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We calculate the next-to-next-to-leading correction to the expectation value of the Polyakov loop or
equivalently to the free energy of a static charge. This correction is of order g5. We show that up to this order
the free energy of the static charge is proportional to the quadratic Casimir operator of the corresponding
representation. We also compare our perturbative result with the most recent lattice results in SU(3) gauge
theory.
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I. INTRODUCTION

The Polyakov loop is an order parameter for deconfine-
ment in pure SU(N) gauge theories at nonzero temperature
T. It is defined as

L ¼ 1

dR
Tr
D
P exp

h
ig
Z

1=T

0

dτA0ðτ; xÞ
iE

; ð1Þ

where P denotes path ordering of the exponential of the
zero component of the gauge field A0 integrated along the
compactified imaginary time direction, and g is the cou-
pling constant. Here we have defined the Polyakov loop in
a general representation R of SU(N), so the gauge fields are
understood as matrices in this representation R, and dR is
the dimension of this representation. The thermal expect-
ation value of a single Polyakov loop is invariant under
translations, so we can choose it to be at the origin in the
following.
The nonzero expectation value of the Polyakov loop

above some temperature indicates the onset of color
screening and thus deconfinement [1]. Early lattice studies
of the Polyakov loop and its correlators were instrumental
in establishing the existence of a deconfinement transition
in non-Abelian gauge theories from first principle calcu-
lations [2,3]. The physical interpretation of the logarithm
of the Polyakov loop expectation value is the free energy
of a static quark FQ=T ¼ − lnL (see, e.g., discussions in
Ref. [3]). The free energy of a static quark in a gluonic
plasma is finite due to color screening but becomes infinite
below the phase transition temperature Tc.
While in the presence of nf > 0 flavors of light quarks

the Polyakov loop is no longer an order parameter for
deconfinement [4]; its value at sufficiently high temper-
atures is still a measure of the screening properties of the
deconfined medium. It is easy to see that at leading
nontrivial order the Polyakov loop expectation value is

L ¼ 1þ CRαsmD=2T, or equivalently FQ ¼ −CRαsmD=2,
where CR is the quadratic Casimir of the representation R.
The Debye mass mD is given by

m2
D ¼ CA þ TFnf

3
g2T2; ð2Þ

where CA ¼ 2TFN is the quadratic Casimir of the
adjoint representation and TF is the normalization
constant of the fundamental representation, for which
usually the value 1=2 is taken. The next-to-leading-
order (NLO) contribution to the Polyakov loop is of
Oðg4Þ. The first calculation of the NLO contribution
was performed long ago [5]. However, several years
later, it was shown that this calculation was not correct
and the correct NLO contribution was calculated inde-
pendently by two groups [6,7].
The Polyakov loop has been studied in lattice QCD

both in SU(N) gauge theories [8–11] and in the physically
relevant case of 2þ 1 flavor QCD [12–19]. For the
understanding of the screening properties of the deconfined
medium it is important to connect lattice calculations
with perturbative calculations at high temperatures and
to see to what extent these calculations agree. In this
perspective it is important to compute next-to-next-to-
leading order (NNLO) corrections, which will considerably
reduce the uncertainties of the NLO result by fixing the
scale dependence of the coupling constant at leading order.
The computation of the Polyakov loop at NNLO accuracy
is the purpose of the present work.
One feature of the lattice results on the Polyakov loop is

Casimir scaling [11]. One outcome of our analysis is that
Casimir scaling holds up to Oðg7Þ. This is important for
understanding the lattice results for the Polyakov loops in
higher representations [11,20,21].
The rest of the paper is organized as follows. In the

next section we outline our strategy for the perturbative
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calculation to Oðg5Þ and discuss the power counting. The
calculation of the necessary loop integrals is presented in
Sec. III, which also contains the main result of the paper. In
Sec. IV, we comment on the higher order perturbative terms
discussing Casimir scaling and outlining the Oðg6Þ calcu-
lation. In Sec. V, we compare the perturbative Oðg5Þ result
with available lattice results. Finally, Sec. VI contains our
conclusions. Several technical details of the calculations are
presented in appendices.

II. OUTLINE OF THE PERTURBATIVE
CALCULATION

In this section, we will outline the perturbative
calculation of the Polyakov loop. We will perform

calculations directly in QCD as well as using the
effective field theory approach. The direct calculation
of the NNLO correction to the Polyakov loop is rather
involved and its details will be discussed in the next
section. On the other hand, as we will see, the
calculation that relies on the effective field theory
approach is rather simple, because we can draw on
previous results.

A. The structure of the perturbative series

The following way of defining the path ordered
exponential is particularly suited for perturbative
expansions:

L ¼ 1

dR
Tr

�
P exp

�
ig
Z

1=T

0

dτA0ðτ; 0Þ
��

¼
X∞
n¼0

ðigÞn
Z

1=T

0

dτ1

Z
τ1

0

dτ2 � � �
Z

τn−1

0

dτn
1

dR
TrhA0ðτ1; 0ÞA0ðτ2; 0Þ � � �A0ðτn; 0Þi: ð3Þ

The Feynman diagrams for the Polyakov loop can then be
drawn as a straight line from 0 to 1=T in the imaginary time
direction to which n gluons are attached. The line repre-
sents the contour integrations over the gauge fields. In the
gauges we are going to use for this calculation, where the
gluon propagator is diagonal in color space, it is possible to
split each diagram into a color coefficient and a loop
integral. The color coefficient contains the trace over the
color matrices from the gauge fields and any structure
constants coming from interaction vertices as well as
symmetry factors, while the loop integral contains the

integrations over Euclidean time, spatial momenta, etc., as
well as the propagators and the Lorentz structures.1

It has been shown in [22,23] that the perturbative series
for any closed Wilson line can be rearranged such that it
takes the form of an exponential of a series over the same
diagrams but with altered color coefficients, several of
which are zero. This result has been generalized in
[24,25] for the exponentiation of any Wilson line operator
(for an application in the context of heavy quarks in
thermal QCD, see [26,27]). In the case of the Polyakov
loop we have

ð4Þ

where we have written the color coefficients explicitly. CR
and CA are the quadratic Casimirs of the representation of
the Polyakov loop and the adjoint representation respec-
tively. The gluon propagators are understood as resummed.

The dots represent diagrams with three or more gluons,
which are at leastOðg6Þ and therefore beyond our accuracy.
There is also a diagram with three propagators connected
by a three-gluon vertex, which would be Oðg4Þ at leading
order, but since a three-gluon vertex with only temporal
indices vanishes, this diagram gives no contribution in all
gauges where the propagator is block diagonal in the
temporal and spatial components, so it has been neglected
in the expression above. We note that the free energy of the
static charge corresponding to the above expression is
proportional to CR. This property is known as Casimir
scaling.

1Since three- and four-gluon vertices contain a sum over
several terms, it may be necessary for some diagrams to split each
term separately into color coefficient and loop integral. This is not
required for any diagram appearing in this paper; only in the case
of tadpoles there appear two terms from the vertex, but they give
the same contribution, so we just include a factor 2 in the color
coefficient.
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First, we perform the integral over the Euclidean time in the expression for D1 and D2 to get

D1 ¼ CRðigÞ2
Z

1=T

0

dτ1

Z
τ1

0

dτ2
XZ
K

eik0ðτ1−τ2ÞD00ðKÞ ¼ −
CRg2

2T

Z
k
D00ð0; kÞ; ð5Þ

D2 ¼ −
1

2
CRCAðigÞ4

Z
1=T

0

dτ1

Z
τ1

0

dτ2

Z
τ2

0

dτ3

Z
τ3

0

dτ4
XZ
K;Q

eik0ðτ1−τ3Þeiq0ðτ2−τ4ÞD00ðKÞD00ðQÞ

¼ −
CRCAg4

4T

Z
k;q

�
1

12T
D00ð0; kÞD00ð0; qÞ −

X
k0

0 1

k20
D00ðKÞð2D00ð0; qÞ −D00ðk0; qÞÞ

�
; ð6Þ

whereK andQ include both the spatial momenta k and q and the Matsubara frequencies k0 and q0, which are given by 2πTn
with n ∈ Z. We use boldface letters to denote vectors in d dimensions and regular font letters for the absolute value, so
k2 ¼ k2. The sum-integral symbols are a shorthand for the Matsubara sums and the d-dimensional integrals, which are
defined in the following way:

XZ
K

fðk0; kÞ ¼
X
k0

Z
k
fðk0; kÞ ¼ T

X
n∈Z

Z
ddk
ð2πÞd fð2πTn; kÞ: ð7Þ

The sum with a prime denotes a Matsubara sum without the
zero mode, i.e., n ≠ 0. Up to this point the discussion is
independent of the choice of gauge for the perturbative
calculations. In this paper we will use Feynman gauge, static
gauge, and Coulomb gauge. In Appendix A, we discuss the
gluon propagators and self-energies in these gauges.
The integration momenta k and q can either be of the

order of the temperature scale T or of the scale of the Debye
mass mD. In principle, they may also scale with the
nonperturbative magnetic mass mM. The magnetic mass

enters the temporal propagators not directly but only
through self-energies. Hence, as we will show at the end
of this section, momentum regions scaling with mM

contribute only to Oðg7Þ. We use dimensional regulariza-
tion to treat both infrared and ultraviolet divergences. In
this regularization scheme the different momentum scales
can be separated by expanding the integrand according to
the hierarchy T ≫ mD ≫ mM.
We start consideringD1. Separating out the contributions

from the scales T, mD, and mM we write

D1 ¼ −
CRg2

2T

Z
k

1

k2 þ Πð0; kÞ

¼ −
CRg2

2T

�Z
k∼T

−Πð1Þ
T ð0; kÞ
k4

þ
Z
k∼mD

�
1

k2 þm2
D
−

Πð1Þ
mDð0; kÞ

ðk2 þm2
DÞ2

þ Πð1Þ
mDð0; kÞ2

ðk2 þm2
DÞ3

−
1

ðk2 þm2
DÞ2
�
dΠð1Þ

T

dk2
ð0; 0Þk2 þ Πð2Þ

T ð0; 0Þ þ Πð2Þ
mDð0; kÞ þ Πð1Þ

mMð0; kÞ
��	

þOðg6Þ: ð8Þ

Here ΠðiÞ
T , ΠðiÞ

mD , and ΠðiÞ
mM denote the contributions to the

self-energy of the A0 field at i-loop order coming from loop
momenta of order T, mD, and mM. There can also be self-
energies where the loop momenta are not all of the same
scale, but these do not contribute until Oðg6Þ. The self-
energies entering the above equation depend on the choice

of gauge. The terms proportional to Πð1Þ
T and Πð1Þ

mD , together
with tree-level D2, give rise to the knownOðg4Þ term in the
expression of the Polyakov loop [6,7]. The 2-loop scale T

contribution to the self-energy Πð2Þ
T as well as the

dΠð1Þ
T

dk2 ð0; 0Þk2 term give rise to terms of Oðg5Þ, some of

which have been identified in Ref. [7] and are related to the
running of the coupling constant. The terms proportional to

Πð2Þ
mD and ðΠð1Þ

mDÞ2 are new and also contribute atOðg5Þ to the
Polyakov loop. In Sec. III, we will discuss the calculation
of these terms in detail. Finally, the term proportional to

Πð1Þ
mM does not contribute to the Polyakov loop atOðg5Þ and

Oðg6Þ. This will also be shown in Sec. III.
Concerning D2, it is easy to see that the leading order

contribution of the first term in Eq. (6) in any gauge comes

only from the scale mD and is of Oðg6Þ, which is beyond
the accuracy of this calculation. It was already identified in
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Ref. [7]. The second and third terms in Eq. (6) do not
contribute in static gauge because D00ðKÞ vanishes for
nonzero k0. In Coulomb gauge the second term starts to
contribute atOðg7Þ and the third atOðg8Þ, since the leading
order propagators with nonzero Matsubara frequencies are
scaleless and need at least one loop insertion to not vanish.
In Feynman gauge the second term in Eq. (6) contributes
already at Oðg5Þ for k ∼ T and q ∼mD, while the third
starts to contribute at Oðg4Þ when both momenta are of the
scale T. There is noOðg5Þ contribution from the third term,
since the scale mD can only enter Feynman gauge propa-
gators with nonzero frequencies through loops, which
would at least be of Oðg7Þ.
In summary we see that the Oðg5Þ contribution to the

Polyakov loop receives two different contributions. The
first comes from terms with mixed scales like the two-loop
self-energy at a scale mD with loop momenta of order T or
two-gluon exchange. The second comes from the two-loop
self energy with loop momenta of ordermD. In the effective
field theory approach that will be discussed in the next
subsection these two contributions correspond to two
different steps of the calculation: the determination of
the matching coefficients and the calculation of the corre-
lators in the effective theory, respectively.

B. The Polyakov loop in an effective
field theory approach

The separation between the scales T andmD that was used
in the calculation of the previous section can be incorporated
in an effective theory, the so-called electrostatic QCD
(EQCD) [28,29] (for earlier and related works on this
subject see Refs. [30–46]). In EQCD the scale T is integrated
out, which includes all fields with nonzero Matsubara
frequencies. This means that quark fields are completely
absent and the gluons do not depend on the imaginary time
coordinate. So EQCD is a three-dimensional field theory
where A0 no longer plays the role of a gauge field, but
becomes an adjoint scalar field. As a consequence, a mass
term for A0 does not break gauge invariance in EQCD.
The contribution from the nonperturbative magnetic

scale mM can also be calculated in this effective field
theory approach. Namely if mD ≫ mM the scale mD can
also be integrated out leading to an effective field theory
called magnetostatic QCD (MQCD), which is the three-
dimensional Yang-Mills theory [28]. Using this sequence
of effective theories the weak coupling expansion of the
QCD pressure has been calculated [28] finding a solution to
the well-known infrared problem [47].
The imaginary time integration in the EQCD action just

gives a factor 1=T, since the fields no longer depend on the
imaginary time coordinate. This factor can be absorbed in a
rescaling of the fields and gauge coupling by a factor

ffiffiffiffi
T

p
(denoted by a tilde over the fields). The Lagrangian is then
given by

LEQCD ¼ 1

4
ð ~Fa

ijÞ2 þ
1

2
ð ~Dab

i
~Ab
0Þ2 þ

m2
E

2
ð ~Aa

0Þ2

þ λEðTr½ ~A2
0�Þ2 þ λ̄E

�
Tr½ ~A4

0�−
1

2
ðTr½ ~A2

0�Þ2
�
þ � � � ;

ð9Þ

where ~Fa
ij ¼ ∂i

~Aa
j − ∂j

~Ab
i þ gEfabc ~A

b
i
~Ac
j , ~D

ab
i
~Ab
0 ¼ ∂i

~Aa
0þ

gEfabc ~A
b
i
~Ac
0, and the dots stand for higher dimensional

operators. The fields ~A0 and ~Ai in the above Lagrangian
have canonical dimension 1=2. The gauge coupling gE
of EQCD is dimensionful. At leading order we have
gE ¼ g

ffiffiffiffi
T

p
, mE ¼ mD, λE ¼ ð6þ N − nfÞg4T=24π2, and

λ̄E ¼ ðN − nfÞg4T=12π2 (see, e.g., [29]). The second
quartic interaction is a vanishing operator for N ¼ 2 or
N ¼ 3, so any result can only depend on λ̄E for N > 3. The
couplings gE, λE, and λ̄E have been calculated to next-to-
leading order (NLO) [29]. The three-dimensional gauge
coupling gE is known to next-to-next-to-leading order [48].
The NLO correction to m2

E has been calculated in Ref. [28]

m2
E ¼ m2

D

�
1þ αs

4π

�
5

3
CA þ 4

3
TFnfð1 − 4 ln 2Þ

þ 2β0

�
γE þ ln

μ

4πT

���
− 2CFTFnfα2sT2; ð10Þ

where CF ¼ TFðN2 − 1Þ=N is the quadratic Casimir of the
fundamental representation. Here and in the rest of this
section we express all matching parameters in terms of the
renormalized coupling. Thus the pole that appears with the
first coefficient of the beta function β0 ¼ 11CA=3 −
4TFnf=3 has already been canceled. The relation between
the bare coupling g and the renormalized coupling gR at one
loop in the MS scheme is

g2 ¼ g2R

�
1 −

αsβ0
4π

�
1

ϵ
− γE þ ln 4π

�
þ � � �

�
; ð11Þ

where ϵ is related to the number of spatial dimensions d
through d ¼ 3 − 2ϵ.
In EQCD we can write the Polyakov loop in the

following way [6]:

L ¼ Z0 − Z2

g2

2dRT
Trh ~A2

0i þ Z4

g4

24dRT2
Trh ~A4

0i þ � � � :

ð12Þ

The matching coefficients Zn are equal to 1 at leading
order; at higher orders they can be written as an expansion
in αs, i.e., only in even powers of g. In the power counting
of EQCD, every power of ~A0 counts as

ffiffiffiffiffiffi
gT

p
, so the term

proportional to Z4 starts to contribute at Oðg6Þ. In EQCD
only the scales mD and mM are still dynamical, which
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means that no loop momenta of order T appear in the
evaluation of the Feynman diagrams. The contributions of
such loops are contained in higher order corrections to the
matching coefficients Zn and the EQCD parameters.
For the determination of Z0 and Z2 from QCD it is

convenient to use the static gauge. In this gauge we can
write

L ¼ 1 −
g2

2dRT2
TrhA2

0i þ
g4

24dRT4
TrhA4

0i þ � � � : ð13Þ

Now we can separate each contribution into a static and a
nonstatic piece, i.e., we can write

hA2
0i ¼ hA2

0is þ hA2
0ins: ð14Þ

The notation h…ins means that there appear only loop
momenta of order T in the evaluation of the corresponding
Feynman diagrams, which corresponds to a strict pertur-
bative expansion in g without any resummation of self-
energies. The notation h…is then means that some or all
loop momenta are of order mD or mM. The corresponding
Matsubara frequencies have to be zero, hence the name
“static”. We can write down a similar decomposition
for TrhA4

0i.
The sum over all nonstatic pieces exactly gives Z0. Since

in static gauge the scale T can enter the temporal propagators
only through loops, the nonstatic part of the A4

0 contribution
will contribute first atOðα4s Þ. The leading order result for the
A2
0 piece can be found in Ref. [7] and gives

Z0¼1þCRα
2
s

2

�
CA

�
1

2ϵ
þ1−γEþ ln

πμ2

T2

�
−2TFnf ln2

�
þOðα3sÞ: ð15Þ

The pole in ϵ is not related to charge renormalization, but
corresponds to an infrared divergence in the nonstatic part

that cancels against an ultraviolet divergence in the static
piece, or equivalently in the EQCD calculation.
The sum over the static pieces then contains all con-

tributions from the scalesmD andmM and thus corresponds
to the EQCD representation of the Polyakov loop without
the unit operator. Up to Oðg5Þ it is sufficient to consider
only the quadratic terms, i.e., hA2

0is ¼ Z2h ~A2
0i. The two

gauge fields in hA2
0is themselves can carry either momenta

k ≪ T or k ∼ T; however, in the latter case they only start to
contribute to the static piece at three-loop order. The first
loop from the two gauge fields in the correlator is scaleless,
so another loop is needed to introduce the scale T and a
third one to include the scale mD in order to be counted
towards the static piece. This corresponds to diagrams like
L10 and L12 in Fig. 1 when only the tadpole or the subloop
momentum is of order mD and the two other momenta are
of order T. The two scale T integrations give a contribution
of Oðα2s Þ to Z2 and only one propagator with a momentum
of order mD remains, which corresponds to the leading
order of h ~A2

0i.
In the former case we can relate the QCD field A0 toffiffiffiffiffi
Z2

p
~A0 in EQCD, where the wave function normalization

constant Z2 can be obtained from the small momentum
expansion of the propagator:

DQCD
00 ðk ≪ TÞ ¼ Z2D

EQCD
00 ðkÞ þ � � � : ð16Þ

The dots stand for higher powers in the small k2 expansion,
which correspond to higher order two-point interactions in
EQCD. From this expression it follows that

Z2 ¼
�
1þ dΠT

dk2
ðk2 ¼ 0Þ

�
−1
; ð17Þ

and with the result from [7] we have up to corrections of
Oðα2s Þ

FIG. 1. All Feynman diagrams contributing to Πð2Þ
mDð0; k ∼mDÞ. Dashed lines represent temporal gluons, curly lines spatial gluons,

and dotted lines with arrows are ghost propagators. The diagrams are labeled L1;…; L12 from top-left to bottom-right. L7;…; L12 are
self-energy insertions into one-loop diagrams, while L1;…; L6 are new two-loop configurations.
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Z2 ¼ Z2 ¼ 1þ αs
4π

�
11

3
CA þ 4

3
TFnfð1 − 4 ln 2Þ

þ 2β0

�
γE þ ln

μ

4πT

��
: ð18Þ

Now that we have determined the matching coefficients
to the desired order, we can write the weak coupling
expansion for h ~A2

0i as

1

dR
Trh ~A2

0i ¼ −
CRmE

4π

�
1þ a1

g2E
mE

þ a2
g4E
m2

E

þ a3
g6E
m3

E
þ a4

λE
mE

þ � � �
�
; ð19Þ

using simple dimensional analysis. In the above expression
we explicitly wrote down all the terms contributing up to
Oðg6Þ and ignored the magnetic mass scale mM. We will
return to the contribution from the scale mM later.
In Eq. (19) the terms proportional to ai come from the i-

loop self-energy of the ~A0 field. The coefficient a1 is known
[6,7]. We are primarily interested in the NNLO, i.e., Oðg5Þ
contribution to L. It is evident from Eqs. (10), (18), and (19)
that the mixed scale contributions from the previous section
come from the OðαsÞ corrections to Z2 and m2

E, while
the pure scale mD term comes from the two-loop self-
energy contribution contained in the coefficient a2. One
can perform a similar analysis for h ~A4

0i and see that it
contributes at orders α2sm2

E, α
3
smE, etc. It is also easy to

generalize the analysis for h ~A2n
0 i, n ≥ 3, and see that these

terms do not contribute at Oðg5Þ.
The only remaining task is now to calculate the coef-

ficient a2. This can be done using the EQCD calculation of
the pressure [28]

p ¼ −T
�
fE þ fM −

1

V
lnZMQCD

�
: ð20Þ

Here we use the same notation as in Ref. [28], i.e., fE
denotes the contribution from the scale T, fM denotes the
contribution from the scale mD, and ZMQCD is the partition
function of MQCD, which is completely nonperturbative.
Ignoring the contribution from MQCD it is easy to see that
since

fM ¼ −
1

V
ln
Z

D ~Aa
0D ~Aa

i exp

�
−
Z

d3xLEQCD

�
; ð21Þ

it follows that

1

dR
Trh ~A2

0i ¼
CR

N2 − 1
h ~Aa

0
~Aa
0i ¼

2CR

N2 − 1

∂fM
∂m2

E
: ð22Þ

Using the expression for fM from [28] we get

1

dR
Trh ~A2

0i ¼ −
CRmE

4π
þ CRCAg2E

ð4πÞ2
�
1

2ϵ
þ 1

2
− γE þ ln

πμ2

m2
E

�

þ 2CRC2
A

ð4πÞ3
g4E
mE

�
89

48
−
11

12
ln 2þ π2

12

�
þOðg4Þ:

ð23Þ

The first term corresponds to the well-known leading
order result. The second term is identical to theOðg4Þ static
contribution to hA2

0i (cf. Eq. (44) of Ref. [7]). The 1=ϵ pole
in this term is exactly the ultraviolet divergence that cancels
against the infrared pole in the nonstatic contribution to
hA2

0i [7]. The scale dependence cancels in the same way.
The last term gives the coefficient a2 we are interested in.
We still need to calculate the Oðg5Þ contribution arising

from the OðαsÞ corrections to mE and Z2 times the leading
order result for Trh ~A2

0i ¼ −CRmD=4π. Using Eqs. (10)
and (18) we find that this Oðg5Þ contribution is

3CRα
2
smD

16πT

�
3CAþ

4

3
TFnfð1–4ln2Þþ2β0

�
γEþ ln

μ

4πT

��

−
CRCFnfTFα

2
sT

2mD
: ð24Þ

With this result and Eq. (23) we find theOðg5Þ contribution
to the Polyakov loop

Ljg5 ¼
3CRα

2
smD

16πT

�
3CA þ 4

3
TFnfð1–4 ln 2Þ

þ 2β0

�
γE þ ln

μ

4πT

��

−
CRC2

Aα
3
sT

mD

�
89

48
−
11

12
ln 2þ π2

12

�

−
CRCFnfTFα

3
sT

2mD
: ð25Þ

The above equation is the main result of this paper. In the
next section we will obtain this result via direct calculations
in QCD.
The contribution from the scale mM to h ~A2

0i, which we
have neglected so far, can be calculated using MQCD, the
effective theory obtained from EQCD by integrating out
the electric scale mE ∼mD. The only scale in MQCD is the
dimensionful coupling constant gM ∼ ffiffiffiffiffiffiffi

mM
p

, which is given
at leading order as gM ¼ gE. Since in this theory we have
only the three-dimensional gauge fields, we write

L ¼ ZM
0 þ ZM

1

2m3
D
h ~Fa

ij
~Fa
ijiMQCD þ � � � : ð26Þ

The matching constant ZM
0 contains the contributions to L

from the scales T and mD, so ZM
0 ¼ L up to Oðg5Þ. The
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matching constant ZM
1 has been calculated in Ref. [49] for

the fundamental representation. We have repeated that
calculation, but allowed for general representations; the
result is

ZM
1 ¼ CRCAα

2
sπ

12ðN2 − 1Þ þOðg5Þ; ð27Þ

and for CR ¼ CF one obtains the expression from [49].
Since h ~Fa

ij
~Fa
iji ∼m3

M ∼ g6M, we see that the contribution
from the magnetic scale first appears atOðg7Þ. Through the
explicit calculations presented in Sec. III and Appendix C
we will see that the magnetic contributions at Oðg5Þ and
Oðg6Þ indeed vanish.
The Oðg7Þ contribution to the Polyakov loop can be

obtained using lattice calculations in MQCD. However, for
interesting temperature ranges the separation of the scales
mD andmM is not obvious. Therefore, it is more practical to
calculate h ~A2

0i using lattice calculations in EQCD. Such
lattice calculations have been performed with the aim to
estimate the QCD pressure using the EQCD approach in
Ref. [50]. We will use this lattice EQCD result when
comparing the weak coupling expansion of the Polyakov
loop with lattice results in QCD in Sec. V.

III. CALCULATION OF THE Oðg5Þ CORRECTION
TO THE POLYAKOV LOOP

In this section we will present the calculations of the
Oðg5Þ contribution to the Polyakov loop directly in QCD.
From the discussion in the previous section it is clear that
the diagrams that contribute at Oðg5Þ always have at least
one momentum integral of order mD, while the self-energy
contributions may arise from the scales T, mD, or mM. In
what follows wewill refer to them as contributions from the
scale T, mD, or mM, even though all the loop diagrams also
involve the scale mD. We will perform the calculations in
Coulomb gauge and in Feynman gauge. The contribution
from the diagram D2 is only relevant in Feynman gauge. It
involves one integral over the scale mD and another sum-
integral over the scale T, so we will refer to it as a part of the
contribution from the scale T.

A. Contribution from the scale T

All self-energies relevant for the contribution from the
scale T in Feynman gauge are known and can be found in
Ref. [28] (they use a slightly different convention for the
MS-scheme, which can be converted into our convention
by replacing the renormalization scale Λ2 in their expres-
sions by 4πe−γEμ2):

Πð1Þ
T ð0;0Þ≡m2

DðϵÞ¼
g2T2

3

�
ðCAþTFnFÞþCA

�
−γEþ2

ζ0ð−1Þ
ζð−1Þ þ ln

μ2

4πT2

�
ϵþTFnf

�
1−γEþ2

ζ0ð−1Þ
ζð−1Þ þ ln

μ2

16πT2

�
ϵ

�
;

ð28Þ

dΠð1Þ
T

dk2
ð0; 0Þ ¼ −

g2

ð4πÞ2
�
5

3
CA

�
1

ϵ
−
1

5
þ γE þ ln

μ2

4πT2

�
−
4

3
TFnf

�
1

ϵ
− 1þ γE þ ln

4μ2

πT2

��
; ð29Þ

Πð2Þ
T ð0; 0Þ ¼ g4T2

ð4πÞ2
�
2

3
C2
A

�
1

ϵ
þ 1þ 2

ζ0ð−1Þ
ζð−1Þ þ 2 ln

μ2

4πT2

�
þ 2

3
CATFnf

�
1

ϵ
þ 2þ 2

ζ0ð−1Þ
ζð−1Þ þ 2 ln

μ2

8πT2

�
− 2CFTFnF

�

¼ g2

ð4πÞ2
�
2CAm2

DðϵÞ
�
1

ϵ
þ 1þ γE þ ln

μ2

4πT2

�
− 2g2T2CFTFnf

�
: ð30Þ

In the last line we have reexpressed some terms through m2
DðϵÞ, i.e., the leading order Debye mass with OðϵÞ corrections.

This will be crucial for the cancellation of the 1=ϵ-poles. The OðϵÞ terms of m2
DðϵÞ are necessary at this point.

With these we can calculate the first scale T contribution from diagram D1 at Oðg5Þ in Feynman gauge (FG):

D1jFGg5;T ¼ CRg2

2T

Z
k∼mD

1

ðk2 þm2
DÞ2
�
dΠð1Þ

T

dk2
ð0; 0Þk2 þ Πð2Þ

T ð0; 0Þ
�

¼ 3CRα
2
smDðϵÞ

16πT

�
7

3
CA

�
1

ϵ
þ 23

21
þ 2 ln

μ2

2TmD

�
−
4

3
TFnf

�
1

ϵ
þ 1

3
þ 2 ln

2μ2

TmD

��
−
CRCFTFnfα3sT

2mD
: ð31Þ

The scale T contribution from D2 is given by

D2jFGg5;T ¼ CRCAg4

2T

X
q0

0
Z
q∼T

Z
k∼mD

1

q20ðq20 þ q2Þðk2 þm2
DÞ

¼ CRCAα
2
smDðϵÞ

4πT

�
1

ϵ
þ 4þ 2 ln

μ2

2TmD

�
; ð32Þ
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and together they give

ðD1 þD2ÞjFGg5;T ¼ −
CRCFTFnfα3sT

2mD
þ 3CRα

2
smDðϵÞ

16πT

�
11

3
CA

�
1

ϵ
þ 71

33
þ 2 ln

μ2

2TmD

�
−
4

3
TFnf

�
1

ϵ
þ 1

3
þ 2 ln

2μ2

TmD

��
:

ð33Þ

We see now that the coefficient of the 1=ϵ-terms is proportional to the first coefficient of the beta function
β0 ¼ 11CA=3 − 4TFnf=3. This suggests that they are removed through charge renormalization, which is indeed the
case. The first counterterm comes from charge renormalization of the Oðg3Þ term. We need to be careful with the ϵ → 0
limit, so we will keep the dimension d general until the last step:

D1jg3 ¼ −
CRg2

2T

Z
k∼mD

1

k2 þm2
D
¼ −

CRg2Γð1 − d
2
Þmd−2

D μ2ϵ

2ð4πÞd2T

⟶
g0→gR −

CRg2Γð1 − d
2
Þmd−2

D ðϵÞμ2ϵ
2ð4πÞd2T

�
1 −

d
2

αsβ0
4π

�
1

ϵ
− γE þ ln 4π

�
þOðα2s Þ

�
: ð34Þ

The factor d=2 comes from the power of αs: g2md−2
D ∝ α

d
2
s. Including the counterterm for the charge renormalization we get

the full contribution from the scale T:

ðD1 þD2Þjg5;T ¼ 3CRα
2
smD

16πT

�
3CA þ 4

3
TFnfð1 − 4 ln 2Þ þ 2β0

�
γE þ ln

μ

4πT

��
−
CRCFTFnfα3sT

2mD
: ð35Þ

We no longer indicate Feynman gauge in this final result for
the scale T contribution, because it is gauge invariant.
The corresponding calculation goes the same way for

both Coulomb (CG) and static gauge (SG). D2 is scaleless
at Oðg5Þ, so only D1 contributes. It has been shown in [28]
that the electric mass parametermE of EQCD is given up to
Oðα2s Þ by

m2
E ¼ Πð1Þ

T ð0; 0Þ þ Πð2Þ
T ð0; 0Þ − Πð1Þ

T ð0; 0Þ dΠ
ð1Þ
T

dk2
ð0; 0Þ:

ð36Þ

Since mE is a gauge invariant parameter, we can eliminate

Πð2Þ
T ð0; 0Þ in Coulomb or static gauge from this equation

and express it through the Feynman gauge results and
dΠð1Þ

T
dk2 ð0; 0Þ, which is the same for Coulomb and static gauge
and can be found, e.g., in [7]:

dΠð1Þ
T

dk2
ð0; 0Þ ¼ −

g2

ð4πÞ2
�
11

3
CA þ 4

3
TFnfð1–4 ln 2Þ

þ β0

�
1

ϵ
þ γE þ ln

μ2

4πT2

��
: ð37Þ

With this we have

Πð2Þ
T jCG=SG

¼
�
Πð2Þ

T −m2
DðϵÞ

dΠð1Þ
T

dk2

�����FG þm2
DðϵÞ

dΠð1Þ
T

dk2

����CG=SG

¼ −
2g2

ð4πÞ2 ðCAm2
D þ g2T2CFTFnfÞ: ð38Þ

The contributions from the scale T are now

D1jCG=SGg5;T
¼ CRg2

2T

Z
k∼mD

1

k2 þm2
D

�
dΠð1Þ

dk2
ð0; 0Þ þ Πð2Þð0; 0Þ

�

¼ 3CRα
2
smDðϵÞ

16πT

�
71

9
CA −

4

9
TFnfð1þ 12 ln 2Þ þ β0

�
1

ϵ
þ 2 ln

μ2

2TmD

��
−
CRCFTFnfα3sT

2mD
: ð39Þ

This is the same result that we got in Feynman gauge fromD1 þD2, so including the counter term we obtain the same scale
T contribution in Coulomb and static gauge:

BERWEIN, BRAMBILLA, PETRECZKY, and VAIRO PHYSICAL REVIEW D 93, 034010 (2016)

034010-8



ðD1 þD2Þjg5;T ¼ 3CRα
2
smD

16πT

�
3CA þ 4

3
TFnfð1–4 ln 2Þ þ 2β0

�
γE þ ln

μ

4πT

��
−
CRCFTFnfα3sT

2mD
: ð40Þ

B. Contribution from the scale mD

The contribution from the scale mD consists of the two-
loop self-energy and the square of the one-loop self-energy.
It corresponds to the full g4E contribution of h ~A2

0i in EQCD.
The relevant diagrams for the two-loop self-energy are
given in Fig. 1. The contribution from the square of the
one-loop self-energy is not displayed, it corresponds to two
one-loop insertions into the temporal gluon propagator.
Together they also give a gauge invariant result:

D1jg5;mD
¼ −

CRg2

2T

Z
k∼mD

�
−

Πð2Þ
mDð0; kÞ

ðk2 þm2
DÞ2

þ Πð1Þ
mDð0; kÞ2

ðk2 þm2
DÞ3
�

¼ −
CRC2

Aα
3
sT

mD

�
89

48
þ π2

12
−
11

12
ln 2

�
: ð41Þ

The calculation itself is quite involved, so we will not go
into further details here. We use the method of integration
by parts to reduce the three-loop integrals corresponding to
each diagram down to a handful of known master integrals.
A list of all integrals and their results in different gauges is
given in Appendix B.

C. Contribution from the scale mM

Finally, we have to consider the contribution from the
scale mM. The temporal gluon momentum k cannot be of
order mM, because then the propagator would have to be
expanded in 1=m2

D and the k integration would be scaleless.
But the loop momenta in the self-energy diagrams may be
of ordermM and such diagrams start to contribute atOðg5Þ.
However, by the arguments from EQCD and MQCD in the
previous section we expect the scale mM to enter the
Polyakov loop only at Oðg7Þ, so the Oðg5Þ contributions
have to vanish, which is indeed the case.
There are two diagrams at this order (cf. Fig. 2); both

have one spatial gluon that carries the momentum of order
mM. The first is the diagram, where the spatial gluon
connects at two three-gluon vertices, and the second is the
tadpole diagram, where the spatial gluon connects at a four-
gluon vertex. From the three-gluon vertices there comes a

factor ð2kþ qÞið2kþ qÞj, where k is the momentum of
order mD and q is of order mM, but only 4kikj needs to be
kept, because the rest is of higher order. According to the
power counting, each power of q in the numerator adds a
power of g to the result, while terms with odd powers of
the momenta in the numerator vanish. So the first higher
order contributions (i.e., the terms quadratic in q) are of
Oðg7Þ. For the same reason, we only have to expand the
propagator of the temporal gluon with momentum kþ q in
the left diagram of Fig. 2 to leading order in q. Then we
have

D1jg5;mM
¼ CRg2

2T

Z
k∼mD

Πð1Þ
mMð0; kÞ

ðk2 þm2
DÞ2

¼ CRCAg4

2

Z
q∼mM

Dijð0; qÞ

×
Z
k∼mD

�
δij

ðk2 þm2
DÞ2

−
4kikj

ðk2 þm2
DÞ3
�

¼ CRCAg4

2

Z
q∼mM

Diið0; qÞ
Γð2 − d

2
Þ

ð4πÞd2m4−d
D

×

�
1 −

4Γð1þ d
2
Þ

dΓð3ÞΓðd
2
Þ
�
¼ 0: ð42Þ

Also the Oðg6Þ contributions from the scale mM need to
vanish. These are the two-loop self-energy diagrams with
one loop momentum of order mM. We have also checked
their cancellation explicitly; the details of this are given in
Appendix C.

D. Result

Now we have all contributions to the Polyakov loop at
Oðg5Þ:

lnL ¼ CRαsmD

2T
þ CRα

2
s

2

�
CA

�
1

2
þ ln

m2
D

T2

�
− 2TFnf ln 2

�

þ 3CRα
2
smD

16πT

�
3CA þ 4

3
TFnfð1–4 ln 2Þ

þ 2β0

�
γE þ ln

μ

4πT

��
−
CRCFTFnfα3sT

2mD

−
CRC2

Aα
3
sT

mD

�
89

48
þ π2

12
−
11

12
ln 2

�
þOðg6Þ: ð43Þ

The second and third lines contain the contribution from the
scale T and the last line the contribution from the scalemD.

FIG. 2. All Oðg5Þ diagrams that can give a contribution from
the scale mM. The bubble stands for the resummed propagator.
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IV. HIGHER ORDER CONTRIBUTIONS

A. Casimir scaling

It is known from lattice calculations that the logarithm of
the Polyakov loop obeys Casimir scaling, at least approx-
imately [11,20,21]. Casimir scaling is observed by any
quantity, in our case the free energy FQ of a static charge in
representation R, if it is proportional to the quadratic
Casimir operator CR of that representation. In other words,
FQ=CR should be independent of the representation R.
A necessary condition for the breaking of Casimir

scaling is the appearance of a term not proportional to
CR. A term like that was identified for L − 1 in Ref. [7] at
Oðg6Þ. The term is

δhLi ¼ 1

2

�
CRαsmD

2T

�
2

: ð44Þ

This term, however, does not break the Casimir scaling of
the free energy FQ, since it is nothing else than the second
order term in the expansion of expð−FQ=TÞ, when FQ is
taken at leading order. In fact, this term does not appear in
FQ. Note that the exponentiation formula given in (4)
provides a way of calculating FQ directly. It is then clear
that at the level of two-gluon diagrams there is no breaking
of Casimir scaling. Hence, we may ask, to which order of
the perturbative series can Casimir scaling be observed?
There are several equivalent prescriptions on how the

color coefficients in the logarithm of a closed Wilson
line can be determined. It will not be necessary here to go
into details on how they are calculated exactly (see
Appendix F); it is sufficient to know that for so-called
connected diagrams, where every gluon is connected to
every other gluon through gluon, ghost, or light quark
propagators, the standard color factor and the one in the
logarithm are the same.
At the three-gluon level we have several unconnected

diagrams (cf. Fig. 13) and a few connected diagrams. By
three-gluon diagrams we mean diagrams that correspond to
three sum-integrals. We exclude sum-integrals from self-
energy or vertex-function insertions from this definition,
because if the corresponding tree-level diagram obeys
Casimir scaling then also any self-energy or vertex-function
insertion does.
The unconnected three-gluon diagrams are all scaleless

in Coulomb or static gauge unless each gluon carries a
momentum of order mD, which means that they start to
contribute at Oðg9Þ. We will see below that Casimir scaling
is already broken at a lower order, so we can ignore the

unconnected three-gluon diagrams in Coulomb gauge on
the basis of this argument. In other gauges these diagrams
contribute at Oðg6Þ, but, as we will show in Appendix F,
their color coefficients obey Casimir scaling.
The connected three-gluon diagrams are shown in Fig. 3.

Their color factors are all given by−CRC2
A=4, except for the

second from left where it is 0. All of these depend linearly
on CR, so at the three-gluon level Casimir scaling is still
observed.
In general, the color factor of any diagram without light

quarks is given as the trace over a product of color matrices
in the respective representation divided by the dimension of
the representation, where every color index is contracted
with that of another color matrix or a structure constant
from the interaction vertices. By repeated use of the
commutation relation, the Jacobi identity or the quadratic
Casimir

½Ta
R; T

b
R� ¼ ifabcTc

R;

fabefecd þ fbcefead þ fbdefeca ¼ 0; ð45Þ

Ta
RT

a
R ¼ CR1; facdfbcd ¼ CAδ

ab; ð46Þ

one can express every such color factor as a combination of
the following terms

CðnÞ
R ¼ fi1a1i2fi2a2i3 � � � finani1 1

dR
Tr½Ta1

R Ta2
R � � �Tan

R � ð47Þ

and CR or CA.

Cð1Þ
R is trivially zero and Cð2Þ

R and Cð3Þ
R can be calculated

independently of the representation:

Cð2Þ
R ¼ −CRCA; Cð3Þ

R ¼ −
i
4
CRC2

A: ð48Þ

But starting from Cð4Þ
R there is no longer a simple unique

formula like Eq. (48) valid for all representations. For the
fundamental and the adjoint representation one can replace
every structure constant by color matrices and then use the

Fierz identity to calculate the CðnÞ
R explicitly:

fabc ¼ 1

iTF
Tr½Ta

F½Tb
F; T

c
F��; ð49Þ

ðTa
FÞijðTa

FÞkl ¼ TF

�
δilδkj −

1

N
δijδkl

�
: ð50Þ

FIG. 3. Connected three-gluon diagrams.
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Note that Ta
F with a color index denotes the generators of

the fundamental representation, while TF without a color
index denotes the normalization constant of the fundamen-
tal representation. The two are related by

Tr½Ta
FT

b
F� ¼ TFδ

ab; or Ta
F ¼

ffiffiffiffiffiffi
TF

2

r
λa; ð51Þ

where λa are the Gell-Mann matrices.
In this way we obtain

Cð4Þ
F ¼ 1

8
CFC2

Að3CA − 4CFÞ;

Cð4Þ
A ¼ 1

8
C3
Að13CA − 24CFÞ; ð52Þ

or alternatively

Cð4Þ
F

Cð4Þ
A

¼ CF

CA

N2 þ 2

N2 þ 12
: ð53Þ

If we can find a diagram whose color coefficient is given by

Cð4Þ
R , then we have found a Casimir scaling breaking term.

Such a diagram can appear only atOðg8Þ or higher, because
in the Feynman rules of QCD every color matrix and
structure constant comes with a factor of g. Figure 4 shows

some similar diagrams where the dependence on Cð4Þ
R is

immediately apparent. The diagram on the left has the

color coefficient Cð4Þ
R exactly and the other two have

Cð4Þ
R þ CRC3

A=8, because in both cases two color matrices

have to be commuted to get the form of Cð4Þ
R and the

commutator gives iCð3Þ
R CA=2.

If we add up the contributions proportional to Cð4Þ
R from

all three diagrams, then the contour integrations simplify a
lot and we get Kronecker deltas for the Matsubara
frequencies of each of the four gluon propagators attached
to the Polyakov loop contour times a coefficient of 1=8T4.
One of these four Kronecker deltas is redundant and the
Matsubara frequency in the internal loop (the square in the
left diagram, or the twisted square in the other two
diagrams) remains different from zero. So the momentum
integrals are not scaleless, because the scale T remains in
the calculation, and we have a possible genuine non-
vanishing contribution at Oðg8Þ that breaks Casimir
scaling.

There are other diagrams similar to these three, which
can be obtained from Fig. 4 by contracting one or two
propagators in the internal loop to a four-gluon vertex.

Their color coefficients also involve Cð4Þ
R , so they will give

other terms of Oðg8Þ that break Casimir scaling. In
principle, light quark loops can also give rise to color
factors that break Casimir scaling. If such a light quark loop
has two or three external gluon legs, then it can be included
as a contribution to the self-energy or the vertex function
and it will not affect Casimir scaling. With four or more
external legs the color factor is no longer proportional to the
quadratic Casimir, which can be checked in a similar
calculation to the one above replacing the internal gluons
in Fig. 4 with light quark propagators, but such diagrams
also start to contribute at Oðg8Þ.
One could in principle imagine that all those terms

cancel and only Casimir scaled terms remain, but that
would imply some underlying mechanism that enforces
Casimir scaling to all orders of perturbation theory. Such a
mechanism, if it exists, has not been discovered so far. The
approximate Casimir scaling observed in lattice calcula-
tions may be explained by the strong suppression of the
Oðg8Þ contributions that possibly violate Casimir scaling.

B. Outline of the Oðg6Þ calculation
We will outline here the necessary steps for the calcu-

lation of the Oðg6Þ contributions, the last order accessible
by perturbation theory. The amount of work one has to do is
greatly reduced by choosing the appropriate gauge. As
explained above, all the unconnected three-gluon diagrams
(see Fig. 13) are scaleless at leading order and start to
contribute only at Oðg9Þ in Coulomb or static gauge. In
Feynman gauge, however, the six diagrams of Fig. 13
whose modified color coefficients in the logarithm of the
Polyakov loop do not vanish all contribute atOðg6Þ, so this
is not the most efficient gauge to perform this calculation.
There are also unconnected three-gluon diagrams con-

sisting of only two unconnected pieces, a single gluon and a
piece of three propagators connected by a three-gluon
vertex. These are not displayed in Fig. 13, because in
gauges that are diagonal in temporal and spatial indices
they vanish on account of the three-gluon vertex with three
temporal indices, just like the corresponding two gluon
diagram, but in nondiagonal gauges they also have to be
considered.
The connected diagrams of Fig. 3 can only contribute at

Oðg6Þ when all momenta are of the scale T; the scale mD
contributions are of higher order. However, in Coulomb or

FIG. 4. Diagrams at Oðg8Þ with a color coefficient Cð4Þ
R .

POLYAKOV LOOP AT NEXT-TO-NEXT-TO LEADING ORDER PHYSICAL REVIEW D 93, 034010 (2016)

034010-11



static gauge all of them vanish. The first three diagrams are
essentially the same gluonic configuration, but with differ-
ent path ordering prescriptions along the Polyakov loop
contour, so we will only discuss the leftmost diagram;
the others are analogous (apart from the second having a
vanishing color coefficient). In static gauge all Matsubara
frequencies have to be zero because of the temporal
propagators, so the integrals are scaleless and vanish. In
Coulomb gauge the Matsubara frequencies are not neces-
sarily all zero, but the integrand vanishes by itself: Call k
the momentum flowing from the first to the last point on the
Polyakov loop contour, p the momentum flowing from the
first to the second point, and q the momentum flowing from
the third to the fourth point. The results of the p and q
integrations can only be proportional to k because of
rotational symmetry, where each vector comes from the
three-gluon vertices. But these vectors k are then contracted
with the transverse projector from the spatial propagator,
which gives zero.
In the second diagram from the right in Fig. 3 the

Matsubara frequencies of the propagators connecting to the
Polyakov loop contour have to be zero. In static gauge this
is again a consequence of the temporal propagator, while in
Coulomb gauge it follows after computing the contour
integrations (this involves some convenient momentum
shifts). There is no constraint on the frequency from the
loop momentum that flows around the gluon triangle, but
through the three-gluon vertices it appears to either linear or
cubic power in the numerator, so the remaining Matsubara

sum is odd and cancels. The same is true if the gluon
triangle is replaced by a fermion loop. The rightmost
diagram in Fig. 3 vanishes because of the four-gluon vertex
in all gauges where the gluon propagator is diagonal in
temporal and spatial indices.
The two-gluon diagram D2 has already been discussed

above; only the first term in Eq. (6) contributes in Coulomb
or static gauge at Oðg6Þ. It gives a contribution of
−CRCAα

2
sm2

D=48T
2 when both momenta are of the scale

mD. When one or both momenta are of the scale T, then the
first nonvanishing contribution is of Oðg7Þ or Oðg8Þ,
respectively.
The Oðg6Þ contribution from diagram D1 contains

several different elements: the three-loop self-energy with
all momenta of order mD, products of one-loop and two-
loop self-energies [essentially the last line of Eq. (8) times

Πð1Þ
mDðkÞ=ðk2 þm2

DÞ] or the one-loop self-energy cubed
from the expansion of the resummed propagator, the
two-loop self-energy at the scale mD with one loop
momentum of order T and the other of order mD, and
the two-loop or square of one-loop self-energy with all
momenta of order T.
Fortunately, most of these contributions can be inferred

in the EFT approach from an already existing EQCD
calculation. As explained previously [see Eq. (22)], the
correlator of two ~A0 fields in EQCD can be obtained from
the pressure or vacuum energy density, which has been
calculated at the four-loop level in [51]. From this we get

1

dR
Trh ~A2

0is ¼ −
CRmE

4π
þ CRCAg2E

ð4πÞ2
�
1

2ϵ
þ 1

2
− γE þ ln

πμ2

m2
E

�
þ 2CRC2

A

ð4πÞ3
g4E
mE

�
89

48
−
11

12
ln 2þ π2

12

�

þ 2CRT2
FðN2 þ 1ÞλE
ð4πÞ2 þ CRT2

Fλ̄E
ð4πÞ2

�
4N2 − 6

N
− N2 − 1

�
þ CRC3

Ag
6
E

ð4πÞ4m2
E

�
43

4
−
491π2

768

�
þOðg5Þ: ð54Þ

If we now insert the explicit expression for λE and λ̄E in terms of g and the one-loop corrections to gE,mE, and Z2, then we
have almost the full Oðg6Þ contribution to the logarithm of the Polyakov loop. The only thing that is missing is the
contribution from D2 given above and the two-loop and square of one-loop self-energy contributions with all momenta of
order T in Coulomb or static gauge.
The one-loop correction to the EQCD coupling constant is given by [29]

g2E ¼ g2T

�
1þ αs

4π

�
1

3
CA −

16

3
TFnf ln 2þ β0

�
1

ϵ
þ γE þ ln

μ2

4πT2

��	
: ð55Þ

Because of the 1=ϵ pole in the g2E term in Eq. (54) we also need the OðϵÞ terms of both g2E [48] and Z2:

g2EjOðϵÞ ¼
g4Tϵ
ð4πÞ2

�
β0

�
1

2

�
γE þ ln

μ2

4πT2

�
2

þ π2

4
− 2γ2E − 4γ1

�
þ
�
1

3
CA −

16

3
TFnf ln2

��
γE þ ln

μ2

4πT2

�
−
16

3
TFnfðln2Þ2

�
;

ð56Þ
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Z2jOðϵÞ ¼
αsϵ

4π

�
β0

�
1

2

�
γE þ ln

μ2

4πT2

�
2

þ π2

4
− 2γ2E − 4γ1

�
þ
�
11

3
CA þ 4

3
TFnfð1 − 4 ln 2Þ

��
γE þ ln

μ2

4πT2

�

þ 23

3
CA −

16

3
TFnfðln 2Þ2

�
: ð57Þ

Here γ1 is the coefficient of the linear term in the expansion of ζð1 − xÞ for small x. Combining all these terms and inserting
the renormalized coupling, we then have

lnLjOðg6Þ ¼ −
CRα

3
s

8π

�
β0CA

�
1

2

�
γE þ ln

μ2

4πT2

�
2

þ π2

4
− 2γ2E − 4γ1

�
þ CA

�
2CA þ 2

3
TFnfð1 − 8 ln 2Þ

��
γE þ ln

μ2

4πT2

�

þ 8C2
A þ 2

3
CATFnfð1þ 4 ln 2 − 8ðln 2Þ2Þ þ 8CFTFnf þ CA

�
4CA þ 4

3
TFnfð1 − 8 ln 2Þ

þ 4β0

�
γE þ ln

μ

4πT

���
1

2ϵ
− γE þ ln

πμ2

m2
D

��
−
CRCAα

4
sT2

m2
D

�
C2
A

�
43

8
−
491π2

1536

�
þ CFTFnf

�
−
CRCAα

2
sm2

D

48T2

−
CRg2

2T

Z
k∼T

1

k6

��
Πð1Þ

T ð0; kÞ þ β0αs
4π

�
1

ϵ
− γE þ ln 4π

�
k2
�

2

− k2Πð2Þ
T ð0; kÞ

�
: ð58Þ

The first 1=ϵ pole, a UV divergence from the scale mD, has
to cancel against a corresponding IR divergence in the scale
T integrals. The 1=ϵ pole in the last line comes from the
charge renormalization in the MS scheme of the Oðg4Þ
contribution from the scale T, i.e., the first term in Eq. (8),
and it cancels the UV divergence in the one-loop vacuum
part of the self-energy.
There are also Oðg6Þ contributions from two-loop dia-

grams with two momenta of order mD and one momentum
of order mM. From the MQCD analysis of the Polyakov
loop we know that the scale mM can only appear first at
Oðg7Þ, so these contributions ultimately have to cancel. We
have checked this cancellation explicitly in Appendix C.

V. CONVERGENCE OF THE PERTURBATIVE
SERIES AND COMPARISON WITH

THE LATTICE RESULTS

In this section, we discuss the convergence of the
perturbative series for the Polyakov loop, or equivalently
the free energy of a static quark, and compare the weak
coupling results with lattice QCD results. For a reliable
comparison of the lattice and the weak coupling results we
need to consider a temperature range that extends to
sufficiently high temperatures. So far, it is only in pure
SU(3) gauge theory, i.e., in QCD with zero light quark
flavors (nf ¼ 0), that we have lattice results at sufficiently
high temperatures to perform such a comparison. Namely,
the renormalized Polyakov loop has been calculated up to
temperatures of 24Tc [20], with Tc being the deconfine-
ment transition temperature.
In Fig. 5 we show the perturbative results for the free

energy of a static quark at various orders in perturbation
theory for pure SU(3) gauge theory (nf ¼ 0). We use

one-loop running for αs. To determine the renormalization
scale for different values of T=Tc we used the relation
r0Tc ¼ 0.7498ð50Þ [52], where r0 is the Sommer scale
[53]. The value of ΛMS was determined in Ref. [54]:
r0ΛMS ¼ 0.637þ0.032

−0.030 . With this we get Tc=ΛMS ¼ 1.177.
One can see that the scale dependence of the leading order
(LO) results is quite large and becomes even larger at NLO.
The scale dependence of FQ is first reduced at NNLO and
is, in fact, quite small, making a meaningful comparison
with the lattice results possible. In Fig. 5 we also show the
lattice results for the static quark free energy for nf ¼ 0

from Ref. [20]. The lattice results appear to agree with the

FIG. 5. The free energy of a static quark FQ for the SU(3) gauge
theory in weak coupling expansion at LO, NLO and NNLO. The
bands are obtained by varying the renormalization scale μ
between πT and 6πT. Also shown are the lattice data for FQ

obtained on lattices with temporal extent Nτ ¼ 4 and 8 [20].
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LO and NLO results, given their large scale uncertainty, but
are slightly larger than the NNLO results at small T.
We should keep in mind, however, that the comparison

of the lattice and the perturbative results for FQ is not as
straightforward as Fig. 5 may suggest. This fact seems to be
generally overlooked in the literature. The perturbative
calculations are performed in the MS scheme, while on the
lattice the calculation is performed in a scheme in which the
static quark-antiquark energy at zero temperature is nor-
malized such that it is equal to the string potential VðrÞ ¼
−π=ð12rÞ þ σr at large distances, with σ being the string
tension. To match the two schemes one has to normalize
the static energy at zero temperature in the perturbative
calculation at each order to the lattice potential at short
distances. This then corresponds to a constant shift Cshift in
physical units of the perturbative static energy, which is
different at different orders of perturbation theory.
This matching has been carried out for both nf ¼ 0 [54]

and nf ¼ 3 [55]. The shift of the static energy implies that
one has to add Cshift=2 to the perturbative result for FQ

before the comparison with the lattice results can be made.
However, Cshift is sensitive to the perturbative order, to the
resummation of the logarithms associated with the running
coupling constant, as well as to the ultrasoft scale (see, e.g.,
discussions in Ref. [56]). Thus, the uncertainty in the
determination of Cshift will be the dominant systematic
uncertainty in the comparison of the weak coupling and
lattice calculations for FQ. For this reason we did not add
Cshift in the comparison of the lattice and the perturbative
result for FQ in Fig. 5.
We can avoid this problem by calculating the entropy of

the static quark defined as

SQ ¼ −
∂FQðTÞ

∂T : ð59Þ

In this quantity the normalization constant Cshift drops out.
In perturbation theory it is straightforward to calculate
the entropy of a static quark by taking the temperature
derivative of Eq. (43) times T. In order to calculate the
entropy of a static quark on the lattice, we use the lattice
data on the renormalized Polyakov loop obtained on Nτ ¼
4 lattices in Ref. [20]. We interpolate these data using
different smoothing splines and calculate the derivatives of
the splines using the R package [57]. The statistical errors
of the interpolation and the derivative were calculated using
the bootstrap method. Furthermore, we considered different
spline interpolations, varying the number of knots and the
value of the smoothing parameter. We enlarged the stat-
istical error to take into account the difference between the
different splines, if those were outside the statistical error.
In this way we obtained the total error for the entropy in
lattice QCD.
In Fig. 6 we compare the entropy of a static quark

estimated in lattice QCD and in the weak coupling

calculations. As in the case of the static quark free energy,
the scale dependence of the LO and NLO results is quite
large. Within this large scale uncertainty the perturbative
calculations and the lattice data agree. The scale depend-
ence of the NNLO result is much smaller. The NNLO
result, however, lies below the lattice data. This implies that
higher order corrections in the weak coupling expansion
may still be important. In view of this, below we discuss
some higher order terms in the weak coupling expansion of
the static quark free energy and have a closer look on the
convergence of the perturbative series.
As discussed above, in the weak coupling expansion we

have three types of contributions, purely nonstatic, i.e.,
arising from the scale T, purely static contributions
corresponding to the scales mD and mM, which can be
calculated within EQCD, and mixed contributions, where
some loop momenta are of order mD or mM and others are
of order T. Here we will discuss the latter two types of
contributions, referring to them as EQCD type and mixed
type contributions, respectively. Together they have been
called the static contribution in the previous sections, but
here we want to distinguish between them.
The EQCD type contributions arise from the weak

coupling expansion of Trh ~A2
0i with the expansion param-

eter CAg2E=ð4πmEÞ [cf. Eq. (54)], using only the leading
order results for the matching parameters Z2, gE, and mE
and neglecting quartic or higher order interactions. Beyond
four-loop order the condensate Trh ~A2

0i contains a non-
perturbative contribution of order g8E=m

3
E, which was

calculated using lattice simulations of EQCD [50].
Furthermore, in Ref. [50] a simple parametrization of those
higher order contributions to the condensate beyond four-
loop order was given.

T/Tc

SQ(T) LO
NLO, μ=(1-6)π T

NNLO
Nτ=4

 0
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 0.1

0.15
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0.25
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 6  8  10  12  14  16  18  20  22  24

FIG. 6. The entropy of a static quark SQ for the SU(3) gauge
theory in weak coupling expansion at LO, NLO and NNLO. The
bands are obtained by varying the renormalization scale μ
between πT and 6πT. Also shown are the lattice results for
SQ; cf. the description in the text.

BERWEIN, BRAMBILLA, PETRECZKY, and VAIRO PHYSICAL REVIEW D 93, 034010 (2016)

034010-14



In Fig. 7 we show the EQCD type contributions atOðg5Þ
and Oðg6Þ as well as the sum of all higher order con-
tributions calculated in lattice EQCD, which we plot using
Eq. (4.1) of Ref. [50]. The bands shown in the figure
correspond to the variation of the renormalization scale μ
from πT to 6πT. The magnitude of the different contribu-
tions is decreasing with increasing order, the Oðg6Þ con-
tribution is smaller than the Oðg5Þ contribution, and the
sum of all the higher order contributions to g2=ð2TdRÞ ×
Trh ~A2

0i [starting from Oðg7Þ], which includes the non-
perturbative contributions, is about the same size as the
Oðg6Þ contribution. Thus, we conclude that the weak
coupling expansion for the purely static contribution is
converging reasonably well and there are no large non-
perturbative corrections to the Polyakov loop from the
static chromomagnetic sector. Furthermore, as shown in
Fig. 7, the sum of the higher order corrections to the static
quark free energy is positive and thus would shift the
perturbative result away from the lattice data.
Now let us discuss the mixed contributions, which come

from higher order corrections to the matching parameters
and higher interaction terms in EQCD. In Fig. 7 we show
the Oðg5Þ and Oðg6Þ mixed contributions. The latter is
evaluated by using the first angular bracket in Eq. (58) and
omitting the 1=ϵ pole. In contrast to the EQCD type
contributions, the mixed contributions can be positive or
negative depending on the choice of the renormalization
scale. At Oðg5Þ the mixed contribution is smaller than the
EQCD type contribution, while at Oðg6Þ the mixed con-
tribution is of the same size or larger (depending on the
renormalization scale). Furthermore, the two mixed con-
tributions are about the same size, which means that the full

Oðg6Þ contribution might be large. Clearly, for rigorous
statements about the convergence of the weak coupling
expansion and comparison with lattice QCD results a
complete calculation of the Oðg6Þ contribution will be
necessary.

VI. CONCLUSIONS

In this paper, we have calculated the next-to-next-to-
leading-order contribution to the Polyakov loop or equiv-
alently to the static quark free energy. This contribution is
of Oðg5Þ. The calculations have been performed directly in
QCD as well as through an effective theory approach using
known results from EQCD. The effective theory approach
based on EQCD also allowed us to calculate some of the
higher order contributions of Oðg6Þ as well as to have an
estimate of some nonperturbative contributions starting to
appear at Oðg7Þ. The weak coupling expansion in EQCD
seems to converge reasonably well, but there could be
potentially large contributions from nonstatic modes
at Oðg6Þ.
While the scale dependence of the Oðg5Þ result is

reasonably small, we do not find a very good agreement
between the lattice data and the weak coupling expansion.
It is possible that the observed discrepancy between the
lattice results and the weak coupling expansion is due to
the missing Oðg6Þ term. Therefore, the calculation of the
complete Oðg6Þ contribution is important.
Finally, we discussed the Casimir scaling of the static

quark free energy. We have shown that Casimir scaling
holds up to Oðg7Þ, but at Oðg8Þ there may appear terms
that break Casimir scaling. The fact that the breaking of
Casimir scaling happens only at Oðg8Þ in the weak
coupling expansion may explain the lattice results on the
Polyakov loop in higher representations, which show
approximate Casimir scaling in the high temperature
region [20,21].
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APPENDIX A: GLUON PROPAGATORS

1. Feynman gauge

Feynman gauge is obtained by adding the gauge fixing
term ð∂μAa

μÞ2=2 to the Lagrangian, as well as the ghost
Lagrangian ð∂μc̄aÞDab

μ cb. Then the free propagators for
gluons D0 and ghosts G0 are given by

T/Tc

δFQ(T)/T g5, mixed  
g5, EQCD
g6, mixed
g6, EQCD

lattice EQCD
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FIG. 7. EQCD type and mixed contributions to FQ at Oðg5Þ
(upper panel) and Oðg6Þ (lower panel). The bands correspond to
the variation of the renormalization scale from πT to 6πT. The
thick black line corresponds to the higher order EQCD type
contributions from lattice EQCD estimated in Ref. [50] for the
renormalization scale μ ¼ 4πT; cf. the description in the text.
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D0 ¼
δμν

k20 þ k2
and G0 ¼

1

k20 þ k2
: ðA1Þ

We will not explicitly display color indices, because they
only appear in Kronecker deltas.
For the resummed gluon propagators we need to sum

over all one-particle reducible diagrams, i.e., over all
bubble insertions in a propagator, where the bubbles
define the self-energy tensor −Πμν. We can parametrize
the self-energy tensor in the following way:

Π ¼
� Π00 ΠAk0kj
ΠAkik0 ΠBδij þ ΠCkikj

�
; ðA2Þ

which comprises all tensor structures allowed by rotational
symmetry. Even though Feynman gauge is designed to be
fully covariant under Lorentz transformations, the existence
of the medium explicitly breaks the full Lorentz symmetry
down to the rotational symmetry in the rest frame of the
medium, so that the temporal and mixed components of the
self-energy tensor Π00 and Πi0 ¼ Π0i may have different
coefficients than the corresponding tensor structures in the
spatial components Πij. In other words, Π00 ≠ ΠB þ ΠCk20
and ΠA ≠ ΠC.
The sum over one-particle reducible diagrams constitutes

a geometric series. So the resummed propagators are
given by

D ¼ D0

X∞
n¼0

ð−ΠD0Þn ¼ D0ð1þ ΠD0Þ−1 ¼ ðD−1
0 þ ΠÞ−1;

ðA3Þ

and similarly for the ghosts. By inverting this matrix we get

D00 ¼
k20 þ k2 þ ΠB þ ΠCk2

ðk20 þ k2 þ Π00Þðk20 þ k2 þ ΠB þ ΠCk2Þ − Π2
Ak

2
0k

2
;

ðA4Þ

Di0 ¼
−ΠAkik0

ðk20 þ k2 þ Π00Þðk20 þ k2 þ ΠB þ ΠCk2Þ − Π2
Ak

2
0k

2
;

ðA5Þ

Dij¼
1

k20þk2þΠB

�
δij−

kikj
k2

�

þ k20þk2þΠ00

ðk20þk2þΠ00Þðk20þk2þΠBþΠCk2Þ−Π2
Ak

2
0k

2

kikj
k2

:

ðA6Þ
We can rewrite these expressions in terms of the self-

energy tensor as

D00 ¼
1

k20 þ k2 þ Π
and

Dij ¼
1

k20 þ k2 þ Σ1

�
δij −

kikj
k2

�
þ 1

k20 þ k2 þ Σ2

kikj
k2

;

ðA7Þ

where

Π ¼ Π00 −
Π2

Ak
2
0k

2

k20 þ k2 þ ΠB þ ΠCk2

¼ Π00 −
Π0iΠi0

k20 þ k2 þ Πijkikj=k2
; ðA8Þ

Σ1 ¼ ΠB ¼ 1

d − 1

�
Πii −

Πijkikj
k2

�
; ðA9Þ

Σ2 ¼ ΠB þ ΠCk2 −
Π2

Ak
2
0k

2

k20 þ k2 þ Π00

¼ Πijkikj
k2

−
Π0iΠi0

k20 þ k2 þ Π00

; ðA10Þ

and

D0l ¼
−Π0l

ðk20 þ k2 þ Π00Þðk20 þ k2 þ Πijkikj=k2Þ − Π0iΠi0
:

ðA11Þ

We see that, although the free Feynman propagator is
diagonal, the resummed propagator is not.
The free ghost propagator G0 as well as the ghost self-

energy Γ are scalar functions, so the resummation of the
geometric series for the full ghost propagator G is trivial:

G ¼ ðG−1
0 þ ΓÞ−1 ¼ 1

k20 þ k2 þ Γ
: ðA12Þ

2. Static gauge

Static gauge [32] satisfies the gauge condition ∂0A0 ¼ 0,
but this condition alone does not give an invertible
propagator, so we need to modify it in order to fix the
gauge also for the spatial gluons. This can be done by
adding the gauge fixing term ð∂0A0 þ

ffiffiffiffiffiffiffiffi
α=ξ

p
∇ · AaÞ2=2α

and taking the limit α → 0, which gives back the original
gauge condition. This limit would diverge in the
Lagrangian, but leads to a finite propagator. The freedom
in how to fix the gauge for the spatial gluons is reflected in
the residual gauge fixing parameter ξ. The gauge condition
on the spatial gluons is lifted for ξ → ∞ and accordingly
the propagator diverges in this limit.
The inverse of the free propagator can be read from the

Lagrangian:
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D−1
0 ¼

0
B@ k2

0

α þ k2 −ð1 − 1ffiffiffiffi
αξ

p Þk0kj
−ð1 − 1ffiffiffiffi

αξ
p Þkik0 ðk20 þ k2Þδij − ð1 − 1

ξÞkikj

1
CA;

ðA13Þ

which can be inverted to

D0 ¼

0
B@

αðξk2
0
þk2Þ

ð ffiffiξp
k2
0
þ ffiffi

α
p

k2Þ2
ðαξ− ffiffiffiffiαξp Þk0kj
ð ffiffiξp

k2
0
þ ffiffi

α
p

k2Þ2

ðαξ− ffiffiffiffiαξp Þkik0
ð ffiffiξp

k2
0
þ ffiffi

α
p

k2Þ2
1

k2
0
þk2 ðδij −

kikj
k2 Þ þ

ξðk2
0
þαk2Þ

ð ffiffiξp
k2
0
þ ffiffi

α
p

k2Þ2
kikj
k2

1
CA

¼α→0

0
B@

δk0
k2 0

0
1−δk0
k2
0
þk2 ðδij −

kikj
k2
0

Þ þ δk0
k2 ðδij − ð1 − ξÞ kikjk2 Þ

1
CA;

ðA14Þ

where by δk0 we mean for k0 ¼ 2πTn with n ∈ Z that
δk0 ¼ δ0n, i.e., selecting only the zero mode in the
Matsubara sum. We see that the free propagator explicitly
distinguishes between zero and nonzero modes. In particu-
lar, the 00 component of the propagator contains only the
zero mode, which means that in position space it does not
depend on the imaginary time coordinate, as required by
the gauge condition.
The ghost Lagrangian is given by

Lgh ¼
1ffiffiffi
α

p ð∂0c̄aÞDab
0 cb þ 1ffiffiffi

ξ
p ð∇c̄aÞ · Dabcb; ðA15Þ

from which it follows that the free ghost propagator is

G0 ¼
ffiffiffiffiffi
αξ

pffiffiffi
ξ

p
k20 þ

ffiffiffi
α

p
k2

¼α→0

ffiffiffi
ξ

p
δk0

k2
: ðA16Þ

There is a ghost vertex with a temporal gluon that is
proportional to 1=

ffiffiffi
α

p
, so the α → 0 limit may potentially be

problematic in this interaction. However, this vertex is also
proportional to the Matsubara frequency k0 of the outgoing
ghost propagator, which means that only nonzero modes can
participate in this interaction. The number of ghost propa-
gators and ghost-gluon vertices is always the same in any
loop diagram, so in the most singular diagrams, where all
vertices are with a temporal gluon, the powers of

ffiffiffi
α

p
cancel

exactly between the vertices and the numerators of the
propagators. Then the α → 0 limit can be taken without
problems and all propagators are given by 1=k20, which is not
singular because the zero-modes do not contribute. This
makes all loop integrations scaleless and therefore vanish. If
there are some vertices with spatial gluons, then there are
more powers of

ffiffiffi
α

p
in the numerator than in the denominator

and the diagram vanishes trivially in the α → 0 limit.
So we see that the ghosts completely decouple from the

temporal gluons. For the interactions with the spatial
gluons the α → 0 limit is unproblematic. There is a factor
of 1=

ffiffiffi
ξ

p
at each vertex, which exactly cancels the

ffiffiffi
ξ

p
factor

in the ghost propagators. So we can in fact simplify the
ghost sector considerably, because as we have just shown
the nonzero Matsubara frequencies, the parameter ξ, or
interactions with temporal gluons are irrelevant. Therefore
the modified ghost Lagrangian and free propagator

Lgh ¼ ð∇c̄aÞ · Dabcb and G0 ¼
δk0
k2

ðA17Þ

with static (i.e., independent of the imaginary time coor-
dinate) ghost fields give exactly the same contributions as
the more complicated Lagrangian given above.
For the resummed propagator we can use the same

parametrization of the self-energy tensor as in Feynman
gauge. Then we get

D00 ¼
k20 þ k2=ξþ ΠB þ ΠCk2

ðk20=αþ k2 þ Π00Þðk20 þ k2=ξþ ΠB þ ΠCk2Þ − ð1 − 1=
ffiffiffiffiffi
αξ

p
− ΠAÞ2k20k2

¼α→0 δk0
k2 þ Π00

; ðA18Þ

Di0 ¼
ð1 − 1=

ffiffiffiffiffi
αξ

p
− ΠAÞkik0

ðk20=αþ k2 þ Π00Þðk20 þ k2=ξþ ΠB þ ΠCk2Þ − ð1 − 1=
ffiffiffiffiffi
αξ

p
− ΠAÞ2k20k2

¼α→0
0; ðA19Þ

Dij ¼
1

k20 þ k2 þ ΠB

�
δij −

kikj
k2

�

þ k20=αþ k2 þ Π00

ðk20=αþ k2 þ Π00Þðk20 þ k2=ξþ ΠB þ ΠCk2Þ − ð1 − 1=
ffiffiffiffiffi
αξ

p
− ΠAÞ2k20k2

kikj
k2

¼α→0 1 − δk0
k20 þ k2 þ ΠB

�
δij þ

ð1 − ΠCÞkikj
k20 þ ΠB þ ΠCk2

�
þ δk0
k2 þ ΠB

�
δij −

ð1 − ξþ ξΠCÞkikj
k2 þ ξðΠB þ ΠCk2Þ

�
: ðA20Þ

Or in analogy to the functions Π, Σ1, and Σ2 that we defined in Feynman gauge we can also write
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D00 ¼
δk0

k2 þ Π
; ðA21Þ

Di0 ¼ D0j ¼ 0; ðA22Þ

Dij ¼
1 − δk0

k20 þ k2 þ Σ1

�
δij −

kikj
k2

�
þ 1 − δk0
k20 þ Σ2

kikj
k2

þ δk0
k2 þ Σ1

�
δij −

kikj
k2

�
þ ξδk0
k2 þ ξΣ2

kikj
k2

; ðA23Þ

where now

Π ¼ Π00; Σ1 ¼ ΠB ¼ 1

ðd − 1Þk2 ðk
2Πii − ΠijkikjÞ;

and Σ2 ¼ ΠB þ ΠCk2 ¼
Πijkikj
k2

: ðA24Þ

The resummed ghost propagator follows trivially from
the modified ghost Lagrangian.

G ¼ δk0
k2 þ Γ

: ðA25Þ

For ξ ¼ 1 the static part of the gluon propagator (i.e.,
k0 ¼ 0) has the same form as in Feynman gauge, which is
why this choice is also called Feynman static gauge. The
self-energy functions still differ between the two gauges.
For ξ ¼ 0 the static part of the propagator has the same
form as in Coulomb gauge, so this choice could be called
Coulomb static gauge.

3. Coulomb gauge

Coulomb gauge is defined by the gauge condition
∇ · Aa ¼ 0. It can be implemented by adding the gauge
fixing term ð∇ · AaÞ2=2ξ to the Lagrangian as well as the
ghost Lagrangian ð∇c̄aÞ · Dabcb with the limit ξ → 0. If we
compare this to the gauge fixing term in static gauge, we
see that Coulomb gauge can also be obtained from there
by first taking the limit α → ∞ and then ξ → 0, so we can
reuse all results from the previous section.
The free propagator is then given by

D0 ¼ξ→0

 1
k2 0

0 1
k2
0
þk2 ðδij −

kikj
k2 Þ

!
; ðA26Þ

and the resummed propagator by

D ¼ξ→0

 1
k2þΠ 0

0 1
k2
0
þk2þΣ1

ðδij − kikj
k2 Þ

!
; ðA27Þ

where the self-energy functions Π and Σ1 are defined as in
static gauge.

The temporal component of the propagator is the same as
in static gauge, except that in Coulomb gauge also the
nonzero Matsubara frequencies are allowed (although they
do not appear explicitly in the free propagator). The spatial
part of the propagator is transversely polarized with respect
to k and the mixed temporal and spatial components vanish,
such that the gauge condition is explicitly satisfied as
kiDiν ¼ 0. This relation holds for both the free and the
resummed propagator, and only the coefficient Σ1 of the
transversely polarized part of the self-energy tensor remains
in the propagator after the resummation.
After a redefinition of the ghost fields ðc̄; cÞ → ξ1=4ðc̄; cÞ,

the limit ξ → 0 eliminates the first term in (A15) and the free
and resummed propagators are given by

G0 ¼
1

k2
and G ¼ 1

k2 þ Γ
: ðA28Þ

The ghosts only couple to spatial gluons like in static gauge.
Quantization in Coulomb gauge generates the so-called

Schwinger-Christ-Lee term [58,59]. This term is an α2s
suppressed term that involves a nonlocal interaction with
transverse gluons. It is beyond the accuracy of the
present work.

4. Phase-space Coulomb gauge

There exists an alternative formulation of Coulomb
gauge QCD that is defined in the so-called phase-space
formalism [60], which we will adapt here to the Euclidean
space of the imaginary time formalism. An auxiliary field E
is introduced in the action S:

e−S ¼ exp

�
−
Z

1=T

0

dτ
Z

d3x

�
1

4
Fa
ijF

a
ij þ

1

2
Fa
0iF

a
0i

��

¼ N −1
Z

DEi exp
�
−
Z

1=T

0

dτ
Z

d3x
�
1

4
Fa
ijF

a
ij

þ iEa
i F

a
0i þ

1

2
Ea
i E

a
i

��
: ðA29Þ

This step can be interpreted such that now the chromo-
electric field is treated as a dynamical variable. This
interpretation originates from the equations of motion for
the E-field, which are Ea

i ¼ −iFa
0i (the factor i is an effect

of the imaginary time formalism, in Minkowski space
it is absent). So we will call E the electric field for the rest
of this section. One can easily return to the original action,
up to some irrelevant constant N , by explicitly carrying
out the path integral over the electric field, which is
possible because it only appears in quadratic terms in
the exponential.
With this new action we can calculate as if there was a

seven-component gluon field Aα, where α ¼ 0 corresponds
to A0, α ¼ 1, 2, 3 to A, and α ¼ 4, 5, 6 to E. The free
propagator ðD0Þαβ will be the 7 × 7 matrix given through
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the quadratic terms of this gluon field as AαðD−1
0 ÞαβAβ. In

order to distinguish between the spatial gluon and electric
field components in this unified description, we will use the
propagator indices i, j and m, n exclusively for α, β ¼ 1, 2,
3 and α, β ¼ 4, 5, 6 respectively.

In order to fix the gauge we again introduce the terms
ð∇ · AaÞ2=2ξ and ð∇c̄aÞ · Dabcb into the Lagrangian. The
ghost sector remains unchanged compared to standard
Coulomb gauge, so we will only discuss the gluonic sector.
Going from position to momentum space in the free action,

S0 ¼
Z

1=T

0

dτ
Z

d3x

�
1

2
ð∂iAa

j Þð∂iAa
j Þ −

1

2
ð∂iAa

j Þð∂jAa
i Þ þ

1

2ξ
ð∂iAa

i Þð∂jAa
j Þ þ iEa

i ∂0Aa
i − iEa

i ∂iAa
0 þ

1

2
Ea
i E

a
i

�

¼
XZ
K

1

2

�
Aa
i ð−KÞ

�
k2δij −

ξ − 1

ξ
kikj

�
Aa
j ðKÞ − Ea

i ð−KÞk0Aa
i ðKÞ þ Aa

i ð−KÞk0Ea
i ðKÞ

þ Ea
i ð−KÞkiAa

0ðKÞ − Aa
0ð−KÞkiEa

i ðKÞ þ 1

2
Eið−KÞaEa

i ðKÞ
�

¼
XZ
K

�
1

2
Aa
αð−KÞðD−1

0 ÞαβAa
βðKÞ

�
; ðA30Þ

we get the inverse of the propagator as

D−1
0 ¼

0
B@

0 0 −kn
0 k2δij − ð1 − 1=ξÞkikj k0δin
km −k0δmj δmn

1
CA; ðA31Þ

where we have written the 7 × 7 matrix in terms of
ð1; 3; 3Þ × ð1; 3; 3Þ blocks. Inverting this and taking the
ξ → 0 limit, we get the free propagator:

D0 ¼

0
BBB@

1
k2 0 kn

k2

0 1
k2
0
þk2 ðδij −

kikj
k2 Þ − k0

k2
0
þk2 ðδin − kikn

k2 Þ
− km

k2
k0

k2
0
þk2 ðδmj −

kmkj
k2 Þ k2

k2
0
þk2 ðδmn −

kmkn
k2 Þ

1
CCCA:

ðA32Þ

We see that the temporal and spatial components still have
the same propagators as in the standard formalism, in
particular they do not mix with each other for ξ ¼ 0, but
both do mix with the electric field. Also note that

DT
0 ðKÞ ¼ D0ð−KÞ. This is of relevance for the off-diagonal

terms, which have odd powers of the momentum in the
numerator (the reason is that A0 and A are of mass
dimension 1, while E is of dimension 2).
The interaction part of the action is given by

Sint ¼
Z

1=T

0

dτ
Z

d3x

�
gfabcð∂iAa

j ÞAb
i A

c
j

þ g2

4
fabefcdeAa

i A
b
jA

c
i A

d
j − igfabcAa

0E
b
i A

c
i

�
: ðA33Þ

This gives the same three- and four-gluon vertices as in
standard Coulomb gauge if only spatial gluons are
involved, but the temporal gluons now interact with the
spatial gluons only through a three-field vertex with an
additional electric field and the simple coefficient
igfabcδim. All Feynman rules of phase-space Coulomb
gauge are shown in Fig. 8.
For the resummed propagator we need to introduce a

new parametrization of the self-energy tensor in the form a
7 × 7-matrix:

Π ¼

0
BB@

Πtt k0kjΠts −knΠte

kik0Πts Πss1δij þ Πss2
kikj
k2 k0ðΠse1δin þ Πse2

kikn
k2 Þ

kmΠte −k0ðΠse1δmj þ Πse2
kmkj
k2 Þ Πee1δmn þ Πee2

kmkn
k2

1
CCA; ðA34Þ

where the labels t, s, and e stand for temporal, spatial, and electric respectively. Then the resummed propagators are

D00 ¼
1þ Πee1 þ Πee2

k2ð1þ ΠteÞ2 þ ð1þ Πee1 þ Πee2ÞΠtt
; ðA35Þ
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D0j ¼ Di0 ¼ 0; ðA36Þ

D0n ¼
ð1þ ΠteÞkn

k2ð1þ ΠteÞ2 þ ð1þ Πee1 þ Πee2ÞΠtt
; ðA37Þ

Dm0 ¼
−ð1þ ΠteÞkm

k2ð1þ ΠteÞ2 þ ð1þ Πee1 þ Πee2ÞΠtt
; ðA38Þ

Dij ¼
1þ Πee1

k20ð1þ Πse1Þ2 þ k2ð1þ Πee1Þ þ ð1þ Πee1ÞΠss1

×
�
δij −

kikj
k2


; ðA39Þ

Din ¼
−ð1þ Πse1Þk0

k20ð1þ Πse1Þ2 þ k2ð1þ Πee1Þ þ ð1þ Πee1ÞΠss1

×
�
δin −

kikn
k2


; ðA40Þ

Dmj ¼
ð1þ Πse1Þk0

k20ð1þ Πse1Þ2 þ k2ð1þ Πee1Þ þ ð1þ Πee1ÞΠss1

×
�
δmj −

kmkj
k2


; ðA41Þ

Dmn ¼
k2 þ Πss1

k20ð1þ Πse1Þ2 þ k2ð1þ Πee1Þ þ ð1þ Πee1ÞΠss1

×
�
δmn −

kmkn
k2


þ Πtt

k2ð1þ ΠteÞ2 þ ð1þ Πee1 þ Πee2ÞΠtt

kmkn
k2

:

ðA42Þ

We see that the self-energy components that are propor-
tional to ki or kj (i.e., Πts, Πss2, and Πse2) do not appear at
all, while the ones that are proportional only to km or kn

(i.e.,Πte andΠee2), appear only inD00,Dm0,D0n, andDmn.
The reason for this is that every free propagator with a
spatial gluon index i or j is proportional to the transverse
projector δij − kikj=k2, so the self-energy components Πts,
Πss2, and Πse2 drop out of the geometric series. Since only
the δij self-energy terms remain in the geometric series for
Dij, Din, and Dmj, also the resummed propagators are
proportional to the transverse projector. A mixing of
temporal and spatial gluons is still not possible, because
ðD0Þi0 and ðD0Þ0j are zero from the outset and intermediate
electric field contributions like, e.g., ðD0ÞinΠnmðD0Þm0 or
ðD0ÞinΠn0ðD0Þ00 always involve a contraction of the
transverse projector with the momentum km, either from
the self-energy or the ðD0Þm0 propagator. In the case of the
propagators D00, Dm0, D0n, and Dmn, there appear terms in
the geometric series without any transverse projectors, so
those propagators also depend on the self-energy terms Πte
and Πee2. Also note that, in contrast to the free propagator,
the resummed Dmn contains a part that is not proportional
to the transverse projector, which comes, e.g., from terms
like ðD0Þm0Π00ðD0Þ0n.

5. Expansions of the propagators

In the small coupling case the two energy scales T
and mD ∼ gT are well separated, so we expand the
propagators accordingly. The Matsubara frequencies are
always of order T and the momentum k can be either of
order T or mD. The self-energy functions are at least of
order g2T2, so if k is of order T then the propagators
have to be expanded in the self-energy, which is
equivalent to using free propagators instead of
resummed propagators.
If k is of ordermD but k0 is not zero, then the propagators

also have to be expanded in k2=k20, which leads to scaleless
integrals in most cases (and in all integrals appearing in this
paper). An exception to this are the temporal propagators in

FIG. 8. All free propagators and interaction vertices in phase-space Coulomb gauge. Whenever there is an arrow specifying the
direction of a momentum over a mixed propagator, opposite momenta will give the negative propagator.
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static and Coulomb gauge, which do not have a k20 term in
the denominator.
If k is of ordermD and k0 is zero, then the leading term of

the self-energy may be of the same order as k2 and the
propagator has to be expanded in the next-to-leading terms.
It is known that only the self-energy in the temporal
propagator has a term of order g2T2, which is gauge
invariant and given by the square of the Debye mass
m2

D; see Eq. (2). In Coulomb gauge, the free propagator is
independent of the Matsubara frequencies. The self-energy,
however, is such that it is of order g2T2 for the zero mode,
while it is of higher order for the other frequencies. The
self-energies in the spatial propagator start at order g4T2;
therefore the spatial propagator has to be expanded and we
can use the free one.
It is a straightforward calculation to show that also in the

phase-space Coulomb gauge (PSCG) only Πtt has a term of
order g2T2 and this is again given by m2

D. All other self-
energies need to be expanded; see Eqs. (A35)–(A42).
Therefore, the spatial and mixed spatial-electric propaga-
tors remain massless, but the electric and mixed temporal-
electric propagators also get massive denominators.
We summarize here the propagators in different gauges

in the leading order expansion for k0 ¼ 0 and k ∼mD.

DFG ¼
 1

k2þm2
D

0

0
δij
k2

!
; ðA43Þ

DSG ¼
 1

k2þm2
D

0

0 1
k2

�
δij − ð1 − ξÞ kikjk2


!
; ðA44Þ

DCG ¼ DSGjξ¼0; ðA45Þ

DPSCG ¼

0
BBB@

1
k2þm2

D
0 kn

k2þm2
D

0 1
k2

�
δij −

kikj
k2


0

− km
k2þm2

D
0 δmn −

kmkn
k2þm2

D

1
CCCA:

ðA46Þ

APPENDIX B: ELECTRIC SCALE
TWO-LOOP INTEGRALS

In this appendix, we will explicitly write down the
integrals and their results for all the two-loop self-energy
diagrams at the scale mD. In order to calculate the integrals
we make use of an algorithm that systematically reduces
the integrals to a handful of master integrals by the method
of integration by parts and then replaces these master
integrals by their known values. More details on this
algorithm can be found in Appendix D.

All relevant diagrams for Πð2Þ
mDð0; k ∼mDÞ are shown in

Fig. 1. As explained in Appendix A 5, only temporal gluons

carry the Debye mass in the propagator, so it makes sense to
visually distinguish between temporal and spatial gluons in
the diagrams. All Matsubara frequencies are assumed to be
zero, which means that a vertex with one temporal gluon
and two spatial gluons or ghosts (if they are required by the
chosen gauge) cannot appear, because it would be propor-
tional to the Matsubara frequencies. This is why there are
no three-gluon vertices with just one temporal gluon in all
the diagrams of Fig. 1. Tadpole diagrams with only spatial
gluons or ghosts are scaleless and therefore have been
omitted in Fig. 1. Fermion propagators do not have zero-
modes, so also light quark loops cannot contribute

to Πð2Þ
mDð0; k ∼mDÞ.

We will do the calculation explicitly in Feynman,
Coulomb, and phase-space Coulomb gauge. In the case
of the static gauge we will not perform the calculation for a
generic gauge fixing parameter ξ. For ξ ¼ 1 and ξ ¼ 0 the
calculation is identical to the one in Feynman and Coulomb
gauge, respectively.
The color factors of the two-loop self-energy can be

calculated using the quadratic Casimir of the adjoint
representation and the Jacobi identity:

Tr½Ta
AT

b
A� ¼ ð−ifacdÞð−ifbdcÞ ¼ facdfbcd ¼ CAδ

ab;

ðB1Þ

fabefecd þ fbcefead þ fcaefebd ¼ 0: ðB2Þ

With these we get

facdfdcefeghfhgb ¼ ð−CAδ
aeÞð−CAδ

ebÞ ¼ C2
Aδ

ab; ðB3Þ

facdfdghfhgefecb ¼ −CAfacdfdcb ¼ C2
Aδ

ab; ðB4Þ

facdfcgefdehfhgb ¼ −
1

2
facdðfcgefedh þ fchefegdÞfhgb

¼ 1

2
facdfdcefeghfhgb ¼ 1

2
C2
Aδ

ab: ðB5Þ

All color factors are given by these expressions or
combinations thereof. Symmetry factors appear only
when gluons of the same type (temporal or spatial) can
be exchanged, which is the case for L3, L8, L9, L10, and
L12, although in the case of L3, L8, and L12 one symmetry
factor 1=2 is compensated by a factor 2 from the four-
gluon vertices. From the vertices we either get ðigÞ4,
ðigÞ2ð−g2Þ or ð−g2Þ2, which is equal to g4 in each case. So
no additional signs arise from the vertices, but the ghost
loop gets a minus due to its Grassmann nature. Then we
have

CðL1Þ ¼ CðL2Þ ¼ −CðL8Þ ¼ CðL9Þ ¼ CðL10Þ ¼
1

2
C2
A;

ðB6Þ

POLYAKOV LOOP AT NEXT-TO-NEXT-TO LEADING ORDER PHYSICAL REVIEW D 93, 034010 (2016)

034010-21



CðL7Þ ¼ −CðL11Þ ¼ −CðL12Þ ¼ C2
A; ðB7Þ

CðL3Þ ¼ −CðL4Þ ¼ −CðL5Þ ¼ −CðL6Þ ¼
3

2
C2
A: ðB8Þ

1. Feynman gauge

We will call the momenta in the diagrams of Fig. 1 in
such a way that k appears in each temporal gluon
propagator (even in the temporal gluon loops in L8, L10

and L12 through a shift of the loop momentum by k),
while the additional loop momenta will be called p and q.
In the denominator only the combinations kþ p, kþ q, and
either kþ pþ q or p − q can appear. The reason for this
choice is that with this momentum configuration the
integrals are already in the form required by the algorithm
described in Appendix D. We will use the abbreviation
PðkÞ ¼ k2 þm2

D. L5 and L6 are the same up to a relabeling
of the momenta, so we will calculate them together. Then
we have

L1 ¼ −
CRC2

Ag
6

4

ZZZ
k;p;q∼mD

2Tð2ki þ piÞðp2δij − pipj þ q2δij − qiqj − ðp · qÞδij þ piqjÞð2kj þ qjÞ
p2ðp − qÞ2q2Pðkþ pÞPðkþ qÞPðkÞ2

¼ CRC2
Aα

3
sT

mD

�
−

1

32ϵ
−

7

32
þ 3

32
γE −

π2

24
−

3

32
ln
πμ2

m2
D
þOðϵÞ

�
; ðB9Þ

L2 ¼ −
CRC2

Ag
6

4

ZZZ
k;p;q∼mD

T½ð2kþ pÞ · ð2kþ pþ 2qÞ�½ð2kþ qÞ · ð2kþ 2pþ qÞ�
p2q2Pðkþ pÞPðkþ qÞPðkþ pþ qÞPðkÞ2

¼ CRC2
Aα

3
sT

mD

�
−

1

32ϵ
−
1

4
þ 3

32
γE −

π2

12
−

3

32
ln

πμ2

256m2
D
þOðϵÞ

�
; ðB10Þ

L3 ¼ −
3CRC2

Ag
6

4

ZZZ
k;p;q∼mD

Td
p2ðp − qÞ2Pðkþ qÞPðkÞ2

¼ CRC2
Aα

3
sT

mD

�
−

9

32ϵ
−
3

8
þ 27

32
γE −

27

32
ln
πμ2

m2
D
þOðϵÞ

�
; ðB11Þ

L4 ¼
3CRC2

Ag
6

4

ZZZ
k;p;q∼mD

Tð2kþ pÞ · ð2kþ qÞ
p2q2Pðkþ pÞPðkþ qÞPðkÞ2

¼ CRC2
Aα

3
sT

mD

�
39

32
þOðϵÞ

�
; ðB12Þ

L5 þ L6 ¼
3CRC2

Ag
6

4

ZZZ
k;p;q∼mD

2Tð2kþ pÞ · ð2kþ pþ qÞ
p2ðp − qÞ2Pðkþ pÞPðkþ qÞPðkÞ2

¼ CRC2
Aα

3
sT

mD

�
9

32ϵ
−

3

16
−
27

32
γE þ π2

8
þ 27

32
ln
πμ2

m2
D
þOðϵÞ

�
; ðB13Þ

L7 ¼ −
CRC2

Ag
6

2

ZZZ
k;p;q∼mD

Tð2kþ pÞ2ð2kþ pþ qÞ2
p2ðp − qÞ2Pðkþ pÞ2Pðkþ qÞPðkÞ2

¼ CRC2
Aα

3
sT

mD

�
−

1

8ϵ
−
9

8
þ 3

8
γE −

3

8
ln
πμ2

m2
D
þOðϵÞ

�
; ðB14Þ
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L8 ¼
CRC2

Ag
6

4

ZZZ
k;p;q∼mD

Tð2kþ pþ qÞ2
ððp − qÞ2Þ2Pðkþ pÞPðkþ qÞPðkÞ2

¼ CRC2
Aα

3
sT

mD

�
−

1

32ϵ
þ 3

32
γE −

3

32
ln
πμ2

m2
D
þOðϵÞ

�
; ðB15Þ

L9 ¼ −
CRC2

Ag
6

4

ZZZ
k;p;q∼mD

Tð2ki þ piÞð2kj þ pjÞ
Pðkþ pÞPðkÞ2

×
ð5p2δij − ð6 − dÞpipj þ 2q2δij − ð6 − 4dÞqiqj − 2ðp · qÞδij þ ð6 − 4dÞpiqjÞ

ðp2Þ2ðp − qÞ2q2

¼ CRC2
Aα

3
sT

mD

�
13

64ϵ
−
19

32
−
39

64
γE þ 39

64
ln
πμ2

m2
D
þOðϵÞ

�
; ðB16Þ

L10 ¼ −
CRC2

Ag
6

4

ZZZ
k;p;q∼mD

T½ð2kþ pÞ · ð2kþ pþ 2qÞ�2
ðp2Þ2Pðkþ pÞPðkþ qÞPðkþ pþ qÞPðkÞ2

¼ CRC2
Aα

3
sT

mD

�
−

5

48
þ 1

6
ln 2þOðϵÞ

�
; ðB17Þ

L11 ¼
CRC2

Ag
6

2

ZZZ
k;p;q∼mD

T½ð2kþ pÞ · ð−qÞ�½ð2kþ pÞ · ðp − qÞ�
ðp2Þ2ðp − qÞ2q2Pðkþ pÞPðkÞ2

¼ CRC2
Aα

3
sT

mD

�
1

64ϵ
−

1

32
−

3

64
γE þ 3

64
ln
πμ2

m2
D
þOðϵÞ

�
; ðB18Þ

L12 ¼
CRC2

Ag
6

2

ZZZ
k;p;q∼mD

Tð2kþ pÞ2
ðp2Þ2Pðkþ pÞPðkþ qÞPðkÞ2

¼ CRC2
Aα

3
sT

mD

�
1

8
þOðϵÞ

�
: ðB19Þ

We also have to include the contribution from the square of the one-loop self-energy in order to get a gauge invariant
result. This contribution can also be put into the form required by the algorithm:

−
CRg2

2T

Z
k∼mD

ðΠð1Þ
mDð0; kÞÞ2

ðk2 þm2
DÞ3

¼ −
CRC2

Ag
6

2

ZZZ
k;p;q∼mD

Tð2kþ pÞ2ð2kþ qÞ2
p2q2Pðkþ pÞPðkþ qÞPðkÞ3

¼ CRC2
Aα

3
sT

mD

�
−

5

16
−
π2

12
þOðϵÞ

�
: ðB20Þ

The sum of all these terms then gives the Oðg5Þ contribution from the scale mD:

D1jg5;mD
¼ −

CRC2
Aα

3
sT

mD

�
89

48
þ π2

12
−
11

12
ln 2

�
: ðB21Þ
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2. Coulomb gauge

In Coulomb gauge we have

L1 ¼ −
CRC2

Ag
6

4

ZZZ
k;p;q∼mD

Z
−16T

p2ðp − qÞ2q2Pðkþ pÞPðkþ qÞPðkÞ2

×

��
k · q −

ðk · pÞðp · qÞ
p2

��
k · p −

ðk · qÞðp · qÞ
q2

��
1þ k · ðpþ qÞ

ðp − qÞ2
�

þ
�
k2 −

ðk · pÞ2
p2

��
k · p −

ðk · qÞðp · qÞ
q2

��
1 −

q2

ðp − qÞ2
�
þ
�
k · q −

ðk · pÞðp · qÞ
p2

��
k2 −

ðk · qÞ2
q2

��
1 −

p2

ðp − qÞ2
�

−
p2q2 − ðp · qÞ2

ðp − qÞ2
�
k2 −

ðk · pÞ2
p2

−
ðk · qÞ2
q2

þ ðk · pÞðk · qÞðp · qÞ
p2q2

��

¼ CRC2
Aα

3
sT

mD

�
1

8
−
π2

24
þOðϵÞ

�
; ðB22Þ

L2 ¼ −
CRC2

Ag
6

4

ZZZ
k;p;q∼mD

16T
p2q2Pðkþ pÞPðkþ qÞPðkþ pþ qÞPðkÞ2

×

�
k · ðkþ qÞ − ðk · pÞðk · pþ p · qÞ

p2

��
k · ðkþ pÞ − ðk · qÞðk · qþ p · qÞ

q2

�

¼ CRC2
Aα

3
sT

mD

�
1

8
þ 3

4
ln 2 −

π2

12
þOðϵÞ

�
; ðB23Þ

L3 ¼ −
3CRC2

Ag
6

4

ZZZ
k;p;q∼mD

T
p2q2Pðkþ pþ qÞPðkÞ2

�
d − 2þ ðp · qÞ2

p2q2

�

¼ CRC2
Aα

3
sT

mD

�
−

9

64ϵ
−

3

64
þ 27

64
γE −

27

64
ln
πμ2

m2
D
þOðϵÞ

�
; ðB24Þ

L4 ¼
3CRC2

Ag
6

4

ZZZ
k;p;q∼mD

4T½k2p2q2 − ðk · pÞ2q2 − ðk · qÞ2p2 þ ðk · pÞðk · qÞðp · qÞ�
ðp2Þ2ðq2Þ2Pðkþ pÞPðkþ qÞPðkÞ2

¼ CRC2
Aα

3
sT

mD

�
15

8
−
π2

8
þOðϵÞ

�
; ðB25Þ

L5 þ L6 ¼
3CRC2

Ag
6

2

ZZZ
k;p;q∼mD

4T
p2q2Pðkþ pÞPðkþ pþ qÞPðkÞ2

×

�
k2 −

ðk · pÞ2
p2

−
ðk · qÞðk · qþ p · qÞ

q2
þ ðk · pÞðk · qþ p · qÞðp · qÞ

p2q2

�

¼ CRC2
Aα

3
sT

mD

�
−
3

2
þ π2

4
þOðϵÞ

�
; ðB26Þ

L7 ¼ −
CRC2

Ag
6

2

ZZZ
k;p;q∼mD

16T½k2p2 − ðk · pÞ2�½ðkþ pÞ2q2 − ðk · qþ p · qÞ2�
ðp2Þ2ðq2Þ2Pðkþ pÞ2Pðkþ pþ qÞPðkÞ2

¼ CRC2
Aα

3
sT

mD

�
−
9

8
þOðϵÞ

�
; ðB27Þ
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L8 ¼
CRC2

Ag
6

4

ZZZ
k;p;q∼mD

4T½ðkþ qÞ2p2 − ðk · pþ p · qÞ2�
ðp2Þ3Pðkþ qÞPðkþ pþ qÞPðkÞ2

¼ CRC2
Aα

3
sT

mD

�
−

1

32ϵ
þ 3

32
γE −

3

32
ln
πμ2

m2
D
þOðϵÞ

�
; ðB28Þ

L9 ¼ −
CRC2

Ag
6

4

ZZZ
k;p;q∼mD

16T
ðp2Þ2ðp − qÞ2q2Pðkþ pÞPðkÞ2

��
k2 −

ðk · pÞ2
p2

�
ðp2q2 − ðp · qÞ2Þ

�
1

ðp − qÞ2 þ
1

q2

�

þ
�
k · q −

ðk · pÞðp · qÞ
p2

�
2
�
d − 1 −

p2q2 − ðp · qÞ2
ðp − qÞ2q2

��

¼ CRC2
Aα

3
sT

mD

�
5

32ϵ
−
43

64
−
15

32
γE þ 15

32
ln
πμ2

m2
D
þOðϵÞ

�
; ðB29Þ

L10 ¼ −
CRC2

Ag
6

4

ZZZ
k;p;q∼mD

16T½ðk2 þ k · qÞp2 − ðk · pÞðk · pþ p · qÞ�2
ðp2Þ4Pðkþ pÞPðkþ qÞPðkþ pþ qÞPðkÞ2

¼ CRC2
Aα

3
sT

mD

�
−

5

48
þ 1

6
ln 2þOðϵÞ

�
; ðB30Þ

L11 ¼
CRC2

Ag
6

2

ZZZ
k;p;q∼mD

4T½ðk · qÞp2 − ðk · pÞðp · qÞ�2
ðp2Þ4ðp − qÞ2q2Pðkþ pÞPðkÞ2

¼ CRC2
Aα

3
sT

mD

�
1

64ϵ
−

1

32
−

3

64
γE þ 3

64
ln
πμ2

m2
D
þOðϵÞ

�
; ðB31Þ

L12 ¼
CRC2

Ag
6

2

ZZZ
k;p;q∼mD

4T½k2p2 − ðk · pÞ2�
ðp2Þ3Pðkþ pÞPðkþ qÞPðkÞ2

¼ CRC2
Aα

3
sT

mD

�
1

8
þOðϵÞ

�
: ðB32Þ

The square of the one-loop self-energy from the scale mD gives the contribution

−
CRg2

2T

Z
k∼mD

ðΠð1Þ
mDð0; kÞÞ2

ðk2 þm2
DÞ3

¼ −
CRC2

Ag
6

2

ZZZ
k;p;q∼mD

16T½k2p2 − ðk · pÞ2�½k2q2 − ðk · qÞ2�
ðp2Þ2ðq2Þ2Pðkþ pÞPðkþ qÞPðkÞ3

¼ C2
Aα

3
sT

mD

�
−
5

8
−
π2

12
þOðϵÞ

�
; ðB33Þ

and after summing up all these terms, we again obtain the
same result as in Feynman gauge:

D1jg5;mD
¼ −

CRC2
Aα

3
sT

mD

�
89

48
þ π2

12
−
11

12
ln 2

�
: ðB34Þ

There is a subtlety in Coulomb gauge regarding the
nonzero modes. In Feynman gauge all Matsubara frequen-
cies have to be zero, because otherwise the necessary
expansions of the propagators only lead to scaleless or
higher order contributions. But in Coulomb gauge the

frequencies do not appear explicitly in the temporal gluon
or ghost propagators; the only dependence on the frequen-
cies is that the Debye mass appears in the temporal gluon
propagator only for the zero mode. So, in principle, the
propagators do not have to be expanded and there is
nothing preventing also nonzero frequencies to appear in
the Matsubara sums, as long as they do not appear in spatial
gluon propagators.
In most diagrams there is only the zero mode because of

the contour integration, but in diagrams L8, L10, L11, and
L12 the momentum of the temporal gluon or ghost loop can
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have a nonzero frequency without it entering a spatial gluon
propagator. This poses a problem, because those loops do
not depend on the frequency, so the Matsubara sums
contain an infinite sum over a constant, which is divergent
and not regulated by dimensional regularization.
However, these sums are canceled by a diagram that we

could ignore so far, because it vanishes for the zero mode.
This is the last diagram in Fig. 9 and the Matsubara
frequencies in the numerator from the vertices exactly
cancel the denominator of the spatial gluon after it has been
expanded. Then the sum over all diagrams of Fig. 9 gives
from left to right

g2CA

XZ
Q

0�1
2

4qiqj
ðp − qÞ2q2 −

qiqj
ðp − qÞ2q2 −

δij
ðp − qÞ2

þ q20
ðp − qÞ2

1

q20

�
δij −

qiqj
q2

��
¼ 0: ðB35Þ

We have used the momentum p − q instead of just q in the
tadpole loop so that its cancellation becomes more appar-
ent, and we do not have to consider the higher order
expansion terms of the spatial gluon propagator in the last
diagram, because they only contain scaleless integrals.
So even though each diagram contains a divergent series,

the sum of all four of them is finite, because for each
particular value of the frequency the sum cancels. In static
gauge with ξ ¼ 0 this problem does not arise, because the
temporal gluon and ghost propagators vanish for nonzero
frequencies. Since the last diagram of Fig. 9 gives no other
contribution apart from canceling the nonzero-frequency
contributions of the other diagrams in Coulomb gauge, the
corresponding diagram has not been displayed in Fig. 1.

3. Phase-space Coulomb gauge

In phase-space Coulomb gauge there are less diagram
topologies, because temporal gluons only couple in a three-
gluon vertex. These topologies are shown in Fig. 10. But
because the massive propagators now can be temporal,
electric, or mixed, there are more diagrams in total.
However, it is possible for each diagram topology to
factorize the massive propagators from the spatial gluon
propagators, so that we can sum over all possibilities for the
massive propagators before multiplying them with the
spatial gluons. This sum over all massive propagators is
represented by the double-line propagators in Fig. 10.
We have included the one-particle reducible diagram ~L7

in Fig. 10, which corresponds to the second order expan-
sion of the resummed propagator. In this case the reex-
panded temporal propagator depends on several different
self-energy functions, so it is easier to just calculate this
diagram explicitly.
We will denote the sum over massive propagators by

Dm1m2…
αβ ðk0; k1; k2;…Þ. The indices mi correspond to the

vector indices at each vertex i, which can then be contracted
with the spatial gluon propagator. The initial momentum of
the series of propagators is k0 and the ki are the incoming
momenta at each vertex i. The final and initial indices of the
propagator series are α and β, respectively. We will need
temporal indices for most diagrams, but also mixed indices
for the double line loop in diagram ~L5.
We will show the summation over massive propagators

explicitly in one case for illustration and just give the result
for the other relevant cases. Figure 11 shows the double line
propagator with two vertices in terms of temporal, electric,
and mixed propagators. By the phase-space Coulomb
gauge Feynman rules this gives

FIG. 9. All diagrams relevant for the cancellation of the nonzero modes in the one-loop spatial gluon self-energy in Coulomb gauge.

FIG. 10. All two-loop diagram topologies in phase-space Coulomb gauge. The double-line propagators can represent either a
temporal, an electric, or a mixed propagator. Also the diagram with two one-loop bubbles is displayed in the bottom-right corner. We
will label the diagrams ~L1;…; ~L7 from top left to bottom right.
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Dm1m2

00 ðk0;k1; k2Þ ¼−D00ðk0 þ k1 þ k2ÞDm2m1
ðk0 þ k1ÞD00ðk0Þ þD00ðk0 þ k1 þ k2ÞDm20

ðk0 þ k1ÞDm10
ðk0Þ

þD0m2
ðk0 þ k1 þ k2ÞD0m1

ðk0 þ k1ÞD00ðk0Þ−D0m2
ðk0 þ k1 þ k2ÞD00ðk0 þ k1ÞDm10

ðk0Þ

¼−
1

Pðk0 þ k1 þ k2Þ
�
δm2m1

−
ðk0 þ k1Þm2

ðk0 þ k1Þm1

Pðk0 þ k1Þ
�

1

Pðk0Þ
þ 1

Pðk0 þ k1 þ k2Þ
−ðk0 þ k1Þm2

Pðk0 þ k1Þ
−ðk0Þm1

Pðk0Þ

þ ðk0 þ k1 þ k2Þm2

Pðk0 þ k1 þ k2Þ
ðk0 þ k1Þm1

Pðk0 þ k1Þ
1

Pðk0Þ
−
ðk0 þ k1 þ k2Þm2

Pðk0 þ k1 þ k2Þ
1

Pðk0 þ k1Þ
−ðk0Þm1

Pðk0Þ

¼−
1

Pðk0 þ k1 þ k2Þ
�
δm1m2

−
4ðk0 þ k1Þm2

ðk0Þm1

Pðk0 þ k1Þ
�

1

Pðk0Þ
: ðB36Þ

Here we have used the fact that all vector indices are
contracted with gluon propagators that are proportional to
the transverse propagator, which means that all terms ðkiÞmi

cancel in the numerator and can be neglected. The different
signs in front of the propagators come from the two color
structure functions in the vertices, which are even or odd

depending on whether the temporal, electric, and spatial
fields are attached with the same ordering or the opposite
one compared to the three-field vertex shown in Fig. 8.
In the same way one can calculate double line propa-

gators with more vertices or different initial and final
indices:

Dm1m2m3

00 ðk0; k1; k2; k3Þ ¼
2ðk0 þ k1 þ k2Þm3

δm2m1

Pðk0 þ k1 þ k2 þ k3ÞPðk0 þ k1 þ k2ÞPðk0Þ
þ 2δm3m2

ðk0Þm1

Pðk0 þ k1 þ k2 þ k3ÞPðk0 þ k1ÞPðk0Þ

−
8ðk0 þ k1 þ k2Þm3

ðk0 þ k1Þm2
ðk0Þm1

Pðk0 þ k1 þ k2 þ k3ÞPðk0 þ k1 þ k2ÞPðk0 þ k1ÞPðk0Þ
; ðB37Þ

Dm1m2m3m4

00 ðk0; k1; k2; k3; k4Þ ¼
1

Pðk0 þ k1 þ k2 þ k3 þ k4Þ
�
δm4m3

−
4ðk0 þ k1 þ k2 þ k3Þm4

ðk0 þ k1 þ k2Þm3

Pðk0 þ k1 þ k2 þ k3Þ
�

×
1

Pðk0 þ k1 þ k2Þ
�
δm2m1

−
4ðk0 þ k1Þm2

ðk0Þm1

Pðk0 þ k1Þ
�

1

Pðk0Þ

−
4ðk0 þ k1 þ k2 þ k3Þm4

δm3m2
ðk0Þm1

Pðk0 þ k1 þ k2 þ k3 þ k4ÞPðk0 þ k1 þ k2 þ k3ÞPðk0 þ k1ÞPðk0Þ
; ðB38Þ

Dm1

0n ðk0; k1Þ ¼ −
1

Pðk0 þ k1Þ
�
δm1n −

2ðk0Þm1
ðk0Þn

Pðk0Þ
�
: ðB39Þ

With these we can write the phase-space Coulomb gauge diagrams in a rather compact form:

~L1 ¼ −
CRC2

Ag
6T

4

ZZZ
k;p;q∼mD

Dijl
00ðk; p; q − p;−qÞDii0 ðpÞDjj0 ðq − pÞDll0 ð−qÞ½δi0j0 ð2p − qÞl0 þ δj0l0 ð2q − pÞi0 − δl0i0 ðpþ qÞj0 �

¼ CRC2
Aα

3
sT

mD

�
1

8
−
π2

24
þOðϵÞ

�
; ðB40Þ

FIG. 11. Explicit expression for a double line propagator with two vertices in terms of temporal, electric, and mixed propagators.
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~L2 ¼ −
CRC2

Ag
6T

4

ZZZ
k;p;q∼mD

Diji0j0
00 ðk; p; q;−p;−qÞDii0 ðpÞDjj0 ðqÞ

¼ CRC2
Aα

3
sT

mD

�
−

3

64ϵ
þ 15

64
þ 9

64
γE −

π2

24
þ 3

4
ln 2 −

9

64
ln
πμ2

m2
D
þOðϵÞ

�
; ðB41Þ

~L3 ¼ −
CRC2

Ag
6T

2

ZZZ
k;p;q∼mD

Dijj0i0
00 ðk; p; q;−q;−pÞDii0 ðpÞDjj0 ðqÞ

¼ CRC2
Aα

3
sT

mD

�
−

3

32ϵ
−
69

32
þ 9

32
γE þ π2

6
−

9

32
ln
πμ2

m2
D
þOðϵÞ

�
; ðB42Þ

~L4 ¼ −
CRC2

Ag
6T

2

ZZZ
k;p;q∼mD

Dij
00ðk; p;−pÞDii0 ðpÞDjj0 ð−pÞ

2

ðp − qÞ2q2

×

�
ðp2q2 − ðp · qÞ2Þ

�
1

q2
þ 1

ðp − qÞ2
�
δi0j0 þ

�
d − 1 −

p2q2 − ðp · qÞ2
ðp − qÞ2q2

�
qi0qj0

�

¼ CRC2
Aα

3
sT

mD

�
5

32ϵ
−
43

64
−
15

32
γE þ 15

32
ln
πμ2

m2
D
þOðϵÞ

�
; ðB43Þ

~L5 ¼ −
CRC2

Ag
6T

2

ZZZ
k;p;q∼mD

Dij
00ðk; p;−pÞDii0 ðpÞDjj0 ð−pÞDj0

0nðkþ q; pÞδi0n

¼ CRC2
Aα

3
sT

mD

�
−

1

32ϵ
þ 1

48
þ 3

32
γE þ 1

6
ln 2 −

3

32
ln
πμ2

m2
D
þOðϵÞ

�
; ðB44Þ

~L6 ¼ −
CRC2

Ag
6T

2

ZZZ
k;p;q∼mD

Dij
00ðk; p;−pÞDii0 ðpÞDjj0 ð−pÞ

qi0qj0

ðp − qÞ2q2

¼ CRC2
Aα

3
sT

mD

�
1

64ϵ
−

1

32
−

3

64
γE þ 3

64
ln
πμ2

m2
D
þOðϵÞ

�
; ðB45Þ

~L7 ¼ −
CRC2

Ag
6T

2

ZZZ
k;p;q∼mD

Dii0jj0
00 ðk; p;−p; q;−qÞDii0 ðpÞDjj0 ðqÞ

¼ CRC2
Aα

3
sT

mD

�
5

8
−
π2

6
þOðϵÞ

�
: ðB46Þ

We have changed the momenta in the double line loop
of diagram ~L5 from pþ q and q to kþ pþ q and kþ q
by a shift of the integration momentum q, such that the
integrals are all of the form required by the algorithm of
Appendix D.
We see that the sum of these integrals gives the same

result as in standard Coulomb gauge and in Feynman
gauge. But we can make the correspondence between
phase-space and standard Coulomb gauge even clearer.
The propagator of the electric field [cf. Eq. (A46)] contains
a part that is just a Kronecker delta, which gives exactly
the same contribution as if the electric propagator were

contracted to a point and replaced by a four-gluon vertex in
standard Coulomb gauge. The second part of the electric
propagator contains components of the momentum in the
numerator and a massive denominator. This term has the
same form as a corresponding three-gluon vertex in
Coulomb gauge, where the momentum components in
the numerator come from the vertex and not the propagator.
The same applies for mixed temporal-electric propagators.
The correspondence is not one-to-one, for example

diagrams ~L2 and ~L3 both give diagram L3 in standard
Coulomb gauge when we replace the second and fourth
double-line propagator by a Kronecker delta. But if we look
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at the color coefficients CRC2
A=2 of ~L2 and CRC2

A of ~L3, we
see that they add up exactly to the color coefficient
3CRC2

A=2 of L3. So ultimately it is only a matter of
combinatorics to see that phase-space and standard
Coulomb gauge generate exactly the same integrals.
A simpler check of this statement is to compare certain

classes of diagrams between phase-space and standard
Coulomb gauge, which have unique topologies in both
gauge formulations. In our case, L1 and ~L1 are the only
diagrams with a vertex of three spatial gluons, and
diagrams L8;…; L12, and ~L4;…; ~L6 are the only ones with
a one-loop self-energy in a spatial propagator. So accord-
ingly, we find the equalities

~L1 ¼ L1; ðB47Þ

~L2 þ ~L3 þ ~L7 ¼ L2 þ L3 þ L4 þ L5 þ L6 þ L7 þ L13;

ðB48Þ

~L4 þ ~L5 þ ~L6 ¼ L8 þ L9 þ L10 þ L11 þ L12; ðB49Þ

where we used L13 to denote the contribution from the
square of the one-loop self-energy at the scale mD.
The cancellation of the nonzero frequency contributions

is a bit simpler in this formulation than in standard
Coulomb gauge. The double-line loop in diagram ~L5 of
Fig. 10 gives rise to two contributions, one where the loop
contains a temporal and an electric propagator and one
where both propagators are mixed temporal-electric. The
first contribution is unproblematic, since the electric
propagator for nonzero frequencies contains the denomi-
nator q20 þ q2, for which the Matsubara sum is finite. The
second contribution exactly cancels the ghost loop diagram.

APPENDIX C: MAGNETIC SCALE
CANCELLATION AT Oðg6Þ

We will list here all contributions at Oðg6Þ that involve
the scale mM. At Oðg5Þ those were one-loop diagrams
where the spatial gluon carries a momentum of order mM
and the temporal gluon carries a momentum of order mD

(see Sec. III C). At Oðg6Þ it is the same principle: two-loop
diagrams with all propagators carrying momenta of order
mD except for one spatial gluon with a momentum of order
mM. In three-gluon vertices only the momenta of order mD
are to be kept in the numerator.

We refer again to Fig. 1, which essentially gives all
relevant diagrams for this calculation. In diagrams
L1;…; L7 any of the spatial gluons can be the one that
carries the scale mM; in diagram L9 it is only the gluons in
the sub-loop. So L1 contains three and L2;…; L7; L9 each
contain two different contributions. In addition, there are
two new diagrams not displayed in Fig. 1, which we give in
Fig. 12. They correspond to the diagrams L7 and L9 from
Fig. 1 with the subloop replaced by a tadpole, so we will
include the contributions of the left and right diagram in
Fig. 12 in the following expressions for L7 and L9,
respectively. Diagrams L8, L10, and L12 do not contribute,
because if the spatial gluons were of the scale mM, then
these would correspond to the one-loop diagram with a
resummed spatial propagator, which we have already
considered in the Oðg5Þ calculation. Diagram L11 with
one ghost propagator of the scale mM does not contribute,
because from the gluon-ghost vertices there is a factor of
the loop momentum squared in the numerator, so this
diagram is of Oðg8Þ.
We will do this calculation in Feynman gauge, because

the expressions are somewhat shorter. We will label the
momenta such that k, p ∼mD and q ∼mM. Since we have
to expand everything in q=mD, we can just ignore q in all
other propagators at leading order. This simplifies the q
integration, which now contains only one propagator:

Z
q∼mM

Dijð0; qÞ ¼
δij
d

Z
q∼mM

Dkkð0; qÞ: ðC1Þ

The Kronecker delta can then be used to contract all indices
in the k and p integrations, which can be carried out by the
same methods as in the Oðg5Þ calculation.
The calculation of the different diagrams gives

L1 ¼ −CRC2
Ag

6T
Z Z

k;p∼mD

Z
q∼mM

�
4ðk2p2 − ðk · pÞ2Þ
ðp2Þ2Pðkþ pÞPðkÞ3 þ

2ðk2p2 − ðk · pÞ2Þ
ðp2Þ2Pðkþ pÞ2PðkÞ2

�
Diið0; qÞ

d

¼ −
2π

3

CRC2
Aα

3
sT

m2
D

Z
q∼mM

Diið0; qÞ; ðC2Þ

FIG. 12. Additional diagrams carrying the scale mM at Oðg6Þ.

POLYAKOV LOOP AT NEXT-TO-NEXT-TO LEADING ORDER PHYSICAL REVIEW D 93, 034010 (2016)

034010-29



L2 ¼ −CRC2
Ag

6T
Z Z

k;p∼mD

Z
q∼mM

2ð2kþ pÞ2ðk2 þ k · pÞ
p2Pðkþ pÞ2PðkÞ3

Diið0; qÞ
d

¼ −
2π

3

CRC2
Aα

3
sT

m2
D

Z
q∼mM

Diið0; qÞ; ðC3Þ

L3 ¼ −
3

2
CRC2

Ag
6T
Z Z

k;p∼mD

Z
q∼mM

d
p2Pðkþ pÞPðkÞ2

Diið0; qÞ
d

¼ −
3π

2

CRC2
Aα

3
sT

m2
D

Z
q∼mM

Diið0; qÞ; ðC4Þ

L4 ¼ CRC2
Ag

6T
Z Z

k;p∼mD

Z
q∼mM

3ð2k2 þ k · pÞ
p2Pðkþ pÞPðkÞ3

Diið0; qÞ
d

¼ π
CRC2

Aα
3
sT

m2
D

Z
q∼mM

Diið0; qÞ; ðC5Þ

L5 þ L6 ¼ CRC2
Ag

6T
Z Z

k;p∼mD

Z
q∼mM

�
3ð2kþ pÞ · ðkþ pÞ
p2Pðkþ pÞ2PðkÞ2 þ 3ð2k2 þ k · pÞ

p2Pðkþ pÞPðkÞ3
�
Diið0; qÞ

d

¼ 2π
CRC2

Aα
3
sT

m2
D

Z
q∼mM

Diið0; qÞ; ðC6Þ

L7 ¼ −
1

2
CRC2

Ag
6T
Z Z

k;p∼mD

Z
q∼mM

�
4ð2kþ pÞ2ðkþ pÞ2
p2Pðkþ pÞ3PðkÞ2 þ 4k2ð2kþ pÞ2

p2Pðkþ pÞPðkÞ4 −
dð2kþ pÞ2

p2Pðkþ pÞ2PðkÞ2
�
Diið0; qÞ

d

¼ −
5π

9

CRC2
Aα

3
sT

m2
D

Z
q∼mM

Diið0; qÞ; ðC7Þ

L9 ¼ −
1

2
CRC2

Ag
6T
Z Z

k;p∼mD

Z
q∼mM

�
20k2p2 − 4ð6 − dÞðk · pÞ2 − 4ð1 − dÞðk · pÞ2p2 − ð1 − dÞðp2Þ2

ðp2Þ3Pðkþ pÞPðkÞ2

−
ðd − 1Þð2kþ pÞ2

ðp2Þ2Pðkþ pÞPðkÞ2
�
Diið0; qÞ

d

¼ π

2

CRC2
Aα

3
sT

m2
D

Z
q∼mM

Diið0; qÞ: ðC8Þ

From the square of the one-loop self-energy we have

−
CRg2

2T

Z
k∼mD

Πð1Þ
mDð0; kÞΠð1Þ

mMð0; kÞ
ðk2 þm2

DÞ3
¼ −CRC2

Ag
6T
Z Z

k;p∼mD

Z
q∼mM

�
4k2ð2kþ pÞ2

p2Pðkþ pÞPðkÞ4 −
dð2kþ pÞ2

p2Pðkþ pÞPðkÞ3
�
Diið0; qÞ

d

¼ −
π

9

CRC2
Aα

3
sT

m2
D

Z
q∼mM

Diið0; qÞ: ðC9Þ

The sum of all these terms gives zero.
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APPENDIX D: AUTOMATIC REDUCTION TO MASTER INTEGRALS

The method of how to solve the three-loop integrals appearing in this calculation has been described in [61]. Minimal
modifications are required in order to account for the Euclidean metric. All integrals can be put in the two following forms:

BMði1; i2; i3; i4; i5; i6Þ ¼
Z
k

Z
p

Z
q

1

ðp2Þi1ððp − qÞ2Þi2ðq2Þi3Pðkþ pÞi4Pðkþ qÞi5PðkÞi6 ; ðD1Þ

BNði1; i2; i3; i4; i5; i6Þ ¼
Z
k

Z
p

Z
q

1

ðp2Þi1ðq2Þi2Pðkþ pÞi3Pðkþ qÞi4Pðkþ pþ qÞi5PðkÞi6 ; ðD2Þ

with PðkÞ ¼ k2 þm2
D. In this framework, the exponents i1;…; i6 are integers.

By relabeling or shifting the integration variables k, p, and q several identities between the different BM and BN can be
established:

BMði1; i2; i3; i4; i5; i6Þ ¼ BMði2; i1; i3; i4; i6; i5Þ
¼ BMði3; i1; i2; i6; i4; i5Þ ¼ BMði3; i2; i1; i5; i4; i6Þ
¼ BMði2; i3; i1; i5; i6; i4Þ ¼ BMði1; i3; i2; i6; i5; i4Þ; ðD3Þ

BNði1; i2; i3; i4; i5; i6Þ ¼ BNði1; i2; i5; i6; i3; i4Þ
¼ BNði1; i2; i4; i3; i6; i5Þ ¼ BNði1; i2; i6; i5; i4; i3Þ
¼ BNði2; i1; i4; i3; i5; i6Þ ¼ BNði2; i1; i5; i6; i4; i3Þ
¼ BNði2; i1; i3; i4; i6; i5Þ ¼ BNði2; i1; i6; i5; i3; i4Þ: ðD4Þ

In addition, any BN with an index i3;…; i6 zero or negative can be turned into a BM. The obvious relation is

BNði1; i2; i3; i4; 0; i6Þ ¼ BMði1; 0; i2; i3; i4; i6Þ: ðD5Þ

If i5 is negative, one can expand the numerator after substituting

ðkþ pþ qÞ2 þm2
D ¼ p2 − ðp − qÞ2 þ q2 þ ððkþ pÞ2 þm2

DÞ þ ððkþ qÞ2 þm2
DÞ − ðk2 þm2

DÞ: ðD6Þ

All these terms appear to some power in the denominator,
so they can be canceled to give proper BM integrals. If any
of the other indices i3;…; i6 is zero or negative, then one
can use the identities above to shift that to the fifth position
and then use the relation for i5 ≤ 0.
Other identities can be found by acting with ∇i · kj on

the integrand, where ki and kj can be any of the three loop

momenta. The total expression has to be zero, since it is
an integral over a total derivative, but calculating the
derivative explicitly gives a number of other BM and BN
integrals. These new identities include integrals with
changed indices i1;…; i6, while the identities above just
shift them:

ðd − 2i1 − i2 − i4ÞBMði1; i2; i3; i4; i5; i6Þ ¼ i2BMði1 − 1; i2 þ 1; i3; i4; i5; i6Þ − i2BMði1; i2 þ 1; i3 − 1; i4; i5; i6Þ
þ i4BMði1 − 1; i2; i3; i4 þ 1; i5; i6Þ − i4BMði1; i2; i3; i4 þ 1; i5; i6 − 1Þ; ðD7Þ

ðd − i1 − i3 − 2i6ÞBMði1; i2; i3; i4; i5; i6Þ ¼ −2i6m2
DBMði1; i2; i3; i4; i5; i6 þ 1Þ þ i1BMði1 þ 1; i2; i3; i4; i5; i6 − 1Þ

− i1BMði1 þ 1; i2; i3; i4 − 1; i5; i6Þ þ i3BMði1; i2; i3 þ 1; i4; i5; i6 − 1Þ
− i3BMði1; i2; i3 þ 1; i4; i5 − 1; i6Þ; ðD8Þ
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ðd − i1 − 2i4 − i6ÞBNði1; i2; i3; i4; i5; i6Þ ¼ i1BNði1 þ 1; i2; i3; i4 − 1; i5; i6Þ − i1BNði1 þ 1; i2; i3; i4; i5 − 1; i6Þ
þ i6BNði1; i2; i3; i4 − 1; i5; i6 þ 1Þ − i6BNði1; i2 − 1; i3; i4; i5; i6 þ 1Þ
− 2i4m2

DBNði1; i2; i3; i4 þ 1; i5; i6Þ − 2i6m2
DBNði1; i2; i3; i4; i5; i6 þ 1Þ; ðD9Þ

�
i1 þ i2 þ i3 þ i4 þ i5 þ i6 −

3d
2

�
BNði1; i2; i3; i4; i5; i6Þ

¼ i3m2
DBNði1; i2; i3 þ 1; i4; i5; i6Þ þ i4m2

DBNði1; i2; i3; i4 þ 1; i5; i6Þ
þ i5m2

DBNði1; i2; i3; i4; i5 þ 1; i6Þ þ i6m2
DBNði1; i2; i3; i4; i5; i6 þ 1Þ: ðD10Þ

There are 16 further identities, which can be obtained from
these four by combining them with the index shifts given
above.
By repeated use of these identities every BN integral can

be reduced to BNð0; 0; 1; 1; 1; 1Þ plus a bunch of BM
integrals. In the same way every BM integral can be
reduced to BMð0; 0; 0; 1; 1; 1Þ plus BM integrals where at
least one of the indices i4;…; i6 is zero or negative, for
which there exists a general solution. So all integrals
appearing in our calculation can be put into the form of
a few master integrals. The needed results for those can be
found in [28,61,62].2

APPENDIX E: CALCULATION OF THE
MASTER INTEGRALS

For the sake of completeness, we attach here how the
master integrals, whose results are given in [28,61,62], can

be calculated. The simplest one is BMð0; 0; 0; 1; 1; 1Þ,
because in this case all three loop integrations decouple
by shifting p → p − k and q → q − k:

BMð0; 0; 0; 1; 1; 1Þ ¼
�Z

k

1

k2 þm2
D

�
3

¼ Γð1 − d
2
Þ3

ð4πÞ3d2 m3d−6
D :

ðE1Þ

For the other BM integrals instead of a closed expression
we will rather give another algorithm for their solution.
We will assume that the zero or negative index is i4,
because if it is i5 or i6 instead then one can exchange those
with i4 by one of the identities. After also performing the
shift p → p − k and q → q − k we can integrate over p
without problems, because it no longer appears in a massive
denominator:

Z
p

ðp2 þm2
DÞ−i4

ððp − kÞ2Þi1ððp − qÞ2Þi2 ¼
Γði1 þ i2Þ
Γði1ÞΓði2Þ

Z
1

0

dx
Z
p

ðp2 þm2
DÞ−i4xi1−1ð1 − xÞi2−1

ðp2 − 2xp · k − 2ð1 − xÞp · qþ xk2 þ ð1 − xÞq2Þi1þi2

¼ Γði1 þ i2Þ
Γði1ÞΓði2Þ

Z
1

0

dx
Z
p

ððpþ xkþ ð1 − xÞqÞ2 þm2
DÞ−i4xi1−1ð1 − xÞi2−1

ðp2 þ xð1 − xÞðk − qÞ2Þi1þi2
: ðE2Þ

Now we have to expand the numerator, which we can do because −i4 is a non-negative integer, and then use the identity

Z
p
ðp · qÞnfðp2Þ ¼ 2

ð4πÞd−12 Γðd−1
2
Þ

Z
∞

−∞

dp∥

2π

Z
∞

0

dp⊥pd−2⊥ ðp∥qÞnfðp2
∥ þ p2⊥Þ

¼ 4

ð4πÞdþ1
2 Γðd−1

2
Þ

Z
∞

0

dp
Z

1

−1
dx

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
pÞd−2ðxpqÞnfðp2Þ

¼ 4

ð4πÞdþ1
2 Γðd−1

2
Þ

Z
∞

0

dp
Z

1

0

dxð1 − xÞd−32 xn−1
2 pd−1þnqnfðp2Þ

¼ Γðnþ1
2
ÞΓðd

2
Þffiffiffi

π
p

Γðdþn
2
Þ
Z
p
pnqnfðp2Þ ¼ ΓðnÞΓðd

2
Þ

2n−1Γðn
2
ÞΓðdþn

2
Þ
Z
p
pnqnfðp2Þ; ðE3Þ

2As a check that our programs are running correctly we have calculated all the integrals given in the appendix of [28] and reproduced
their results.
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if n is even, or 0 if it is odd. Then the expanded numerator consists only of a sum of powers of p2, m2
D, and

ðxkþ ð1 − xÞqÞ2, the last of which can be reexpressed as

ðxkþ ð1 − xÞqÞ2 ¼ xðk2 þm2
DÞ − xð1 − xÞðk − qÞ2 þ ð1 − xÞðq2 þm2

DÞ −m2
D: ðE4Þ

The p and x integrations now all have the form

Z
1

0

dx
Z
p

xα−1ð1 − xÞβ−1p2γ

ðp2 þ xð1 − xÞðk − qÞ2Þδ ¼
Γðδ − γ − d

2
ÞΓðd

2
þ γÞ

ð4πÞd2ΓðδÞΓðd
2
Þ

Z
1

0

dx
xαþγþd

2
−δ−1ð1 − xÞβþγþd

2
−δ−1

ððk − qÞ2Þδ−γ−d
2

¼ Γðδ − γ − d
2
ÞΓðd

2
þ γÞΓðαþ γ þ d

2
− δÞΓðβ þ γ þ d

2
− δÞμ3−d

ð4πÞd2ΓðδÞΓðd
2
ÞΓðαþ β þ 2γ þ d − 2δÞððk − qÞ2Þδ−γ−d

2

: ðE5Þ

We see that the remaining loop momenta k and q appear only in the combination ðk − qÞ2 in the denominator, which can
be combined with the term ððk − qÞ2Þi3 from the original BM integral. The numerator has already been expressed through
terms appearing in the denominator, which can also be combined so that we have a sum of integrals of the form

Z
k

Z
q

1

ððk − qÞ2Þαðk2 þmDÞβðq2 þm2
DÞγ

¼ Γðαþ βÞ
ΓðαÞΓðβÞ

Z
1

0

dx
Z
k

Z
q

ð1 − xÞα−1xβ−1
ðk2 þ xð1 − xÞq2 þ xm2

DÞαþβðq2 þm2
DÞγ

¼ Γðαþ β − d
2
Þ

ð4πÞd2ΓðαÞΓðβÞ

Z
q

ð1 − xÞα−1xd
2
−α−1μ3−d

ðð1 − xÞq2 þm2
DÞαþβ−d

2ðq2 þm2
DÞγ

¼ Γðαþ β þ γ − d
2
Þ

ð4πÞd2ΓðαÞΓðβÞΓðγÞ

Z
1

0

dx
Z

1

0

dy
Z
q

ð1 − xÞα−1xd
2
−α−1ð1 − yÞγ−1yαþβ−d

2
−1μ3−d

ðð1 − xyÞq2 þm2
DÞαþβþγ−d

2

¼ Γðαþ β þ γ − dÞ
ð4πÞdΓðαÞΓðβÞΓðγÞ

Z
1

0

dx
Z

1

0

dy
ð1 − xÞα−1xd

2
−α−1ð1 − yÞγ−1yαþβ−d

2
−1μ6−2d

ð1 − xyÞd2m2αþ2βþ2γ−2d
D

:

ðE6Þ

If we now perform the substitution

z ¼ ð1 − yÞx
1 − xy

; 1 − z ¼ 1 − x
1 − xy

; dz ¼ 1 − y
ð1 − xyÞ2 dx; ðE7Þ

where for x from 0 to 1 also z ranges from 0 to 1 independently of y, then the two Feynman parameter integrations decouple:Z
k

Z
q

1

ððk − qÞ2Þαðk2 þmDÞβðq2 þm2
DÞγ

¼ Γðαþ β þ γ − dÞ
ð4πÞdΓðαÞΓðβÞΓðγÞ

Z
1

0

dy
Z

1

0

dz
ð1 − zÞα−1zd2−α−1ð1 − yÞαþγ−d

2
−1yαþβ−d

2
−1μ6−2d

m2αþ2βþ2γ−2d
D

¼ Γðαþ β þ γ − dÞΓðd
2
− αÞΓðαþ β − d

2
ÞΓðαþ γ − d

2
Þμ6−2d

ð4πÞdΓðβÞΓðγÞΓðd
2
ÞΓð2αþ β þ γ − dÞm2αþ2βþ2γ−2d

D

: ðE8Þ

In this way all BM integrals with a zero or negative index i4;…; i6 can be expressed through gamma functions.
The final missing integral BNð0; 0; 1; 1; 1; 1Þ is more complicated and we are not aware of a solution for general d, so we

will show how to calculate it to Oðϵ0Þ. In fact, it is easier to calculate BNð0; 0; 2; 1; 1; 2Þ, because unlike BNð0; 0; 1; 1; 1; 1Þ
this integral is finite. Through the algorithm described above we get the relation

BNð0; 0; 2; 1; 1; 2Þ ¼
ð3d − 8Þð3d − 10Þðd − 3Þ

64ðd − 4Þm4
BNð0; 0; 1; 1; 1; 1Þ þ

ðd − 2Þ3Γð1 − d
2
Þ3μ3d−9

32ðd − 4Þð4πÞ3d2m3d−6
D

: ðE9Þ
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We see that, because of the coefficient ðd − 3Þ, in order to get BNð0; 0; 1; 1; 1; 1Þ to Oðϵ0Þ we need to calculate
BNð0; 0; 2; 1; 1; 2Þ to Oðϵ1Þ. After performing the shift p → p − k the p and k integrations are identical:

BNð0; 0; 2; 1; 1; 2Þ ¼
Z
k

Z
p

Z
q

1

ðp2 þm2
DÞ2ððkþ qÞ2 þm2

DÞððpþ qÞ2 þm2
DÞðk2 þm2

DÞ2

¼
Z
q

�Z
k

1

ððkþ qÞ2 þm2
DÞðk2 þm2

DÞ2
�

2

¼
Z
q

�Z
1

0

dx
Z
k

2x
ðk2 þ xð1 − xÞq2 þm2

DÞ3
�

2

¼
Z
q

�
Γð3 − d

2
Þ

ð4πÞd2
Z

1

0

dx
xμ3−d

ðxð1 − xÞq2 þm2
DÞ3−

d
2

�
2

¼
Z

∞

0

dq
2qd−1μ3−d

ð4πÞd2Γðd
2
Þ

�
1

8πmDðq2 þ 4m2
DÞ
�
1 − γEϵþ ln

μ2π

m2
D
ϵ

�
þ

tan−1 q
2mD

2πqðq2 þ 4m2
DÞ

ϵ

�2

¼
Z

∞

0

dq
q2

128π4m2
Dðq2 þm2

DÞ2
�
1þ 2ϵ − 3γEϵþ ln

μ6π3

m4
Dq

2
ϵþ 8mD

q
tan−1

q
2mD

ϵ

�

¼ 1

16ð4πÞ3m3
D

�
1þ 2ϵ − 3γEϵ − 2 ln 2ϵþ 3 ln

μ2π

m2
D
ϵ

�
þOðϵ2Þ: ðE10Þ

From these two results we obtain

BNð0; 0; 1; 1; 1; 1Þ

¼ mD

ð4πÞ3
�
−
1

ϵ
− 8þ 3γE þ 4 ln 2 − 3 ln

μ2π

m2
D

�
þOðϵÞ:

ðE11Þ

APPENDIX F: COLOR COEFFICIENTS OF THE
UNCONNECTED THREE-GLUON DIAGRAMS

All unconnected three-gluon diagrams are given in
Fig. 13. The standard color coefficients are labeled Cij

according to the caption, while the coefficients that appear
in the logarithm are called ~Cij.

The most straightforward prescription to calculate the
coefficients in the logarithm comes from the replica trick
[24,25]. First one attaches an index from 1 to n to each
gluon, where n is some integer, then rearranges each
diagram such that gluons with a higher index are moved
along the Polyakov loop contour to the right of gluons with
a lower index, while gluons with the same index keep their
current configuration. After summing over all combina-
tions of indices one expands in n and takes the coefficient
of the linear term.
Here we have three different possibilities: either all three

gluons have a different index, two have the same but the
third index is different, or all three indices are the same. It is
then only a matter of combinatorics to count the number of
possible index combinations. For three different indices
there are nðn − 1Þðn − 2Þ possibilities, while when all three
are the same there are n. When only two are the same there

FIG. 13. All unconnected three-gluon diagrams. The corresponding color coefficients are labeled Cij, where i denotes the row and j
the column in which the diagram is listed.
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are nðn − 1Þ index combinations and 3 ways to choose the
one gluon that has a different index. Rearranging the gluons
according to their index number always gives C11 ¼ C3

R for
three different indices and the standard (i.e., QCD) color
coefficient when all indices are the same. When only two
are the same, then in half of the index combinations the
single index will be smaller then the double index and

larger for the other half, but in both cases the color
coefficient is the same, so we do not have to differentiate
between them. The 3 different ways to choose the single
index gluon may or may not give different color coef-
ficients after rearranging the gluons according to their
indices.
The standard color factors are

C11 ¼ C3
R; C21 ¼ C2

R

�
CR −

1

2
CA


; C31 ¼ C3

R;

C12 ¼ C2
R

�
CR −

1

2
CA


; C22 ¼ CR

�
CR −

1

2
CA

2
; C32 ¼ C2

R

�
CR −

1

2
CA


;

C13 ¼ C3
R; C23 ¼ CR

�
CR −

1

2
CA


ðCR − CAÞ; C33 ¼ CR

�
CR −

1

2
CA

2
;

C14 ¼ C2
R

�
CR −

1

2
CA


; C24 ¼ CR

�
CR −

1

2
CA

2
; C34 ¼ C2

R

�
CR −

1

2
CA


;

C15 ¼ C3
R; C25 ¼ C2

R

�
CR −

1

2
CA


; C35 ¼ C3

R: ðF1Þ

Then we can calculate the coefficients in the logarithm:

~C11 ¼ nC11 þ 3nðn − 1ÞC11 þ nðn − 1Þðn − 2ÞC11

����
OðnÞ

¼ 0; ðF2Þ

~C12 ¼ nC12 þ 2nðn − 1ÞC11 þ nðn − 1ÞC12 þ nðn − 1Þðn − 2ÞC11

����
OðnÞ

¼ 0; ðF3Þ

~C13 ¼ nC13 þ 2nðn − 1ÞC11 þ nðn − 1ÞC13 þ nðn − 1Þðn − 2ÞC11

����
OðnÞ

¼ 0; ðF4Þ

~C14 ¼ nC14 þ nðn − 1ÞC11 þ nðn − 1ÞC12 þ nðn − 1ÞC13

þ nðn − 1Þðn − 2ÞC11

����
OðnÞ

¼ C11 − C12 − C13 þ C14 ¼ 0; ðF5Þ

~C15 ¼ nC15 þ nðn − 1ÞC11 þ 2nðn − 1ÞC13 þ nðn − 1Þðn − 2ÞC11

����
OðnÞ

¼ C11 − 2C13 þ C15 ¼ 0; ðF6Þ

~C21 ¼ nC21 þ 2nðn − 1ÞC11 þ nðn − 1ÞC21 þ nðn − 1Þðn − 2ÞC11

����
OðnÞ

¼ 0; ðF7Þ

~C22 ¼ nC22 þ 2nðn − 1ÞC21 þ nðn − 1ÞC11 þ nðn − 1Þðn − 2ÞC11

����
OðnÞ

¼ C22 − 2C21 þ C11 ¼
1

4
CRC2

A; ðF8Þ

~C23 ¼ nC23 þ 3nðn − 1ÞC21 þ nðn − 1Þðn − 2ÞC11jOðnÞ

¼ C23 − 3C21 þ 2C11 ¼
1

2
CRC2

A; ðF9Þ
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~C24 ¼ nC24 þ 2nðn − 1ÞC21 þ nðn − 1ÞC31 þ nðn − 1Þðn − 2ÞC11jOðnÞ

¼ C24 − 2C21 − C31 þ 2C11 ¼
1

4
CRC2

A; ðF10Þ

~C25 ¼ nC25 þ nðn − 1ÞC21 þ 2nðn − 1ÞC31 þ nðn − 1Þðn − 2ÞC11jOðnÞ

¼ C25 − C21 − 2C31 þ 2C11 ¼ 0; ðF11Þ

~C31 ¼ nC31 þ 2nðn − 1ÞC11 þ nðn − 1ÞC31 þ nðn − 1Þðn − 2ÞC11jOðnÞ ¼ 0; ðF12Þ

~C32 ¼ nC32 þ nðn − 1ÞC11 þ nðn − 1ÞC21 þ nðn − 1ÞC31 þ nðn − 1Þðn − 2ÞC11jOðnÞ
¼ C32 − C21 − C31 þ C11 ¼ 0; ðF13Þ

~C33 ¼ nC33 þ 2nðn − 1ÞC21 þ nðn − 1ÞC31 þ nðn − 1Þðn − 2ÞC11jOðnÞ

¼ C33 − 2C21 − C31 þ 2C11 ¼
1

4
CRC2

A; ðF14Þ

~C34 ¼ nC34 þ nðn − 1ÞC21 þ 2nðn − 1ÞC31 þ nðn − 1Þðn − 2ÞC11jOðnÞ

¼ C34 − C21 − 2C31 þ 2C11 ¼ 0; ðF15Þ

~C35 ¼ nC35 þ 3nðn − 1ÞC31 þ nðn − 1Þðn − 2ÞC11jOðnÞ

¼ C35 − 3C31 þ 2C11 ¼ 0: ðF16Þ

Here we see the general property confirmed that only
two-particle irreducible diagrams appear in the logarithm.
This means that the color coefficient in the logarithm
vanishes for any diagram where one can cut the (closed)
Polyakov loop contour in two points such that there are no
gluons connecting from one segment of the contour to the
other. These are the so-called two-particle reducible
diagrams, the diagrams where this is not possible are
called two-particle irreducible. Here the considerable
reduction in the number of diagrams is even more
apparent than in the two-gluon diagrams: out of 15

unconnected three-gluon diagrams only 4 survive in the
logarithm.
We also see that all higher power terms ofCR are canceled;

only the linear term remains and only the two-particle
irreducible diagrams have a linear term. This is in accordance
with the theoremshownin [25] that thecolorcoefficients in the
logarithmall correspond to those of fully connected diagrams.
The coefficients of fully connected diagrams depend only

linearly on CR or the CðnÞ
R . So the only terms that can break

Casimir scaling come from the CðnÞ
R ; see Eq. (47).
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