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We calculate the next-to-next-to-leading correction to the expectation value of the Polyakov loop or
equivalently to the free energy of a static charge. This correction is of order g°. We show that up to this order
the free energy of the static charge is proportional to the quadratic Casimir operator of the corresponding
representation. We also compare our perturbative result with the most recent lattice results in SU(3) gauge

theory.
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I. INTRODUCTION

The Polyakov loop is an order parameter for deconfine-
ment in pure SU(N) gauge theories at nonzero temperature
T. Tt is defined as

L= leTr<P exp {igAUT dTAO(r,x)} > (1)

where P denotes path ordering of the exponential of the
zero component of the gauge field A integrated along the
compactified imaginary time direction, and g is the cou-
pling constant. Here we have defined the Polyakov loop in
a general representation R of SU(N), so the gauge fields are
understood as matrices in this representation R, and dp is
the dimension of this representation. The thermal expect-
ation value of a single Polyakov loop is invariant under
translations, so we can choose it to be at the origin in the
following.

The nonzero expectation value of the Polyakov loop
above some temperature indicates the onset of color
screening and thus deconfinement [1]. Early lattice studies
of the Polyakov loop and its correlators were instrumental
in establishing the existence of a deconfinement transition
in non-Abelian gauge theories from first principle calcu-
lations [2,3]. The physical interpretation of the logarithm
of the Polyakov loop expectation value is the free energy
of a static quark Fp/T = —InL (see, e.g., discussions in
Ref. [3]). The free energy of a static quark in a gluonic
plasma is finite due to color screening but becomes infinite
below the phase transition temperature 7.

While in the presence of n; > 0 flavors of light quarks
the Polyakov loop is no longer an order parameter for
deconfinement [4]; its value at sufficiently high temper-
atures is still a measure of the screening properties of the
deconfined medium. It is easy to see that at leading
nontrivial order the Polyakov loop expectation value is
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L =1+ Crasmp/2T, or equivalently Fp = —Crasmp /2,
where Cy, is the quadratic Casimir of the representation R.
The Debye mass mp, is given by

Cy+Tpny
A ngszﬂ

. )

m3, =
where C, =2TpN is the quadratic Casimir of the
adjoint representation and Ty is the normalization
constant of the fundamental representation, for which
usually the value 1/2 is taken. The next-to-leading-
order (NLO) contribution to the Polyakov loop is of
O(g*). The first calculation of the NLO contribution
was performed long ago [5]. However, several years
later, it was shown that this calculation was not correct
and the correct NLO contribution was calculated inde-
pendently by two groups [6,7].

The Polyakov loop has been studied in lattice QCD
both in SU(N) gauge theories [8—11] and in the physically
relevant case of 2+ 1 flavor QCD [12-19]. For the
understanding of the screening properties of the deconfined
medium it is important to connect lattice calculations
with perturbative calculations at high temperatures and
to see to what extent these calculations agree. In this
perspective it is important to compute next-to-next-to-
leading order (NNLO) corrections, which will considerably
reduce the uncertainties of the NLO result by fixing the
scale dependence of the coupling constant at leading order.
The computation of the Polyakov loop at NNLO accuracy
is the purpose of the present work.

One feature of the lattice results on the Polyakov loop is
Casimir scaling [11]. One outcome of our analysis is that
Casimir scaling holds up to O(g’). This is important for
understanding the lattice results for the Polyakov loops in
higher representations [11,20,21].

The rest of the paper is organized as follows. In the
next section we outline our strategy for the perturbative
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calculation to O(g°) and discuss the power counting. The
calculation of the necessary loop integrals is presented in
Sec. III, which also contains the main result of the paper. In
Sec. IV, we comment on the higher order perturbative terms
discussing Casimir scaling and outlining the O(g°) calcu-
lation. In Sec. V, we compare the perturbative O(g°) result
with available lattice results. Finally, Sec. VI contains our
conclusions. Several technical details of the calculations are
presented in appendices.

II. OUTLINE OF THE PERTURBATIVE
CALCULATION

In this section, we will outline the perturbative
calculation of the Polyakov loop. We will perform
|
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calculations directly in QCD as well as using the
effective field theory approach. The direct calculation
of the NNLO correction to the Polyakov loop is rather
involved and its details will be discussed in the next
section. On the other hand, as we will see, the
calculation that relies on the effective field theory
approach is rather simple, because we can draw on
previous results.

A. The structure of the perturbative series

The following way of defining the path ordered
exponential is particularly suited for perturbative
expansions:

1 /7
L= d—Tr<73 exp [ig/ drAy(r, 0)} >
0

R
2 . 1T 7 Tn-1 1

= (ig) A dﬁA de"'A dTnd—Tr<Ao(TlvO)A0(Tz»0)"'Ao(TnvO»- (3)
n=0

R

The Feynman diagrams for the Polyakov loop can then be
drawn as a straight line from O to 1/7 in the imaginary time
direction to which n gluons are attached. The line repre-
sents the contour integrations over the gauge fields. In the
gauges we are going to use for this calculation, where the
gluon propagator is diagonal in color space, it is possible to
split each diagram into a color coefficient and a loop
integral. The color coefficient contains the trace over the
color matrices from the gauge fields and any structure
constants coming from interaction vertices as well as
symmetry factors, while the loop integral contains the
|

L=110y &% + 0% €25 +CR(CR—%CA> %+c§& ...

|
integrations over Euclidean time, spatial momenta, etc., as
well as the propagators and the Lorentz structures.'

It has been shown in [22,23] that the perturbative series
for any closed Wilson line can be rearranged such that it
takes the form of an exponential of a series over the same
diagrams but with altered color coefficients, several of
which are zero. This result has been generalized in
[24,25] for the exponentiation of any Wilson line operator
(for an application in the context of heavy quarks in
thermal QCD, see [26,27]). In the case of the Polyakov
loop we have

1
= exp CRﬂ fECRCA% +} =exp(D1+Dy+...),

where we have written the color coefficients explicitly. Cg
and C, are the quadratic Casimirs of the representation of
the Polyakov loop and the adjoint representation respec-
tively. The gluon propagators are understood as resummed.

'Since three- and four-gluon vertices contain a sum over
several terms, it may be necessary for some diagrams to split each
term separately into color coefficient and loop integral. This is not
required for any diagram appearing in this paper; only in the case
of tadpoles there appear two terms from the vertex, but they give
the same contribution, so we just include a factor 2 in the color
coefficient.

[

The dots represent diagrams with three or more gluons,
which are at least O(g®) and therefore beyond our accuracy.
There is also a diagram with three propagators connected
by a three-gluon vertex, which would be O(g*) at leading
order, but since a three-gluon vertex with only temporal
indices vanishes, this diagram gives no contribution in all
gauges where the propagator is block diagonal in the
temporal and spatial components, so it has been neglected
in the expression above. We note that the free energy of the
static charge corresponding to the above expression is
proportional to Cg. This property is known as Casimir
scaling.
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First, we perform the integral over the Euclidean time in the expression for D and D, to get

/T T . C 2
D, = CR(iQ)Z/ dT1/ 1deZée’k"“‘_TZ)DOOU{) ==& /Doo(()’k)’ (5)
0 0 2T Ji
K
1 . N4 /T 7 7 73 e — . B
D, = _ECRCA(lg) dr, dry | drs dry Y eom=m)einn=m) Doy (K) Do (Q)
0 0 0 0 Za
CoCrd* 1 1
=TT ar /k’q WDOO(OJC)DOO(O’ q) - Zk/ok—%Doo(K)(ZDoo(O’Q) = Do (ko.q)) |- (6)

where K and Q include both the spatial momenta k and g and the Matsubara frequencies &, and ¢, which are given by 2z7Tn
with n € Z. We use boldface letters to denote vectors in d dimensions and regular font letters for the absolute value, so
k* = k*. The sum-integral symbols are a shorthand for the Matsubara sums and the d-dimensional integrals, which are

defined in the following way:

z;,f(kmk) =¥ [ stk

The sum with a prime denotes a Matsubara sum without the
zero mode, i.e., n # 0. Up to this point the discussion is
independent of the choice of gauge for the perturbative
calculations. In this paper we will use Feynman gauge, static
gauge, and Coulomb gauge. In Appendix A, we discuss the
gluon propagators and self-energies in these gauges.

The integration momenta k and g can either be of the
order of the temperature scale 7 or of the scale of the Debye
mass mp. In principle, they may also scale with the
nonperturbative magnetic mass m,,. The magnetic mass

|

D]:

_CRgz/ 1
2T ), i@+ 110, k)

=Ty / % fQ2aTn,k).

(7)

nez

[
enters the temporal propagators not directly but only
through self-energies. Hence, as we will show at the end
of this section, momentum regions scaling with my,
contribute only to O(g’). We use dimensional regulariza-
tion to treat both infrared and ultraviolet divergences. In
this regularization scheme the different momentum scales
can be separated by expanding the integrand according to
the hierarchy T > mp > my,.

We start considering D;. Separating out the contributions
from the scales T, mp, and m,, we write

1 o) 0.k) 1) (0,k)?

G / 17(0.8) /
2T k~T k4 k~mp kz""m%)

1 A
(K +m2)* \ dik®?

Here Hg), HE,I,L, and H%, denote the contributions to the
self-energy of the A field at i-loop order coming from loop
momenta of order T, mp, and m,,. There can also be self-
energies where the loop momenta are not all of the same
scale, but these do not contribute until O(¢®). The self-

energies entering the above equation depend on the choice
of gauge. The terms proportional to 1'[<T1 ) and HE,: ,)), together
with tree-level D,, give rise to the known O(g*) term in the
expression of the Polyakov loop [6,7]. The 2-loop scale T

contribution to the self-energy 1'[<T2 ) as well as the

m
%(O,O)k2 term give rise to terms of O(g’), some of

(0,002 + 11 (0,0) + 11 (0, k) + 11 (0, k))} } +O(¢°).

(k2 +mp)> (K + mp)?

(8)

I
which have been identified in Ref. [7] and are related to the
running of the coupling constant. The terms proportional to

H,(,%g and (Hg g )? are new and also contribute at O(g°) to the
Polyakov loop. In Sec. III, we will discuss the calculation

of these terms in detail. Finally, the term proportional to
) l\)/l does not contribute to the Polyakov loop at O(g°) and
O(¢®). This will also be shown in Sec. IIL.

Concerning D,, it is easy to see that the leading order
contribution of the first term in Eq. (6) in any gauge comes
only from the scale mp, and is of O(g®), which is beyond
the accuracy of this calculation. It was already identified in
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Ref. [7]. The second and third terms in Eq. (6) do not
contribute in static gauge because Dgy(K) vanishes for
nonzero ky. In Coulomb gauge the second term starts to
contribute at O(g’) and the third at O(g?), since the leading
order propagators with nonzero Matsubara frequencies are
scaleless and need at least one loop insertion to not vanish.
In Feynman gauge the second term in Eq. (6) contributes
already at O(g°) for k~T and g ~ mp, while the third
starts to contribute at O(g*) when both momenta are of the
scale T. There is no O(g°) contribution from the third term,
since the scale m, can only enter Feynman gauge propa-
gators with nonzero frequencies through loops, which
would at least be of O(g’).

In summary we see that the O(g’) contribution to the
Polyakov loop receives two different contributions. The
first comes from terms with mixed scales like the two-loop
self-energy at a scale mp with loop momenta of order 7" or
two-gluon exchange. The second comes from the two-loop
self energy with loop momenta of order mp. In the effective
field theory approach that will be discussed in the next
subsection these two contributions correspond to two
different steps of the calculation: the determination of
the matching coefficients and the calculation of the corre-
lators in the effective theory, respectively.

B. The Polyakov loop in an effective
field theory approach

The separation between the scales T and m, that was used
in the calculation of the previous section can be incorporated
in an effective theory, the so-called electrostatic QCD
(EQCD) [28,29] (for earlier and related works on this
subject see Refs. [30—46]). In EQCD the scale T is integrated
out, which includes all fields with nonzero Matsubara
frequencies. This means that quark fields are completely
absent and the gluons do not depend on the imaginary time
coordinate. So EQCD is a three-dimensional field theory
where Ay no longer plays the role of a gauge field, but
becomes an adjoint scalar field. As a consequence, a mass
term for A, does not break gauge invariance in EQCD.

The contribution from the nonperturbative magnetic
scale m,, can also be calculated in this effective field
theory approach. Namely if mp > m,, the scale m can
also be integrated out leading to an effective field theory
called magnetostatic QCD (MQCD), which is the three-
dimensional Yang-Mills theory [28]. Using this sequence
of effective theories the weak coupling expansion of the
QCD pressure has been calculated [28] finding a solution to
the well-known infrared problem [47].

The imaginary time integration in the EQCD action just
gives a factor 1/T, since the fields no longer depend on the
imaginary time coordinate. This factor can be absorbed in a
rescaling of the fields and gauge coupling by a factor /7
(denoted by a tilde over the fields). The Lagrangian is then
given by

PHYSICAL REVIEW D 93, 034010 (2016)

| ME %4
Leoep = 1 (Fij)2 +§(DibA(b))2 +7E(A0)2

A (TR + 2 (TS - (TR ) 4
)

where Fjlj = 8,]\? - 8]-;\5’ + gpfabeALAS, DI AL = 0,Ad+
gefAPAS, and the dots stand for higher dimensional
operators. The fields A, and A; in the above Lagrangian
have canonical dimension 1/2. The gauge coupling gg
of EQCD is dimensionful. At leading order we have
ge = gVT, mgp =myp, g = (6 +N — ns)g*T/24x*, and
Ag = (N —ny)g*T/122> (see, e.g., [29]). The second
quartic interaction is a vanishing operator for N =2 or
N = 3, so any result can only depend on A for N > 3. The
couplings gg, Az, and Az have been calculated to next-to-
leading order (NLO) [29]. The three-dimensional gauge
coupling g is known to next-to-next-to-leading order [48].
The NLO correction to m% has been calculated in Ref. [28]

s (5 4

+28, (yE + 1n#>>] —2C Tpn T2, (10)

where C = Tr(N? — 1)/N is the quadratic Casimir of the
fundamental representation. Here and in the rest of this
section we express all matching parameters in terms of the
renormalized coupling. Thus the pole that appears with the
first coefficient of the beta function fy=11C,/3 —
4T pn;/3 has already been canceled. The relation between
the bare coupling g and the renormalized coupling gy at one
loop in the MS scheme is

1
I S Ry I T
gg%[ 4y \gmve+indz )+ (11)
where € is related to the number of spatial dimensions d
through d = 3 — 2e.

In EQCD we can write the Polyakov loop in the
following way [6]:

g4

2

g 12
L=2y—2,——Tr{Aj) + Z,———
0 2 r{Ad) 424dRT2

Tr(A4
2T r{Ag) +

(12)

The matching coefficients Z, are equal to 1 at leading
order; at higher orders they can be written as an expansion
in aq, i.e., only in even powers of g. In the power counting
of EQCD, every power of A, counts as /g7, so the term
proportional to Z, starts to contribute at O(g®). In EQCD
only the scales mp and m,, are still dynamical, which
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means that no loop momenta of order 7' appear in the
evaluation of the Feynman diagrams. The contributions of
such loops are contained in higher order corrections to the
matching coefficients Z, and the EQCD parameters.

For the determination of Z; and Z, from QCD it is
convenient to use the static gauge. In this gauge we can
write

2 4

T Te(a2) + -7

L=1-
2d,T? 24d,T*

Tr(Ag) +---.  (13)

Now we can separate each contribution into a static and a
nonstatic piece, i.e., we can write

(A) = (Af)s + (A (14)

The notation (...),, means that there appear only loop
momenta of order 7 in the evaluation of the corresponding
Feynman diagrams, which corresponds to a strict pertur-
bative expansion in g without any resummation of self-
energies. The notation (...), then means that some or all
loop momenta are of order mp or my,. The corresponding
Matsubara frequencies have to be zero, hence the name
“static”’. We can write down a similar decomposition
for Tr(Ag).

The sum over all nonstatic pieces exactly gives Z. Since
in static gauge the scale T can enter the temporal propagators
only through loops, the nonstatic part of the A3 contribution
will contribute first at O(a?). The leading order result for the
A} piece can be found in Ref. [7] and gives

Cra? 1 o’
ZOII+ 2 |:CA <§+1—]/E+IHF —2Tpnfln2
+0(a3). (15)

The pole in € is not related to charge renormalization, but
corresponds to an infrared divergence in the nonstatic part

-~
g\/%
\ /
~ e

FIG. 1. @)

and dotted lines with arrows are ghost propagators. The diagrams are labeled L, ..

self-energy insertions into one-loop diagrams, while L, ..
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that cancels against an ultraviolet divergence in the static
piece, or equivalently in the EQCD calculation.

The sum over the static pieces then contains all con-
tributions from the scales mp and m,, and thus corresponds
to the EQCD representation of the Polyakov loop without
the unit operator. Up to O(g’) it is sufficient to consider
only the quadratic terms, i.e., (A3), = Z,(A2). The two
gauge fields in (A}), themselves can carry either momenta
k < T or k ~ T; however, in the latter case they only start to
contribute to the static piece at three-loop order. The first
loop from the two gauge fields in the correlator is scaleless,
so another loop is needed to introduce the scale 7 and a
third one to include the scale mp in order to be counted
towards the static piece. This corresponds to diagrams like
Lo and L, in Fig. 1 when only the tadpole or the subloop
momentum is of order mj, and the two other momenta are
of order T. The two scale T integrations give a contribution
of O(a?) to Z, and only one propagator with a momentum
of order mp remains, which corresponds to the leading
order of (A3).

In the former case we can relate the QCD field A, to
VZ>A, in EQCD, where the wave function normalization
constant Z, can be obtained from the small momentum
expansion of the propagator:

DI (k< T) = Z,DpgP (k) + - -. (16)
The dots stand for higher powers in the small k> expansion,
which correspond to higher order two-point interactions in

EQCD. From this expression it follows that

Z, = (1+%(k2:0)>_1, (17)

and with the result from [7] we have up to corrections of
O(a3)

\ /
~ -

All Feynman diagrams contributing to IT;;; (0, k ~ mp). Dashed lines represent temporal gluons, curly lines spatial gluons,

., Ly, from top-left to bottom-right. L4, ..., L, are

., Lg are new two-loop configurations.
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ag [11 4
Zz = Z2 =1 +E |:?CA +§Tpflf(1 —41112)

124, (yE—i—ln‘Lf:—Tﬂ. (18)

Now that we have determined the matching coefficients
to the desired order, we can write the weak coupling

expansion for (A3) as

1 312 Crmg 9E 9%
—TrlAs) = === (1 JE JE
dR r< 0> A ( % mg = m%

6
+a3g—’§+a4ﬂ—E+~-), (19)
my, mg
using simple dimensional analysis. In the above expression
we explicitly wrote down all the terms contributing up to
O(g°) and ignored the magnetic mass scale ;. We will
return to the contribution from the scale m,, later.

In Eq. (19) the terms proportional to a; come from the i-
loop self-energy of the AO field. The coefficient a; is known
[6,7]. We are primarily interested in the NNLO, i.e., O(g°)
contribution to L. It is evident from Eqs. (10), (18), and (19)
that the mixed scale contributions from the previous section
come from the O(q,) corrections to Z, and m%, while
the pure scale mj term comes from the two-loop self-
energy contribution contained in the coefficient a,. One

can perform a similar analysis for <A3> and see that it

contributes at orders aZm%, aimp, etc. It is also easy to

generalize the analysis for (A3"), n > 3, and see that these

terms do not contribute at O(g°).

The only remaining task is now to calculate the coef-
ficient a,. This can be done using the EQCD calculation of
the pressure [28]

1
P:—T<fE+fM—V1nZMQCD)- (20)

Here we use the same notation as in Ref. [28], i.e., fg
denotes the contribution from the scale 7', f,, denotes the
contribution from the scale my,, and Zyicp is the partition
function of MQCD, which is completely nonperturbative.
Ignoring the contribution from MQCD it is easy to see that
since

1 ~ ~
fu==pn / DAGDA{ exp [— / d3x£EQCD]’ (21)
it follows that

1 12 Cr 5434 2Cr Ofm
—Tr(A3) = B (AGAY) = R M (2
dg H(40) = 7 (4646) N2 — 1 0m2 (22)

Using the expression for f;, from [28] we get

PHYSICAL REVIEW D 93, 034010 (2016)

1 ~9 CRmE CRCAg%‘ 1 1 71'/12
—Tr(Ap) = — — - In=E-
dg r(45) Ar (4r)* [2¢ 2 vet nsz
2CrC3 gt (89 11 n?
L= ——In2+=]+0(g".
@) mp\as 22t 1) HOW)

(23)

The first term corresponds to the well-known leading
order result. The second term is identical to the O(g*) static
contribution to (A3) (cf. Eq. (44) of Ref. [7]). The 1/¢ pole
in this term is exactly the ultraviolet divergence that cancels
against the infrared pole in the nonstatic contribution to
(A3) [7]. The scale dependence cancels in the same way.
The last term gives the coefficient a, we are interested in.

We still need to calculate the O(g’) contribution arising
from the O(ay) corrections to my and Z, times the leading
order result for Tr(A%) = —Cyrmp/4r. Using Egs. (10)
and (18) we find that this O(g) contribution is

3CRa2mD 4 H
CrCpn TralT
_CRCFny L pas _ (24)
2mD

With this result and Eq. (23) we find the O(g>) contribution
to the Polyakov loop

3CRa?mD 4
L|g5 = W 3CA +§Tan(1—4ln2)

U
can(rernt)]
CrCiaT (89 11 12 ’

mp ( )
_ CRCanTFag’T . (25)
2mp
The above equation is the main result of this paper. In the
next section we will obtain this result via direct calculations
in QCD.

The contribution from the scale ), to (A3), which we
have neglected so far, can be calculated using MQCD, the
effective theory obtained from EQCD by integrating out
the electric scale mg ~ mp. The only scale in MQCD is the
dimensionful coupling constant gy, ~ \/m,;, which is given
at leading order as g); = gg. Since in this theory we have
only the three-dimensional gauge fields, we write

ZM
L=2z)+-

ﬁu}?jﬁ?ﬁMQCD +ooe (26)
D

The matching constant Z) contains the contributions to L
from the scales T and mp, so ZM = L up to O(g°). The

034010-6



POLYAKOV LOOP AT NEXT-TO-NEXT-TO LEADING ORDER

matching constant 211” has been calculated in Ref. [49] for
the fundamental representation. We have repeated that
calculation, but allowed for general representations; the
result is

M CRCAagﬂ'

TSI 0(g°).

(27)

and for Cp = Cr one obtains the expression from [49].
Since (F{F%) ~m3, ~ g5, we see that the contribution
from the magnetic scale first appears at O(g’). Through the
explicit calculations presented in Sec. III and Appendix C
we will see that the magnetic contributions at O(g°) and
O(g°) indeed vanish.

The O(g’) contribution to the Polyakov loop can be
obtained using lattice calculations in MQCD. However, for
interesting temperature ranges the separation of the scales
mp and m,, is not obvious. Therefore, it is more practical to
calculate (A3) using lattice calculations in EQCD. Such
lattice calculations have been performed with the aim to
estimate the QCD pressure using the EQCD approach in
Ref. [50]. We will use this lattice EQCD result when
comparing the weak coupling expansion of the Polyakov
loop with lattice results in QCD in Sec. V.

|
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III. CALCULATION OF THE O(g%) CORRECTION
TO THE POLYAKOV LOOP

In this section we will present the calculations of the
O(g’) contribution to the Polyakov loop directly in QCD.
From the discussion in the previous section it is clear that
the diagrams that contribute at O(¢°) always have at least
one momentum integral of order mp, while the self-energy
contributions may arise from the scales T, mp, or my,. In
what follows we will refer to them as contributions from the
scale T', mp, or m,,, even though all the loop diagrams also
involve the scale m. We will perform the calculations in
Coulomb gauge and in Feynman gauge. The contribution
from the diagram D, is only relevant in Feynman gauge. It
involves one integral over the scale m and another sum-
integral over the scale 7', so we will refer to it as a part of the
contribution from the scale 7.

A. Contribution from the scale T

All self-energies relevant for the contribution from the
scale T in Feynman gauge are known and can be found in
Ref. [28] (they use a slightly different convention for the
MS-scheme, which can be converted into our convention
by replacing the renormalization scale A? in their expres-
sions by 4ze7Eu?):

272 ! 2 ! 2
_ ¢T {'(=1) K g'(=1) I
" (0,0)=m (6):T|:(CA+TFHF)+CA (_y5+2m+ln4ﬂﬂ e+ Tpny 1_}/’54—24’(—1) +ln167rT2 i
(28)
(1) 2 2 2
dr! @ 5. /1 1 u 4 1 4
00 =~ (st re e ngl) =37 (1 e e )| @)
4 2 ! 2 2
2 77 2 , (1 g'(=1) H 2 1 &= H
10,0 Cl=+1+2 21 e Ten(—+2+2 —2C:T
r(0.0)= (471) [3 <e+ TR T M) T3\ g A Iy T A FLFE
_ T et n ) —aprc,T 30
" (4n)? amp(€) o 1y +Ingras | =29 T Crlpny | (30

In the last line we have reexpressed some terms through m? (e), i.e., the leading order Debye mass with O(e) corrections.
This will be crucial for the cancellation of the 1/e-poles. The O(e) terms of m%(€) are necessary at this point.
With these we can calculate the first scale 7 contribution from diagram D; at O(g’) in Feynman gauge (FG):

Cr? 1 it
D|f¢ ==& / T_(0,0)k* +T157(0,0
Hgr ™ or komy, (K2 +m3)? \ dk? (0,0)&% + ( )
3Cramp(e) [7 1 23 W\ 4 1 1 u? CrCpTpn;aiT
=————=1-C 21n =T 21 - . 31
1o |3\e 21 T Mo, ) T3 e T3 nTmD 2my, (31)
The scale T contribution from D, is given by
CrC 1 _ CrC 1 u
D, P;GT_ R Ag Z / _ rCagmp (e )( +44+2n > (32)
v ot Jicomy @G+ @)K+ )~ AaT 2T
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and together they give

(Dl =+ D2)|§5GT =

CrCrTrnaiT  3Craimp(e) [11 l
16T 3

71 2\ 4 1o 22
! ~2r 22 |
2my, MR n2Tm ) 30 ( 3 TmD>]

(33)

We see now that the coefficient of the 1/e-terms is proportional to the first coefficient of the beta function
po =11C4/3 —4Tpn;/3. This suggests that they are removed through charge renormalization, which is indeed the
case. The first counterterm comes from charge renormalization of the O(g?) term. We need to be careful with the € — 0
limit, so we will keep the dimension d general until the last step:

C 921'*(1 _g)md 2,,2¢

CRg2 1
Dylp =— / 2 2 =
2T kNka +mD

2(47):T
w9 Crg’T(1=9mp>(e)p* [ da; ﬂo( > }
— - o ==y +Indx | + O(a?)]. 34
2(471)2T W c TE 4 () (34)
2 d-2

The factor d/2 comes from the power of «:
the full contribution from the scale 7

g m§y° as Including the counterterm for the charge renormalization we get

3CRang 4 CRCFTana3,T
(Dl —|—D2)|y5’7‘ _W 3CA +§Tpl’lf(1 —411'12)"'2,80 }'E—I—lnﬁ —TS. (35)
|
We no longer indicate Feynman gauge in this final result for dH(T'> ¢ [11 4
the scale 7 contribution, because it is gauge invariant. 5 (0,0) = - 5|7 Cat —TF”f(l-‘“n 2)
. . dk (47)* | 3 3
The corresponding calculation goes the same way for )
both Coulomb (CG) and static gauge (SG). D, is scaleless (1 H ﬂ
+ +yg+1In 37
at O(g°), so only D, contributes. It has been shown in [28] Po vE 4nT? (37)
that the electric mass parameter mg of EQCD is given up to
2
O(az) by With this we have
(1)
1 2 I dll
m} = 10;(0.0) +11(0.0) ~ I, (0.0) =1~ (0.0). [)|c6/56
(36) D dri ) |Fo dH CG/SG
Since my, is a gauge invariant parameter, we can eliminate
(2) . . . . 202
IT;7(0,0) in Coulomb or static gauge from this equation —_ 9 com? 2720, T 38
and express it through the Feynman gauge results and (47r)2( ™MD g rTeny). (38)
dkz (O 0), which is the same for Coulomb and static gauge
and can be found, e.g., in [7]: The contributions from the scale 7' are now
2 (1)
CG/SG _ Crg 1 dIl 0.0 (0.0
Dilgr 2T ANka2+m%<dk2 (0.0) +T(0.0)
3CRang( ) 71 4 1 /,l2 CRCFTanafT
=————2|—C4—=T 1+ 121In2 21 - —, 39
Tonr |9 Caglenell+12In2) 4 fo{ 24 2In S 2myp (39)

This is the same result that we got in Feynman gauge from D, + D,, so including the counter term we obtain the same scale

T contribution in Coulomb and static gauge:
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SCRang

D, +D =
( 1 + 2)|95,T 167TT

B. Contribution from the scale mp,

The contribution from the scale m, consists of the two-
loop self-energy and the square of the one-loop self-energy.
It corresponds to the full g4 contribution of (A3) in EQCD.
The relevant diagrams for the two-loop self-energy are
given in Fig. 1. The contribution from the square of the
one-loop self-energy is not displayed, it corresponds to two
one-loop insertions into the temporal gluon propagator.
Together they also give a gauge invariant result:

cRgzjf Hﬁiﬁ(o,m_+
2T Jimmy | (K> + m3)?

B CchagT[89 2 11 }

l)lbimD::

1
I}y, (0, k)2
(K + mp)?

—~+-—=--=In2|.

48 12 12 (41)

mp

The calculation itself is quite involved, so we will not go
into further details here. We use the method of integration
by parts to reduce the three-loop integrals corresponding to
each diagram down to a handful of known master integrals.
A list of all integrals and their results in different gauges is
given in Appendix B.

C. Contribution from the scale m,,

Finally, we have to consider the contribution from the
scale m,,;. The temporal gluon momentum k cannot be of
order m,,, because then the propagator would have to be
expanded in 1/m3, and the k integration would be scaleless.
But the loop momenta in the self-energy diagrams may be
of order my; and such diagrams start to contribute at O(g°).
However, by the arguments from EQCD and MQCD in the
previous section we expect the scale m,, to enter the
Polyakov loop only at O(g’), so the O(g>) contributions
have to vanish, which is indeed the case.

There are two diagrams at this order (cf. Fig. 2); both
have one spatial gluon that carries the momentum of order
my,. The first is the diagram, where the spatial gluon
connects at two three-gluon vertices, and the second is the
tadpole diagram, where the spatial gluon connects at a four-
gluon vertex. From the three-gluon vertices there comes a

FIG. 2. All O(g’) diagrams that can give a contribution from
the scale m,,;. The bubble stands for the resummed propagator.

4
3CA + §Tan(1_4 ln2) -+ 2ﬂ0 (}’E =+ ln—

PHYSICAL REVIEW D 93, 034010 (2016)

>:| CRCFTanagT

S (40)

4xT

|

factor (2k 4 q);(2k 4 q);, where k is the momentum of
order mp, and q is of order m,,, but only 4k;k; needs to be
kept, because the rest is of higher order. According to the
power counting, each power of ¢ in the numerator adds a
power of g to the result, while terms with odd powers of
the momenta in the numerator vanish. So the first higher
order contributions (i.e., the terms quadratic in ¢) are of
O(g"). For the same reason, we only have to expand the
propagator of the temporal gluon with momentum k + ¢ in
the left diagram of Fig. 2 to leading order in . Then we
have

Dilym, — 22 | M, (0.4
5 =0T i, W )’

CgrCug
GO [ g
gqrny

Xﬂyiﬁf%m Wﬁim}
CRCAg“ /q B : Sd—jd
XP g&?ﬂ o “

Also the O(g®) contributions from the scale m,; need to
vanish. These are the two-loop self-energy diagrams with
one loop momentum of order m,;. We have also checked
their cancellation explicitly; the details of this are given in
Appendix C.

D. Result

Now we have all contributions to the Polyakov loop at

O(g):

InL = % + Cgag [CA G + 1n";—§) —2Tpn;In 2}
+% [3CA +§Tan(1—41n2)
st )| T
- Lf‘:gT [% + ’f—; - %m 2} LO().  (43)

The second and third lines contain the contribution from the
scale T and the last line the contribution from the scale m,.
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IV. HIGHER ORDER CONTRIBUTIONS

A. Casimir scaling

It is known from lattice calculations that the logarithm of
the Polyakov loop obeys Casimir scaling, at least approx-
imately [11,20,21]. Casimir scaling is observed by any
quantity, in our case the free energy F', of a static charge in
representation R, if it is proportional to the quadratic
Casimir operator Cy of that representation. In other words,
F/Cg should be independent of the representation R.

A necessary condition for the breaking of Casimir
scaling is the appearance of a term not proportional to
Cg. A term like that was identified for L — 1 in Ref. [7] at
O(g®). The term is

(L) = % <%)2 (44)

This term, however, does not break the Casimir scaling of
the free energy F, since it is nothing else than the second
order term in the expansion of exp(—F,/T), when F is
taken at leading order. In fact, this term does not appear in
Fy. Note that the exponentiation formula given in (4)
provides a way of calculating F, directly. It is then clear
that at the level of two-gluon diagrams there is no breaking
of Casimir scaling. Hence, we may ask, to which order of
the perturbative series can Casimir scaling be observed?

There are several equivalent prescriptions on how the
color coefficients in the logarithm of a closed Wilson
line can be determined. It will not be necessary here to go
into details on how they are calculated exactly (see
Appendix F); it is sufficient to know that for so-called
connected diagrams, where every gluon is connected to
every other gluon through gluon, ghost, or light quark
propagators, the standard color factor and the one in the
logarithm are the same.

At the three-gluon level we have several unconnected
diagrams (cf. Fig. 13) and a few connected diagrams. By
three-gluon diagrams we mean diagrams that correspond to
three sum-integrals. We exclude sum-integrals from self-
energy or vertex-function insertions from this definition,
because if the corresponding tree-level diagram obeys
Casimir scaling then also any self-energy or vertex-function
insertion does.

The unconnected three-gluon diagrams are all scaleless
in Coulomb or static gauge unless each gluon carries a
momentum of order mp, which means that they start to
contribute at O(g”). We will see below that Casimir scaling
is already broken at a lower order, so we can ignore the

FIG. 3.

PHYSICAL REVIEW D 93, 034010 (2016)

unconnected three-gluon diagrams in Coulomb gauge on
the basis of this argument. In other gauges these diagrams
contribute at O(g°), but, as we will show in Appendix F,
their color coefficients obey Casimir scaling.

The connected three-gluon diagrams are shown in Fig. 3.
Their color factors are all given by —CrC3 /4, except for the
second from left where it is 0. All of these depend linearly
on Cp, so at the three-gluon level Casimir scaling is still
observed.

In general, the color factor of any diagram without light
quarks is given as the trace over a product of color matrices
in the respective representation divided by the dimension of
the representation, where every color index is contracted
with that of another color matrix or a structure constant
from the interaction vertices. By repeated use of the
commutation relation, the Jacobi identity or the quadratic
Casimir

[T%’ Tﬁ’e] = ifabcT%’
fabefecd +fbcefead +fhdefeca =0, (45)

T4T4 = Cgl,  foedfbed = C, 5%, (46)
one can express every such color factor as a combination of
the following terms

Cge") = fhaii fhadis ... finaniy diRTr[T;lel T“R2 e T%"] (47)

and Cy or Cy.

Cg> is trivially zero and C;? and Cg) can be calculated
independently of the representation:

2 3 i
¥ = —CxC,. C;):—ZcRcf,. (48)

But starting from Cg) there is no longer a simple unique
formula like Eq. (48) valid for all representations. For the
fundamental and the adjoint representation one can replace
every structure constant by color matrices and then use the

(n)

Fierz identity to calculate the Cy "’ explicitly:

. 1 a ¢
fubc — ETI‘[TF[T}]-)W TF]]’ (49)

1
(T%);(TE)u=Tr (5il5kj - N‘Sij‘skl)- (50)

Connected three-gluon diagrams.
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Note that 7% with a color index denotes the generators of
the fundamental representation, while T without a color
index denotes the normalization constant of the fundamen-
tal representation. The two are related by

T
Tr[T4TY) = TR,  or T%:\/TFA“, (51)

where A% are the Gell-Mann matrices.
In this way we obtain

1

4
c¥ = chcg(scA —4Cy),
c® —Lease, —oac 52
A _g A( AT F)» ( )
or alternatively
(4) 2
o) Cr N> 42
= (53)

CA)_C_ANZ—I—lZ'

If we can find a diagram whose color coefficient is given by

CE;U, then we have found a Casimir scaling breaking term.
Such a diagram can appear only at O(g®) or higher, because
in the Feynman rules of QCD every color matrix and
structure constant comes with a factor of g. Figure 4 shows
some similar diagrams where the dependence on c§§‘> is
immediately apparent. The diagram on the left has the

4)

color coefficient C,’ exactly and the other two have

CE;1> + CRCi /8, because in both cases two color matrices
have to be commuted to get the form of Cg) and the

commutator gives i Cg) C,/2.

If we add up the contributions proportional to CE?) from
all three diagrams, then the contour integrations simplify a
lot and we get Kronecker deltas for the Matsubara
frequencies of each of the four gluon propagators attached
to the Polyakov loop contour times a coefficient of 1/87*.
One of these four Kronecker deltas is redundant and the
Matsubara frequency in the internal loop (the square in the
left diagram, or the twisted square in the other two
diagrams) remains different from zero. So the momentum
integrals are not scaleless, because the scale 7' remains in
the calculation, and we have a possible genuine non-
vanishing contribution at O(g®) that breaks Casimir
scaling.

PHYSICAL REVIEW D 93, 034010 (2016)

There are other diagrams similar to these three, which
can be obtained from Fig. 4 by contracting one or two
propagators in the internal loop to a four-gluon vertex.
Their color coefficients also involve c§§‘>, so they will give
other terms of O(¢®) that break Casimir scaling. In
principle, light quark loops can also give rise to color
factors that break Casimir scaling. If such a light quark loop
has two or three external gluon legs, then it can be included
as a contribution to the self-energy or the vertex function
and it will not affect Casimir scaling. With four or more
external legs the color factor is no longer proportional to the
quadratic Casimir, which can be checked in a similar
calculation to the one above replacing the internal gluons
in Fig. 4 with light quark propagators, but such diagrams
also start to contribute at O(g®).

One could in principle imagine that all those terms
cancel and only Casimir scaled terms remain, but that
would imply some underlying mechanism that enforces
Casimir scaling to all orders of perturbation theory. Such a
mechanism, if it exists, has not been discovered so far. The
approximate Casimir scaling observed in lattice calcula-
tions may be explained by the strong suppression of the
O(g®) contributions that possibly violate Casimir scaling.

B. Outline of the O(g®) calculation

We will outline here the necessary steps for the calcu-
lation of the O(g®) contributions, the last order accessible
by perturbation theory. The amount of work one has to do is
greatly reduced by choosing the appropriate gauge. As
explained above, all the unconnected three-gluon diagrams
(see Fig. 13) are scaleless at leading order and start to
contribute only at O(¢°) in Coulomb or static gauge. In
Feynman gauge, however, the six diagrams of Fig. 13
whose modified color coefficients in the logarithm of the
Polyakov loop do not vanish all contribute at O(g%), so this
is not the most efficient gauge to perform this calculation.

There are also unconnected three-gluon diagrams con-
sisting of only two unconnected pieces, a single gluon and a
piece of three propagators connected by a three-gluon
vertex. These are not displayed in Fig. 13, because in
gauges that are diagonal in temporal and spatial indices
they vanish on account of the three-gluon vertex with three
temporal indices, just like the corresponding two gluon
diagram, but in nondiagonal gauges they also have to be
considered.

The connected diagrams of Fig. 3 can only contribute at
O(g®) when all momenta are of the scale T; the scale m,
contributions are of higher order. However, in Coulomb or

FIG. 4. Diagrams at O(g®) with a color coefficient CS;”.
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static gauge all of them vanish. The first three diagrams are
essentially the same gluonic configuration, but with differ-
ent path ordering prescriptions along the Polyakov loop
contour, so we will only discuss the leftmost diagram;
the others are analogous (apart from the second having a
vanishing color coefficient). In static gauge all Matsubara
frequencies have to be zero because of the temporal
propagators, so the integrals are scaleless and vanish. In
Coulomb gauge the Matsubara frequencies are not neces-
sarily all zero, but the integrand vanishes by itself: Call k
the momentum flowing from the first to the last point on the
Polyakov loop contour, p the momentum flowing from the
first to the second point, and g the momentum flowing from
the third to the fourth point. The results of the p and ¢
integrations can only be proportional to k because of
rotational symmetry, where each vector comes from the
three-gluon vertices. But these vectors k are then contracted
with the transverse projector from the spatial propagator,
which gives zero.

In the second diagram from the right in Fig. 3 the
Matsubara frequencies of the propagators connecting to the
Polyakov loop contour have to be zero. In static gauge this
is again a consequence of the temporal propagator, while in
Coulomb gauge it follows after computing the contour
integrations (this involves some convenient momentum
shifts). There is no constraint on the frequency from the
loop momentum that flows around the gluon triangle, but
through the three-gluon vertices it appears to either linear or
cubic power in the numerator, so the remaining Matsubara

|

PHYSICAL REVIEW D 93, 034010 (2016)

sum is odd and cancels. The same is true if the gluon
triangle is replaced by a fermion loop. The rightmost
diagram in Fig. 3 vanishes because of the four-gluon vertex
in all gauges where the gluon propagator is diagonal in
temporal and spatial indices.

The two-gluon diagram D, has already been discussed
above; only the first term in Eq. (6) contributes in Coulomb
or static gauge at O(g®). Tt gives a contribution of
—CrCualm ) 2 /48T? when both momenta are of the scale
mp. When one or both momenta are of the scale 7, then the
first nonvanishing contribution is of O(g’) or O(g®),
respectively.

The O(¢®) contribution from diagram D; contains
several different elements: the three-loop self-energy with
all momenta of order mp, products of one-loop and two-
loop self-energies [essentially the last line of Eq. (8) times

Hﬁ,:l)) (k)/(k* + m%)] or the one-loop self-energy cubed
from the expansion of the resummed propagator, the
two-loop self-energy at the scale mjp with one loop
momentum of order 7 and the other of order mj, and
the two-loop or square of one-loop self-energy with all
momenta of order 7.

Fortunately, most of these contributions can be inferred
in the EFT approach from an already existing EQCD
calculation. As explained previously [see Eq. (22)], the
correlator of two AO fields in EQCD can be obtained from
the pressure or vacuum energy density, which has been
calculated at the four-loop level in [51]. From this we get

1 CRmE CRCAg% 1 1 u? 2CRC%g4E 89 11 7’
—Tr(A — I IE (T
g 0= @n? [2e 2 ET ) T G\ 12T 12
2CRTHN? + )i CiT3g (AN> =6, CrCidl (43 4917
N1 g o). (54
(4r)? (4x)? Tz \a e ) "o BV

If we now insert the explicit expression for Az and Az in terms of g and the one-loop corrections to gg, mg, and Z,, then we
have almost the full O(g%) contribution to the logarithm of the Polyakov loop. The only thing that is missing is the
contribution from D, given above and the two-loop and square of one-loop self-energy contributions with all momenta of
order T in Coulomb or static gauge.

The one-loop correction to the EQCD coupling constant is given by [29]

16 1 u?
gE— 2T{1+4—|:3CA 3 Tan1n2—|—ﬂ0< +}/E—|—ln4 T2>:|} (55)

Because of the 1/¢ pole in the g% term in Eq. (54) we also need the O(e) terms of both g% [48] and Z,:

4 2 2 2 2
u b4 1 16 u 16
) |: ()< (}’E +11'l4 T2> +Z—2}’% —4}’1> + <3CA —3Tpnfln2> <]/E —|—ln4 T2> —?Tpnf(ln2)2 s

(56)

gtloe)
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age 1 u> \?2 7t 11 4 u?
_|: 0(— (yE—Q—lnm) +Z—2y%—4}/1 + ?CA +§Tan(1—4ln2) yE+ln4”T2

Zsloe)

23 16
?CA - ?Tan(ln2) :|
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(57)

Here y, is the coefficient of the linear term in the expansion of {(1 — x) for small x. Combining all these terms and inserting

the renormalized coupling, we then have

C
1nL|O(g(’) = Rag |:

4nT? 4

1 ﬂ2 2 ﬂ'2 5 2 ’u2
ﬂOCA }/E—f—ln +——2]/E—4}/1 +CA 2CA +§TFI’lf(1 —81112) yE+1H

4nT?

2 4
+ 8C‘% + gCATan(l + 41n2 — 8(11’1 2)2) + 8CFTFI’lf + CA <4CA +§Tan(1 —8In 2)

1 U CrChaiT?
4 In— — = | -
e gy )) (e )| -5

CRCAagm%)

43 4917
(2T T, ) -
(A(s 1536>+ F F”f> 4872

_CzRf l NT% KHT (0, k) + %(——yE+1n4n>k2) — k2 (o, k)} (58)

The first 1/€ pole, a UV divergence from the scale m,, has
to cancel against a corresponding IR divergence in the scale
T integrals. The 1/e pole in the last line comes from the
charge renormalization in the MS scheme of the O(g*)
contribution from the scale 7, i.e., the first term in Eq. (8),
and it cancels the UV divergence in the one-loop vacuum
part of the self-energy.

There are also O(g®) contributions from two-loop dia-
grams with two momenta of order mp and one momentum
of order m,;. From the MQCD analysis of the Polyakov
loop we know that the scale m,;, can only appear first at
O(g"), so these contributions ultimately have to cancel. We
have checked this cancellation explicitly in Appendix C.

V. CONVERGENCE OF THE PERTURBATIVE
SERIES AND COMPARISON WITH
THE LATTICE RESULTS

In this section, we discuss the convergence of the
perturbative series for the Polyakov loop, or equivalently
the free energy of a static quark, and compare the weak
coupling results with lattice QCD results. For a reliable
comparison of the lattice and the weak coupling results we
need to consider a temperature range that extends to
sufficiently high temperatures. So far, it is only in pure
SU(3) gauge theory, i.e., in QCD with zero light quark
flavors (ny = 0), that we have lattice results at sufficiently
high temperatures to perform such a comparison. Namely,
the renormalized Polyakov loop has been calculated up to
temperatures of 247, [20], with T, being the deconfine-
ment transition temperature.

In Fig. 5 we show the perturbative results for the free
energy of a static quark at various orders in perturbation
theory for pure SU(3) gauge theory (n; =0). We use

|
one-loop running for a,. To determine the renormalization
scale for different values of T/T,. we used the relation
roT. = 0.7498(50) [52], where r, is the Sommer scale
[53]. The value of Am was determined in Ref. [54]:
rolyg = 0.63710 5. With this we get T./Agz = 1.177.
One can see that the scale dependence of the leading order
(LO) results is quite large and becomes even larger at NLO.
The scale dependence of F, is first reduced at NNLO and
is, in fact, quite small, making a meaningful comparison
with the lattice results possible. In Fig. 5 we also show the
lattice results for the static quark free energy for ny =0
from Ref. [20]. The lattice results appear to agree with the
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FIG.5. The free energy of a static quark F, for the SU(3) gauge

theory in weak coupling expansion at LO, NLO and NNLO. The
bands are obtained by varying the renormalization scale y
between zT and 6zT. Also shown are the lattice data for Fp
obtained on lattices with temporal extent N, = 4 and 8 [20].
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LO and NLO results, given their large scale uncertainty, but
are slightly larger than the NNLO results at small 7.

We should keep in mind, however, that the comparison
of the lattice and the perturbative results for F, is not as
straightforward as Fig. 5 may suggest. This fact seems to be
generally overlooked in the literature. The perturbative
calculations are performed in the MS scheme, while on the
lattice the calculation is performed in a scheme in which the
static quark-antiquark energy at zero temperature is nor-
malized such that it is equal to the string potential V(r) =
—r/(12r) 4+ or at large distances, with ¢ being the string
tension. To match the two schemes one has to normalize
the static energy at zero temperature in the perturbative
calculation at each order to the lattice potential at short
distances. This then corresponds to a constant shift Cy;; in
physical units of the perturbative static energy, which is
different at different orders of perturbation theory.

This matching has been carried out for both n, = 0 [54]
and ny = 3 [55]. The shift of the static energy implies that
one has to add Cg/2 to the perturbative result for F
before the comparison with the lattice results can be made.
However, Cy,;; is sensitive to the perturbative order, to the
resummation of the logarithms associated with the running
coupling constant, as well as to the ultrasoft scale (see, e.g.,
discussions in Ref. [56]). Thus, the uncertainty in the
determination of Cg;; will be the dominant systematic
uncertainty in the comparison of the weak coupling and
lattice calculations for F . For this reason we did not add
Cgnire in the comparison of the lattice and the perturbative
result for Fy in Fig. 5.

We can avoid this problem by calculating the entropy of
the static quark defined as

OFo(T)
So = T (59)
In this quantity the normalization constant Cg;; drops out.
In perturbation theory it is straightforward to calculate
the entropy of a static quark by taking the temperature
derivative of Eq. (43) times 7. In order to calculate the
entropy of a static quark on the lattice, we use the lattice
data on the renormalized Polyakov loop obtained on N, =
4 lattices in Ref. [20]. We interpolate these data using
different smoothing splines and calculate the derivatives of
the splines using the R package [57]. The statistical errors
of the interpolation and the derivative were calculated using
the bootstrap method. Furthermore, we considered different
spline interpolations, varying the number of knots and the
value of the smoothing parameter. We enlarged the stat-
istical error to take into account the difference between the
different splines, if those were outside the statistical error.
In this way we obtained the total error for the entropy in
lattice QCD.
In Fig. 6 we compare the entropy of a static quark
estimated in lattice QCD and in the weak coupling
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FIG. 6. The entropy of a static quark S, for the SU(3) gauge
theory in weak coupling expansion at LO, NLO and NNLO. The
bands are obtained by varying the renormalization scale u
between z7 and 6z7. Also shown are the lattice results for
Sg; cf. the description in the text.

calculations. As in the case of the static quark free energy,
the scale dependence of the LO and NLO results is quite
large. Within this large scale uncertainty the perturbative
calculations and the lattice data agree. The scale depend-
ence of the NNLO result is much smaller. The NNLO
result, however, lies below the lattice data. This implies that
higher order corrections in the weak coupling expansion
may still be important. In view of this, below we discuss
some higher order terms in the weak coupling expansion of
the static quark free energy and have a closer look on the
convergence of the perturbative series.

As discussed above, in the weak coupling expansion we
have three types of contributions, purely nonstatic, i.e.,
arising from the scale 7, purely static contributions
corresponding to the scales mj and m,;, which can be
calculated within EQCD, and mixed contributions, where
some loop momenta are of order mj, or m), and others are
of order 7. Here we will discuss the latter two types of
contributions, referring to them as EQCD type and mixed
type contributions, respectively. Together they have been
called the static contribution in the previous sections, but
here we want to distinguish between them.

The EQCD type contributions arise from the weak
coupling expansion of Tr<A(2)> with the expansion param-
eter Cyg%/(4xmy) [cf. BEq. (54)], using only the leading
order results for the matching parameters Z,, gg, and mg
and neglecting quartic or higher order interactions. Beyond
four-loop order the condensate Tr<A%) contains a non-
perturbative contribution of order g¢%/m3, which was
calculated using lattice simulations of EQCD [50].
Furthermore, in Ref. [50] a simple parametrization of those
higher order contributions to the condensate beyond four-
loop order was given.
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FIG. 7. EQCD type and mixed contributions to Fy at O(g°)
(upper panel) and O(g°) (lower panel). The bands correspond to
the variation of the renormalization scale from zT to 6zT. The
thick black line corresponds to the higher order EQCD type
contributions from lattice EQCD estimated in Ref. [50] for the
renormalization scale y = 4zT; cf. the description in the text.

In Fig. 7 we show the EQCD type contributions at O(g°)
and O(¢®) as well as the sum of all higher order con-
tributions calculated in lattice EQCD, which we plot using
Eq. (4.1) of Ref. [50]. The bands shown in the figure
correspond to the variation of the renormalization scale y
from zT to 6zxT. The magnitude of the different contribu-
tions is decreasing with increasing order, the O(¢®) con-
tribution is smaller than the O(g°) contribution, and the
sum of all the higher order contributions to ¢?/(2Tdg) x

Tr(A3) [starting from O(g7)], which includes the non-
perturbative contributions, is about the same size as the
O(g¢°) contribution. Thus, we conclude that the weak
coupling expansion for the purely static contribution is
converging reasonably well and there are no large non-
perturbative corrections to the Polyakov loop from the
static chromomagnetic sector. Furthermore, as shown in
Fig. 7, the sum of the higher order corrections to the static
quark free energy is positive and thus would shift the
perturbative result away from the lattice data.

Now let us discuss the mixed contributions, which come
from higher order corrections to the matching parameters
and higher interaction terms in EQCD. In Fig. 7 we show
the O(¢g°) and O(¢®) mixed contributions. The latter is
evaluated by using the first angular bracket in Eq. (58) and
omitting the 1/e¢ pole. In contrast to the EQCD type
contributions, the mixed contributions can be positive or
negative depending on the choice of the renormalization
scale. At O(g°) the mixed contribution is smaller than the
EQCD type contribution, while at O(g®) the mixed con-
tribution is of the same size or larger (depending on the
renormalization scale). Furthermore, the two mixed con-
tributions are about the same size, which means that the full
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O(g°) contribution might be large. Clearly, for rigorous
statements about the convergence of the weak coupling
expansion and comparison with lattice QCD results a
complete calculation of the O(g®) contribution will be
necessary.

VI. CONCLUSIONS

In this paper, we have calculated the next-to-next-to-
leading-order contribution to the Polyakov loop or equiv-
alently to the static quark free energy. This contribution is
of O(g’). The calculations have been performed directly in
QCD as well as through an effective theory approach using
known results from EQCD. The effective theory approach
based on EQCD also allowed us to calculate some of the
higher order contributions of O(g®) as well as to have an
estimate of some nonperturbative contributions starting to
appear at O(g’). The weak coupling expansion in EQCD
seems to converge reasonably well, but there could be
potentially large contributions from nonstatic modes
at O(g%).

While the scale dependence of the O(g°) result is
reasonably small, we do not find a very good agreement
between the lattice data and the weak coupling expansion.
It is possible that the observed discrepancy between the
lattice results and the weak coupling expansion is due to
the missing O(¢°) term. Therefore, the calculation of the
complete O(g®) contribution is important.

Finally, we discussed the Casimir scaling of the static
quark free energy. We have shown that Casimir scaling
holds up to O(g’), but at O(g®) there may appear terms
that break Casimir scaling. The fact that the breaking of
Casimir scaling happens only at O(¢®) in the weak
coupling expansion may explain the lattice results on the
Polyakov loop in higher representations, which show
approximate Casimir scaling in the high temperature
region [20,21].
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APPENDIX A: GLUON PROPAGATORS

1. Feynman gauge
Feynman gauge is obtained by adding the gauge fixing
term (9,A%)%/2 to the Lagrangian, as well as the ghost
Lagrangian (9,&“)D4c’. Then the free propagators for
gluons Dy and ghosts G, are given by

034010-15



BERWEIN, BRAMBILLA, PETRECZKY, and VAIRO

1
D() :ﬁ and GO :W (Al)
We will not explicitly display color indices, because they
only appear in Kronecker deltas.

For the resummed gluon propagators we need to sum
over all one-particle reducible diagrams, i.e., over all
bubble insertions in a propagator, where the bubbles
define the self-energy tensor —II,,. We can parametrize
the self-energy tensor in the following way:

—_ Iy
I k;ko

which comprises all tensor structures allowed by rotational
symmetry. Even though Feynman gauge is designed to be
fully covariant under Lorentz transformations, the existence
of the medium explicitly breaks the full Lorentz symmetry
down to the rotational symmetry in the rest frame of the
medium, so that the temporal and mixed components of the
self-energy tensor Iy, and I, = Il); may have different
coefficients than the corresponding tensor structures in the
spatial components I1;;. In other words, Iy, # I + k3
and HA ;é Hc.

The sum over one-particle reducible diagrams constitutes
a geometric series. So the resummed propagators are
given by

T, kok; > ")

HBéij + Hcklk]

D =Dy » (-TIDg)" = Do(1 +TIDg)~" = (D5' + 1),
n=0

(A3)

and similarly for the ghosts. By inverting this matrix we get

Do kg + k* + Tl + Tl ck?
O (2 4+ k2 + o) (K2 + K2 + T + T ck?) — TRA2KE

(A4)
D — —[skiko
O (I 4 K+ Tgg) (k2 + k2 4 T + T ek?) — TRA2KE
(A5)
1 kik;
D= (5. -7
R R I P AN &
N k3 + k2 4Ty, kik;
(kg4 k* +Tog) (kg + k> + T +Tck?) —TIEK3K* k*
(A6)

We can rewrite these expressions in terms of the self-
energy tensor as
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1
Dypy=-———— and
0T ere+n
VTR ) R, K
(A7)
where
12 k2 k2
=TIl = > 2 A 2
k3 + k> + Tl + Tk
;1T
- HOO - . (Ag)
kg + k* + 1L k;k k>
1 I1, k;k;
%y =1l =j<n,-,-— 5 ’>, (A9)
T12 k2 k2
¥, =g + I-k2 A0
? e kg + k% + Tl
=t OrR (A10)
k kg + k* + Ty
and
Do — —Iy,
o (k3 + K* 4 T ) (kg + k> + Hijkikj/k2) — Ty 1L,
(A1)

We see that, although the free Feynman propagator is
diagonal, the resummed propagator is not.

The free ghost propagator G, as well as the ghost self-
energy I' are scalar functions, so the resummation of the
geometric series for the full ghost propagator G is trivial:

1

G=(Gy'+1)"' = .
0 ki + Kk +T

(Al12)

2. Static gauge

Static gauge [32] satisfies the gauge condition JyA, = 0,
but this condition alone does not give an invertible
propagator, so we need to modify it in order to fix the
gauge also for the spatial gluons. This can be done by
adding the gauge fixing term (9yAy + \/a/EV - A9)?/2a
and taking the limit @ — 0, which gives back the original
gauge condition. This limit would diverge in the
Lagrangian, but leads to a finite propagator. The freedom
in how to fix the gauge for the spatial gluons is reflected in
the residual gauge fixing parameter £. The gauge condition
on the spatial gluons is lifted for £ - oo and accordingly
the propagator diverges in this limit.

The inverse of the free propagator can be read from the
Lagrangian:
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54 g2 —(1 = —L)kok;
Dal _ a Va& 0%
—(1 = gkiky (kg + k)8 — (1 = Pkik;
(A13)
which can be inverted to
(l((fké+k2) (aﬁ—\/(ig)kokj
D — (VEKg++/ak?)? (VEkg++/ak?)?
0 (wV@hdy 1 (5 ik )k,
WVakr/ak?? B \0i T ) T (Y K
Oy,
aio k_é) 0
= 1-5 kikj | 6 kik;
0 k(z)ﬁfz (63 _k_g) + 2 (6= (1=8))

(A14)

where by 6, we mean for ky = 2zTn with n € Z that
Ok, = Oop» 1.€., selecting only the zero mode in the
Matsubara sum. We see that the free propagator explicitly
distinguishes between zero and nonzero modes. In particu-
lar, the 00 component of the propagator contains only the
zero mode, which means that in position space it does not
depend on the imaginary time coordinate, as required by
the gauge condition.
The ghost Lagrangian is given by
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There is a ghost vertex with a temporal gluon that is
proportional to 1/+/a, so the @ — 0 limit may potentially be
problematic in this interaction. However, this vertex is also
proportional to the Matsubara frequency k of the outgoing
ghost propagator, which means that only nonzero modes can
participate in this interaction. The number of ghost propa-
gators and ghost-gluon vertices is always the same in any
loop diagram, so in the most singular diagrams, where all
vertices are with a temporal gluon, the powers of \/a cancel
exactly between the vertices and the numerators of the
propagators. Then the @ — 0 limit can be taken without
problems and all propagators are given by 1/k2, which is not
singular because the zero-modes do not contribute. This
makes all loop integrations scaleless and therefore vanish. If
there are some vertices with spatial gluons, then there are
more powers of y/a in the numerator than in the denominator
and the diagram vanishes trivially in the @ — 0 limit.

So we see that the ghosts completely decouple from the
temporal gluons. For the interactions with the spatial
gluons the a — 0 limit is unproblematic. There is a factor
of 1//& at each vertex, which exactly cancels the /& factor
in the ghost propagators. So we can in fact simplify the
ghost sector considerably, because as we have just shown
the nonzero Matsubara frequencies, the parameter &£, or
interactions with temporal gluons are irrelevant. Therefore
the modified ghost Lagrangian and free propagator

)
| . L, = (V&9)-Dc" and Gy = % (A17)
Ly = \/—&(aoaa)ngcb + ﬁ(vaa) -D%cb (A15)
with static (i.e., independent of the imaginary time coor-
from which it follows that the free ghost propagator is dinate) ghost flglds give exactly the same contributions as
the more complicated Lagrangian given above.
JaE 0 \/E5k0 For the r.esummed propagator we can use the same
Gy = 2 Z - 2 (A16)  parametrization of the self-energy tensor as in Feynman
Veks + Va gauge. Then we get
|
. £+ 2/e 1 + 1R LA
O (K a+ I+ o) (kG + K2/& + Ty + TIek?) — (1= 1/v/a =T 2K K2+ Tl

D — (1 _ 1/\/E§_HA)kik0 a;OO (A19)

U (/a+ K+ Too) (kG + K2/& + 1y + Tck?) = (1= 1/ VaZ = TL)2kgk2

1 kik;
D.=——— (5. -
i k(Z)/a + k2 + HOO %
(k3o + k> + Myo) (k3 + k2 /& + T + T ck?) = (1 = 1//aé — T1,)*k3k* k*
a=0 1 — &, 54 (1 =T¢)kk; O, o (1 =&+ &Me)k;k; (A20)
KR+k+Tp \ Y K+ +Tek?) K+ \ Y K+ &M +ck?))’

Or in analogy to the functions II, X;, and %, that we defined in Feynman gauge we can also write
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O,
Dy = —2—, A21
00 k2+H ( )
DiO - DO/ - 0, (A22)
1-95; k:k: 1 -6, kik;
D. =— % |5 -2 0o
Yok T < YR ) +k(2)+22 S
O, k:k; &6, kik;
5o — = A23
+k2+21<l'1 k2>+k2+522 k2 ( )
where now
1
=1y, % =I= m(kznﬁ - Hijkikj)’

and ¥, = + Iok* = (A24)

k2

The resummed ghost propagator follows trivially from
the modified ghost Lagrangian.

Ok,
G = (A25)

For £ =1 the static part of the gluon propagator (i.e.,
ko = 0) has the same form as in Feynman gauge, which is
why this choice is also called Feynman static gauge. The
self-energy functions still differ between the two gauges.
For & = 0 the static part of the propagator has the same
form as in Coulomb gauge, so this choice could be called
Coulomb static gauge.

3. Coulomb gauge

Coulomb gauge is defined by the gauge condition
V-A% =0. It can be implemented by adding the gauge
fixing term (V- A%)?/2& to the Lagrangian as well as the
ghost Lagrangian (Vc¢¢) - D®c? with the limit £ — 0. If we
compare this to the gauge fixing term in static gauge, we
see that Coulomb gauge can also be obtained from there
by first taking the limit @ — oo and then £ — 0, so we can
reuse all results from the previous section.

The free propagator is then given by

1 0
=
o= kikpy |
0 =z (6 — %)

and the resummed propagator by

_1 0
— K411
p=’

0

(A26)

_ﬂ)) (A27)

L (§..
kg+k2+z,( uok

where the self-energy functions IT and X, are defined as in
static gauge.
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The temporal component of the propagator is the same as
in static gauge, except that in Coulomb gauge also the
nonzero Matsubara frequencies are allowed (although they
do not appear explicitly in the free propagator). The spatial
part of the propagator is transversely polarized with respect
to k and the mixed temporal and spatial components vanish,
such that the gauge condition is explicitly satisfied as
k;D;, = 0. This relation holds for both the free and the
resummed propagator, and only the coefficient X; of the
transversely polarized part of the self-energy tensor remains
in the propagator after the resummation.

After a redefinition of the ghost fields (¢, c) — &'/4(¢, ¢),
the limit £ — 0O eliminates the first term in (A15) and the free
and resummed propagators are given by

1

Gy = 2 “eiT (A28)
The ghosts only couple to spatial gluons like in static gauge.
Quantization in Coulomb gauge generates the so-called
Schwinger-Christ-Lee term [58,59]. This term is an a?
suppressed term that involves a nonlocal interaction with
transverse gluons. It is beyond the accuracy of the

present work.

4. Phase-space Coulomb gauge

There exists an alternative formulation of Coulomb
gauge QCD that is defined in the so-called phase-space
formalism [60], which we will adapt here to the Euclidean
space of the imaginary time formalism. An auxiliary field E
is introduced in the action S:

S =ex { /I/Td /d3 (1F“F“+1F“F“)}
e = - T X\ il 5 Foil o
p 0 4 Ui 2 0i" 0.
T 1
:J\/'"/DE,-exp{—/ d’L’/an(—F?-F?-
0 470t

1
+E9FY + —E?Egﬂ . (A29)

2

This step can be interpreted such that now the chromo-
electric field is treated as a dynamical variable. This
interpretation originates from the equations of motion for
the E-field, which are Ef = —iF; (the factor i is an effect
of the imaginary time formalism, in Minkowski space
it is absent). So we will call E the electric field for the rest
of this section. One can easily return to the original action,
up to some irrelevant constant A/, by explicitly carrying
out the path integral over the electric field, which is
possible because it only appears in quadratic terms in
the exponential.

With this new action we can calculate as if there was a
seven-component gluon field A,, where a = 0 corresponds
to Ag, a=1,2,3t0 A, and a =4, 5, 6 to E. The free
propagator (Dy),; will be the 7 x 7 matrix given through
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the quadratic terms of this gluon field as A,(Dj'),5A45. In
order to distinguish between the spatial gluon and electric
field components in this unified description, we will use the
propagator indices i, j and m, n exclusively for a, f = 1, 2,
3 and a, f =4, 5, 6 respectively.

o= [ s [ x|y 0900 -5 07 03a)

1 a a
+ 2_<61A?><8/A;1) + lEi 80Ai -

PHYSICAL REVIEW D 93, 034010 (2016)

In order to fix the gauge we again introduce the terms
(V-A9)?%/2¢ and (Ve“) - D¢ into the Lagrangian. The
ghost sector remains unchanged compared to standard
Coulomb gauge, so we will only discuss the gluonic sector.
Going from position to momentum space in the free action,

1
iE{ O, + 5 E{EY

= a ,_Q . a — F4(— a a(— a
_XZ[A( K)(k25 . kk.,>AJ(K) E“(=K)koA%(K) + A% (—K)koE4 (K)

K

+ EY(-K

-y BAﬁ(—K)(DamﬁA;(K)] ,

KiAY(K) - Ag (= ;

we get the inverse of the propagator as

0 0 _kn
Dy'=1 0 k26ij — (1 =1/&kik; koo, |, (A31)
k, —koémj Omn

where we have written the 7 x 7 matrix in terms of
(1,3,3) x (1,3,3) blocks. Inverting this and taking the
& — 0 limit, we get the free propagator:

Lo -

k2
kik; k kik
DO = 0 ké.}_kZ (5ij - k_ZI) - k%.ka (5in - k_Zn)
ki knk; 2
- % k(z)«fk2 (5"!] - %) ﬁ (5mn - k’]Zf”)
(A32)

We see that the temporal and spatial components still have
the same propagators as in the standard formalism, in
particular they do not mix with each other for £ = 0, but
both do mix with the electric field. Also note that

|

K)KES(K) + + B, (~K)"E2 (K)

(A30)

D! (K) = Dy(—K). This is of relevance for the off-diagonal
terms, which have odd powers of the momentum in the
numerator (the reason is that Ay and A are of mass
dimension 1, while E is of dimension 2).

The interaction part of the action is given by

/T
Sm:/ w/&%ymﬁgmmj

fabefcdeAaAbAcAd lgfabCAgEf.’Af . (A33)

This gives the same three- and four-gluon vertices as in
standard Coulomb gauge if only spatial gluons are
involved, but the temporal gluons now interact with the
spatial gluons only through a three-field vertex with an
additional electric field and the simple -coefficient
igfecs,,. All Feynman rules of phase-space Coulomb
gauge are shown in Fig. 8.

For the resummed propagator we need to introduce a
new parametrization of the self-energy tensor in the form a
7 x 7-matrix:

Hlt kijHts —k Hte
kik;
II= kikOHts Hssléij + HSSZ k_2/ k()( sel5m + HseZ k2 ) ’ (A34)
kate _kO( sel5m] + HseZ ’]: /) eelﬁmn + Hee2 k2

where the labels ¢, s, and e stand for temporal, spatial, and electric respectively. Then the resummed propagators are

1+ ngl + Hee2
k2(1 + Hw)z + (1 + Heel + Heez)nlf ’

DOO - (A35)
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FIG. 8.
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6(1,1) . ) 5abk2 Emkn
Tk TR R T g2
5(1?1 kn, 6”’b
= ka a b = 7@

=igf abcém,j

OO, = ig fk;

o

All free propagators and interaction vertices in phase-space Coulomb gauge. Whenever there is an arrow specifying the

direction of a momentum over a mixed propagator, opposite momenta will give the negative propagator.

Dy; =Dy =0, (A36)
1+11,,)k
D()n — 3 2( + te) n , (A37)
k (1 + Hte) + (1 + Heel +Hee2)ntt
—(1 +1L,,)k
DmO — ( + te) m , (A38)

k(14 10,,) + (1 4 ey + Meeo)TT,

e 1+Heel
Y k(z)(] + Hsel)z + kz(] + Heel) + (1 + Heel)stl

D

kik;

x (8, =5). (A39)
k

_(] + H‘vel)k()
D;, = 2 2 2

ko(l + Hsel) +k (1 + Heel) + (1 + Heel)nssl
kikn

X <5in - 7) 5 <A40)

(1 + Hsel)kO

D, =
’ k(z)(l +Hsel)2+k2(1 +Heel) +(1 +Heel)nssl
K,k
x (5mj —7’) (A41)
_ kZ + Hssl
" k%(l + Hse1)2 + k2(1 + Heel) + (1 + Heel)nssl
kmkn
X (5mn - k2 )
T Hzt kmk,,
(14T )? + (1 4+ Ty + )T, &2
(A42)

We see that the self-energy components that are propor-
tional to k; or k; (i.e., I, Iy, and Il;,,) do not appear at
all, while the ones that are proportional only to k,, or k,

(i.e., I1,, and I1,,,), appear only in D, D,,o, Do,, and D,,,,,.
The reason for this is that every free propagator with a
spatial gluon index i or j is proportional to the transverse
projector &;; — k;k;/ k?, so the self-energy components I1,,,
I,,,, and I1,,, drop out of the geometric series. Since only
the §;; self-energy terms remain in the geometric series for
Djj, Dj,, and D,;, also the resummed propagators are
proportional to the transverse projector. A mixing of
temporal and spatial gluons is still not possible, because
(Dy);o and (Dy),; are zero from the outset and intermediate
electric field contributions like, e.g., (Dg);, 1L (D)o OF
(Dg);,1,0(Dg)oy always involve a contraction of the
transverse projector with the momentum k,,, either from
the self-energy or the (Dy),,, propagator. In the case of the
propagators D, D9, Dy,, and D,,,, there appear terms in
the geometric series without any transverse projectors, so
those propagators also depend on the self-energy terms I1,,
and I1,,,. Also note that, in contrast to the free propagator,
the resummed D,,, contains a part that is not proportional
to the transverse projector, which comes, e.g., from terms
like (Dy),u0Mo0 (Do )on-

5. Expansions of the propagators

In the small coupling case the two energy scales T
and mp ~gT are well separated, so we expand the
propagators accordingly. The Matsubara frequencies are
always of order T and the momentum k can be either of
order T or mp. The self-energy functions are at least of
order ¢?T?, so if k is of order T then the propagators
have to be expanded in the self-energy, which is
equivalent to wusing free propagators instead of
resummed propagators.

If k is of order m, but k is not zero, then the propagators
also have to be expanded in k2 / k2, which leads to scaleless
integrals in most cases (and in all integrals appearing in this
paper). An exception to this are the temporal propagators in
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static and Coulomb gauge, which do not have a k3 term in
the denominator.

If k is of order m, and k is zero, then the leading term of
the self-energy may be of the same order as k> and the
propagator has to be expanded in the next-to-leading terms.
It is known that only the self-energy in the temporal
propagator has a term of order ¢°T?, which is gauge
invariant and given by the square of the Debye mass
m3; see Eq. (2). In Coulomb gauge, the free propagator is
independent of the Matsubara frequencies. The self-energy,
however, is such that it is of order ¢°T? for the zero mode,
while it is of higher order for the other frequencies. The
self-energies in the spatial propagator start at order g*72;
therefore the spatial propagator has to be expanded and we
can use the free one.

It is a straightforward calculation to show that also in the
phase-space Coulomb gauge (PSCG) only I1,, has a term of
order ¢T? and this is again given by m3. All other self-
energies need to be expanded; see Eqs. (A35)—(A42).
Therefore, the spatial and mixed spatial-electric propaga-
tors remain massless, but the electric and mixed temporal-
electric propagators also get massive denominators.

We summarize here the propagators in different gauges
in the leading order expansion for ky = 0 and k ~ mp.

1 _ 0
)
DFG: k*+m7,
5 ]
0

1 0
DSG — ( et > (A44)
0 (o-0-95%)

(A43)

1 ky
Py 0 P
prece— |0 k(s -4 0
(A46)

APPENDIX B: ELECTRIC SCALE
TWO-LOOP INTEGRALS

In this appendix, we will explicitly write down the
integrals and their results for all the two-loop self-energy
diagrams at the scale mp. In order to calculate the integrals
we make use of an algorithm that systematically reduces
the integrals to a handful of master integrals by the method
of integration by parts and then replaces these master
integrals by their known values. More details on this
algorithm can be found in Appendix D.

All relevant diagrams for HS,%,))(O k ~ mp) are shown in
Fig. 1. As explained in Appendix A 5, only temporal gluons
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carry the Debye mass in the propagator, so it makes sense to
visually distinguish between temporal and spatial gluons in
the diagrams. All Matsubara frequencies are assumed to be
zero, which means that a vertex with one temporal gluon
and two spatial gluons or ghosts (if they are required by the
chosen gauge) cannot appear, because it would be propor-
tional to the Matsubara frequencies. This is why there are
no three-gluon vertices with just one temporal gluon in all
the diagrams of Fig. 1. Tadpole diagrams with only spatial
gluons or ghosts are scaleless and therefore have been
omitted in Fig. 1. Fermion propagators do not have zero-
modes, so also light quark loops cannot contribute
to TS (0, k ~ mp).

We will do the calculation explicitly in Feynman,
Coulomb, and phase-space Coulomb gauge. In the case
of the static gauge we will not perform the calculation for a
generic gauge fixing parameter & For £ = 1 and & = O the
calculation is identical to the one in Feynman and Coulomb
gauge, respectively.

The color factors of the two-loop self-energy can be
calculated using the quadratic Casimir of the adjoint
representation and the Jacobi identity:

Tr[Tf;TZ] — (_ifacd)(_ifbdc) — facdfbcd — CA(sab’

(B1)
fabe pecd y gbe pead | feae pebd _ () (B2)

With these we get
facd pdee gegh ghab — (_C,59)(=C,6) = 269, (B3)
facd pdgh ghge pech — _, pacd pdch — (2 5ab  (B4)

facdfcgefdehfhgb — lfacd (fcgefedh + fchefegd)fhgb
2
1 : ce re 1 a
:Efmdfd f ghfhgh :Ecié b (BS)

All color factors are given by these expressions or
combinations thereof. Symmetry factors appear only
when gluons of the same type (temporal or spatial) can
be exchanged, which is the case for L, Lg, Lg, L, and
L5, although in the case of L3, Lg, and L, one symmetry
factor 1/2 is compensated by a factor 2 from the four-
gluon vertices. From the vertices we either get (ig)*,
(ig)*(=g?) or (—g*)?, which is equal to ¢g* in each case. So
no additional signs arise from the vertices, but the ghost
loop gets a minus due to its Grassmann nature. Then we
have

C(L) = CLy) = ~C(Ly) = C(Ls) = ClLig) = 3G,

(B6)
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C(L;) = —C(Lyy) = —C(Ly,) = C3,

ClL) = ~C(Ly) = ~C(Ls) = ~C(Le) = S GG,

1. Feynman gauge

We will call the momenta in the diagrams of Fig. 1 in
such a way that k appears in each temporal gluon
propagator (even in the temporal gluon loops in Lg, L

2 5ij

- pipj + 45

PHYSICAL REVIEW D 93, 034010 (2016)

and L, through a shift of the loop momentum by k),
while the additional loop momenta will be called p and g.
In the denominator only the combinations k + p, k + ¢, and
either k +p + q or p — g can appear. The reason for this
choice is that with this momentum configuration the
integrals are already in the form required by the algorithm
described in Appendix D. We will use the abbreviation
P(k) = k* + m3,. Ls and L are the same up to a relabeling
of the momenta, so we will calculate them together. Then
we have

-q:9;— (p-q)8;; + piq;)(2k; + q;)

|
L =-— CrCig° /// 2T(2k; + pi)(p
4

k,p.q~mp

|

P’

71'23

24 32

o CRCI%(XST
= mp

3
32

3¢ 3 37ET

2k+p

—q)°q°P(k +p)P(k +q)P(k)’

”" s O(e )} (B9)

(2k +p +29)][(2k + q) - 2k +2p + q))

1= -Gl ///

2 3
_ CR CA as
mp

__3
432

e
12 32 256m3

p*q*P(k+p)P(k +q)P(k +p + q)P(k)*

2

T 2

3 U

+ O(e)] , (B10)

Td

3CRC% 40
L3:_RTAQ ///

k.p.g~mp

9

P’p-9q)7

8

P(k + q)P(k)*

27

27 mu?
3 32

—In—-

32 m3

(B11)

YE — + O(e)] :

T(2k +p)- (2k + q)

L= 3CRCig6 ///

kpq~mD
_CRC/iaST 39+
 omp |32

O(e)] .

2P(k +p)P(k +q)P (k)

(B12)

2T(2k +p) - 2k +p +q)

3C,C2 b
Ls+Lg = RAg ///

p.q~mp

3

p

9

_ CRszlaé
a 32¢

mp

27

“TemlEt

2(p—q)*P(k +p)P(k + q)P(k)?

2 2

27
—1 4o
32 m3

(€)1 (B13)

8

T(2k +p)*(2k +p + q)?

L7_

cRc}; ¢ ///

k.p.g~mp

[ 1

P’ -

- CRC%GE’T
= m

9+3
8

q)*P(k +p)*P(k + q)P(k)*

3. mi?
—In o
8 m2 +

€1 (B14)

YE —
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CRC/%g6 2k+p+q)
be = // (0 — 0Pk +p)Pk + Q)P

k.p.g~mp
CRCia';’T 1 3 3. au?
= REAS T In=2 + O(e) |, B15
mp 32 RETR N m T (€) (BL3)
. CRCigﬁ /// T(2k; + p;)(2k; + p;)
’ P(k +p)P(k)?
k.p.g~mp

y (5P25ij - (6-d)p;p; + 2q25ij - (6—4d)q,q; —2(p - q);; + (6 —4d)p;q;)
)P -9
CoC23T 13 1 3 3
= ZREA%L { B P ””2 +O(e )] (B16)

mp 6de 32 64 64

. CRCig6 // T[(2k +p) - (2k +p +2q)]
0 P))2P( k+P) (k+q)P(k +p +q)P(k)?
k.p.g~mp
2 3
:M |:_i+l] 2+O( )]
mp

B1
48 6 (B17)

Ly =

CuCid /// (2K +p) - (~q))[(2k +p) - (P =)
M 0o -arepuc ppwr

CrC2 113 3l
=RNS[ et = O(e) |, (B18)
mp

mp Ghe 32 647F " 64

CRC296 2k+p)
L == // 0?7 P(k +p)Pk + q)P(k)

k.p.q~mp

_ GrGeT [1+ 0@] (B19)

mp 8

We also have to include the contribution from the square of the one-loop self-energy in order to get a gauge invariant
result. This contribution can also be put into the form required by the algorithm:

Cr (M) (0,k))2 CRCigf’ /// T(2k +p)?(2k + q)?
2T Jiom, (K> +md)® 2P (k+p)P(k + q)P(k)?

k.p.g~mp
o CRCiag’T |:

- LR O(e)} : (B20)

The sum of all these terms then gives the O(g’) contribution from the scale mp:

CrC3a3T [89 * 11
D\l s, = ——ASS A% { T —ln2]. (B21)
9 »p mD

48+ 12 12
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2. Coulomb gauge

In Coulomb gauge we have

L=~ CRCE‘96 /// /,,<,, qzzp;f;) P(k + q)P(k)*

Xqukp;:”;(p q)><k kq(p q><1+k (p+q>
(o) o) () (- )

pzqz—(p q)° <k ,_(kep? (k-q)  (k-p)k q)(p q))}

 p-9? P’ 7 p’
CrC2iT 1
= JRoATsT mf; : [g -5t (’)(6)] (B22)

- CRCf‘g6 16T
2= /// *¢*P(k +p)P(k +q)P(k +p + q)P(k)*

kpq~mn
k-p)k-p+p- k-q)k-q+p-
X[k,(kﬂ)_( p)( 4 pq)Hk'(kﬂ))_( q)( a pq)]
P q
CGCET1 3 e
_7’”0 §+Zln2 E+O() (B23)
Saad -0y
Ly = 2
’ 2P k+p+q)P(k)2 2ty
kpq~mp
CCGG&ET[ 9 3 27 27 ahd
R odc 6a Tea’ Tz 0@ (B24)
L= 3CRC§9" /// 4Tk2p2t12—(k-p) —(k-q)’p* +(k-p)k-q)(p-q)]
. (p*)*(q*)*P(k +p)P(k + q)P(k)*
sp.g~mp
CRC23T [15 72
=g o) (B25)

L 3CRCigﬁ /// AT
sTeT 2¢*P(k +p)P(k +p + q)P(k)?

kpq~mn
[kQ_(k-p)z_(k-q)(k~q+p'q)+(k~p)(k-q+p-q)(p-q)
p’ 'S re
_ cRif;aST [—;+7j+ O(e)} (B26)
_ CRC%g6 16Tk2 *—(k-p)llk +p)q* — (k-q+p-q)°]
b /// @)Pk-+ PPk +p+ 0 P
_ 70,355)% {—g + O(e)] , (B27)
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L CRC,%gf’ // 4T((k+q)’p* - (k-p +p - q)°]
S »?) 3Pk+q) (k+p+q)P(k)
p.qg~mp
CrCia3T 1 3 3. mu?
= RA 4y ——In 4+ O(e) |, B28
mp 32¢ T32ETR wmg T () (B28)
cRc // 16T K ) (k-p)2> S, ) Lo
Ly = k" ——= )¢ —(p-q)) )
’ ©*)2(p — 9)*¢*P(k +p)P(k)? P’ p-a7 &
k.p.q~mp
(k -p)(p-q)> ( pzqz—(p-q)zﬂ
+lk-g——LE ) (-1 -—— 222
< p’ P -9)°¢
CRCAT[5 43 15 15 mu?
_SRGasl > D 2+ 0(e)|. B29
my |32 64 327ETm g T () (B29)
Lo CRCig6 // 16T[(k* +k-q)p> = (k-p)(k-p+p -9
. ) 4pk+p>P<k+q>P<k+p+q> (k)?
p.g~mp
CRC33T[ 5 1
= REATST = 4 “n2 B
g T2 0l . (B30)
. _CRCig6 // AT((k - q)p* - (k-p)(p - q)
! »?) “(p q)*¢*P(k +p)P(k)?
k.p.g~mp
CRC3T[1 1 3 3 mu?
— —RZATS = “In—t-+0 B31
mp |64 32 64E+64n + 0], (B31)
L CRCig6 // AT[k*p* — (k- p)]
v (p*)*P(k +p)P(k + q)P(k)?
k.p.g~mp
CrCAa3T [1
= ZREATST 12 4L O(e)|. B32
o g T O) (B32)
The square of the one-loop self-energy from the scale mj gives the contribution
CRgz/ (ITin) (0.K))° CRC,%\96 // 16Tk2 > = (k-p)llk*q* = (k- q)*]
2T Jiomy (K +mB) q°)’P(k +p)P(k + q)P(k)*
kpq~mu
CRT[ 5 o
=AS T 10 B33
ol 2-Hroe)| (833)

and after summing up all these terms, we again obtain the
same result as in Feynman gauge:

D =— =
1|gs,m[) 12

CrCia3T [89 2% 11
mp

R —an} . (B34)

There is a subtlety in Coulomb gauge regarding the
nonzero modes. In Feynman gauge all Matsubara frequen-
cies have to be zero, because otherwise the necessary
expansions of the propagators only lead to scaleless or
higher order contributions. But in Coulomb gauge the

|
frequencies do not appear explicitly in the temporal gluon
or ghost propagators; the only dependence on the frequen-
cies is that the Debye mass appears in the temporal gluon
propagator only for the zero mode. So, in principle, the
propagators do not have to be expanded and there is
nothing preventing also nonzero frequencies to appear in
the Matsubara sums, as long as they do not appear in spatial
gluon propagators.

In most diagrams there is only the zero mode because of
the contour integration, but in diagrams Lg, L, Lq;, and
L, the momentum of the temporal gluon or ghost loop can
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have a nonzero frequency without it entering a spatial gluon
propagator. This poses a problem, because those loops do
not depend on the frequency, so the Matsubara sums
contain an infinite sum over a constant, which is divergent
and not regulated by dimensional regularization.

However, these sums are canceled by a diagram that we
could ignore so far, because it vanishes for the zero mode.
This is the last diagram in Fig. 9 and the Matsubara
frequencies in the numerator from the vertices exactly
cancel the denominator of the spatial gluon after it has been
expanded. Then the sum over all diagrams of Fig. 9 gives
from left to right

4‘]% 44 5ij

) /l iqi
gCAZQS [Z(AD—q)zq2 P-9°¢ (-4

2
90 1 < ‘Mj)]
10 (s - = 0.
P-0*ax\" ¢

We have used the momentum p — ¢ instead of just g in the
tadpole loop so that its cancellation becomes more appar-
ent, and we do not have to consider the higher order
expansion terms of the spatial gluon propagator in the last
diagram, because they only contain scaleless integrals.
So even though each diagram contains a divergent series,
the sum of all four of them is finite, because for each
particular value of the frequency the sum cancels. In static
gauge with £ = 0 this problem does not arise, because the
temporal gluon and ghost propagators vanish for nonzero
frequencies. Since the last diagram of Fig. 9 gives no other
contribution apart from canceling the nonzero-frequency
contributions of the other diagrams in Coulomb gauge, the
corresponding diagram has not been displayed in Fig. 1.

(B35)

— e,

N p
- S
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3. Phase-space Coulomb gauge

In phase-space Coulomb gauge there are less diagram
topologies, because temporal gluons only couple in a three-
gluon vertex. These topologies are shown in Fig. 10. But
because the massive propagators now can be temporal,
electric, or mixed, there are more diagrams in total.
However, it is possible for each diagram topology to
factorize the massive propagators from the spatial gluon
propagators, so that we can sum over all possibilities for the
massive propagators before multiplying them with the
spatial gluons. This sum over all massive propagators is
represented by the double-line propagators in Fig. 10.

We have included the one-particle reducible diagram 1:7
in Fig. 10, which corresponds to the second order expan-
sion of the resummed propagator. In this case the reex-
panded temporal propagator depends on several different
self-energy functions, so it is easier to just calculate this
diagram explicitly.

We will denote the sum over massive propagators by

’"'m’ “(ko, k., ks, ...). The indices m; correspond to the
vector indices at each vertex i, which can then be contracted
with the spatial gluon propagator. The initial momentum of
the series of propagators is k, and the k; are the incoming
momenta at each vertex i. The final and initial indices of the
propagator series are a and S, respectively. We will need
temporal indices for most diagrams, but also mixed indices
for the double line loop in diagram Ls.

We will show the summation over massive propagators
explicitly in one case for illustration and just give the result
for the other relevant cases. Figure 11 shows the double line
propagator with two vertices in terms of temporal, electric,
and mixed propagators. By the phase-space Coulomb
gauge Feynman rules this gives

g N /

FIG. 9. All diagrams relevant for the cancellation of the nonzero modes in the one-loop spatial gluon self-energy in Coulomb gauge.

o

O O
O O

FIG. 10. All two-loop diagram topologies in phase-space Coulomb gauge. The double-line propagators can represent either a
temporal, an electric, or a mixed propagator. Also the diagram with two one-loop bubbles is displayed in the bottom-right corner. We

will label the diagrams L, ..., L; from top left to bottom right.
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Q Q
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FIG. 11.
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BB BB ER EE

Explicit expression for a double line propagator with two vertices in terms of temporal, electric, and mixed propagators.

D" (ko ky.ky) = — Dog (ko + ky +k3) D, (ko + k) Do (ko) + Doo (ko +ky +ky) D, 0(ko + ki) D,y (ko)
+ Doy, (ko + ki + k3) Dy, (ko + k1) Doy (ko) — Doy, (ko + ki + ky) Do (ko + k1) D,y (ko)

. 1 < 3 <k0+k1)m2<k0+kl)ml) 1 1 —(ko + k1), =(ko)m,
 Plkot ki k) \ M P(ky+k) P(ko)  P(ko+ki +ky) Plko+ky) Plko)
(ko + ki + k), (ko + K1) 1 (ko + ki + k), 1 —(ko) m,
P(ko+ k) +ky) P(ko+k;) P(ko) P(ko+k, +ky) Plko+k;) P(ko)
_ 1 ( - _4(k0 +kl)m2(k0)ml> 1 . (B36)
P(ko + ki + k) e P(ky+k,) P (ko)

Here we have used the fact that all vector indices are
contracted with gluon propagators that are proportional to
the transverse propagator, which means that all terms (k;),,,
cancel in the numerator and can be neglected. The different
signs in front of the propagators come from the two color
structure functions in the vertices, which are even or odd
|

2(ko + ki + k2) 1, Oy,

depending on whether the temporal, electric, and spatial
fields are attached with the same ordering or the opposite
one compared to the three-field vertex shown in Fig. 8.

In the same way one can calculate double line propa-
gators with more vertices or different initial and final
indices:

25m3m2 (k())ml

Dggmzms (kO’kl’ kg,k3) = 2

+
(ko + ki +ky +k3)P(ko +ky +ky)P(ko) Pk +ky +ky +k3)P(ko + k)P (ko)
8(ko + ki + ka) (Ko + k1), (Ko)

" P(ko+ky +k + k3)P(ko + ki + ko) P(ko + k1 )P(ko)’

<5m4m3 -

4(ko + k1), (kO)m1> 1
P(

1

Dmlm2m3m4 k ,k ,k ,k ,k _
0 (ko e e e ) P(ky +ky +ky + ks + ky)

1
x —_— —
P(ky +k, + k) < Tt
4(k0 + kl + k2 =+ k3)m46m3m2 (kO)ml

(B37)

d(ko + ky + ky + k3),,, (ko + Ky + k2>m3>
Plko +ky +F, + K3)

P(ky + k) ko)

" Plko+ky +ky+ ks +ky)Plko + ki +ky +ks)P(ko + k) Plkg)

m 1
Dy, (ko. k) =

 P(ko+ky)

(B38)
( 5, 2k (ko),l).

Plko) (B39)

With these we can write the phase-space Coulomb gauge diagrams in a rather compact form:

. CrC34°T
le_%
k.p.g~mp
CRC%ale n?
=2 |-——+0 ,
my |8 22790

/// Df){f(k’P, q-—Dp, _q>Dii’(p)Djj’(q —I’)Dlz’(—‘1>[5i’j’ 2p—q)y + 5/1/(2q —p)y—6m(p+ Cl)j']

(B40)
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- C C ¢°T iji
L,=——f=A " /// D’ ’ (k.p.q.—p.—q)Di(p)D;;(q)

k.p.g~mp
CRCi3T[ 3 15,9 a2 3 9
_ GrGios T 3 n2-—In"2 4+ 0 B41
mp 6dc 64 64" 24+4 64 mD+ ) B
- CrC34°T i
Ly=--R A ///D” (k.p.q.—q.-p)D;(p)D;;(q)
k.p.q~mp
_GGET[ 3 69 9
CrCaosl ) 2 99 I o B42
mp 3¢ 32 32”+6 32 m2+ @] (542
Ly= g6T /// Dgy(k.p.—p)D;y(p)D;y(—p) :
4 PRI T (p - q)%g
k,p.q~mp
1 1 P’e - (p-q)’
x |(p*¢> — (p-q)? <_+7>5i«-/+<d—1—7 qrqy
=) (ot o o=ars )"
CRCA3T[5 43 15 15zl
_ : 4315 N | B43
my  |32¢ 64 327F T3 M T O B
- CrC%4°T /
fs=- 2497 ///  (k.p.—p)Dis (p)D (~p) D (k + 4.9)5 1
k.p.q~mp
CxCi3T[ 1 1 3 1 3.’
_GrGa T 1 n2——In"t 40 B44
mp T2 a3 T3/ T eM T3 M T O] .
6
- gT /// 44y
L D kP,— Du(p) (_p)i
6 T - g2
k.p.q~mp
_GCGET[1 13 3
SRCAGT | L 2 =2+ O(e)|. B45
mp {646 %2 6al TeaM g T O (4)
~ C C296T ii
L,=-=F A /// DI (k.p,—p.q.—q)Dir(p)D,;;(q)
k.p.g~mp
CRC%O(ST 5 7[2
_GrG&T |5 _ _ B46
my |86 O o

We have changed the momenta in the double line loop
of diagram Ls from p+¢q and g to k+p +q and k+ ¢
by a shift of the integration momentum ¢, such that the
integrals are all of the form required by the algorithm of
Appendix D.

We see that the sum of these integrals gives the same
result as in standard Coulomb gauge and in Feynman
gauge. But we can make the correspondence between
phase-space and standard Coulomb gauge even clearer.
The propagator of the electric field [cf. Eq. (A46)] contains
a part that is just a Kronecker delta, which gives exactly
the same contribution as if the electric propagator were

|
contracted to a point and replaced by a four-gluon vertex in
standard Coulomb gauge. The second part of the electric
propagator contains components of the momentum in the
numerator and a massive denominator. This term has the
same form as a corresponding three-gluon vertex in
Coulomb gauge, where the momentum components in
the numerator come from the vertex and not the propagator.
The same applies for mixed temporal-electric propagators.

The correspondence is not one-to-one, for example
diagrams L, and L; both give diagram L in standard
Coulomb gauge when we replace the second and fourth
double-line propagator by a Kronecker delta. But if we look
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at the color coefficients CxC3 /2 of L, and CxC% of L5, we
see that they add up exactly to the color coefficient
3CxC%/2 of L;. So ultimately it is only a matter of
combinatorics to see that phase-space and standard
Coulomb gauge generate exactly the same integrals.

A simpler check of this statement is to compare certain
classes of diagrams between phase-space and standard
Coulomb gauge, which have unique topologies in both
gauge formulations. In our case, L; and Zl are the only
diagrams with a vertex of three spatial gluons, and
diagrams Lg, ..., L5, and Z4, Z6 are the only ones with
a one-loop self-energy in a spatial propagator. So accord-
ingly, we find the equalities

L =Ly, (B47)

Ly+Ly+L;=Ly+Ly+Ly+Ls+Lg+ Ly + Ly,
(B48)

Ly+Ls+Lg=Lg+Lo+Lyg+Ly+Lp, (B49)
where we used L3 to denote the contribution from the
square of the one-loop self-energy at the scale mp.

The cancellation of the nonzero frequency contributions
is a bit simpler in this formulation than in standard
Coulomb gauge. The double-line loop in diagram Ls of
Fig. 10 gives rise to two contributions, one where the loop
contains a temporal and an electric propagator and one
where both propagators are mixed temporal-electric. The
first contribution is unproblematic, since the electric
propagator for nonzero frequencies contains the denomi-
nator g3 + ¢, for which the Matsubara sum is finite. The
second contribution exactly cancels the ghost loop diagram.

APPENDIX C: MAGNETIC SCALE
CANCELLATION AT O(g®)

We will list here all contributions at O(g®) that involve
the scale m,,. At O(g’) those were one-loop diagrams
where the spatial gluon carries a momentum of order m,,;
and the temporal gluon carries a momentum of order mp
(see Sec. III C). At O(g%) it is the same principle: two-loop
diagrams with all propagators carrying momenta of order
mp except for one spatial gluon with a momentum of order
my;. In three-gluon vertices only the momenta of order m,
are to be kept in the numerator.
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FIG. 12. Additional diagrams carrying the scale m,, at O(g%).

We refer again to Fig. 1, which essentially gives all
relevant diagrams for this calculation. In diagrams
Ly,...,L; any of the spatial gluons can be the one that
carries the scale m,,; in diagram Ly it is only the gluons in
the sub-loop. So L; contains three and L,, ..., L;, Ly each
contain two different contributions. In addition, there are
two new diagrams not displayed in Fig. 1, which we give in
Fig. 12. They correspond to the diagrams L, and Ly from
Fig. 1 with the subloop replaced by a tadpole, so we will
include the contributions of the left and right diagram in
Fig. 12 in the following expressions for L; and Lo,
respectively. Diagrams Lg, L;q, and L, do not contribute,
because if the spatial gluons were of the scale m,,, then
these would correspond to the one-loop diagram with a
resummed spatial propagator, which we have already
considered in the O(g’) calculation. Diagram L;; with
one ghost propagator of the scale m,,; does not contribute,
because from the gluon-ghost vertices there is a factor of
the loop momentum squared in the numerator, so this
diagram is of O(g®).

We will do this calculation in Feynman gauge, because
the expressions are somewhat shorter. We will label the
momenta such that k, p ~ mp and g ~ m,,. Since we have
to expand everything in ¢g/mp, we can just ignore ¢ in all
other propagators at leading order. This simplifies the g
integration, which now contains only one propagator:

5ii
/ D(0.q) =1 / Du(0.q).  (C1)
q~ny d g~my

The Kronecker delta can then be used to contract all indices
in the k and p integrations, which can be carried out by the
same methods as in the O(g°) calculation.

The calculation of the different diagrams gives

ne-actt[[ L @

2

2ncRc§a§T/
=———4 > D (0,q),
e i(0.9)

q~ny

2(k*p* — (k- p)?) ) D;;(0.q)
(p*)*P(k +p)*P(k)* d
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2(2k +p)*(k* +k -p) D;;(0.q)
L,=-C czgﬁT// / i
2 kA k,p~mp J g~myy sz(k+p)2P(k)3 d

27 CpC203T
:_l%/Dii((),q),
3 myp

q~my

3 d D;;(0,q)
Ly = —=CrC? 6T// / “
ST REAT T s Soom PPk +P)P(KY?

3 CRC%a2T
:——R+ /Dii(ovq)’
2 mp

gqr~my

30K +k-p) Dy(0.9)
L,=C czgﬁT// / -
¢ kA k,p~mp quMPZP(k +p)P(k)3 d

C.C2a3T
—”RiAas/Dii(OJI)v

2
D
q~ny

32k +p)-(k+p) , 302K +k-p) \Di(0.9)
L+L_cc26T// / ( + =
STRO T EREAT ] ], vy Jaemy \P*PUc+p)? Pk p*P(k+p)P(k)’)  d

CrCialT
:ZﬂRiAfs /Dii(ovq)v

mp,
q~mpy
b--tacsr [[ ] <4<2k+p>2<k+p>2+ W2k +pP  d(2k+p) >D,~,~<o,q>
7T T RS kpemp Jaomy \P*P(k +p)*P(k)*> ~ p*P(k+p)P(k)* p*P(k+p)>P(k)* d

2

52 CpC: T
:_?”Ri/ﬂs /D,»,»(O,q),
mrp,

gqr~my

o 20k%p? — 4(6 — d)(k - p)? — 4(1 — d)(k - p)*p* — (1 — d)(p?)?
L=-—secier [ /( (0> Plk + )P0

_ (@-1)(k+p)? ) D;;(0.9)
(p*)*P(k +p)P(k)*)  d

ncchazT/
—ZZRZATST [ D (0. q).
T ii(0,q)

q~my

From the square of the one-loop self-energy we have

Pk +p)P(k)* p*Pk+p)Pk

Crg [ ) (0. K)TTiy) (0. k) 2 6 42 (2k + p)? d(2k+p)* "\ Dii(0.q)
— = CR CAg T f )3
sp~mp gq~myy

2T (K + m3)? d

k~mp

n'CRCf‘aST/

=———">t D;;(0,q).

9 sz H( q)
q~my

The sum of all these terms gives zero.
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APPENDIX D: AUTOMATIC REDUCTION TO MASTER INTEGRALS

The method of how to solve the three-loop integrals appearing in this calculation has been described in [61]. Minimal
modifications are required in order to account for the Euclidean metric. All integrals can be put in the two following forms:

. . . . . . _ 1
Bulins oo B lo) = / / / ) (0 — a7 (@) Pk +p) Pl + q)"P{k) .

o 1
B i) = | / / 0?)" (@) Pk +p)"Plk + q) Pk +p +q)> Pk)" .

with P(k) = K+ m%). In this framework, the exponents i, ..., i are integers.
By relabeling or shifting the integration variables k, p, and g several identities between the different B, and By can be
established:

By (iy, iy, i3, 14, 05, i) = By (ia, i1, i3, iy, 6. is)
- BM(ifiv il s i2, i6’ i47 15) - BM(if% i2’ il? iS’ i4’ l())

= By (ip. i3, iy, Is. ig, ig) = By (i1, i3, ip. i, s, i), (D3)

By (i, in, i3, iy, is, i) = By(iy, iy, is, i, i3, iy)
= By(iy, i, iy, 13,06, 15) =
= By(ia, 1, 1y, i3, Is, i) =

) pu—

= BN(i21 il7 i3, i47 i()? i5

By (iy. iy, lg. Is. iy, 13)
By (i, iy, s, g, iy, i3)

By (ia, iy, g, s, 13, iy).

In addition, any By with an index is, ..., i zero or negative can be turned into a B,;. The obvious relation is

BN(il’ i2, i3, i4, O, 16) - BM(ll ) 0, in i31 i47 16) (DS)
If i5 is negative, one can expand the numerator after substituting

(k+p+q)?+mp=p"=p - +q" + ((k+p)* +mp) + ((k+g)° +mp) = (K +mp).

|

(D6)

All these terms appear to some power in the denominator,
so they can be canceled to give proper B, integrals. If any
of the other indices i3, ..., ig iS Zero or negative, then one
can use the identities above to shift that to the fifth position
and then use the relation for is < 0.

Other identities can be found by acting with V; - k; on
the integrand, where k; and k; can be any of the three loop
|

momenta. The total expression has to be zero, since it is
an integral over a total derivative, but calculating the
derivative explicitly gives a number of other B, and By
integrals. These new identities include integrals with
changed indices iy, ..., is, while the identities above just
shift them:

(d—=2iy =iy = ig)By iy, ia, i3, i, s, i) = ip By (iy — 1,0y + 1,5, i4, 05, 16) — 3By (i1, iy + 1,05 — 1, iy, is, ig)

(d =iy — i3 = 2i6) By (i1, i, i3, igs is, Is) = =2imp By (i1, ia, i3, 1, is, ig + 1) + iy By (iy + 1, i, i3, g, is, i — 1)

tiyBy(iy = 1, i, i3, ig + 1, is. ig) — iaBas (i1, in. i3, ig + 1, is.ig — 1), (D7)
— i\ Byiy 4 1,ia. i3, ig — 1,is, ig) + isBa (i1, i, i3 + 1, iy, s, ig — 1)
— 03By (iy. ins iz + L ig,is — 1, dg), (D8)
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1, i)

- o
i)+ iy + iy + iy +is + ig —— | By(i1, ia, i3, g, s, i)

o 2 . . . . . . . 2 . . . . . .
= ismpBy(iy, iy, i3 + 1, iy, s, i) + iamp By (i1, iy, 13,1 + 1,5, ig)

+igBy(i1, iy, i3, 04 — 1, is, ig + 1) = igBy (i1, iy — 1,03, ig, is, ig + 1)
= 2iympBy(iy, iy, i3, iy + 1, 05, ig) — 2igmp By (i1, iy, i3, i4, is, i+ 1), (D9)
2
+ i5m§BN(i1, iz, i3, i4, i5 + 1, l6) + l.(,m%)BN(l.], iz, i3, i4, i5, i6 + 1) (DIO)

There are 16 further identities, which can be obtained from
these four by combining them with the index shifts given
above.

By repeated use of these identities every By integral can
be reduced to By(0,0,1,1,1,1) plus a bunch of By,
integrals. In the same way every B, integral can be
reduced to By (0,0,0,1,1,1) plus By, integrals where at
least one of the indices iy, ..., ig is zero or negative, for
which there exists a general solution. So all integrals
appearing in our calculation can be put into the form of
a few master integrals. The needed results for those can be
found in [28,61,62].

APPENDIX E: CALCULATION OF THE
MASTER INTEGRALS

For the sake of completeness, we attach here how the
master integrals, whose results are given in [28,61,62], can
|

(p” +mp)™"

|
be calculated. The simplest one is By(0,0,0,1,1,1),
because in this case all three loop integrations decouple
by shifting p - p —k and ¢ — q — k:

1 3
B,(0,0,0,1,1,1) = =
m( ) (lkz—km%)

For the other B, integrals instead of a closed expression
we will rather give another algorithm for their solution.
We will assume that the zero or negative index is iy,
because if it is i5 or ig instead then one can exchange those
with i, by one of the identities. After also performing the
shift p > p—k and ¢ - ¢ —k we can integrate over p
without problems, because it no longer appears in a massive
denominator:

r(-9y
(4m)%

3d—6
D -

(E1)

(p2 + mZD)—i4xi1—1(1 _ x)iz—l

p*=2xp-k—2(1 —x)p-q+xk* +

<1 _ x)q2)i1+i2

,1

/p<(p—k;)"‘(; :q)z) £<(2>+<Z)>/ /( ?
(i
(i1)

F i —1—12)/
i1)I'(i>)

(p +xk + (1 = x)q)* + m3)"lxh=1(1 — x)2~!

(P + x(1 —x)(k— g} (E2)

Now we have to expand the numerator, which we can do because —i, is a non-negative integer, and then use the identity

/(p 0=

7[ ’.’

:(%/ dp dx _( l—xzp)d

o
/ Pn/ dp . p(pya)"f(pf + p1)

“(xpg)"f(p?)

(E3)

*As a check that our programs are running correctly we have calculated all the integrals given in the appendix of [28] and reproduced

their results.
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if n is even, or O if it is odd. Then the expanded numerator consists only of a sum of powers of p?, m3, and
(xk + (1 — x)q)?, the last of which can be reexpressed as

(xk + (1 =x)g)* = x(K* + m3) —x(1 —x)(k —q)*> + (1 = x)(g* + m3) — m3,. (E4)

The p and x integrations now all have the form

. )ﬂ—1p2y B l"(5 y— 6_21)1"(%1 + },) xxa+y+‘§1—5—1(1 _ x)/)’+y+§—5—1
/ ! / (p? +x - x)(k-q)*) (4r)i0(8)0(9) A ¢ ((k —q)%)%74

_T(e- r=3 OrE+y)T(a+y+4-(B+y+4- 5),23—11 | )

We see that the remaining loop momenta k and ¢ appear only in the combination (k — ¢)? in the denominator, which can
be combined with the term ((k — ¢)?) from the original B, integral. The numerator has already been expressed through
terms appearing in the denominator, which can also be combined so that we have a sum of integrals of the form

1 [1 ((k—q)*)*(k? +1mD) Hq* + mp) ? : jlt(ﬂﬂ) / / / K+ x(1 - x()lq_i);;z/;]*” (q* + mp)"

B ((Z—l—ﬁ—— / (l_x)al——a 1ﬂ3d
(@)@ (B) Jo (1= x)g* +m? )“*ﬂ‘%’( 2 mp)

B I'(a +ﬁ 4 7, _d / / / )a= 1x2—a—1(1 _ y)y—1ya+ﬂ—g—1ﬂ3—d
 (4n)T(a (1 = xy)g? + mip) P12

(a _|_ﬂ + 7/ d / / 1 _ x a lxi_a_l (1 _ y)y—ly(1+/3—%—lﬂ6—2d

— (47[) T(a (1- xy)gmgyrz/przy—zd

(E6)
If we now perform the substitution

(I—y)x 1—x -y
, l1-z= , dz = ——dx, E7
Tloay SENTE) (E7)

= I —xy

where for x from 0 to 1 also z ranges from O to 1 independently of y, then the two Feynman parameter integrations decouple:

1
l/ ((k —q)*)*(K* 4+ mp)’ (> + m})"

_ Ila+p + J/ d) / / (1—z)o! Aol (1 - )a+y—§—1ya+ﬁ—;‘—1ﬂ6—zd
(4ﬂ)dr m%)a+2ﬁ+2y—2d

(a+ﬂ+y d) (€= a)l(a+ f—Hl(a+y - Dut-24
(4m)T (BT (LT 20 + B + 7 — dymyy 272

(E8)

In this way all B,, integrals with a zero or negative index iy, ..., i can be expressed through gamma functions.

The final missing integral By (0,0, 1,1, 1, 1) is more complicated and we are not aware of a solution for general d, so we
will show how to calculate it to O(e®). In fact, it is easier to calculate By (0,0,2, 1, 1,2), because unlike By (0,0,1,1,1,1)
this integral is finite. Through the algorithm described above we get the relation

(3d — 8)(3d — 10)(d — 3)
64(d — 4)m*

(d—=2)T(1 —§)*p?
32(d — 4)(4m)Tm3d=0

By(0,0,2,1,1,2) = By(0,0,1,1,1,1) +
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We see that, because of the coefficient (d —3), in order to get By(0,0,1,1,1,1) to O(e’) we need to calculate
By(0,0,2,1,1,2) to O(e'). After performing the shift p — p — k the p and k integrations are identical:

By(0,0,2,1,1,2) = ///

(k +4)* +mp

/q </ ((k+q)°+

(P q)> + mp)(k* + mp)?

rg-9

%»3)

(4)f

_L <Aldx v (K +x(1 —x)q2+m
(

1 X/l3_d 2
dx 2 2\3-4
0 (x(1 =x)g* + mp)°2

tan~! -
D

0 zqd 1,,3-d 1
:/ dq < 2 2
0 (4x)fT(d) \8amp(q® + 4mj,

6
<1+26—3yE€—|—1n 7}
nmp

. 2

o q

_/ dq T 2.2 232
0 1287*my, (q* + myp)

1 2
:ﬁ@ +2€—3yE€—2ln2€+3ln—
1 my,

From these two results we obtain

By(0,0,1,1,1,1)

2
mp
= ———84+3 4In2 —3In— O
<4n>3( 8t ¥ptdhn2=3h D>+ (©)

(E11)

APPENDIX F: COLOR COEFFICIENTS OF THE
UNCONNECTED THREE-GLUON DIAGRAMS

All unconnected three-gluon diagrams are given in
Fig. 13. The standard color coefficients are labeled C;;
according to the caption, while the coefficients that appear

in the logarithm are called C’,» it

2 2
wr 2m
1 —ype+ lne> +€)
) < mp 27q(q* + 4m3p)

3 8
L ”2€+ "D tan-1 4 6)
q q 2mp

) + O(e?). (E10)

D

The most straightforward prescription to calculate the
coefficients in the logarithm comes from the replica trick
[24,25]. First one attaches an index from 1 to n to each
gluon, where n is some integer, then rearranges each
diagram such that gluons with a higher index are moved
along the Polyakov loop contour to the right of gluons with
a lower index, while gluons with the same index keep their
current configuration. After summing over all combina-
tions of indices one expands in n and takes the coefficient
of the linear term.

Here we have three different possibilities: either all three
gluons have a different index, two have the same but the
third index is different, or all three indices are the same. It is
then only a matter of combinatorics to count the number of
possible index combinations. For three different indices
there are n(n — 1)(n — 2) possibilities, while when all three
are the same there are n. When only two are the same there

FIG. 13.
the column in which the diagram is listed.

All unconnected three-gluon diagrams. The corresponding color coefficients are labeled C;

where i denotes the row and j

ijs
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are n(n — 1) index combinations and 3 ways to choose the
one gluon that has a different index. Rearranging the gluons
according to their index number always gives C;, = C3 for
three different indices and the standard (i.e., QCD) color
coefficient when all indices are the same. When only two
are the same, then in half of the index combinations the
single index will be smaller then the double index and
|

3 2 1
Cy =Gy, e :CR(CR_ECA)a
1

Cp= C%e (CR _ECA>’ Cyp =Cy (CR
C3 = Cy.

2 1
Cuy= CR<CR _ECA>7

1

Cis = C}, Cos :C%Q(CR_ECA)v

Then we can calculate the coefficients in the logarithm:

611 = nCll + 37’1(1’1 - I)Cll + I’l(l’l bl 1)(1’1 bl 2)C11

Ci3 = nCiz +2n(n = 1)Cyy +n(n = 1)Cy3 + n(n = 1)(n =2)Cy

1 2
e
2 A
1
Cxs = Ci(Cr=5Ca ) (Ck = Ca).

1 2
Cyy = Cy <CR _ECA> ,

PHYSICAL REVIEW D 93, 034010 (2016)

larger for the other half, but in both cases the color
coefficient is the same, so we do not have to differentiate
between them. The 3 different ways to choose the single
index gluon may or may not give different color coef-
ficients after rearranging the gluons according to their
indices.

The standard color factors are

C31 - C??’

1
Cy = C%e (CR - ECA)v

1 2
Ci3 =Cy (CR _ECA) ,
2 1
Gy = Cy (CR - ECA)a

Css = G (F1)

614 = I’lC|4 + n(n - I)Cll + n(n - I)Clz + n(n - 1)C13

+ n(n - 1)(” - Z)C”
O(n)

Cis = nCis +n(n—1)Cyy +2n(n = 1)Cy3 + n(n = 1)(n = 2)Cy

=0, (F2)
O(n)
=0, (F3)
O(n)
=0, (F4)
O(n)
:Cll —Clz—C]3+C14:O, (FS)

O(n)
=C;—2C;3+Ci5=0, (F6)
621 :}’ZCZ] —|—2n(n— I)CH +n(n—1)C21 —I—n(n— 1)(”-2)C]] —O, (F7)

O(n)
Cy = nCy 4 2n(n —1)Cyy 4+ n(n—1)Cyy + n(n —1)(n —2)Cy,
O(n)
1
=Cp—-2C, +Cy = ZCRC,%V (F8)
Co3 = nCoy +3n(n—1)Cyy +n(n—1)(n - 2)Crilow
1

== C23 —_ 3C21 + 2C1] == ECRC"ZA, (F9)
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Cay = nCoy +2n(n = 1)Cyy + n(n = 1)C3; + n(n = 1)(n - 2)Crilow)

1
=Cypy —2Cy —C3 +2C; = ZCRC,%V

(F10)

Cys = nCys +n(n—1)Cyy + 2n(n = 1)Cs; + n(n = 1)(n - 2)Ciilow)

= Cys — Cy —2C5 +2C; =0,

Cs31 = nCy; +2n(n—1)Cyy +n(n—1)Csy +n(n—1)(n - 2)Ciilom =0,

(F11)

(F12)

Cy =nCyy+n(n—1)Cyy +n(n=1)Cyy +n(n—1)C3; +n(n—1)(n - 2)Crilow)

=C3 —Cy —C3 +C; =0,

(F13)

C33 = nCs3+2n(n—1)Cyy +n(n—1)Cy; + n(n - 1)(n - 2)Ciilogw)

= C33—2Cy — C3; +2Cy; =

CrC3,

(F14)

Cs4 = nCyy +n(n—1)Cyy +2n(n = 1)C3; + n(n —1)(n — 2)Crilow

= C34 — Cy; —2C3; +2C; =0,

(F15)

Css = nCss +3n(n— 1)Cs3 +n(n—1)(n - 2)Crilow)

= C35 - 3C31 + 2C11 - 0

Here we see the general property confirmed that only
two-particle irreducible diagrams appear in the logarithm.
This means that the color coefficient in the logarithm
vanishes for any diagram where one can cut the (closed)
Polyakov loop contour in two points such that there are no
gluons connecting from one segment of the contour to the
other. These are the so-called two-particle reducible
diagrams, the diagrams where this is not possible are
called two-particle irreducible. Here the considerable
reduction in the number of diagrams is even more
apparent than in the two-gluon diagrams: out of 15

(F16)

|
unconnected three-gluon diagrams only 4 survive in the
logarithm.

We also see that all higher power terms of C, are canceled;
only the linear term remains and only the two-particle
irreducible diagrams have a linear term. This is in accordance
with the theorem shown in [25] that the color coefficients in the
logarithm all correspond to those of fully connected diagrams.
The coefficients of fully connected diagrams depend only

linearly on Cy or the C;"). So the only terms that can break

Casimir scaling come from the C 5;”; see Eq. (47).
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