4.

These two constants parametrize the coupling between baryons of equal parity. The constants

_Cl—C2 d _C3—C4
CAN— > an CAM—T

describe the coupling of two baryons with different parity to (axial-)vector mesons. The interaction of the baryonic fields

with the scalar and pseudoscalar mesonic fields are parametrized by gy and g;,. The chirally invariant mass terms are

characterized by my ; and m,,. The terms proportional to Kg/()2) are introduced to avoid mass degeneracy (see Appendix A).

In total, the Lagrangian has 12 free parameters.

APPENDIX C: EXPLICIT LAGRANGIAN FOR N; =2 AFTER SSB
After SSB in the meson sector (6y = oy + @y and o5 = o5 + @), the full Lagrangian with two flavors describing the
nucleon N(1440), and their chiral partners, as well as their interaction with scalar, pseudoscalar, vector, and axial-vector
mesons reads
L =Vynir"0, Uy + Un,iy"0, Uy, 4+ Uy iy 0,V + Uy, iy#9, Uy,
+ en(Oyr e — ¥ (Ff + Zwdny)|T° + [p* -y (@ + Zwo'm)] - T}y
+ Unrdlo =7 (ff + Zwogy)]T + [p* — (@ + Zwo'm)] - T}y,)
+ CM(‘I’MYM{[W” + 7 (ff + Zworny)]T + [p* + ¥° (] + Zwd'm)] - T} Uy,
+ Uy {0 + 72 (Ff + Zwony)ITO + [p + (@] + Zwo'm)] - T, )
+ea A Un[(=f1 = Zwd'ny + P )T + (~al = Zw'm + yp*) - T| Dy,
+ Un (= f1 = Zwdny + P )T + (=df = Zwd'm + yp*) - T] Uy }
+ea, ACur | (ff + Zwdny + P )T + (af + Zwd'm +7°p") - T| V.
+ Unnr[(ff + Zwdlny + P )T + (af + Zwd'm+7°p") - Ty}
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— gn{Un[(o + @y + X’ Zny)T° + (ag + iy’ Zm) - T
+ Uy, l(o+ oy + ir°Zny)T° + (ag + iy’ Zr) - T Wy, }
— gu{Vul(o + oy — i’ Zny)T° + (ag — iy’ Zz) - TV,
+ Upl(o + oy — iy’ Zny)T° + (ag — iy’ Zz) - T] W)y, }

Kt

2V2

os{=VYn[(o + @y + ir’Zny)T° + (ap + iy’ Zx) - T) Wy

+ Uy (64 oy + i’ Zny)T° + (ag + iy’ Zz) - T] Wy, }

K =K

1
2V/2

os{UN[(iZny + 77 (0 + on))T? + (iZ® + Poay) - T) Uy,

— Un[(iZny + 7 (0 + o) T° + (iZr + Yay) - T| Wy}

Ktk

2V2

os{=Vyl(o + oy — iy’ Zny)T° + (ag — iy’ Zz) - TV,

+ Uy l(o+ oy — i’ Zny)T° + (ag — iy Zzw) - T)W . }

/
K2—K'2

2V2

os{=Yul(iZny — 7> (6 + on))T* + (iZw — Yoay) - T)V .

+ U [(iZny — 7 (6 + on))T? + (iZr — YPay) - T] Wy}

_ Mo, +mop

2
_ Moy — Mo,y

where the coupling to (axial-)vector mesons of two baryons
with equal parity and a vector meson is parametrized by
cy = (¢1 +¢3)/2 and ¢y = (c3 + ¢4)/2, and that of two
baryons with opposite parity by c, = (c; —c¢;)/2 and
ca, = (c3—c4)/2. All other constants are the same as in
the Lagrangian (17). The factor w is introduced due to the
shift of the axial-vector fields in order to eliminate the
mixing with the pseudoscalar fields, which occurs after
SSB, and Z is the so-called wave-function renormalization
factor that takes care of the normalization of the kinetic
terms of the pseudoscalar mesonic fields after the shift; see
Ref. [11] for more details.

APPENDIX D: DECAY WIDTHS

Because of the existing experimental data [34], we are
especially interested in the decays of nucleon resonances
into the pseudoscalar mesons 7 and 5. The Lagrangian
describing the decay of a resonance N* into a nucleon N
and a pseudoscalar meson P = m,n has the general
structure

L = g"=NPNTy, N O*P — igh-=NPNTy,N.P, (DI)
where I' = y5 (1) for a positive-(negative-)parity N,. The
explicit expressions for the coupling constants gV+ =V and

(Unr Upre + Una P Uy = Uy Uy, — Uy 5 Uy ),

(UnTp 4 Upa Wy + Uy Uy + Uy, Uy,

(C1)

gV+=NP can be obtained from the relevant terms of the
Lagrangian (Cl), carrying out the transformation (23).
Using this, the tree-level decay width can be calculated
to be

Pr
FN*—>NP — //{p 8 f2 |ZM‘2
n

N,
= kp Py (V=N = (my £ m ) g~ NP2
47TmN*
< (ExFm). (02)

where the upper (lower) sign is valid for a positive-
(negative-)parity N,, and Ey is the nucleon energy in
the rest frame of the decaying N,, while the magnitude of
the three-momenta of the decay products is

1
Py = (k= m} = mp) — dmim}. (D)
ZmN* *

Furthermore, the factor Ap is added by hand and
should
(1) For P = r, pay attention to the three possible isospin
states of the pion, i.e.,
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Ar = 3.
(2) For P = 5, take into account that
1 =1y Cos ¢p +nssingp,

where 7y = (@i + dd)/+/2 and ng = 55 and ¢p is
the mixing angle. Its value lies between —32° and
—45° [44]. In this paper we have chosen ¢p =
—44.6° obtained from Ref. [12]. It is assumed that
the amplitude of the decay N, — Npg is mas-
sively suppressed. This means that to good
approximation,

~ coc2
Uy ny = cos™ ¢pl'y _ny,-
Thus,

Ay = cos® p.

APPENDIX E: AXIAL COUPLING CONSTANTS

The Lagrangians in Appendixes B and C are invariant
under U, = exp(—i0“y°t%/2) € U(N), axial transforma-
tions (6 are the parameters and 7% /2 the generators). Due
to Noether’s theorem [45], one gets the following axial
current:

PHYSICAL REVIEW D 93, 034021 (2016)
)z 7¢ N ¢
A = gy S U+ gy Tty 5 D,

@ a5t @ 57
+ g5 Ynr'y E\IJM + gx Uy E\IIM*
a

12) = 7¢ 12) = T
+92 )‘I’NV"E‘PN* +gg )\IIN*J/#?\IIN

(34)

34) = 4 _ 4
+9§; >\I]M7”7\IJM* + g4 ‘I’M*V”E‘I’M, (E1)

where

(1) CN 1 (2) Cy 1
=1-—|1-=, =—1+—|1-=
Ia 91 ( Zz) I * g1 ( 7

are the axial coupling constants of the bare fields Uy, Uy,
W, and ¥,,,, and

(12) Cay 1 (34) _ Cay 1
= [1-—=), — A
9 g ( Zz) 9 g1 ( z?

are the “mixed” axial coupling constants of the bare fields
Wy with Uy, and ¥,, with ¥,,..

The expressions for the axial coupling constants of the
physical fields can be obtained from the relevant terms of
the axial current (E1) after the transformation to parity
eigenstates (23) has been carried out.
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