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In the case of three quark flavors, (pseudo)scalar diquarks transform as antiquarks under chiral
transformations. We construct four spin-1=2 baryonic multiplets from left- and right-handed quarks as well
as left- and right-handed diquarks. The fact that two of these multiplets transform in a “mirror” way allows
for chirally invariant mass terms. We then embed these baryonic multiplets into the Lagrangian of the so-
called extended linear sigma model, which features (pseudo)scalar and (axial-)vector mesons, as well as
glueballs. Reducing the Lagrangian to the two-flavor case, we obtain four doublets of nucleonic states.
These mix to produce four experimentally observed states with definite parity: the positive-parity nucleon
Nð939Þ and Roper resonance Nð1440Þ, as well as the negative-parity resonances Nð1535Þ and Nð1650Þ.
We determine the parameters of the nucleonic part of the Lagrangian from a fit to masses and decay
properties of the aforementioned states. Studying the limit of vanishing quark condensate, we conclude
that Nð939Þ and Nð1535Þ, as well as Nð1440Þ and Nð1650Þ, form pairs of chiral partners.
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I. INTRODUCTION

The strong interaction determines the masses of the
baryons and their interactions with mesons. At low
energies, chiral effective approaches play an important
role to describe these phenomena [1]. Most notably, one
can use chiral perturbation theory, which is based on the
nonlinear realization of chiral symmetry [2–4], or σ-like
models, which are based on the linear realization of chiral
symmetry [5–10].
An effective model based on linearly realized chiral

symmetry as well as dilatation invariance has been con-
structed in Refs. [9–14]. This so-called extended linear
sigma model (eLSM) also contains anomalous, explicit,
and spontaneous symmetry-breaking (SSB) terms in order
to reproduce known features of the strong interaction. The
mesonic sector of the eLSM, first developed for two flavors
(Nf ¼ 2) [11] and further extended to Nf ¼ 3 [12,13] and
Nf ¼ 4 [14], includes scalar and pseudoscalar as well as
vector and axial-vector degrees of freedom. It is able to
describe mesonic masses and decays of quark-antiquark
mesons up to 1.7 GeV within reasonable accuracy [for
precursory models including (axial-)vector degrees of
freedom, see Ref. [15]]. Moreover, in agreement with
results from other approaches [16], the model implies
that the scalar quark-antiquark states are heavier than
1 GeV and that f0ð1710Þ is predominantly gluonic [13].
As a consequence, the chiral partner of the pion is the
resonance f0ð1370Þ and not the light scalar state f0ð500Þ
[which, together with the other light scalar mesons, is a
state made from (at least) four quarks, either a resonance

dynamically generated in the pseudoscalar scattering
continuum or a diquark-diquark configuration; see e.g.
Refs. [17–21]].
In the standard linear sigma model with nucleons only,

chiral symmetry requires that the mass of the nucleon
be (apart from explicit symmetry-breaking effects from
the current quark masses) solely generated by the chiral
condensate, mN ∝ hq̄qi. However, when one includes the
chiral partner of the nucleon, one can either assume that
the partner transforms as the nucleon under chiral trans-
formations (the so-called “naive” assignment), or that it
transforms in a “mirror” way (the so-called “mirror”
assignment) [22–26]. The latter allows for an additional
chirally invariant mass term, which physically parametrizes
the contribution to the nucleon mass that arises from
sources other than the chiral condensate (e.g. a gluon or
a four-quark condensate). Nucleons and their chiral part-
ners have been studied within the eLSM in the mirror
assignment in Refs. [9,10,27], indicating that the contri-
bution to the nucleon mass from these other sources is
sizable.
In this work, we extend the work of Refs. [9,10] to the

case of baryons with Nf ¼ 3 flavors. This extension will
enable us to address in future work important problems
in hadron physics, such as scattering processes involving
strange hadrons [28–31], and in astrophysics, e.g. the
hyperon puzzle for compact stars [32,33].
For baryons, the extension to the Nf ¼ 3 case is not as

straightforward as for mesons. In the Nf ¼ 2 case, the
nucleon multiplet is described by a spinor isodoublet,
ψN ¼ ðp; nÞT , where p and n are the proton and the
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neutron, respectively. However, in the Nf ¼ 3 case the
JP ¼ 1

2
þ baryon octet is given by a 3 × 3 matrix,

0
BBB@

Λffiffi
6

p þ Σ0ffiffi
2

p Σþ p

Σ− Λffiffi
6

p − Σ0ffiffi
2

p n

Ξ− Ξ0 − 2Λffiffi
6

p

1
CCCA: ð1Þ

Adding the chiral partner JP ¼ 1
2
− multiplet is also not

as straightforward as in the Nf ¼ 2 case. Here, we utilize
a quark-diquark “quasiparticle” picture for the baryonic
substructure. We assume that the diquark is a (pseudo)
scalar and lives in the color- and flavor-antitriplet repre-
sentation (a so-called “good” diquark in the nomenclature
of Jaffe [17]), such that it transforms as an antiquark. Then,
it is quite natural that JP ¼ 1

2
� baryonic fields, just like

quark-antiquark mesonic fields, are parametrized by 3 × 3
matrices. In a chirally symmetric approach, it is also
natural to construct baryons from quarks and diquarks
with definite behavior under chiral transformations, i.e.,
from left- and right-handed quarks and diquarks. If we want
to include states that transform in the mirror assignment,
such that we can construct chirally invariant mass terms in
the Lagrangian, we will show that we are then necessarily
led to consider four distinct baryonic multiplets. The
possibility to have four multiplets of chiral partners in
the mirror assignment was already discussed in the outlook
of Ref. [9]. Then, instead of only the ground-state baryon
(the nucleon doublet for Nf ¼ 2) and its chiral partner,
two positive-parity baryons [the nucleon and the Roper
Nð1440Þ for Nf ¼ 2] and two negative-parity states
[Nð1535Þ and Nð1650Þ for Nf ¼ 2] occur.
This paper is organized as follows: In Sec. II we present

our model and its implications. Namely, in Sec. II A we
introduce the baryonic fields for Nf ¼ 3, and in Sec. II B
the corresponding Lagrangian. A full Nf ¼ 3 analysis
with 32 ¼ 8 × 4 baryonic resonances is very difficult.
Therefore, for the present work we decided to study a
simplified scenario by considering a reduction of the
Nf ¼ 3 Lagrangian to the Nf ¼ 2 case. This reduction
is discussed in Sec. II C. In Sec. II D the mass matrix
involving the four nucleonic states Nð939Þ; Nð1440Þ;
Nð1535Þ, and Nð1650Þ is determined and diagonalized.
In Sec. III we perform a fit of the parameters of our model
to experimental data [34] for the masses, decay widths, and
axial coupling constants. In Sec. IV we discuss our results
and give an outlook to future work. Technical details are
relegated to various appendixes.
We use natural units, ℏ ¼ c ¼ 1, and the metric tensor

is ðgμνÞ ¼ diagðþ;−;−;−Þ.

II. THE MODEL AND ITS IMPLICATIONS

In this section we first construct the baryonic fields in a
chiral quark-diquark picture. We account for the fact that

two of the four baryonic fields transform in a “mirror” way
as compared to the other two. We then present the complete
Lagrangian of the eLSM for Nf ¼ 3 flavors. A reduction to
Nf ¼ 2 flavors is performed, and finally the mass matrix
for the four nucleonic states Nð939Þ; Nð1440Þ; Nð1535Þ,
and Nð1650Þ is given.

A. Baryonic fields for Nf ¼ 3

In the two-flavor case, one works with isospin doublets
ψ i, where the upper field is proton-like, i.e., of the type
uud, and the lower field is neutron-like, i.e., of the type
udd. The right- and left-handed components ψ iR and ψ iL
behave either in a “naive” or in a mirror way under chiral
transformations. The naive transformation behavior implies
ψ iR → URψ iR and ψ iL → ULψ iL, while the mirror one
implies ψ iR → ULψ iR and ψ iL → URψ iL, where the index i
labels the nucleonic doublets and the quantities UR and UL
are 2 × 2 matrix representations of the chiral group
Uð2ÞR ×Uð2ÞL.
As mentioned in the Introduction, for three flavors

JP ¼ 1
2
þ baryons are described by 3 × 3matrices. In order to

construct these fields we use a chiral quark-diquark model
(see Ref. [35] and in particular Ref. [36]), i.e., baryons are
considered to be made of a quark and a diquark, where a
diquark is a (colored) state consisting of two quarks. We are
interested in so-called “good” diquarks [17,18,36], which are
(pseudo)scalar objects with antisymmetric color- and flavor-
wave functions. For Nf ¼ 3 there are three scalar, JP ¼ 0þ,
and three pseudoscalar diquarks, JP ¼ 0−. Mathematically,
they can be expressed as follows [36]:

JP ¼ 0þ∶ Dij ¼
1ffiffiffi
2

p ðqTj Cγ5qi − qTi Cγ
5qjÞ≡

X3
k¼1

Dkϵkij

with Dk ¼
1ffiffiffi
2

p ϵklmqTmCγ5ql;

JP ¼ 0−∶ ~Dij ¼
1ffiffiffi
2

p ðqTj Cqi − qTi CqjÞ≡
X3
k¼1

~Dkϵkij

with ~Dk ¼
1ffiffiffi
2

p ϵklmqTmCql; ð2Þ

where Dk is the scalar diquark current and ~Dk is the
pseudoscalar diquark current. The indices i, j, k, l, and m
are flavor indices. The color structure of these objects is
formally identical to the flavor structure and thus suppressed
here. From the scalar and pseudoscalar diquarks (2) we can
construct left- and right-handed diquarks,

DR ≔
1ffiffiffi
2

p ð ~DþDÞ ¼
X3
i¼1

DR
i A

i with DR
i ≡ 1ffiffiffi

2
p ð ~Di þDiÞ;

DL ≔
1ffiffiffi
2

p ð ~D−DÞ ¼
X3
i¼1

DL
i A

i with DL
i ≡ 1ffiffiffi

2
p ð ~Di −DiÞ;
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where ðAiÞjk ¼ ϵijk. Under Uð3ÞL × Uð3ÞR chiral trans-
formations, they behave as

DL
i → DL

i U
†
L; DR

i → DR
i U

†
R; ð3Þ

where UL and UR are unitary 3 × 3 matrices. Thus, DLðRÞ
i

transforms as a left-(right-)handed antiquark.
In order to construct baryonic fields as quark-diquark

pairs, we have to combine DR
j or DL

j with a quark, qi:

N1 ≡ ðN1Þij¼̂ DR
j qi ¼

1ffiffiffi
2

p ð ~Dj þDjÞqi;

N2 ≡ ðN2Þij¼̂ DL
j qi ¼

1ffiffiffi
2

p ð ~Dj −DjÞqi:

These two fields are obviously 3 × 3 matrices in flavor
space.
We now compute the left- and right-handed components

of these fields. To this end, one has to take into account that
the chiral projection operators act only on the quark fields
qi, because they carry a spinor index, while the diquarks are
scalars in Dirac space:

N1ð2ÞR ¼ PRN1ð2Þ¼̂ DRðLÞqR;

N1ð2ÞL ¼ PLN1ð2Þ¼̂ DRðLÞqL:

Using the transformation behavior of a quark spinor and
Eq. (3), the chiral transformation of the baryonic fields can
be computed as

N1R → URN1RU
†
R; N1L → ULN1LU

†
R;

N2R → URN2RU
†
L; N2L → ULN2LU

†
L: ð4Þ

One observes that the chiral transformation from the left
follows the naive assignment, while the one from the
right results from the transformation of the diquark field
(1 ↔ R, 2 ↔ L). Thus, the presence of two multiplets
which transform in a naive way (from the left) is quite
natural in the Nf ¼ 3 framework.
The behavior under parity and charge-conjugation trans-

formations is given by

Parity Charge conjugation

N1R −γ0N2Lðt;−xÞ −iγ2ðN2LÞ⋆
N1L −γ0N2Rðt;−xÞ −iγ2ðN2RÞ⋆
N2R −γ0N1Lðt;−xÞ −iγ2ðN1LÞ⋆
N2L −γ0N1Rðt;−xÞ −iγ2ðN1RÞ⋆

; ð5Þ

which shows that the fields N1 and N2 are not parity
eigenstates and cannot be directly associated with existing
resonances (even in the limit of vanishing mixing).
Furthermore, we introduce two baryonic matrices M1

and M2 whose chiral transformation from the left is

“mirror-like.” These fields can be constructed in the same
way as N1 and N2; however, we need to include an
additional Dirac matrix so that a left-(right-)handed pro-
jection operator is converted into a right-(left-)handed one
(due to the commutation relation ½γ5; γμ� ¼ 0). Only then
one can act with a right-(left-)handed chiral transformation
URðLÞ from the left onto MiRðLÞ. To contract the additional
Lorentz index we also include a partial derivative. Conse-
quently, the mathematical structure of the “mirror-like”
fields is given by

M1 ≡ ðM1Þij¼̂ DR
j γ

μ∂μqi ¼
1ffiffiffi
2

p ð ~Dj þDjÞγμ∂μqi;

M2 ≡ ðM2Þij¼̂ DL
j γ

μ∂μqi ¼
1ffiffiffi
2

p ð ~Dj −DjÞγμ∂μqi:

Their chiral transformations are given by

M1R → ULM1RU
†
R; M1L → URM1LU

†
R;

M2R → ULM2RU
†
L; M2L → URM2LU

†
L; ð6Þ

where the left transformation is now mirror-like, while the
one from the right results from the transformation of the
diquark field (1 ↔ R, 2 ↔ L). Under parity they transform
just as N1 and N2, but under charge conjugation they
transform with a reversed sign:

Parity Charge conjugation

M1R −γ0M2Lðt;−xÞ iγ2ðM2LÞ⋆
M1L −γ0M2Rðt;−xÞ iγ2ðM2RÞ⋆
M2R −γ0M1Lðt;−xÞ iγ2ðM1LÞ⋆
M2L −γ0M1Rðt;−xÞ iγ2ðM1RÞ⋆

: ð7Þ

The transformation laws (4)–(7) allow us to write down a
baryonic Lagrangian with chirally invariant mass terms; see
the next section and Appendix B.
Baryonic fields with definite behavior under parity

transformations are introduced as

BN ¼ N1 − N2ffiffiffi
2

p ; BN� ¼
N1 þ N2ffiffiffi

2
p ;

BM ¼ M1 −M2ffiffiffi
2

p ; BM� ¼
M1 þM2ffiffiffi

2
p ; ð8Þ

where nowBN andBM have positive parity andBN� andBM�
have negative parity. In the limit of zeromixing,BN describes
the ground-state baryonic fields of Eq. (1), i.e., fNð939Þ,
Λð1116Þ, Σð1193Þ, Ξð1338Þg; BM describes the positive-
parity fields fNð1440Þ;Λð1600Þ;Σð1660Þ;Ξð1690Þg; BN�
can be assigned to the negative-parity fields fNð1535Þ,
Λð1670Þ;Σð1620Þ;Ξð?Þg; and, finally, BM� to fNð1650Þ;
Λð1800Þ;Σð1750Þ;Ξð?Þg. The detailed study of the mixing
will be performed below for the two-flavor case.
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B. The eLSM Lagrangian for Nf ¼ 3

The mesonic part of the Lagrangian of the eLSM reads [12]

Lmeson ¼ TrfðDμΦÞ†DμΦÞg −m2
0TrfΦ†Φg − λ1ðTrfΦ†ΦgÞ2 − λ2TrfðΦ†ΦÞ2g

−
1

4
TrfLμνLμν þ RμνRμνg þ Tr

��
m2

1

2
þ Δ

�
ðLμLμ þ RμRμÞ

�

þ TrfHðΦþ Φ†Þg þ cðdetΦ − detΦ†Þ2

þ i
g2
2
ðTrfLμν½Lμ; Lν�g þ TrfRμν½Rμ; Rν�gÞ

þ h1
2
TrfΦ†ΦgTrfLμLμ þ RμRμg þ h2TrfðLμΦÞ†ðLμΦÞ þ ðΦRμÞ†ðΦRμÞg

þ 2h3TrfΦRμΦ†Lμg þ g3ðTrfLμLνLμLνg þ TrfRμRνRμRνgÞ
þ g4ðTrfLμLμLνLνg þ TrfRμRμRνRνgÞ þ g5TrfLμLμgTrfRνRνg
þ g6ðTrfLμLμgTrfLνLνg þ TrfRμRμgTrfRνRνgÞ; ð9Þ

with the covariant derivative DμΦ ¼ ∂μΦ − ig1ðLμΦ − ΦRμÞ and the field-strength tensors Rμν ¼ ∂μRν − ∂νRμ,
Lμν ¼ ∂μLν − ∂νLμ. The matrices Φ, Rμ, and Lμ represent the (pseudo)scalar and (axial-)vector nonets:

Φ ¼
X8
i¼0

ðSi þ iPiÞTi ¼
1ffiffiffi
2

p

0
BBB@

σNþa0
0
þiðηNþπ0Þffiffi

2
p aþ0 þ iπþ K�þ

0 þ iKþ

a−0 þ iπ−
σN−a00þiðηN−π0Þffiffi

2
p K�0

0 þ iK0

K�−
0 þ iK− K̄�0

0 þ iK̄0 σS þ iηS

1
CCCA;

Rμ ¼
X8
i¼0

ðVμ
i − Aμ

i ÞTi ¼
1ffiffiffi
2

p

0
BBB@

ωμ
Nþρ0μffiffi

2
p − fμ

1Nþa0μ
1ffiffi

2
p ρþμ − aþμ

1 K�þμ − Kþμ
1

ρ−μ − a−μ1
ωμ
N−ρ

0μffiffi
2

p − fμ
1N−a

0μ
1ffiffi

2
p K0�μ − K0μ

1

K�−μ − K−μ
1 K̄�0μ − K̄0μ

1 ωμ
S − fμ1S

1
CCCA;

Lμ ¼
X8
i¼0

ðVμ
i þ Aμ

i ÞTi ¼
1ffiffiffi
2

p

0
BBBB@

ωμ
Nþρ0μffiffi

2
p þ fμ

1Nþa0μ
1ffiffi

2
p ρþμ þ aþμ

1 K�þμ þ Kþμ
1

ρ−μ þ a−μ1
ωμ
N−ρ

0μffiffi
2

p þ fμ
1N−a

0μ
1ffiffi

2
p K�0μ þ K0μ

1

K�−μ þ K−μ
1 K̄�0μ þ K̄0μ

1 ωμ
S þ fμ1S

1
CCCCA: ð10Þ

Here, Si ði ¼ 0;…; 8Þ represents the scalar, Pi the pseu-
doscalar, Vi the vector, and Ai the axial-vector mesonic
fields. The quantities Ti are the generators of Uð3Þ. Under
UðNfÞR ×UðNfÞL, chiral transformations Φ behave as
Φ → ULΦU

†
R, and the left- and right-handed vector fields

as Rμ → URRμU†
R and Lμ → ULLμU†

L.
For H ¼ Δ ¼ c ¼ 0, the Lagrangian Lmeson is invariant

under global chiral Uð3ÞR ×Uð3ÞLð¼ Uð3ÞV × Uð3ÞAÞ
transformations. The Uð1ÞA anomaly of QCD is para-
metrized by c ≠ 0. The explicit breaking of Uð3ÞA due to
the nonzero quark masses in the (pseudo)scalar and (axial-)
vector sector is implemented by the terms proportional toH

and Δ, respectively. We assume isospin symmetry for the u
and d quarks to be exact. As a consequence, only the pure
nonstrange scalar-isoscalar field σN and the pure strange
scalar-isoscalar field σS, carrying the same quantum num-
bers as the vacuum, condense and have nonzero vacuum
expectation values (VEVs); for more details and for the
values of all relevant parameters, see Ref. [11].
To describe the baryonic degrees of freedom and

their interactions with mesons, we use the following
Lagrangian, which is invariant under global chiral
Uð3ÞR ×Uð3ÞL as well as parity and charge-conjugation
transformations:
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LNf¼3 ¼ TrfN̄1LiγμD
μ
2LN1L þ N̄1RiγμD

μ
1RN1R þ N̄2LiγμD

μ
1LN2L þ N̄2RiγμD

μ
2RN2Rg

þ TrfM̄1LiγμD
μ
4RM1L þ M̄1RiγμD

μ
3LM1R þ M̄2LiγμD

μ
3RM2L þ M̄2RiγμD

μ
4LM2Rg

− gNTrfN̄1LΦN1R þ N̄1RΦ†N1L þ N̄2LΦN2R þ N̄2RΦ†N2Lg
− gMTrfM̄1LΦ†M1R þ M̄1RΦM1L þ M̄2LΦ†M2R þ M̄2RΦM2Lg
−m0;1TrfN̄1LM1R þ M̄1RN1L þ N̄2RM2L þ M̄2LN2Rg
−m0;2TrfN̄1RM1L þ M̄1LN1R þ N̄2LM2R þ M̄2RN2Lg
− κ1TrfN̄1RΦ†N2LΦþ N̄2LΦN1RΦ†g − κ01TrfN̄1LΦN2RΦþ N̄2RΦ†N1LΦ†g
− κ2TrfM̄1RΦM2LΦþ M̄2LΦ†M1RΦ†g − κ02TrfM̄1LΦ†M2RΦþ M̄2RΦM1LΦ†g
− ϵ1ðTrfN̄1LΦgTrfN2RΦg þ TrfN̄2RΦ†gTrfN1LΦ†gÞ
− ϵ2ðTrfM̄1RΦgTrfM2LΦg þ TrfM̄2LΦ†gTrfM1RΦ†gÞ
− ϵ3TrfΦ†ΦgTrfN̄1LM1R þ M̄1RN1L þ N̄2RM2L þ M̄2LN2Rg
− ϵ4TrfΦ†ΦgTrfN̄1RM1L þ M̄1LN1R þ N̄2LM2R þ M̄2RN2Lg; ð11Þ

where the covariant derivatives are given by

Dμ
kR ¼ ∂μ − ickRμ; Dμ

kL ¼ ∂μ − ickLμ; k ¼ 1;…; 4;

with dimensionless coupling constants c1;…; c4, which
determine the strength of baryon-baryon-(axial-)vector
interactions. The interactions of the baryonic fields with
(pseudo)scalar mesons are parametrized by gN and gM,
which are also dimensionless. The terms proportional to
κ1; κ2; κ01; κ

0
2 (and ϵi) are included because otherwise the

baryonic fields become pairwise degenerate in mass (see
Appendix A). Terms parametrized by ϵi are proportional to
a product of two traces. Such terms are large-Nc suppressed
(OZI rule) and will be neglected in the following
discussion. The explicit form of the Lagrangian in terms
of the parity eigenstates BN , BN�, BM, and BM� is given in
Appendix B.
Note that the terms in the first four lines of Eq. (11) have

naive scaling dimension 4, and are thus dilatation invariant.
The terms in the fifth and sixth lines have naive scaling
dimension 3. Thus, they formally break dilatation sym-
metry, but can be made dilation invariant assuming that
m0;1 and m0;2 are proportional to a gluon and/or a four-
quark condensate (with a dimensionless proportionality
constant). Such terms arise from the (dilatation-invariant)
interaction of a glueball and/or a four-quark state with
baryons, assuming that a spontaneous or explicit sym-
metry-breaking mechanism induces a nonvanishing
VEV for the gluon and/or the four-quark field. For a
more detailed description of how one can render the mass
term dilation invariant by including a tetraquark, see
e.g. Ref. [18].
The terms in the seventh to twelfth lines of Eq. (11)

have naive scaling dimension 5 and therefore also break

dilatation symmetry. However, in this case the coupling
constants κi, κi0, and ϵi would need to be proportional to
inverse powers of a gluon and/or a four-quark conden-
sate. Such terms can only arise from nonanalytic inter-
action terms between baryons and glueballs/four-quark
states, which should be avoided in a Lagrangian pre-
scription. Nevertheless, these terms may also be consid-
ered as effective four-point interactions arising from two
(dilatation-invariant) three-point interaction vertices
between a meson, a baryon, and a heavier baryonic
resonance, where the vertices are connected by a propa-
gator of the latter. If the mass of the baryon resonance is
much larger than the typical energy scale where the
Lagrangian (11) is applicable, its propagator may be
considered to be static and homogeneous, resulting in the
four-point interactions proportional to κi, κi

0, and ϵi
in Eq. (11).

C. The Lagrangian for Nf ¼ 2

In this section we reduce the Nf ¼ 3 Lagrangian (11) to
Nf ¼ 2 flavors. In order to achieve this reduction, we set all
strange quark fields s to zero. Only the (1 3) and (2 3)
elements of the baryonic matrices remain:

BN!s¼0

0
B@

0 0 Ψ1
N

0 0 Ψ2
N

0 0 0

1
CA; BN�!s¼0

0
B@

0 0 Ψ1
N�

0 0 Ψ2
N�

0 0 0

1
CA; ð12Þ

BM!s¼0

0
B@

0 0 Ψ1
M

0 0 Ψ2
M

0 0 0

1
CA; BM�!s¼0

0
B@

0 0 Ψ1
M�

0 0 Ψ2
M�

0 0 0

1
CA; ð13Þ
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where Ψ1ð2Þ
i ði ¼ N;N�;M;M�Þ are fields with quark content Ψ1

i ¼̂ uud and Ψ2
i ¼̂ udd. Applying the same to the meson

matrix Φ and to the left- and right-handed (axial-)vector fields, Lμ and Rμ, we obtain

Φ!s¼0 1ffiffiffi
2

p

0
BBB@

ðσNþφNþa0
0
ÞþiðηNþπ0Þffiffi
2

p aþ0 þ iπþ 0

a−0 þ iπ− ðσNþφN−a00ÞþiðηN−π0Þffiffi
2

p 0

0 0 φS

1
CCCA≡

0
BBB@

ðΦNf¼2Þ 0

0

0 0 1ffiffi
2

p φS

1
CCCA; ð14Þ

Rμ!s¼0 1ffiffiffi
2

p

0
BBB@

ωμ
Nþρμ0ffiffi

2
p − fμ

1Nþaμ0
1ffiffi

2
p ρμþ − aμþ1 0

ρμ− − aμ−1
ωμ
N−ρ

μ0ffiffi
2

p − fμ
1N−a

μ0
1ffiffi

2
p 0

0 0 0

1
CCCA≡

0
B@

ðRμ
Nf¼2Þ 0

0

0 0 0

1
CA; ð15Þ

Lμ!s¼0 1ffiffiffi
2

p

0
BBB@

ωμ
Nþρμ0ffiffi

2
p þ fμ

1Nþaμ0
1ffiffi

2
p ρμþ þ aμþ1 0

ρμ− þ aμ−1
ωμ
N−ρ

μ0ffiffi
2

p þ fμ
1N−a

μ0
1ffiffi

2
p 0

0 0 0

1
CCCA≡

0
B@

ðLμ
Nf¼2Þ 0

0

0 0 0

1
CA: ð16Þ

Note that it is crucial to first consider the condensation of both scalar fields σN and σS and only then set the
mesons with s quarks to zero; otherwise one would lose the VEV φS of the field σS. For Nf ¼ 2 it is common to
write the 2 × 2 meson matrices in the basis of the three SUð2Þ generators T ¼ τ=2, where τ are the Pauli matrices,
and T0 ¼ 12x2=2:

ΦNf¼2 ¼ ðσN þ φN þ iηNÞT0 þ ða0 þ iπÞ · T;
Rμ
Nf¼2 ¼ ðωμ − fμ1ÞT0 þ ðρμ − aμ1Þ · T;

Lμ
Nf¼2 ¼ ðωμ þ fμ1ÞT0 þ ðρμ þ aμ1Þ · T:

As already indicated in the notation, the fields are identified with the mesons listed in Ref. [34] in the following way. The
scalar resonances σ and a0 are assigned to f0ð1370Þ and a0ð1450Þ. The second possibility fσ; a0g¼̂ ff0ð500Þ; a0ð980Þg
has to be excluded, because then our model cannot describe the scattering lengths and the decay σ → ππ at the same time;
for more details, see Ref. [11]. The pseudoscalar ηN ≡ ðūuþ d̄dÞ= ffiffiffi

2
p

is the SUð2Þ counterpart of the η meson, and π
corresponds to the pion triplet. The vectors ωμ and ρμ represent the resonances ωð782Þ and ρð770Þ, and the axial-vector
fields fμ1 and aμ1 are identified with the resonances f1ð1285Þ and a1ð1260Þ.
The resulting Lagrangian for the case Nf ¼ 2 reads (for details, see Appendix B)

LNf¼2 ¼ Ψ̄NRiγμD
μ
NRΨNR þ Ψ̄NLiγμD

μ
NLΨNL þ Ψ̄N�RiγμD

μ
NRΨN�R þ Ψ̄N�LiγμD

μ
NLΨN�L

þ Ψ̄MRiγμD
μ
MLΨMR þ Ψ̄MLiγμD

μ
MRΨML þ Ψ̄M�RiγμD

μ
MLΨM�R þ Ψ̄M�LiγμD

μ
MRΨM�L

þ cAN
ðΨ̄NRiγμRμΨN�R þ Ψ̄N�RiγμRμΨNR − Ψ̄NLiγμLμΨN�L − Ψ̄N�LiγμLμΨNLÞ

þ cAM
ðΨ̄MRiγμLμΨM�R þ Ψ̄M�RiγμLμΨMR − Ψ̄MLiγμRμΨM�L − Ψ̄M�LiγμRμΨMLÞ

− gNðΨ̄NLΦΨNR þ Ψ̄NRΦ†ΨNL þ Ψ̄N�LΦΨN�R þ Ψ̄N�LΦ†ΨN�RÞ
− gMðΨ̄MLΦ†ΨMR þ Ψ̄MRΦΨML þ Ψ̄M�LΦ†ΨM�R þ Ψ̄M�LΦΨM�RÞ
−
m0;1 þm0;2

2
ðΨ̄NLΨMR þ Ψ̄NRΨML þ Ψ̄N�LΨM�R þ Ψ̄N�RΨM�L

þ Ψ̄MLΨNR þ Ψ̄MRΨNL þ Ψ̄M�LΨN�R þ Ψ̄M�RΨN�LÞ
−
m0;1 −m0;2

2
ðΨ̄NLΨM�R − Ψ̄NRΨM�L − Ψ̄MLΨN�R þ Ψ̄MRΨN�L

− Ψ̄N�LΨMR þ Ψ̄N�RΨML þ Ψ̄M�LΨNR − Ψ̄M�RΨNLÞ
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−
κ01 þ κ1

2

φSffiffiffi
2

p ð−Ψ̄NLΦΨNR − Ψ̄NRΦ†ΨNL þ Ψ̄N�LΦΨN�R þ Ψ̄N�RΦ†ΨN�LÞ

−
κ01 − κ1

2

φSffiffiffi
2

p ðΨ̄NLΦΨN�R − Ψ̄NRΦ†ΨN�L − Ψ̄N�LΦΨNR þ Ψ̄N�RΦ†ΨNLÞ

−
κ02 þ κ2

2

φSffiffiffi
2

p ð−Ψ̄MLΦ†ΨMR − Ψ̄MRΦΨML þ Ψ̄M�LΦ†ΨM�R þ Ψ̄M�RΦΨM�LÞ

−
κ02 − κ2

2

φSffiffiffi
2

p ðΨ̄MLΦ†ΨM�R − Ψ̄MRΦΨM�L − Ψ̄M�LΦ†ΨMR þ Ψ̄M�RΦΨMLÞ; ð17Þ

where we suppress the subscript “Nf ¼ 2” of the mesonic
fields and introduce the isovectors Ψk ¼ ðΨ1

k;Ψ
2
kÞT ,

k ¼ N;N�;M;M�. The covariant derivatives are

Dμ
NR ¼ ∂μ − icNRμ; Dμ

NL ¼ ∂μ − icNLμ;

Dμ
MR ¼ ∂μ − icMRμ; Dμ

ML ¼ ∂μ − icMLμ;

with

cN ¼ c1 þ c2
2

and cM ¼ c3 þ c4
2

:

These two constants parametrize the coupling between
baryons of equal parity. The constants

cAN
¼ c1 − c2

2
and cAM

¼ c3 − c4
2

describe the coupling of two baryons with different parity
to (axial-)vector mesons.
Interestingly, the number of parameters of this Nf ¼ 2

Lagrangian obtained as a reduction of the more general
Nf ¼ 3 Lagrangian is smaller than what one would obtain
by directly writing down the corresponding two-flavor
Lagrangian with four multiplets. This is due to the fact that
some terms are not allowed because of the more complex
parity and charge-conjugation transformations of the bar-
yonic fields in the Nf ¼ 3 case. (Some terms which in
principle have different coupling constants in the Nf ¼ 2

case [9] now have the same constants, as they transform
into each other under parity or charge conjugation.)

D. The mass matrix

After SSB in the meson sector (see Appendix C), the
following terms contribute to the mass matrix of the four
fields ΨN , ΨN�, ΨM, and ΨM�:

Lmass ¼ −
�
gNφN

2
−
κ01 þ κ1
4

ffiffiffi
2

p φNφS

�
Ψ̄NΨN −

�
gNφN

2
þ κ01 þ κ1

4
ffiffiffi
2

p φNφS

�
Ψ̄N�ΨN�

−
�
gMφN

2
−
κ02 þ κ2
4

ffiffiffi
2

p φNφS

�
Ψ̄MΨM −

�
gMφN

2
þ κ02 þ κ2

4
ffiffiffi
2

p φNφS

�
Ψ̄M�ΨM�

−
κ01 − κ1
4

ffiffiffi
2

p φNφSðΨ̄Nγ
5ΨN� − Ψ̄N�γ5ΨNÞ −

κ02 − κ2
4

ffiffiffi
2

p φNφSðΨ̄Mγ
5ΨM� − Ψ̄M�γ5ΨMÞ

−
m0;1 þm0;2

2
ðΨ̄NΨM þ Ψ̄N�ΨM� þ Ψ̄MΨN þ Ψ̄M�ΨN�Þ

−
m0;2 −m0;1

2
ðΨ̄Nγ

5ΨM� þ Ψ̄N�γ5ΨM − Ψ̄Mγ
5ΨN� − Ψ̄M�γ5ΨNÞ; ð18Þ

where φN and φS are the VEVs of the σN and σS mesons, respectively. In order to determine the physical fields N939, N1535,
N1440, and N1650 corresponding to the resonances Nð939Þ, Nð1525Þ, Nð1535Þ, and Nð1640Þ, we have to diagonalize the
Lagrangian. To this end, we define the vector

Ψ ¼ ðΨN; γ5ΨN�;ΨM; γ5ΨM�ÞT ⇒ Ψ̄ ¼ ðΨ̄N;−Ψ̄N�γ5; Ψ̄M;−Ψ̄M�γ5Þ: ð19Þ

The additional γ5 matrices are introduced in order to avoid such matrices in the mass matrix (20). As a consequence, all four
components of the vector Ψ have the same parity.
Rewriting Eq. (18) in matrix form, Lmass ¼ −Ψ̄MΨ, we obtain the mass matrix
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M ≡ 1

2

0
BBBBBBB@

gNφN − κ0
1
þκ1

2
ffiffi
2

p φNφS
κ0
1
−κ1

2
ffiffi
2

p φNφS m0;1 þm0;2 m0;1 −m0;2

κ0
1
−κ1

2
ffiffi
2

p φNφS −gNφN − κ0
1
þκ1

2
ffiffi
2

p φNφS m0;2 −m0;1 −m0;1 −m0;2

m0;1 þm0;2 m0;2 −m0;1 gMφN − κ0
2
þκ2

2
ffiffi
2

p φNφS
κ0
2
−κ2

2
ffiffi
2

p φNφS

m0;1 −m0;2 −m0;1 −m0;2
κ0
2
−κ2

2
ffiffi
2

p φNφS −gMφN − κ0
2
þκ2

2
ffiffi
2

p φNφS

1
CCCCCCCA
: ð20Þ

At this point it is possible to compare to the Lagrangian of Ref. [9], which only describes the nucleon and its chiral
partner. If m0;1 ¼ −m0;2 and κ1ð2Þ ¼ κ0

1ð2Þ, the mass matrix is of the form

Mdecoupled ¼
1

2

0
BBBBB@

gNφN − κ1ffiffi
2

p φNφS 0 0 2m0;1

0 −gNφN − κ1ffiffi
2

p φNφS −2m0;1 0

0 −2m0;1 gMφN − κ2ffiffi
2

p φNφS 0

2m0;1 0 0 −gMφN − κ2ffiffi
2

p φNφS

1
CCCCCA
:

Obviously, the fields ΨN and ΨM� completely decouple
from the fields ΨN� and ΨM, and the diagonalization of the
two sets can be performed independently. However, it is not
clear which of the two states ΨN� and ΨM� should be
identified with the chiral partner of ΨN (the putative
nucleon field), because all states become degenerate in
mass (all masses are equal tom0;1) when chiral symmetry is
restored (φN;φS → 0).
In order to diagonalize the mass matrix (20), we have to

solve the eigenvalue problem

Muk ¼ mkuk;

Mijujk ¼ mkuik; ð21Þ
where uk [k ∈ f1;…; dimðMÞ ¼ 4g] are the eigenvectors
and mk are the four eigenvalues of the mass matrixM. Note
that a sum over j (but not over k) is understood. By
multiplying Eq. (21) with ul from the left-hand side, we find

uilMiju
j
k ¼ mkuilu

i
k ≡mkδkl

for orthogonal eigenvectors, ul · uk ¼ δlk. Hence, the matrix

Uij ¼ uij ð22Þ
diagonalizes M:

U†MU ¼ diagðm1; m2; m3; m4Þ
≡ diagðm939;−m1535; m1440;−m1650Þ:

In the second equality, we take into account that, due to the
definitions (19) and (23), the masses of the negative-parity
states correspond to negative eigenvalues ofM. Returning to
the Lagrangian (18), we now realize that it is diagonalized by

Lmass ¼ −Ψ̄UU†MUU†Ψ

¼ −Ψ̄physdiagðm1; m2; m3; m4ÞΨphys;

with the physical fields

Ψphys ¼ U†Ψ≡ ðN939; γ5N1535; N1440; γ5N1650ÞT: ð23Þ
The eigenvalues ofM, which (up to a sign) correspond to the
masses of the physical fields N939; N1535; N1440, and N1650,
are determined by the roots of the equation

det
h
M −mi14×4

i
¼ 0:

In thegeneral case, thiswill be done numerically; see Sec. III.
However, in the chiral limit, i.e., φN;φS → 0, one can easily
do this analytically. In this case, denoting M̄ ≡ ðm0;1 þ
m0;2Þ=2 and μ≡ ðm0;1 −m0;2Þ=2, the mass matrix reads

Mchiral limit ≡

0
BBB@

0 0 M̄ μ

0 0 −μ −M̄
M̄ −μ 0 0

μ −M̄ 0 0

1
CCCA:

The eigenvalues of this matrix are λ1;2¼�ðM̄þμÞ¼�m0;1

and λ3;4 ¼ �ðM̄ − μÞ ¼ �m0;2. As expected, we have two
distinct sets of chiral partners. One set has the massm0;1 and
the other the mass m0;2, which is in general different from
m0;1. In order to decide which mass eigenstates are chiral
partners, we need to compute the transformation matrix U.
Somewhat surprisingly,

U ¼ 1

2

0
BBB@

1 −1 1 1

−1 1 1 1

1 1 1 −1
1 1 −1 1

1
CCCA≡ U†;

which means that the mass eigenstates are uniform
mixtures of the fields ΨN; γ5ΨN�;ΨM, and γ5ΨM�. The

OLBRICH, ZÉTÉNYI, GIACOSA, and RISCHKE PHYSICAL REVIEW D 93, 034021 (2016)

034021-8



chiral partners with mass m0;1 are given by the linear
combinations ΨN − γ5ΨN� þ ðΨM þ γ5ΨM�Þ and −ΨNþ
γ5ΨN� þ ðΨM þ γ5ΨM�Þ,while the chiral partnerswithmass
m0;2 are given by ΨN þ γ5ΨN� þ ðΨM − γ5ΨM�Þ and
ΨN þ γ5ΨN� − ðΨM − γ5ΨM�Þ, respectively. Therefore, it
is impossible to decide whether Nð1535Þ or Nð1650Þ is the
chiral partner of the nucleon. The solution to this problem
will be presented in the next section, where we compute the
eigenvalues as a function of φN to trace whether the mass of
Nð1535Þ or that ofNð1650Þ approaches the nucleon mass in
the chiral limit.

III. RESULTS

The Lagrangian of the model in the Nf ¼ 2 case
[cf. Eqs. (17) and (C1)] contains the following 12 param-
eters in the baryonic sector: the mass parameters m0;1 and
m0;2, and the coupling constants cN , cM, cAN

, cAM
, gN , gM,

κ1; κ2; κ01, and κ
0
2. To determine these parameters, we use the

experimental values of the masses of the four baryonic
states; the partial decay widths of the baryonic resonances
into a nucleon and a pseudoscalar meson, ΓNð1535Þ→Nπ ,
ΓNð1535Þ→Nη, ΓNð1650Þ→Nπ , ΓNð1650Þ→Nη, and ΓNð1440Þ→Nð939Þπ;

and the axial coupling constant gNð939Þ
A ; as well as lattice

results [37] for gNð1440Þ
A , gNð1535Þ

A , and gNð1650Þ
A . In total, there

are 13 experimental values, which are fitted to 12 param-
eters. The parameters Z, w, φN , and φS are already
determined by meson physics [11].
For the baryon masses, we use the values given by the

PDG [34]. Since our model does not contain isospin-
breaking effects, it is not expected to describe the baryon
masses to (in some cases very high) experimental precision.
Therefore, we assume a 5% uncertainty of the masses (a
strategy that was already followed in the fit of Ref. [12]).
The expressions for the decay widths into pseudoscalar

mesons and the axial coupling constants are given in
Appendixes D and E. The experimental values of the
decay widths are obtained from the total width and the
branching ratios given by the PDG [34]. The nucleon axial
coupling constant is also quoted by the PDG [34], while all
other axial coupling constants result from lattice-QCD
calculations [37].
Using a standard χ2 procedure, we find that three

acceptable and almost equally deep minima exist. Their
corresponding parameter values are given in Table I. It is
interesting to note that the first two minima lead to small
values of m0;1 and m0;2, while the third one features values
of these constants which are close to the vacuum mass of

TABLE I. The parameter values of the three χ2 minima and the comparison to experimental quantities.

Minimum 1 Minimum 2 Minimum 3 Experiment/lattice

m0;1½GeV� 0.1393 �0.0026 0.14 �0.11 −1.078 �0.017 � � �
m0;2½GeV� −0.2069 �0.0027 −0.18 �0.12 0.894 �0.019 � � �
cN −2.071 �0.023 −2.83 �0.39 −33.6 �2.2 � � �
cM 12.4 �1.3 11.7 �1.8 −19.1 �3.1 � � �
cAN

−1.00 �0.23 0.03 �0.40 −2.68 �0.80 � � �
cAM

−51.0 �2.8 80 �41 −71.7 �6.5 � � �
gN 15.485 �0.012 15.24 �0.36 10.58 �0.24 � � �
gM 17.96 �0.17 18.26 �0.52 13.07 �0.33 � � �
κ1½GeV−1� 37.80 �0.26 59.9 �8.5 32.4 �4.2 � � �
κ01½GeV−1� 57.12 �0.29 29.8 �6.6 55.2 �4.0 � � �
κ2½GeV−1� −20.7 �2.5 32 �13 −20 �13 � � �
κ02½GeV−1� 41.5 �3.2 −8 �13 48.9 �4.5 � � �
mN ½GeV� 0.9389 �0.0010 0.9389 �0.0010 0.9389 �0.0010 0.9389 �0.001
mNð1440Þ½GeV� 1.430 �0.071 1.432 �0.073 1.429 �0.074 1.43 �0.07
mNð1535Þ½GeV� 1.561 �0.065 1.585 �0.069 1.559 �0.069 1.53 �0.08
mNð1650Þ½GeV� 1.658 �0.076 1.619 �0.071 1.663 �0.081 1.65 �0.08
ΓNð1440Þ→Nπ ½GeV� 0.195 �0.087 0.195 �0.088 0.196 �0.087 0.195 �0.087
ΓNð1535Þ→Nπ ½GeV� 0.072 �0.019 0.073 �0.019 0.072 �0.019 0.068 �0.019
ΓNð1535Þ→Nη½GeV� 0.0055 �0.0025 0.0062 �0.0024 0.0055 �0.0027 0.063 �0.018
ΓNð1650Þ→Nπ ½GeV� 0.112 �0.033 0.114 �0.033 0.112 �0.033 0.105 �0.037
ΓNð1650Þ→Nη½GeV� 0.0117 �0.0038 0.0109 �0.0038 0.0119 �0.0038 0.015 �0.008
gNA 1.2670 �0.0025 1.2670 �0.0025 1.2670 �0.0025 1.267 �0.003

gNð1440Þ
A

1.20 �0.20 1.19 �0.20 1.21 �0.21 1.2 �0.2

gNð1535Þ
A

0.20 �0.30 0.21 �0.30 0.20 �0.31 0.2 �0.3

gNð1650Þ
A

0.55 �0.20 0.55 �0.20 0.55 �0.20 0.55 �0.2

χ2 10.3 10.7 10.3 � � �
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the nucleon. Thus, for the first two minima, the main
contribution to all masses arises from chiral symmetry
breaking, while in the third minimum, most of the mass is
generated by another source, e.g. a gluon condensate.
The numerical results for the experimental quantities

obtained using the above parameters are also given in
Table I. Most of these quantities are described by all
solutions of the model within one standard deviation. The
most important exception is the Nð1535Þ → Nη decay
width, which deviates by about an order of magnitude
from the experimental value for all scenarios explored (in
fact, this deviation completely dominates the value of χ2).
Note that this quantity was also not well described in the
study of Ref. [9]. Thus, including more multiplets does not
solve this problem, as was erroneously speculated in that
reference. Other ideas towards a solution are described in
the next section.
It is interesting to discuss the numerical results for the

mass matrix M and the mixing matrix U:
Minimum 1: Using the parameters corresponding to

minimum 1, the mass matrix (20) reads

Mmin 1 ¼

0
BBB@

0.926 0.071 −0.034 0.173

0.071 −1.623 −0.173 0.034

−0.034 −0.173 1.402 0.228

0.173 0.034 0.228 −1.555

1
CCCA GeV:

Furthermore, with the numerical value for the transforma-
tion matrix Uij defined in Eq. (22) and composed of the
eigenvectors of the mass matrix, Eq. (23) can be written as

0
BBB@

N939

γ5N1535

N1440

γ5N1650

1
CCCA

¼

0
BBB@

−0.996 −0.025 −0.046 −0.074
0.075 −0.492 0.039 −0.867
−0.050 −0.057 0.995 0.073

0.010 0.869 0.086 −0.488

1
CCCA

0
BBB@

ΨN

γ5ΨN�
ΨM

γ5ΨM�

1
CCCA:

ð24Þ

Here one can see that, to a first approximation, N939 ≈ΨN ,
N1440 ≈ΨM, N1535 ≈ΨM�, and N1650 ≈ΨN�. Furthermore,
the two negative-parity states N1535 and N1650 mix appre-
ciably with each other; the mixing angle is ∼30°.
In order to decide which states form chiral partners, we

also compute the masses as a function of φN , keeping φS at
its vacuum value. This allows us to trace the masses when
chiral symmetry is restored, φN → 0. [Note that φS only
appears together with a factor φN in the mass matrix (20)].
The result is shown in Fig. 1, from which we unanimously
conclude that Nð939Þ andNð1535Þ are chiral partners, with

a common massm0;1 ¼ 139 MeV when chiral symmetry is
restored. Consequently, Nð1440Þ and Nð1650Þ are chiral
partners with a mass jm0;2j ¼ 207 MeV as φN → 0.
Minimum 2: In this case, the mass matrix reads

Mmin 2 ¼

0
BBB@

0.925 −0.111 −0.017 0.161

−0.111 −1.583 −0.161 0.017

−0.017 −0.161 1.415 −0.146
0.161 0.017 −0.146 −1.590

1
CCCA GeV:

Furthermore, the second minimum has the following
transformation matrix:

0
BBB@

N939

γ5N1535

N1440

γ5N1650

1
CCCA

¼

0
BBB@

−0.996 0.046 −0.039 −0.061
−0.002 0.806 0.072 0.587

−0.038 −0.052 0.997 −0.051
0.076 0.588 −0.007 −0.805

1
CCCA

0
BBB@

ΨN

γ5ΨN�
ΨM

γ5ΨM�

1
CCCA:

ð25Þ

As with minimum 1, the negative-parity states mix
strongly, but the mixing matrix is different. Here, we
may conclude that Nð1650Þ can be predominantly assigned
to ΨM�.
In order to decide which states form chiral partners, we

again compute the masses as a function of φN , keeping φS
at its vacuum value. The result is shown in Fig. 2, from
which we again unanimously conclude that Nð939Þ and
Nð1535Þ are chiral partners, with a common mass m0;1 ¼
144 MeV when chiral symmetry is restored. Consequently,
Nð1440Þ and Nð1650Þ are chiral partners with a mass
jm0;2j ¼ 178 MeV as φN → 0.
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FIG. 1. Masses as a function of φN for minimum 1.
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Minimum 3: In this case, the mass matrix reads

Mmin 3 ¼

0
BBB@

0.549 0.084 −0.092 −0.986
0.084 −1.192 0.986 0.092

−0.092 0.986 0.970 0.253

−0.986 0.092 0.253 −1.181

1
CCCA GeV:

The transformation matrix of the third minimum has a form
that iscompletelydifferentfromthoseoftheother twominima:0
BBB@

N939

γ5N1535

N1440

γ5N1650

1
CCCA

¼

0
BBB@

−0.865 −0.163 −0.312 0.358

0.140 0.830 −0.359 0.404

−0.292 0.327 0.875 0.207

−0.384 0.422 −0.093 −0.816

1
CCCA

0
BBB@

ΨN

γ5ΨN�
ΨM

γ5ΨM�

1
CCCA:

ð26Þ
In this case, all states mix strongly with each other.

In order to decide which states form chiral partners, we
again compute the masses as a function of φN , keeping φS
at its vacuum value. The result is shown in Fig. 3, from
which we again unanimously conclude that Nð939Þ and
Nð1535Þ are chiral partners, with a common mass m0;2 ¼
894 MeV when chiral symmetry is restored. Consequently,
Nð1440Þ and Nð1650Þ are chiral partners with a mass
jm0;1j ¼ 1078 MeV as φN → 0.

IV. CONCLUSIONS AND OUTLOOK

In this work we have studied the generalization of the
eLSM to the three-flavor case, thus including baryons with
strangeness (Nf ¼ 3). We have found that, in a chiral quark-
diquarkmodel for the baryons, we naturally need to consider
four baryonic multiplets, if we require the presence of
chirally invariant mass terms like in the mirror assignment.
Subsequently, we have reduced themodel to the caseNf ¼ 2

and performed a fit of the parameters of the model to the
masses and decay widths, as well as the axial coupling
constants of the nucleonic resonances Nð939Þ, Nð1440Þ,
Nð1535Þ, and Nð1650Þ. Masses and decay widths as well
as the axial coupling constant of the nucleon are experi-
mentally known [34]; for the axial coupling constants of the
other resonances we used lattice-QCD data [37].
From this fit, we found three minima which, with the

exception of the decay Nð1535Þ → Nη, yield results for the
masses, for the decay widths, and for the axial coupling
constants that are in very good agreement with data; see
Table I. Studying the approach to chiral symmetry restora-
tion φN → 0, we were able to unanimously identify which
of the four nucleonic resonances form chiral partners. For
all three minima, these are the pairs Nð939Þ; Nð1535Þ, as
well as Nð1440Þ; Nð1650Þ.
Finally, let us discuss the issue with the decay width

Nð1535Þ → Nη. Our result that the theoretical value turns
out to be too small when compared to the experimental
value is stable under parameter variations. This implies that
further studies are needed to understand the resonance
Nð1535Þ. Some authors have argued that Nð1535Þ may
contain a sizable amount of ss̄ [38–40]. Another interesting
possibility is to investigate the role of the chiral anomaly in
the baryonic sector [41], which can lead to an enhanced
coupling to the resonances η and η0.
In the very recent study of Ref. [42] a chiral baryonic

model with three flavors was constructed by making use of
parity doublets. There, a large variety of baryonic fields was
included (also, the decuplet is present), but no (axial-)
vector degrees of freedom were considered in the mesonic
sector. The chirally invariant contribution to the nucleon
mass is in the range 500–800 MeV, in agreement with our
result for minimum 3. Interestingly, in Ref. [42] upper
bounds for the axial coupling constants were derived which
fit well to our results.
Finally, in order to decide which of the three minima

that resulted from our fit is preferable, we plan to inves-
tigate the complete three-flavor case. Note that most of the
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FIG. 2. Masses as a function of φN for minimum 2.
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parameters of the Lagrangian (11) are already determined
from the Nf ¼ 2 fit, but many more experimental data,
such as the masses of hyperons and their decay widths, are
available to discriminate between the three minima. The
obtained values for the coupling constants of hyperons to
(pseudo)scalar and (axial-)vector mesons will be relevant
for studies of scattering processes in the vacuum [28–31],
as well as for neutron stars [32,33]. In connection to the
latter topic, one can study nuclear matter at nonzero density
and inhomogeneous chiral condensation, thus extending
previous investigations on the subjects [27,43] in a more
complete framework.
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APPENDIX A: MASS DEGENERACY
IN THE CASE OF AN Nf ¼ 2

LAGRANGIAN WITHOUT κ TERMS

In this appendix, we want to clarify why it is mandatory
to include the κ and ϵ terms in the Lagrangian (11),
although they are not dilatation invariant. Therefore, we
consider the two-flavor case, given in Eq. (17) and in
Appendix C. Setting the constants κ1; κ2; κ01; κ

0
2 (and ϵi with

i ¼ 1, 2, 3, 4) to zero, the part of the Lagrangian which
contains the terms contributing to the mass matrix of the
four fields ΨN , ΨN�, ΨM, and ΨM� reads Lmass ¼ −Ψ̄M0Ψ.
The definition of the vector Ψ is given in Eq. (19), and the
mass matrix is given by

M0 ¼ 1

2

0
BBB@

gNφN 0 m0;1 þm0;2 m0;1 −m0;2

0 −gNφN m0;2 −m0;1 −m0;1 −m0;2

m0;1 þm0;2 m0;2 −m0;1 gMφN 0

m0;1 −m0;2 −m0;1 −m0;2 0 −gMφN

1
CCCA:

Evaluating detðM0 −mi14×4Þ ¼ 0 and denoting Ω1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
ðm0;1 �m0;2Þ2 þ 1

16
ðgN∓gMÞ2φ2

N

q
, we find the eigenvalues

m1 ¼ Ω1 þΩ2 ¼ −m2;

m3 ¼ Ω1 −Ω2 ¼ −m4: ðA1Þ

Due to the definition of the vectors Ψ given in Eq. (19) and the definition of physical states in Eq. (23), the physical masses
correspond to the eigenvalues as follows: m939 ¼ m1 and m1535 ¼ −m2, as well as m1440 ¼ m3 and m1650 ¼ −m4. Having
this in mind and considering the results for the eigenvalues given in Eq. (A1), it is clear that the masses of Nð939Þ and
Nð1535Þ as well as the masses of Nð1440Þ and Nð1650Þ would be degenerate. The only possibility to avoid a mass
degeneracy but still keep chiral symmetry is to introduce the κ (and ϵ) terms as shown in Eq. (11).

APPENDIX B: EXPLICIT LAGRANGIAN FOR Nf ¼ 3 IN TERMS OF PARITY EIGENVALUES

From Eq. (8) and the Lagrangian (11), one obtains the following baryonic Lagrangian for Nf ¼ 3 flavors as a function
of parity eigenstates:

LNf¼3 ¼ TrfB̄NRiγμD
μ
NRBNR þ B̄NLiγμD

μ
NLBNL þ B̄N�RiγμD

μ
NRBN�R þ B̄N�LiγμD

μ
NLBN�L

þ B̄MRiγμD
μ
MLBMR þ B̄MLiγμD

μ
MRBML þ B̄M�RiγμD

μ
MLBM�R þ B̄M�LiγμD

μ
MRBM�Lg

þ cAN
TrfB̄NRiγμRμBN�R þ B̄N�RiγμRμBNR − B̄NLiγμLμBN�L − B̄N�LiγμLμBNLg

þ cAM
TrfB̄MRiγμLμBM�R þ B̄M�RiγμLμBMR − B̄MLiγμRμBM�L − B̄M�LiγμRμBMLg

− gNTrfB̄NLΦBNR þ B̄NRΦ†BNL þ B̄N�LΦBN�R þ B̄N�LΦ†BN�Rg
− gMTrfB̄MLΦ†BMR þ B̄MRΦBML þ B̄M�LΦ†BM�R þ B̄M�LΦBM�Rg
−
κ1
2
Trf−B̄NLΦBNRΦ† − B̄NRΦ†BNLΦþ B̄N�LΦBN�RΦ† þ B̄N�RΦ†BN�LΦ

− B̄NLΦBN�RΦ† þ B̄NRΦ†BN�LΦþ B̄N�LΦBNRΦ† − B̄N�RΦ†BNLΦg
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−
κ01
2
Trf−B̄NLΦBNRΦ − B̄NRΦ†BNLΦ† þ B̄N�LΦBN�RΦþ B̄N�RΦ†BN�LΦ†

þ B̄NLΦBN�RΦ − B̄NRΦ†BN�LΦ† − B̄N�LΦBNRΦþ B̄N�RΦ†BNLΦ†g
−
κ2
2
Trf−B̄MLΦ†BMRΦ† − B̄MRΦBMLΦþ B̄M�LΦ†BM�RΦ† þ B̄M�RΦBM�LΦ

− B̄MLΦ†BM�RΦ† þ B̄MRΦBM�LΦþ B̄M�LΦ†BMRΦ† − B̄M�RΦBMLΦg

−
κ02
2
Trf−B̄MLΦ†BMRΦ − B̄MRΦBMLΦ† þ B̄M�LΦ†BM�RΦþ B̄M�RΦBM�LΦ†

þ B̄MLΦ†BM�RΦ − B̄MRΦBM�LΦ† − B̄M�LΦ†BMRΦþ B̄M�RΦBMLΦ†g
−
m0;1 þm0;2

2
TrfB̄NLBMR þ B̄NRBML þ B̄N�LBM�R þ B̄N�RBM�L

þ B̄MLBNR þ B̄MRBNL þ B̄M�LBN�R þ B̄M�RBN�Lg
−
m0;1 −m0;2

2
TrfB̄NLBM�R − B̄NRBM�L − B̄MLBN�R þ B̄MRBN�L

− B̄N�LBMR þ B̄N�RBML þ B̄M�LBNR − B̄M�RBNLg;

where the covariant derivatives are

Dμ
NR ¼ ∂μ − icNRμ; Dμ

NL ¼ ∂μ − icNLμ;

Dμ
MR ¼ ∂μ − icMRμ; Dμ

ML ¼ ∂μ − icMLμ;

with

cN ¼ c1 þ c2
2

and cM ¼ c3 þ c4
2

:

These two constants parametrize the coupling between baryons of equal parity. The constants

cAN
¼ c1 − c2

2
and cAM

¼ c3 − c4
2

describe the coupling of two baryons with different parity to (axial-)vector mesons. The interaction of the baryonic fields
with the scalar and pseudoscalar mesonic fields are parametrized by gN and gM. The chirally invariant mass terms are

characterized by m0;1 and m0;2. The terms proportional to κð0Þ
1ð2Þ are introduced to avoid mass degeneracy (see Appendix A).

In total, the Lagrangian has 12 free parameters.

APPENDIX C: EXPLICIT LAGRANGIAN FOR Nf ¼ 2 AFTER SSB

After SSB in the meson sector (σN → σN þ φN and σS → σS þ φS), the full Lagrangian with two flavors describing the
nucleon Nð1440Þ, and their chiral partners, as well as their interaction with scalar, pseudoscalar, vector, and axial-vector
mesons reads

L ¼ Ψ̄Niγμ∂μΨN þ Ψ̄N�iγμ∂μΨN� þ Ψ̄Miγμ∂μΨM þ Ψ̄M�iγμ∂μΨM�
þ cNðΨ̄Nγμf½ωμ − γ5ðfμ1 þ Zw∂μηNÞ�T0 þ ½ρμ − γ5ðaμ1 þ Zw∂μπÞ� · TgΨN

þ Ψ̄N�γμf½ωμ − γ5ðfμ1 þ Zw∂μηNÞ�T0 þ ½ρμ − γ5ðaμ1 þ Zw∂μπÞ� · TgΨN�Þ
þ cMðΨ̄Mγμf½ωμ þ γ5ðfμ1 þ Zw∂μηNÞ�T0 þ ½ρμ þ γ5ðaμ1 þ Zw∂μπÞ� · TgΨM

þ Ψ̄M�γμf½ωμ þ γ5ðfμ1 þ Zw∂μηNÞ�T0 þ ½ρμ þ γ5ðaμ1 þ Zw∂μπÞ� · TgΨM�Þ
þ cAN

fΨ̄Nγμ½ð−fμ1 − Zw∂μηN þ γ5ωμÞT0 þ ð−aμ1 − Zw∂μπþ γ5ρμÞ · T�ΨN�
þ Ψ̄N�γμ½ð−fμ1 − Zw∂μηN þ γ5ωμÞT0 þ ð−aμ1 − Zw∂μπþ γ5ρμÞ · T�ΨNg
þ cAM

fΨ̄Mγμ½ðfμ1 þ Zw∂μηN þ γ5ωμÞT0 þ ðaμ1 þ Zw∂μπþ γ5ρμÞ · T�ΨM�
þ Ψ̄M�γμ½ðfμ1 þ Zw∂μηN þ γ5ωμÞT0 þ ðaμ1 þ Zw∂μπþ γ5ρμÞ · T�ΨMg
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− gNfΨ̄N ½ðσ þ φN þ iγ5ZηNÞT0 þ ða0 þ iγ5ZπÞ · T�ΨN

þ Ψ̄N�½ðσ þ φN þ iγ5ZηNÞT0 þ ða0 þ iγ5ZπÞ · T�ΨN�g
− gMfΨ̄M½ðσ þ φN − iγ5ZηNÞT0 þ ða0 − iγ5ZπÞ · T�ΨM

þ Ψ̄M�½ðσ þ φN − iγ5ZηNÞT0 þ ða0 − iγ5ZπÞ · T�ΨM�g

−
κ01 þ κ1
2

ffiffiffi
2

p φSf−Ψ̄N ½ðσ þ φN þ iγ5ZηNÞT0 þ ða0 þ iγ5ZπÞ · T�ΨN

þ Ψ̄N�½ðσ þ φN þ iγ5ZηNÞT0 þ ða0 þ iγ5ZπÞ · T�ΨN�g

−
κ01 − κ1
2

ffiffiffi
2

p φSfΨ̄N ½ðiZηN þ γ5ðσ þ φNÞÞT0 þ ðiZπþ γ5a0Þ · T�ΨN�

− Ψ̄N�½ðiZηN þ γ5ðσ þ φNÞÞT0 þ ðiZπþ γ5a0Þ · T�ΨNg

−
κ02 þ κ2
2

ffiffiffi
2

p φSf−Ψ̄M½ðσ þ φN − iγ5ZηNÞT0 þ ða0 − iγ5ZπÞ · T�ΨM

þ Ψ̄M�½ðσ þ φN − iγ5ZηNÞT0 þ ða0 − iγ5ZπÞ · T�ΨM�g

−
κ02 − κ2
2

ffiffiffi
2

p φSf−Ψ̄M½ðiZηN − γ5ðσ þ φNÞÞT0 þ ðiZπ − γ5a0Þ · T�ΨM�

þ Ψ̄M�½ðiZηN − γ5ðσ þ φNÞÞT0 þ ðiZπ − γ5a0Þ · T�ΨMg
−
m0;1 þm0;2

2
ðΨ̄NΨM þ Ψ̄N�ΨM� þ Ψ̄MΨN þ Ψ̄M�ΨN�Þ

−
m0;2 −m0;1

2
ðΨ̄Nγ

5ΨM� þ Ψ̄N�γ5ΨM − Ψ̄Mγ
5ΨN� − Ψ̄M�γ5ΨNÞ; ðC1Þ

where the coupling to (axial-)vector mesons of two baryons
with equal parity and a vector meson is parametrized by
cN ¼ ðc1 þ c2Þ=2 and cM ¼ ðc3 þ c4Þ=2, and that of two
baryons with opposite parity by cAN

¼ ðc1 − c2Þ=2 and
cAM

¼ ðc3 − c4Þ=2. All other constants are the same as in
the Lagrangian (17). The factor w is introduced due to the
shift of the axial-vector fields in order to eliminate the
mixing with the pseudoscalar fields, which occurs after
SSB, and Z is the so-called wave-function renormalization
factor that takes care of the normalization of the kinetic
terms of the pseudoscalar mesonic fields after the shift; see
Ref. [11] for more details.

APPENDIX D: DECAY WIDTHS

Because of the existing experimental data [34], we are
especially interested in the decays of nucleon resonances
into the pseudoscalar mesons π and η. The Lagrangian
describing the decay of a resonance N� into a nucleon N
and a pseudoscalar meson P ¼ π; η has the general
structure

L ¼ gN�→N∂PN̄ΓγμN�∂μP − igN�→NPN̄ΓγμN�P; ðD1Þ

where Γ ¼ γ5 (1) for a positive-(negative-)parity N�. The
explicit expressions for the coupling constants gN�→N∂P and

gN�→NP can be obtained from the relevant terms of the
Lagrangian (C1), carrying out the transformation (23).
Using this, the tree-level decay width can be calculated
to be

ΓN�→NP ¼ λP
pf

8πm2
N�

jiMj2

¼ κP
pf

4πmN�
½gN�→NP − ðmN� �mNÞgN�→N∂P�2

× ðEN∓mNÞ; ðD2Þ

where the upper (lower) sign is valid for a positive-
(negative-)parity N�, and EN is the nucleon energy in
the rest frame of the decaying N�, while the magnitude of
the three-momenta of the decay products is

pf ¼ 1

2mN�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

N� −m2
N −m2

PÞ2 − 4m2
Nm

2
P

q
: ðD3Þ

Furthermore, the factor λP is added by hand and
should
(1) For P ¼ π, pay attention to the three possible isospin

states of the pion, i.e.,
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λπ ¼ 3:

(2) For P ¼ η, take into account that

η ¼ ηN cosϕP þ ηS sinϕP;

where ηN ≡ ðūuþ d̄dÞ= ffiffiffi
2

p
and ηS ≡ s̄s and ϕP is

the mixing angle. Its value lies between −32° and
−45° [44]. In this paper we have chosen ϕP ¼
−44.6° obtained from Ref. [12]. It is assumed that
the amplitude of the decay N� → NηS is mas-
sively suppressed. This means that to good
approximation,

ΓN�→Nη ≃ cos2 ϕPΓN�→NηN :

Thus,

λη ¼ cos2 ϕP:

APPENDIX E: AXIAL COUPLING CONSTANTS

The Lagrangians in Appendixes B and C are invariant
under UA ¼ expð−iθaγ5τa=2Þ ∈ UðNfÞA axial transforma-
tions (θa are the parameters and τa=2 the generators). Due
to Noether’s theorem [45], one gets the following axial
current:

Aa;μ ¼ gð1ÞA Ψ̄Nγ
μγ5

τa

2
ΨN þ gð1ÞA Ψ̄N�γμγ5

τa

2
ΨN�

þ gð2ÞA Ψ̄Mγ
μγ5

τa

2
ΨM þ gð2ÞA Ψ̄M�γμγ5

τa

2
ΨM�

þ gð12ÞA Ψ̄Nγ
μ τ

a

2
ΨN� þ gð12ÞA Ψ̄N�γμ

τa

2
ΨN

þ gð34ÞA Ψ̄Mγ
μ τ

a

2
ΨM� þ gð34ÞA Ψ̄M�γμ

τa

2
ΨM; ðE1Þ

where

gð1ÞA ¼ 1 −
cN
g1

�
1 −

1

Z2

�
; gð2ÞA ¼ −1þ cM

g1

�
1 −

1

Z2

�

are the axial coupling constants of the bare fields ΨN , ΨN�,
ΨM, and ΨM�, and

gð12ÞA ¼ −
cAN

g1

�
1 −

1

Z2

�
; gð34ÞA ¼ cAM

g1

�
1 −

1

Z2

�

are the “mixed” axial coupling constants of the bare fields
ΨN with ΨN� and ΨM with ΨM�.
The expressions for the axial coupling constants of the

physical fields can be obtained from the relevant terms of
the axial current (E1) after the transformation to parity
eigenstates (23) has been carried out.
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