
Phenomenology of semileptonic B-meson decays
with form factors from lattice QCD

Daping Du,1,* A. X. El-Khadra,2 Steven Gottlieb,3 A. S. Kronfeld,4,5 J. Laiho,1 E. Lunghi,3,†

R. S. Van de Water,4,‡ and Ran Zhou4,§

(Fermilab Lattice and MILC Collaborations)

1Department of Physics, Syracuse University, Syracuse, New York 13244, USA
2Department of Physics, University of Illinois, Urbana, Illinois 61801, USA

3Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
4Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

5Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany
(Received 26 October 2015; published 3 February 2016)

We study the exclusive semileptonic B-meson decays B → KðπÞlþl−, B → KðπÞνν̄, and B → πτν,
computing observables in the Standard Model using the recent lattice-QCD results for the underlying form
factors from the Fermilab Lattice and MILC collaborations. These processes provide theoretically clean
windows into physics beyond the Standard Model because the hadronic uncertainties are now under good
control for suitably binned observables. For example, the resulting partially integrated branching fractions
for B → πμþμ− and B → Kμþμ− outside the charmonium resonance region are 1–2σ higher than the
LHCb collaboration’s recent measurements, where the theoretical and experimental errors are commen-
surate. The combined tension is 1.7σ. Combining the Standard-Model rates with LHCb’s measurements
yields values for the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements jVtdj ¼ 7.45ð69Þ × 10−3,
jVtsj ¼ 35.7ð1.5Þ × 10−3, and jVtd=Vtsj ¼ 0.201ð20Þ, which are compatible with the values obtained from
neutral BðsÞ-meson oscillations and have competitive uncertainties. Alternatively, taking the CKM matrix
elements from unitarity, we constrain new-physics contributions at the electroweak scale. The constraints
on the Wilson coefficients ReðC9Þ and ReðC10Þ from B → πμþμ− and B → Kμþμ− are competitive with
those from B → K�μþμ−, and display a 2.0σ tension with the Standard Model. Our predictions for
B → KðπÞνν̄ and B → πτν are close to the current experimental limits.

DOI: 10.1103/PhysRevD.93.034005

I. INTRODUCTION AND MOTIVATION

The experimental high-energy physics community is
searching for virtual effects of new heavy particles that
would give rise to deviations from Standard-Model pre-
dictions via a broad range of precision measurements [1].
Because the masses and couplings of the new particles are
not known a priori, indirect searches are being pursued in
many areas of particle physics, including the charged-lepton
sector [2], the Higgs sector [3], and the quark-flavor sector
[4]. Within heavy-quark physics, B-meson semileptonic
decays provide numerous observables such as decay rates,
angular distributions, and asymmetries that are expected to
be sensitive to different new-physics scenarios. For example,
the rare decays B → Klþl−, B → Kνν̄, B → πlþl−, and
B → πνν̄ proceed via b → s and b → d flavor-changing
neutral currents (FCNCs) and are sensitive to the effects of
new heavy particles that can arise in a wide range of models.

These include supersymmetry [5–8], leptoquarks [9–11],
and a fourth generation [12];modelswith flavor-changingZ0

gauge bosons [13–20]; andmodels with extended [5,21–25]
or composite [10] Higgs sectors. Decays to τ-lepton final
states such as B → πτν are especially sensitive to charged
scalars that couple preferentially to heavier particles
[26–31], such as those that occur in two-Higgs-doublet
models. tree-level Cabibbo-Kobayashi-Maskawa (CKM)-
favored b → u charged-current processes can be modified
due to the presence of new right-handed currents [32–34].
If deviations from the Standard Model are observed in B-
meson semileptonic decays, correlations between measure-
ments can provide information on the underlyingmasses and
couplings of the new-physics scenario that is realized in
nature. (See, e.g., Refs. [35,36] for recent reviews.)
Several tensions between theory and experiment have

recently been observed in B-meson semileptonic decays.
The BABAR experiment found excesses in both RðDÞ≡
BðB → DτνÞ=BðB → DlνÞ and RðD�Þ≡ BðB → D�τνÞ=
BðB → D�lνÞ with a combined significance of 3.4σ
[37,38]. These results were subsequently confirmed by
Belle [39] and LHCb [40], albeit with somewhat lower

*dadu@syr.edu
†elunghi@indiana.edu
‡ruthv@fnal.gov
§zhouran@fnal.gov

PHYSICAL REVIEW D 93, 034005 (2016)

2470-0010=2016=93(3)=034005(38) 034005-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.034005
http://dx.doi.org/10.1103/PhysRevD.93.034005
http://dx.doi.org/10.1103/PhysRevD.93.034005
http://dx.doi.org/10.1103/PhysRevD.93.034005


significance; a recent HFAG average of these measure-
ments quotes a combined significance of 3.9σ [41]. The
LHCb experiment recently reported a measurement of the
ratio of Bþ → Kþμþμ− over Bþ → Kþeþe− branching
fractions (denoted Rμe

Kþ below) in the range 1 GeV2 ≤ q2 ≤
6 GeV2 that is 2.6σ lower than Standard-Model expect-
ations [42]. The Standard-Model predictions for the B →
Kð�Þμþμ− differential decay rates are slightly, but system-
atically, higher than experimental measurements by LHCb
[43–45]. Discrepancies of 2–3σ between theory and experi-
ment have also been observed for several B → K�ll
angular observables [46,47]. The long-standing ≈3σ ten-
sions between determinations of the CKM matrix elements
jVubj and jVcbj obtained from inclusive and exclusive tree-
level semileptonic B-meson decays were recently con-
firmed with a new high-precision lattice-QCD calculation
of the B → πlν form factors [48], the first unquenched
lattice-QCD calculations of the B → Dlν form factors at
nonzero recoil [49,50], and the first unquenched lattice-
QCD calculation of the ratio of Λb → plν to Λb → Λclν
form factors [51].1

Experimental progress on B-meson semileptonic decays
has also been, andwill continue to be, significant. TheLHCb
experiment recently announced the first measurement of the
Bþ → πþμþμ− differential decay rate [55], as well as for the
ratio of Bþ → πþμþμ− to Bþ → Kþμþμ− rates. This ena-
bles a more stringent test of the Standard Model via
comparison of the shape to the theoretical prediction. The
Belle experiment recently presented an upper limit on the
total rate forB0 → π−τν decay [56] from their first search for
this process that is less than an order ofmagnitude above that
of the Standard-Model prediction. The upcoming Belle II
experiment expects to observeB → πτν andother heretofore
unseen processes such as B0 → π0νν̄ [57]. (The charged
counterpart Bþ → πþνν̄ is part of the analysis chain
Bþ → τþν, τþ → πþν̄ [58–61].) Given the several observed
tensions in semileptonicB-meson decays enumerated above
and the recent and anticipated improvement in experimental
measurements, it is important and timely to critically
examine the assumptions entering the Standard-Model
predictions for semileptonic B-decay observables and to
provide reliable estimates of the theoretical uncertainties.
The Fermilab Lattice and MILC collaborations

(Fermilab/MILC) recently completed calculations of the
form factors for B → K [62] and B → π [48,63] transitions
with lattice QCD using ensembles of gauge configurations
with three dynamical quark flavors. For B → K, the errors
are commensurate with earlier lattice-QCD results [64]. For
B → π, the results of Refs. [48,63] are the most precise

form factors to date, with errors less than half the size of
previous ones [65,66]. Reference [48] also contains a joint
fit of lattice-QCD form factors with experimental mea-
surements of the differential decay rate from BABAR
and Belle [67–70] to obtain the most precise exclusive
determination to date of the CKM matrix element
jVubj ¼ 3.72ð16Þ × 10−3. This fit also improves the deter-
mination of the vector and scalar form factors fþ and f0,
compared to those from lattice-QCD alone, provided that
new physics does not contribute significantly to tree-level
B → πlνðl ¼ e; μÞ transitions.
Given the landscape of quark-flavor physics described

above, it is timely to use the form factors from
Refs. [48,62,63] to obtain Standard-Model predictions
for various B-meson semileptonic-decay observables.
(For brevity, the rest of this paper refers to these results
as the “Fermilab/MILC form factors.”) The new ab initio
QCD information on the hadronic matrix elements allows
us to obtain theoretical predictions of the observables with
fewer assumptions than previously possible. In this paper,
we consider the processes B → Klþl−, B → Kνν̄,
B → πlþl−, B → πνν̄, and B → πτν. We present the
following observables: differential decay rates, asymme-
tries, combinations of B → π and B → K observables, and
lepton-universality-violating ratios. For partially integrated
quantities, we include the correlations between bins of
momentum transfer q2. Where possible, we make compar-
isons with existing experimental measurements. We also
combine our predictions for the B → KðπÞlþl− Standard-
Model rates with the most recent experimental measure-
ments to constrain the associated combinations of CKM
matrix elements jVtbV�

tdj, jVtbV�
tsj, and jVtd=Vtsj. For the

B → π vector and scalar form factors, we use the more
precise Standard-Model determinations, which use exper-
imental shape information from B → πlν decay.
We do not consider B → K� processes in this paper,

although there is extensive experimental and theoretical
work. Lattice-QCD calculations of the hadronic form
factors are available [44,71], albeit without complete
accounting for the K� → Kπ decay [72]. The phenomenol-
ogy of these processes [73–79] often assumes various
relations deduced from flavor symmetries. Here we use
the B → K and B → π form factors obtained directly from
lattice QCD [48,62,63] to test some of the symmetry
relations employed in the literature.
The semileptonic form factors suffice to parametrize the

factorizable hadronic contributions to B → π and B → K
decays in all extensions of the Standard Model. New heavy
particles above the electroweak scale only modify the short-
distance Wilson coefficients of the effective Hamiltonian
[80–83]. Here we use the Fermilab/MILC form factors
to obtain model-independent constraints on the Wilson
coefficients for the effective operators that govern b → dðsÞ
FCNC transitions. To facilitate the use of these form factors
for additional phenomenological studies, the original

1Note, however, that the Belle experiment’s preliminary
measurement of the B → Dlν differential decay rate [52], when
combined with lattice-QCD form-factor calculations [49,50],
yields a value of jVcbj [53] that is in better agreement with
the inclusive determination [54].
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papers [48,62,63] provided complete parametrizations of
the B → π and B → K form factors as coefficients of the z
expansions and their correlations. To enable the combined
analysis of both modes, this paper supplements that
information by providing the correlations between the
B → π and B → K form-factor coefficients.
This paper is organized as follows. We first provide

an overview of the theoretical framework for the semi-
leptonic decay processes studied in this work in
Sec. II. Next, in Sec. III, we summarize the calculations
behind the Fermilab/MILC B → π and B → K form factors
[48,62,63], providing a table of correlations among all form
factors. Here, we also use the form factors to directly test
heavy-quark and SU(3) symmetry relations that have been
used in previous Standard-Model predictions for rare
semileptonic B-meson decay observables. In Sec. IV, we
present our main results for Standard-Model predictions for
B → πlþl−, B → Klþl−, B → KðπÞνν̄, and B → πτν
observables using the Fermilab/MILC form factors, dis-
cussing each process in a separate subsection. Then, in
Sec. V we use our predictions for the partially integrated
branching fractions together with experimental rate mea-
surements to constrain the associated CKM matrix
elements (Sec. VA) and relevant Wilson coefficients
(Sec. V B). To aid the reader in digesting the information
presented in Secs. IVand V, we summarize our main results
in Sec. VI. Finally, we give an outlook for future improve-
ments and concluding remarks in Sec. VII.
Three Appendices provide detailed, supplementary

information. In Appendix A, we tabulate our numerical
results for B → πlþl− and B → Klþl− observables in the
Standard Model integrated over different q2 intervals. We
present the complete theoretical expressions for the
B → KðπÞlþl− differential decays rates in the Standard
Model, including nonfactorizable terms, in Appendix B.
The numerical values of the parametric inputs used for our
calculations are provided in Appendix C.

II. THEORETICAL BACKGROUND

Here we summarize the Standard-Model theory for the
semileptonic decay processes considered in this paper.
First, Sec. II A provides the standard definitions of the
form factors. Next, in Sec. II B, we discuss the theoretical
framework for rare processes with a charged-lepton pair
final state, b → qllðq ¼ d; sÞ. Then we briefly summarize
the formulas for rare decays with a neutrino pair final state
b → qνν̄ðq ¼ d; sÞ in Sec. II C and for tree-level b → ulνl
semileptonic decays in Sec. II D. The latter two processes
are theoretically much simpler, being mediated by a single
operator in the electroweak effective Hamiltonian.

A. Form-factor definitions

The pseudoscalar-to-pseudoscalar transitions considered
in this paper can be mediated by vector, scalar, and tensor

currents. It is conventional to decompose the matrix
elements into Lorentz-invariant forms built from the
pseudoscalar- and B-meson momenta pP and pB, multi-
plied by form factors that depend on the Lorentz invariant
q2, where q ¼ pB − pP is the momentum carried off by the
leptons. For the vector current,

hPðpPÞjq̄γμbjBðpBÞi

¼ fþðq2Þ
�
ðpB þ pPÞμ − qμ

M2
B −M2

P

q2

�

þ f0ðq2Þqμ
M2

B −M2
P

q2
; ð2:1Þ

¼ fþðq2ÞðpB þ pPÞμ þ f−ðq2ÞðpB − pPÞμ: ð2:2Þ

The form factors fþðq2Þ and f0ðq2Þ couple to JP ¼ 1− and
0þ, respectively, and therefore enter expressions for differ-
ential decay rates in a straightforward way. Because the
terms proportional to f0ðq2Þ carry a factor of qμ, their
contributions to differential decay rates are weighted by the
lepton mass, ml, and is therefore significant only in the
case of τ-lepton final states. The form factor f−ðq2Þ is
useful for a test of heavy-quark symmetry, discussed in
Sec. III B. Partial conservation of the vector current implies
that f0 also parametrizes the matrix element of the scalar
current:

hPðpPÞjq̄bjBðpBÞi ¼
M2

B −M2
P

mb −mq
f0ðq2Þ: ð2:3Þ

Finally, the matrix element of the tensor current is

hPðpPÞjiq̄σμνbjBðpBÞi

¼ 2

MB þMP
ðpμ

Bp
ν
P − pν

Bp
μ
PÞfTðq2Þ; ð2:4Þ

where σμν ¼ i½γμ; γν�=2.
These form factors suffice to parametrize the hadronic

transition when the leptonic part of the reaction factorizes.
Particularly important corrections arise in the penguin
decays B → πll and B → Kll studied in this paper, as
discussed in the next subsection and in Appendix B.

B. Rare b → qllðq ¼ d;sÞ decay processes

In this subsection, we first present the effective
Hamiltonian for this case in Sec. II B 1, followed by a
description of how we obtain the short-distance Wilson
coefficients of the effective Hamiltonian at the relevant low
scale in Sec. II B 2. To obtain physical observables, one
also needs the on-shell b → dðsÞll matrix elements of the
operators in the effective Hamiltonian. As discussed in
Sec. II B 3, for decays into light charged leptons, l ¼ e; μ,
it is necessary to treat the different kinematic regions within
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different frameworks. In Sec. II B 4 we present the
general structure of the double differential decay rate.
Details of the calculations at high and low q2 are relegated
to Appendix B.

1. Effective Hamiltonian

The starting point for the description of b→qllðq¼d;sÞ
transitions is the effective Lagrangian [82]:

Leff ¼ þ 4GFffiffiffi
2

p V�
tqVtb

�X8
i¼1

CiðμÞQi þ
αeðμÞ
4π

X10
i¼9

CiðμÞQi

þ
X6
i¼3

CiQðμÞQiQ þ CbðμÞQb

�

þ 4GFffiffiffi
2

p V�
uqVub

X2
i¼1

CiðμÞ½Qi −Qu
i � þ LQCD×QED:

ð2:5Þ

Throughout this paper, as in the literature, we refer to
Heff ¼ −Leff as the (electroweak) effective Hamiltonian.
At leading order in the electroweak interaction, there are

twelve independent operators, which we take to be

Qu
1 ¼ ðq̄LγμTauLÞðūLγμTabLÞ;

Qu
2 ¼ ðq̄LγμuLÞðūLγμbLÞ;

Q1 ¼ ðq̄LγμTacLÞðc̄LγμTabLÞ;
Q2 ¼ ðq̄LγμcLÞðc̄LγμbLÞ;
Q3 ¼ ðq̄LγμbLÞ

X
q0
ðq̄0γμq0Þ;

Q4 ¼ ðq̄LγμTabLÞ
X
q0
ðq̄0γμTaq0Þ;

Q5 ¼ ðq̄Lγμ1γμ2γμ3bLÞ
X
q0
ðq̄0γμ1γμ2γμ3q0Þ;

Q6 ¼ ðq̄Lγμ1γμ2γμ3TabLÞ
X
q0
ðq̄0γμ1γμ2γμ3Taq0Þ;

Q7 ¼
e

16π2
mbðq̄LσμνbRÞFμν;

Q8 ¼
g

16π2
mbðq̄LσμνTabRÞGa

μν;

Q9 ¼ ðq̄LγμbLÞ
X
l

ðl̄γμlÞ;

Q10 ¼ ðq̄LγμbLÞ
X
l

ðl̄γμγ5lÞ: ð2:6Þ

Because the top-quark mass is above the electroweak scale,
only the five lightest quark flavors q0 ¼ u; d; s; c; b are
included in operators Q3 through Q6. All three lepton
flavors l ¼ e; μ; τ appear in operators Q9 and Q10.

Once QED corrections are considered, five more oper-
ators must be included, which we choose to be

Q3Q ¼ ðq̄LγμbLÞ
X
q0
eq0 ðq̄0γμq0Þ;

Q4Q ¼ ðq̄LγμTabLÞ
X
q0
eq0 ðq̄0γμTaq0Þ;

Q5Q ¼ ðq̄Lγμ1γμ2γμ3bLÞ
X
q0
eq0 ðq̄0γμ1γμ2γμ3q0Þ;

Q6Q ¼ ðq̄Lγμ1γμ2γμ3TabLÞ
X
q0
eq0 ðq̄0γμ1γμ2γμ3Taq0Þ;

Qb ¼
1

12
½ðq̄Lγμ1γμ2γμ3bLÞðb̄γμ1γμ2γμ3bÞ

− 4ðq̄LγμbLÞðb̄γμbÞ�; ð2:7Þ

where eq0 are the electric charges of the corresponding
quarks (2

3
or − 1

3
).

2. Wilson coefficients

In the calculation of any b → q (q ¼ d; s) transition,
large logarithms of the ratio μhigh=μlow arise, where μhigh ∼
mt;mW;mZ is a scale associated with virtual heavy-particle
exchanges and μlow ∼ pext ∼mb is a scale associated with
the typical momenta of the final state on-shell particles.
The standard procedure to resum these large logarithms is

based on the factorization of short- and long-distance physics,
i.e., writing lnðμhigh=μlowÞ¼ lnðμhigh=μÞþ lnðμ=μlowÞ and
absorbing the first logarithm into the Wilson coefficients
and the second into thematrix elements of the local operators.
The independence of the overall amplitude on the factoriza-
tion scale μ leads to renormalization group equations for the
Wilson coefficients whose solution resums terms of the type
½αLs lnðμhigh=μÞ�n to all orders in perturbation theory. (L¼0, 1
are known as leading and next-to-leading log approxima-
tions.) The scale μ can then be chosen close to μlow (typically
μ≃mb), thus eliminating all large logarithms from the
calculation of the amplitude. Any residual dependence on
the scales μhigh and μlow is taken as an uncertainty from
missing higher order perturbative corrections. We follow the
standard practice of varying these scales by a factor of 2
around some nominal central values, which we choose to be
μhigh ¼ 120 GeV and μlow ¼ 5 GeV.
The b → dðsÞll case is complicated by the fact that the

Wilson coefficients for the leading semileptonic operators
Q9 and Q10 carry explicit factors of αe, in addition to the
common factor 4GF=

ffiffiffi
2

p
. Moreover, the current-current

operatorsQ1 andQ2 mix with the semileptonic operators at
one loop in QED and at two loops in mixed QED-QCD.
These complications can all be straightforwardly addressed
in a double expansion in αs and αe=αs. We refer the reader
to Ref. [82] for a detailed account of this double expansion
as well as a complete collection of all anomalous dimension
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matrices required for the running of the Wilson coefficients
and of the QED and QCD couplings. In contrast to earlier
analyses [84,85], we do not include the gauge couplings in
the normalization of Q9 and Q10, precisely to simplify the
mixed QCD-QED renormalization group equations.
Finally, note that the operator Qb contributes to the
transition amplitude only via mixing with the other
operators.

3. Matrix elements

The calculation of exclusive b → sðdÞll matrix ele-
ments for the operatorsQ7;9;10 is relatively simple. Because
these operators contain an explicit photon or charged-
lepton pair, the B → KðπÞll matrix element trivially
factorizes in QCD into the product of a charged-lepton
current and a form factor. The matrix element of Q7 is
proportional to the tensor form factor fT, while those of
Q9;10 only get contributions from the vector-current oper-
ator because of parity conservation and the fact that the
incoming and outgoing mesons are both pseudoscalars. The
vector-current matrix element leads to the form factors fþ
and f0. Note that fþ and f0, being matrix elements of a
partially conserved vector current, do not renormalize and
have no scale dependence. On the other hand, the μ
dependence of fT is canceled by that of the quark mass
and the Wilson coefficient for Q7.
The calculation of B → Pll (P ¼ K; π) matrix elements

of operators that do not involve an explicit photon or
charged-lepton pair is more complicated. Schematically,

hPlljQiðyÞjB̄i

∼ ðūlγμvlÞ
Z

d4xeiq·ðx−yÞhPjTJμemðxÞQiðyÞjB̄i; ð2:8Þ

where ul and vl are the lepton spinors and Jμem is the
electromagnetic current. The matrix elements of the
T-product include long-distance contributions that are
difficult to calculate, even with lattice QCD. In certain
kinematic regions, however, these complex matrix elements
can be expressed in terms of simpler objects, namely
the form factors defined in Sec. II A plus the light-cone
distribution amplitudes, up to power corrections of order
ΛQCD=mb.
Before discussing the effective theories used to simplify

the matrix elements in Eq. (2.8), let us comment on the role
of cc̄ and uū states. The processes B → KðπÞll can
proceed through the following intermediate resonances:
B → KðπÞψuu;cc → KðπÞll where ψuu ¼ ρ;ω and
ψcc ¼ ψð1S; 2S; 3770; 4040; 4160; 4415Þ. In the language
of Eq. (2.8), contributions of intermediate ψcc and ψuu
states stem from matrix elements involving the operators
Q1;2 and Qu

1;2, respectively. The two lowest charmonium
states have masses below the open charm threshold (DD̄)
and have very small widths, implying very strong violations

of quark-hadron duality; consequently the regions includ-
ing the ψð1SÞ and ψð2SÞ masses (also known as J=ψ and
ψ 0) are routinely cut from theoretical and experimental
analyses alike. Above the ψð2SÞ, a resonance compatible
with the ψð4160Þ has been observed in B → Kμþμ− decay
[86]; the ψð3770Þ is also seen, but the signal for the
ψð4040Þ and higher resonances is not significant. Because
the four higher charmonium resonances are broad and
spread throughout the high-q2 region, in this region quark-
hadron-duality violation is estimated to be small [77] for
observables integrated over the full high-q2 range. The
kinematic region where the light resonances ðρ;ω;ϕÞ
contribute is typically not excluded from experimental
analyses. Although their effects on branching fractions
and other observables can be substantial, their contributions
cannot be calculated in a fully model-independent manner.
References [87,88] estimate the size of nonlocal contribu-
tions to B → KðπÞll decays from the ρ and ω using
hadronic dispersion relations [89]. They predict an
enhancement of the Bþ → πþμþμ− differential branching
fraction at low q2 in good agreement with the q2 spectrum
measured by LHCb [55].
At high q2 the final-state meson is nearly at rest, and the

two leptons carry half the energy of the B meson each. As
first discussed by Grinstein and Pirjol [73], the photon that
produces them has q2 ∼M2

B and the T-product in Eq. (2.8)
can be evaluated using an operator product expansion
(OPE) in 1=MB [77,78,90,91]. The resulting matrix ele-
ments can be parametrized in terms of the three form factors
fþ;0;T . In the literature fT is usually replaced by fþ using
heavy quark relations [73,78,92,93], whereas in this paper
we use the lattice-QCD results for fT. Within this frame-
work, the high-q2 rate is described entirely in terms of the
form factors fþ;0;T up to corrections of order Λ=MB.
It is important to realize that the high-q2 OPE requires
ðx − yÞ2 ∼ 1=m2

b implying that all matrix elements should
be expanded in 1=q2 ∼ 1=m2

b. In Refs. [73,90], the authors
treat mc ≪ mb and expand Q1;2 in powers of m2

c=q2. Here
we instead follow Ref. [77] by integrating out the charm
quark at the mb scale and including the full mc dependence
of the Q1;2 matrix elements. This approach simplifies the
operator basis without introducing any loss of accuracy. We
include a 2% uncertainty to account for quark-hadron
duality violations [77].
At low q2 the two leptons are nearly collinear, and the

daughter meson recoils with large energy EP ∼mb=2. In
this kinematic configuration, three scales play an important
role: the hard scale ∼m2

b, the hard-collinear scale ∼ΛQCDmb

stemming from interactions of the energetic final state
quarks with the light quarks and gluons in the Bmeson, and
the purely nonperturbative scale ∼Λ2

QCD. Note that the ratio
of any two scales vanishes in themb → ∞ limit. In the soft-
collinear effective theory (SCET) [94–97], an expansion in
ΛQCD=mb exploits this hierarchy such that all contributions
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stemming from physics above ΛQCD can be calculated in
perturbative QCD. At leading power, the remaining non-
perturbative objects are standard form factors and B, π and
K mesons light-cone distribution amplitudes. SCET is
therefore a double expansion in αs and ΛQCD=mb. The
application of soft-collinear factorization to exclusive
b → sll decays was pioneered in Refs. [98,99] and
subsequently employed in many phenomenological analy-
ses; see, for instance, Refs. [83,100].
The structure of the low-q2 SCETexpansion (also known

as QCD factorization [94,95]) for B → Pll (P ¼ K; π) is
(omitting prefactors)

CihPlljQijB̄i∼Ci½ð1þαsÞfTþð1þαsÞfþþϕB⋆T⋆ϕP�;
i¼1;…;6; ð2:9Þ

C7hPlljQ7jB̄i ∼ C7fT; ð2:10Þ

C8hPlljQ8jB̄i ∼ C8½αsfT þ αsfþ þ ϕB⋆T⋆ϕP�;
ð2:11Þ

C9hPlljQ9jB̄i ∼ C9fþ; ð2:12Þ

C10hPlljQ10jB̄i ∼ C10fþ; ð2:13Þ

where the coefficients of fþ and fT originate from hard
interactions, and ϕB⋆T⋆ϕP denotes a convolution of a
short-distance kernel T, originating from hard-collinear
interactions, with the B-meson and final-state meson light-
cone distribution amplitudes ϕB and ϕP, respectively. As
explained in detail in Appendix B, it is customary to collect
all terms proportional to the form factors and introduce
effective Wilson coefficients Ceff

7 and Ceff
9 . The structure of

the whole amplitude is then

AðB → PllÞ ∼ Ceff
7 fT þ ðCeff

9 þ C10Þfþ þ ϕB⋆T⋆ϕP:

ð2:14Þ

Further, some terms in hQ3i through hQ6i are proportional
to hQ8i and are usually taken into account with the
introduction of the effective Wilson coefficient Ceff

8 .
Within the SCETapproach it is also possible to express fT

in terms of fþ—schematically fT∼ð1þαsÞfþþϕB⋆T⋆ϕP.
Because we have direct access to the lattice-QCD calcu-
lation of fT , this step would only result in the unnecessary
introduction of additional uncertainties.

4. Differential decay rates

The double differential B → KðπÞll rate can be
written as

d2Γ
dq2d cos θ

¼ aþ b cos θ þ ccos2θ; ð2:15Þ

where θ is the angle between the B meson and l− in the
dilepton rest frame, and a, b, c are functions of q2 that
depend on the form factors and Wilson coefficients. The
three main observables considered in the literature are the
differential rate

dΓ
dq2

¼ 2

�
aþ c

3

�
; ð2:16Þ

the forward-backward asymmetry, and the flat term [100].
There are two forms of the last two, either evaluated at a
single value of q2 [64]

AFBðq2Þ ¼
b

dΓ=dq2
; ð2:17Þ

FHðq2Þ ¼
2ðaþ cÞ
dΓ=dq2

; ð2:18Þ

which is useful for plotting, or a binned form [100]

AFBðq2min; q
2
maxÞ ¼

Z
q2max

q2min

bdq2
�Z

q2max

q2min

2

�
aþ c

3

�
dq2

�
−1
;

ð2:19Þ

FHðq2min;q
2
maxÞ ¼

Z
q2max

q2min

ðaþ cÞdq2
�Z

q2max

q2min

�
aþ c

3

�
dq2

�
−1
;

ð2:20Þ
which can be compared with experimental measurements.
In the Standard Model b ¼ 0, i.e., the forward-backward
asymmetry vanishes (neglecting tiny QED effects). Further,
in the ml ¼ 0 limit (an excellent approximation for
l ¼ e; μ), one finds c ¼ −a, implying a very small flat
term of order m2

l=M
2
B. Thus both the forward-backward

asymmetry and flat term are potentially sensitive to con-
tributions beyond the Standard Model. In addition, it is
possible to consider the isospin and CP asymmetries of the
differential dΓ=dq2 rate. Appendix B provides explicit
expressions for a and c in the Standard Model.

C. Rare b → qνν̄ðq ¼ d;sÞ decay processes

In the Standard Model, the effective Hamiltonian for the
rare decay process b → qνν̄ðq ¼ d; sÞ is given by

Heff ¼ −
4GFffiffiffi

2
p VtbV�

tqCLQL; ð2:21Þ

where
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QL ¼ e2

16π2
ðq̄LγμbLÞ

X
ν

ðν̄LγμνLÞ; ð2:22Þ

summing over ν ¼ νe; νμ; ντ, and

CL ¼ −Xt=sin2θW: ð2:23Þ

The function Xt parametrizes top-quark-loop effects and
includes next-to-leading-order QCD contributions [101–
103] and two-loop electroweak corrections [104]. We take
the numerical value Xt ¼ 1.469ð17Þ from Ref. [104].
The neutrino-pair final state ensures that the complica-

tions discussed for B → KðπÞlþl− decays in Sec. II B do
not arise in the calculation of the decay rate for this process.
In particular, the decay rate receives no contributions from
uū or cc̄ resonances or nonfactorizable terms. Thus, the
systematic uncertainties associated with power corrections,
resonances, and duality violations are absent [18]. In
summary, the short-distance flavor-changing-neutral-
current-induced contribution to the Standard-Model decay
rate for B → Pνν̄ðP ¼ K; πÞ, which proceeds via the
flavor-changing-neutral-current interaction, depends only
on the vector form factor fþðq2Þ and can be calculated over
the entire kinematic range with full control over the
theoretical errors. The differential branching fraction takes
the form [18,105]

dBðB → Pνν̄ÞSD
dq2

¼ CPτBjVtbV�
tsðdÞj2

G2
Fα

2

32π5
X2
t

sin4θW
jpPj3f2þðq2Þ; ð2:24Þ

where jpPj is the magnitude of the final-state meson
three-momentum in the B-meson rest frame. The isospin
factor CP ¼ 1 for decays to kaons and charged pions
(K�; K0; π�), while CP ¼ 1

2
for decays to neutral

pions (π0).
For the neutral modes B0 → K0ðπ0Þνν̄, Eq. (2.24) pro-

vides a full Standard-Model description. For the charged
modes Bþ → KþðπþÞνν̄, however, a tree-level amplitude
arises via an intermediate lepton between two charged
interactions [106]. First the Bþ meson decays leptonically,
i.e., Bþ → lþν; subsequently, the charged lepton decays as
lþ → Pþν̄. For l ¼ τ, the intermediate lepton can be on
shell, leading to a long-distance contribution. Interference
between the long- and short-distance amplitudes is negli-
gible [106], leaving the following long-distance contribu-
tion to the rate

BðBþ → Pþντν̄τÞLD

¼
jG2

FVubV�
usðdÞfBfPj2

256π3M3
B

2πmτðM2
B −m2

τÞ2ðM2
P −m2

τÞ2
ΓτΓB

:

ð2:25Þ

Superficially, Eq. (2.25) is suppressed relative to the loop-
induced rate in Eq. (2.24) by G2

F, but the τ width Γτ is of
order G2

F, canceling this suppression. The long-distance
contribution is also numerically significant because the τ
mass is large. For Bþ → πþντν̄τ, it is further enhanced
relative to the short-distance contribution by the CKM
factor jVud=Vtdj2.
Taking the CKM matrix element jVubj¼3.72ð16Þ×10−3

from Fermilab/MILC [48], the combinations jVudjfπ− ¼
127.13ð2Þð13Þ MeV and jVusjfKþ ¼ 35.09ð4Þð4Þ MeV
from experiment [107], and all other inputs from
Table XVII, we obtain for the ντ-pair final state

BðBþ → πþντν̄τÞLD ¼ 9.48ð92Þ × 10−6; ð2:26Þ

BðBþ → Kþντν̄τÞLD ¼ 6.22ð60Þ × 10−7; ð2:27Þ

where the errors stem from the uncertainties on fB and
jVubj, and other parametric errors are negligible. The long-
distance contributions to the Bþ → KþðπþÞνlν̄l rate for
l ¼ e; μ are of order 10−17–10−18 [106]. Because lattice
QCD provides reliable determinations of the hadronic
inputs fB [108–113] and fπðKÞ [114–121], the long-
distance contributions to the Bþ → KþðπþÞνν̄ decay rates
are under good theoretical control.

D. Tree-level b → ulν decay processes

The tree-level semileptonic decay B→πlνlðl¼e;μ;τÞ
is mediated in the Standard Model by the charged current
interaction, and the resulting Standard-Model differential
decay rate is

dΓðB → πlνlÞ
dq2

¼ CP
G2

FjVubj2
24π3

ðq2 −m2
lÞ2jpPj

q4M2
B

×

��
1þ m2

l

2q2

�
M2

BjpPj2jfþðq2Þj2

þ 3m2
l

8q2
ðM2

B −M2
πÞ2jf0ðq2Þj2

�
; ð2:28Þ

where the isospin factor CP is the same as in Eq. (2.24)
above. The decay rate depends upon both the vector (fþ)
and scalar (f0) form factors. For decays to light charged
leptons (l ¼ e; μ), the contribution from the scalar form
factor is suppressed by m2

l and hence negligibly small. In
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contrast, the scalar form-factor contribution to decays into τ
leptons is numerically significant. While B → πτντ decay is
not a rare, loop-suppressed process in the Standard Model,
the large τ-lepton mass makes it particularly sensitive to
contributions mediated by charged Higgs bosons.

III. LATTICE-QCD FORM FACTORS AND
SYMMETRY TESTS

The first ab initio lattice-QCD results for the B → K
form factors and for the B → π tensor form factor became
available only recently [48,62–64]. Consequently, previous
theoretical calculations of B → KðπÞlþl− observables
have sometimes used expectations from heavy-quark
and/or SU(3)-flavor symmetries to relate the unknown
form factors to others that can be constrained from experi-
ment or computed with QCD models (see, e.g.,
Refs. [78,122]).
In this section, we directly test these symmetry relations,

at both high and low q2, using the complete set of Fermilab/
MILC B → K and B → π form factors [48,62,63]. For the
B → π case, we use the vector and scalar form factors fþ
and f0 obtained from a combined fit of lattice-QCD data
with experiment. This combination improves the precision
on the form factors at low q2, but assumes that no
significant new physics contributes to the tree-level B →
πlν decays for l ¼ μ; e.
First, in Sec. III A, we briefly summarize the lattice

form-factor calculations, highlighting the properties of the
simulations and analysis that enable controlled systematic
errors and high precision. Then, in Sec. III B, we present
tests of heavy-quark symmetry relations for B → π and
B → K form factors that were not already presented in
Refs. [48] and [62]. Finally, we calculate the size of SU(3)-
flavor-breaking effects between the B → K and B → π
form factors and compare with power-counting expect-
ations in Sec. III C.

A. Lattice-QCD form-factor calculations

The Fermilab Lattice and MILC collaborations carried
out the numerical lattice-QCD calculations in
Refs. [48,62,63] in parallel. Here we summarize the
features of the work that enabled both high precision
and controlled uncertainties. Below we give the correla-
tions between the B → π and B → K form factors, which
have not appeared elsewhere. To put this new information
in context, we summarize the similarities and slight
differences between the B → π [48,63] and B → K [62]
Fermilab/MILC lattice-QCD calculations.
The calculations [48,62,63] employed the MILC asqtad

ensembles [123–125] at four lattice spacings from approx-
imately 0.12 fm down to 0.045 fm; physical volumes with
linear size L≳ 3.8 fm; and several choices for the masses
of the sea quarks, corresponding to pions with mass as low
as 175 MeV. The strange sea-quark mass was chosen close

to the physical strange-quark mass, but varied a bit with
lattice spacing, allowing for adjustment of this mass
a posteriori. The Fermilab method was used for the lattice
b quark [126]. As in several other calculations, starting with
Ref. [127], the matching of the currents from the lattice to
the continuum was mostly nonperturbative, with a residual
matching factor close to unity computed in one-loop
perturbation theory, with matching scale μ ¼ mb for the
tensor current. Because the one-loop calculation was
separate from the Monte Carlo calculation of correlation
functions, it was exploited to introduce a multiplicative
“blinding” offset.
The matrix elements for the form factors were obtained

from fits to two- and three-point correlation functions,
including one excited B meson in the fit. After matching
these lattice-QCD data to the continuum, as described
above, two further analysis steps are crucial for the present
paper. First, the form factors calculated in the kinematic
region q2 ≳ 17 GeV2 were extrapolated to zero lattice
spacing and to the physical light-quark masses with a
form of chiral perturbation theory (χPT) for semileptonic
decays [128] adapted to staggered fermions [129]. Because
the final-state pion and kaon energies can become large in
the context of standard χPT, the analyses found better fits
with SU(2) hard-pion and hard-kaon χPT [130]. This
chiral-continuum extrapolation included terms for heavy-
quark discretization effects, with a functional form taken
from heavy-quark effective theory [131–133], as in
Ref. [108].
Next, to extend the form-factor results to the whole

kinematically allowed region, Refs. [48,62,63] used the
model-independent z expansion based on the analytic
structure of the form factors. In the present paper, we rely
on the output of these fits, including correlations, so we
repeat the most pertinent details. Following Refs. [134,135],
the complex q2 plane is mapped to

zðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ; ð3:1Þ

which maps a cut at q2 > tþ ¼ ðMB þMPÞ2 to the unit
circle andmaps the semileptonic region to an interval in z on
the real axis. The extent of the interval can be minimized by
choosing t0 ¼ ðMB þMPÞð

ffiffiffiffiffiffiffi
MB

p
−

ffiffiffiffiffiffiffi
MP

p Þ2, where MP ¼
Mπ or MK. Unitarity implies that a power series in z
converges for jzj < 1. In Refs. [48,62,63], these series were
used [135]:

fþðq2Þ ¼
1

Pþðq2Þ
XK−1
n¼0

bþn

�
zn − ð−1ÞK−n n

K
zK

�
; ð3:2Þ

f0ðq2Þ ¼
1

P0ðq2Þ
XK−1
n¼0

b0nzn; ð3:3Þ
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and the same for fT as for fþ (with coefficientsbTn ). The pole
factor Pþ;0;Tðq2Þ ¼ 1 − q2=M2

þ;0;T, with Mþ;0;T chosen as
follows: forB → π,Mþ ¼ MT ¼ MB� ¼ 5.3252 GeV from
experiment [136], M0 → ∞ (i.e., no pole); for B → K,
Mþ ¼ MT ¼ MB�

s
¼ 5.4154 GeV from experiment [136],

M0 ¼ 5.711 GeV from lattice QCD [137]. The output of the
chiral-continuum extrapolationwas propagated to Eqs. (3.2)
and (3.3) using either synthetic data [62] or a functional
fitting procedure [48,63].
Reference [48] also presented determinations of the

B → π form factors fþ and f0 from a combined z fit to
the lattice-QCD form factors and experimental measure-
ments of the B → πlν differential decay rate from the B
factories [67–70]. This fit employed the same z expansions
as above. The experimental data provides information on
the shape of fþðq2Þ at low q2 beyond the direct reach of
lattice-QCD simulations, thereby reducing the form-factor
errors at low q2. In this paper, we use these more precise
B → π vector and scalar form factors for all calculations of
B → π observables, thereby improving the precision of the
Standard-Model results at the expense of the assumption
that new physics does not significantly alter the rate of this
tree-level transition.
In Sec. III C, we present predictions for combinations of

B → π and B → K observables, which require the corre-
lations between the two channels, not provided before
[48,62,63]. As co-authors of these papers, we have access
to the relevant information. To enable others to study both
modes together, we provide the correlation coefficients in
Table I. With Eqs. (3.1)–(3.3) and the information con-
tained in Table XIX of Ref. [48], Table XII of Ref. [62], and
Table III of Ref. [63], the supplementary information

provided in Table I enables the reader to reproduce the
form factors and combinations of them.
The dominant correlations between the two sets of

form factors are statistical, because both calculations used
the same gauge-field ensembles. In practice, however, both
the statistical and systematic correlations are diluted in the
chiral-continuum extrapolations for B → π and B → K,
which were performed independently. The same holds for
several important systematic uncertainties, namely from the
chiral-continuum extrapolations, the uncertainty in the
B� − B − π coupling, and the heavy-quark discretization
errors. The correlations became even smaller once the
experimental B → πlν data were used to constrain the
shape of the B → π vector and scalar form factors. In
the end, the only significant correlations are among the
leading coefficients b0, which correspond essentially to
the normalization, and are therefore well determined by the
data. Even these are typically only ∼0.3, with the largest
being ∼0.4. Smaller correlations between the leading
coefficients and the higher-order coefficients of ∼0.1–0.2
arise from the kinematic constraint fþð0Þ ¼ f0ð0Þ
enforced in the z-expansion fits. The use of experimental
B → πlν data to constrain the shape of the B → π vector
and scalar form factors, when combined with the kinematic
constraint, leads to the negative entries in the correlation
matrix, which correspond to anticorrelations between bþi
and b0i for B → π and the other coefficients.

B. Tests of heavy-quark symmetry

Several tests of heavy-quark-symmetry relations for
B → π and B → K using the Fermilab/MILC form factors
were already presented in Refs. [48,62]. Figure 16 of

TABLE I. Correlations between the z-expansion coefficients of the B → π and B → K vector, scalar, and tensor
form factors, where the B → π vector and scalar form factors include experimental shape information from
B → πlν decay. These should be combined with Table XIX of Ref. [48], Table III of Ref. [63], and Table XII of
Ref. [62], which give the central values of the coefficients as well as the remaining correlation information.

B → Kll
bþ0 bþ1 bþ2 b00 b01 b02 bT0 bT1 bT2

B → πll

bþ0 0.273 −0.002 −0.029 0.227 0.063 0.034 0.333 −0.001 −0.005
bþ1 0.016 0.085 −0.006 −0.003 0.061 0.067 −0.011 0.075 0.017

bþ2 −0.133 −0.069 0.024 −0.094 −0.077 −0.064 −0.124 −0.053 0.006

bþ3 −0.077 −0.033 0.060 −0.030 −0.028 −0.023 −0.062 −0.021 0.031

b00 0.278 0.098 0.091 0.299 0.160 0.124 0.285 −0.005 −0.005
b01 −0.004 0.225 0.155 0.065 0.197 0.171 −0.079 0.153 0.092

b02 −0.120 −0.231 −0.163 −0.194 −0.232 −0.183 −0.020 −0.058 −0.006
b03 −0.085 −0.192 −0.155 −0.144 −0.195 −0.171 −0.041 −0.121 −0.079
bT0 0.319 0.051 −0.005 0.279 0.115 0.088 0.392 0.037 0.008

bT1 0.056 0.080 0.012 0.051 0.072 0.063 0.067 0.097 0.048

bT2 0.014 0.022 0.029 0.030 0.026 0.019 0.018 0.014 0.025

bT3 0.005 0.010 0.026 0.023 0.015 0.008 0.010 0.003 0.022
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Ref. [62] plots the B → K form-factor ratios f0=fþ and
fT=fþ at high q2 obtained from lattice QCD, and compares
them with expectations from heavy-quark symmetry.
Similarly, Fig. 25 of Ref. [48] compares the B → π
form-factor ratio f0=fþ with heavy-quark-symmetry
expectations. Here we examine heavy-quark-symmetry
tests of the B → π tensor form factor.
The simplest heavy-quark-symmetry relation between

fT and the other form factors is [138,139]

fTðq2Þ ¼
MB þMP

2MB
½fþðq2Þ − f−ðq2Þ� þOðαs;Λ=mbÞ;

ð3:4Þ

which follows because the right-hand side is proportional to
the matrix element hPjq̄γibjBi, while the left-hand side is
proportional to hPjq̄γiγ0bjBi. In Fig. 1, left, we plot the
ratio

2MB

MB þMP

fTðq2Þ
fþðq2Þ − f−ðq2Þ

ð3:5Þ

vs q2, calculated directly from the Fermilab/MILC form
factors [48,62,63]. We show the range q2 ≳ 15 GeV2

where the error remains small enough to provide a mean-
ingful test of the relation in Eq. (3.4). In this region, the
approximation in Eq. (3.4) fares very well, especially for
B → K.
A refinement of this idea uses heavy-quark symmetry

and mb-scaling to eliminate f− [73,78,93]:

lim
q2→M2

B

fTðq2; μÞ
fþðq2Þ

¼ κðμÞMBðMB þMπÞ
q2

þOðΛ=mbÞ;

ð3:6Þ

in which the scale-dependent coefficient κðμÞ incorporates
radiative corrections and is given explicitly through

order α2s in Eq. (B49). Figure 1, right, compares the
quantity ðfT=fþÞ½q2=ðMBðMB þMπÞÞ� obtained from
the Fermilab/MILC B → π form factors [48,63] with the
theoretical prediction from Eq. (3.6). For the theoretical

estimate, we take mb¼4.18GeV and αs
ð4Þ
MS

ðmbÞ¼0.2268,
giving κðmbÞ ≈ 0.88 [73,78].
As observed in Ref. [62] for the B → K form factors, the

ratio fT=fþ calculated directly from lattice QCD agrees
well with the expectation from Eq. (3.6) for q2 ≈M2

B.
Although we do not show any errors on the theoretical
prediction, we can estimate the size of higher-order
corrections in the heavy-quark expansion from power
counting. Taking Λ ¼ 500 MeV gives Λ=mb ∼ 12%.
Equation (3.6) also receives corrections from the pion
recoil energy of order Eπ=mb. This ratio grows rapidly from
Eπ=mb ∼ 3% at q2max to Eπ=mb ∼ 30% at q2 ≈ 14 GeV2.
The observed size of deviations from the leading heavy-
quark-symmetry prediction are somewhat larger than the
rough estimate based on power counting. Although form
factors from ab initio QCD are now available for B → π
and B → K, other analyses of semileptonic decay processes
might still use heavy-quark-symmetry relations. Figure 1
provides quantitative, empirical guides for estimating the
associated systematic uncertainty introduced by their use.
In the limit q2 ≪ M2

B, a collinear spin symmetry emerges
for the energetic daughter quark, and the vector, scalar,
and tensor form factors are related to a universal MB-
independent form factor [98,140]:

fþðq2Þ ¼
MB

2EP
f0ðq2Þ ¼

MB

MB þMP
fTðq2Þ;

ðq2 ≪ M2
BÞ: ð3:7Þ

The first relation merely recovers the kinematic constraint,
fþð0Þ ¼ f0ð0Þ. Unfortunately, as q2 decreases, so do the
correlations between the lattice-QCD determinations of fþ
and fT . The error on the ratio fT=fþ therefore increases,

FIG. 1. Tests of the heavy-quark symmetry relations for the tensor form factor using the Fermilab/MILC form factors [48,62,63]. The
left plot shows the ratio in Eq. (3.5) at low recoil for B → π (red hatched band) and B → K (black solid band), which would become
unity as mb → ∞ [138,139]. The right plot compares ðfT=fþÞ½q2=ðMBðMB þMπÞÞ� at low recoil (red curve with error band), for
B → π with the theoretical expectation for κðμÞ [78] (black horizontal line).
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reaching 100% at q2 ¼ 0. Thus, we are unable to quanti-
tatively test the predicted relationship between fT and fþ at
large recoil.

C. Tests of SU(3)-flavor symmetry

The B → π and B → K form factors would be equal in
the SU(3)-flavor limit mu ¼ md ¼ ms and, thus, differ
due to corrections that are suppressed by the factor
ðms −mudÞ=Λ, where Λ is a typical QCD scale inside
heavy-light mesons. Indeed, approximate SU(3) symmetry
implies relations among all matrix elements of the form

hPqr̄ðpPÞjq̄ΓbjBrðpBÞi; ð3:8Þ

where r denotes the flavor of the spectator quark; Γ is γμ, 1,
or iσμν; and the subscript on the final-state pseudoscalar
denotes its flavor content.
A rule of thumb [141] forSU(3) breaking is that large effects

can be traced to the pseudoscalar masses—M2
K≫M2

π—
while SU(3)-breaking effects in matrix elements per se are
small. In considering the matrix elements in Eq. (3.8),
the final-state four-momentum pP cannot be the same for
all Pqr̄ mesons, because the mass shells differ. The masses
affect the kinematic variables q2, EP, and pP in different
ways.
In Ref. [122] (see also Ref. [141]), SU(3)-breaking was

considered as a function of q2, with the quantities
Rþ;0;Tðq2Þ defined as

Riðq2Þ ¼
fBKi ðq2Þ
fBπi ðq2Þ − 1; ð3:9Þ

where i ¼ þ; 0; T. In Ref. [122], the ratios Rþ;0ðq2Þ were
calculated using lattice B → π and B → K form factors
from Refs. [142] and [43,143], respectively. Here we repeat
the tests in Ref. [122] using the more precise Fermilab/
MILC B → π vector and scalar form factors [48], and
include an additional test using the Fermilab/MILC B → π
tensor form factor [63], taking the B → K form factors

from Fermilab/MILC [62] as well. Figure 2, left, plots the
quantity Riðq2Þ, including correlations between the B → π
and B → K form factors from statistics as well as the
dominant systematic errors [48,62,63]. We find that the
sizes of Riðq2Þ are between 20% and 60%, ranging from
commensurate with ðms −mudÞ=Λ (for ms ∼ 100 MeV,
Λ ∼ 500 MeV) to uncharacteristically large. In the region
where the error on the tensor form factors remain manage-
able, we find that RTðq2Þ ≈ ½Rþðq2Þ þ R0ðq2Þ�=2, as
assumed in Ref. [122]. With the more precise Fermilab/
MILC B → π form factors [48,63], the resulting SU(3)
breaking is larger than that deduced and employed in
that work.
As an alternative to Eq. (3.9), we consider the analogous

ratio with fixed final-state energy (in the B rest frame):

RiðEÞ ¼
fBKi ðEÞ
fBπi ðEÞ − 1: ð3:10Þ

As shown in Fig. 2, right, the SU(3) breaking in RiðEÞ is
similar to that in Riðq2Þ.
A further alternative is to examine

~RiðjvjÞ ¼
fBKi ðjvjÞPBK

i

fBπi ðjvjÞPBπ
i

− 1; ð3:11Þ

where v ¼ pP=MP is the final-state three-velocity (in
HQET conventions) in the B-meson rest frame. The
factors PBπ

0 ¼ PBK
0 ¼ 1, PBπ

þ;T ¼ 1 − q2=M2
B� , and PBK

þ;T ¼
1 − q2=M2

B�
s
are introduced to remove the kinematically

important vector-meson pole from the vector and tensor
form factors. As shown in Fig. 3, this measure of SU(3)
breaking is under 20% for fþ and fT , and under 35% for f0
(in the momentum range shown). The result for ~R0 can be
understood in the soft-pion (soft-kaon) limit, where
f0 ∝ fB=fP, so

~R0ðjvj → 0Þ ¼ fπ
fK

− 1 ≈ −0.16; ð3:12Þ

FIG. 2. SU(3)-flavor-breaking ratios using the Fermilab/MILC form factors [48,62,63] (solid and hatched curves with error bands).
Left: ratios Rþ;0;Tðq2Þ [Eq. (3.9)]. Right: ratios Rþ;0;TðEÞ [Eq. (3.10)]. We do not show RT when the error becomes too large to draw any
useful inferences, although the trend of the error band is shown by the thin lines extending from the RT error bands.
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which agrees very well with our result in Fig. 3 (right).
Similarly, for ~Rþ,

~Rþðjvj → 0Þ ¼ fπgB�
sBK

fKgB�Bπ
− 1: ð3:13Þ

The SU(3)-breaking effects in the couplings can be
estimated from the chiral extrapolation of a recent calcu-
lation of gB�Bπ [144]. The expression of the chiral extrapo-
lation of gB�Bπ was given in Eq. (28) of Ref. [144].
Replacing the pions in the loops with kaons, we estimate
gB�

sBK=gB�Bπ ≈ 1.33 and, consequently, Rþ ≈ 0.11. Because
of the heavy-quark relation between fT and fþ discussed
above, ~RT should be close to ~Rþ, and one can see in Fig. 3
(left) that this is indeed the case.

IV. STANDARD-MODEL RESULTS

We now use the Fermilab/MILC B → π and B → K
form factors [48,62,63] to predict B → KðπÞlþl−,
B → KðπÞνν̄, and B → πτν observables (and their ratios)
in the Standard Model. For predictions of B → π decay
observables, as in the previous section, we use the more
precise B → π vector and scalar form factors obtained
using the measured B → πlνq2 spectrum to constrain
the shape. We present results for rare decays with a
charged-lepton pair final state, b → qllðq ¼ d; sÞ in
Sec. IVA, for rare decays with a neutrino pair final state

b → qνν̄ðq ¼ d; sÞ in Sec. IV B, and for tree-level
b→uτντ semileptonic decays in Sec. IV C. Where possible,
we compare our results with experimental measurements.
We compile our numerical results for the partially

integrated B → KðπÞlþl− observables over different q2

intervals in Tables II–XV of Appendix A. To enable
comparison with the recent experimental measurements
of B → KðπÞlþl− from LHCb, we provide the matrix of
correlations between our Standard-Model predictions for
the binned branching fractions (and the ratio of B → π-to-
B → K binned branching fractions) for the same wide q2

bins below and above the charmonium resonances
employed by LHCb [45,55].
Appendix B provides the complete expressions for the

Standard-Model B → KðπÞlþl− ðl ¼ e; μ; τÞ differential
decay rates. The simpler expressions for the B → KðπÞνν̄
and B → πτν decay rates are presented in the main text of
Secs. II C and II D, respectively. The Wilson coefficients
and other numerical inputs used for all of the phenom-
enological analyses in this paper are given in Appendix C.

A. Rare b → qllðq ¼ d;sÞ decay observables

1. B → πlþl− observables

The Fermilab Lattice and MILC collaborations
already presented some Standard-Model predictions for
B → πlþl− [63]. Figure 4 of that paper plots the

FIG. 3. Velocity-based SU(3)-flavor-breaking ratios ~Rþ;TðjvjÞ (left) and ~R0ðjvjÞ (right) using the lattice-QCD form factors from
Refs. [48,62,63].

FIG. 4. Standard-Model predictions for the Bþ → πþlþl− flat term Fl
Hðq2Þ for l ¼ e; μ (left) and l ¼ τ (right) using the

Fermilab/MILC form factors [48,63].
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differential branching fractions for l ¼ μ; τ, while Table IV
gives the partial branching fractions in selected intervals of
q2 below and above the charmonium resonances, and for
the full kinematic range. To enable correlated analyses of
the partially integrated branching fractions for B → π from
Ref. [63] and those for B → K presented in Sec. IVA 2, we
update the large-bin numerical results from Table IV of
Ref. [63] in Table IV here by adding digits to the quoted
uncertainties and combining the scale uncertainty (quoted
separately in Ref. [63]) with the “other” error. In addition,
we extend the phenomenological analysis of B → πlþl−

by providing predictions for the flat term of the angular
distribution, cf. Eqs. (2.18) and (2.20).
Figure 4 plots our Standard-Model predictions for the

Bþ → πþlþl− flat term Fl
Hðq2Þ, l ¼ e; μ; τ, while

Tables II and III report numerical values for the binned
version Fl

Hðq2min; q
2
maxÞ for the charged and neutral decay

modes, respectively. For the dimuon final state, we find
Fμ
Hðq2Þ ∼ 1%–2% for most of the kinematic range, which

is large enough to be measured in future experiments. For
the electron-positron final state, Fe

Hðq2Þ is so small—10−6

or smaller—that any foreseeable nonzero measurement
would indicate the presence of new physics.
After the Fermilab Lattice and MILC collaborations

submitted Ref. [63] for publication, the LHCb experiment
announced [145] a new measurement of the differential
decay rate for B → πμþμ− decay, which is now finalized
[55]. Here we repeat the main numerical results of Ref. [63]
and compare them to the LHCb measurement. The
Standard-Model predictions for the partially integrated
branching ratio in the wide high-q2 and low-q2 bins are [63]

ΔBðBþ → πþμþμ−ÞSM × 109

¼
�
4.78ð29Þð54Þð15Þð6Þ 1 GeV2 ≤ q2 ≤ 6 GeV2;

5.05ð30Þð34Þð7Þð15Þ 15 GeV2 ≤ q2 ≤ 22 GeV2;

ð4:1Þ
where the errors are from the CKM matrix elements, form
factors, the variation of the high and low matching scales,

and the quadrature sum of all other contributions, respec-
tively. LHCb quotes measured values for binned differ-
ential branching fractions [55], which we convert to
partially integrated branching fractions for ease of com-
parison with Eq. (4.1):

ΔBðBþ → πþμþμ−Þexp × 109 GeV2

¼
�
4.55ðþ1.05

−1.00Þð0.15Þ 1 GeV2 ≤ q2 ≤ 6 GeV2;

3.29ð1þ0.84
−0.70 Þð0.07Þ 15 GeV2 ≤ q2 ≤ 22 GeV2;

ð4:2Þ

where the two errors are statistical and systematic.
Figure 5 (left panel) compares the Standard-Model

predictions from Ref. [63] and LHCb for the wide bins.
The result for the low q2 interval below the charm
resonances agrees with the experimental measurement,
but that for the high q2 interval differs at the 1.9σ level.
The combination of the two bins, including the theoretical
correlations from Tables VII and VIII and treating the
experimental bins as uncorrelated, yields a χ2=dof ¼ 3.7=2
(p ¼ 0.15), and thus disfavors the Standard-Model hypoth-
esis at 1.4σ confidence level.
AlthoughLHCb’s recentmeasurement of theB → πlþlþ

differential decay rate [55] is compatible with the
Standard-Model predictions, the uncertainties leave room for
sizable new-physics contributions. In the high-q2 interval,
15 GeV2 ≤ q2 ≤ 22 GeV2, the theoretical and experimental
errors are commensurate. Future, more precise measure-
ments after the LHCb upgrade will refine the comparison,
thereby strengthening the test of the Standard Model.

2. B → Klþl− observables

Here we present results for B → Klþl− (l ¼ μ; τ)
observables in the Standard Model using the Fermilab/
MILC B → K form factors [62]. Many previous phenom-
enological analyses of B → Klþl− related the tensor form
factor fT to the vector form factor fþ based on approximate
symmetries [78,100]. The HPQCD collaboration has also

FIG. 5. Standard-Model partially integrated branching ratios for Bþ → πþμþμ− decay (left) and Bþ → Kþμþμ− decay (right) using
the Fermilab/MILC form factors [48,62,63] compared with experimental measurements from LHCb [45,55] for the wide q2 bins above
and below the charmonium resonances.
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presented results for B → K observables using their own
lattice-QCD form-factor determinations [43]. We improve
upon the Standard-Model predictions in that paper and in
Ref. [62] by incorporating hard-scattering contributions at
low q2 and by using Wilson coefficients that include
logarithmically enhanced QED corrections.
Figure 6 plots the isospin-averaged Standard-Model

differential branching fractions for B → Kμþμ− and
B → Kτþτ−. For B → Kμþμ− decay, we compare our
results with the latest measurements by BABAR [146],
Belle [147], CDF [148], and LHCb [45]. Tables V and VI
give the partially integrated branching fractions for the
charged (Bþ) and neutral (B0) meson decays, respectively,
for the same q2 bins used by LHCb in Ref. [45]. In the
regions q2 ≲ 1 GeV2 and 6 GeV2 ≲ q2 ≲ 14 GeV2, uū
and cc̄ resonances dominate the rate. To estimate the total
branching ratio, we simply disregard them and interpolate
linearly in q2 between the QCD-factorization result at q2 ≈
8.5 GeV2 and the OPE result at q2 ≈ 13 GeV2. Although
this treatment does not yield the full branching ratio, it
enables a comparison with the quoted experimental totals,
which are obtained from a similar treatment of these
regions. Away from the charmonium resonances, the
Standard-Model calculation is under good theoretical con-
trol, and the partially integrated branching ratios in the wide
high-q2 and low-q2 bins are our main results:

ΔBðBþ→Kþμþμ−ÞSM×109

¼
�
174.7ð9.5Þð29.1Þð3.2Þð2.2Þ; 1.1GeV2≤q2≤6GeV2;

106.8ð5.8Þð5.2Þð1.7Þð3.1Þ; 15GeV2≤q2≤22GeV2;

ð4:3Þ

ΔBðB0→K0μþμ−ÞSM×109

¼
�
160.8ð8.8Þð26.6Þð3.0Þð1.9Þ; 1.1GeV2≤q2≤6GeV2;

98.5ð5.4Þð4.8Þð1.6Þð2.8Þ; 15GeV2≤q2≤22GeV2;

ð4:4Þ

where the errors are from the CKM elements, form factors,
variations of the high and low matching scales, and the
quadrature sum of all other contributions, respectively.
LHCb’s measurements for the same wide bins are [45]

ΔBðBþ → Kþμþμ−Þexp × 109 GeV2

¼
�
118.6ð3.4Þð5.9Þ 1.1 GeV2 ≤ q2 ≤ 6 GeV2;

84.7ð2.8Þð4.2Þ 15 GeV2 ≤ q2 ≤ 22 GeV2 ;

ð4:5Þ

ΔBðB0 → K0μþμ−Þexp × 109 GeV2

¼
�
91.6ðþ17.2

−15.7Þð4.4Þ 1.1 GeV2 ≤ q2 ≤ 6 GeV2;

66.5ðþ11.2
−10.5Þð3.5Þ 15 GeV2 ≤ q2 ≤ 22 GeV2;

ð4:6Þ
where the errors are statistical and systematic, respectively,
and again we convert the quoted differential branching
fractions to partially integrated branching fractions for direct
comparison with Eqs. (4.3) and (4.4). Figure 5, right, shows
the comparison between the Standard Model and the
experimental measurements. The Standard-Model values
are higher than the measurements by 1.8σ and 2.2σ for the
low- and high-q2 bins, respectively. The combination of the
two bins, including the theoretical correlations from
Tables VII and VIII of Appendix A and treating the
experimental bins as uncorrelated, yields χ2=dof ¼ 5.7=2,
p ¼ 0.06, thus disfavoring the Standard-Model hypothesis
with 1.9σ significance. Note, however, that the structures
observed in the LHCb data above the ψð2SÞ (red points with
small errors bars in Fig. 6) warrant a great deal of caution in
comparing theory and experiment for narrow bins [149].
We also calculate the Standard-Model flat term Fl

Hðq2Þ
with the Fermilab/MILC form factors [62] and plot it for
Bþ → Kþlþl−ðl ¼ e; μ; τÞ in Fig. 7. LHCb reported
results for the binned flat term Fμ

Hðq2min; q
2
maxÞ [150] with

uncertainties greater than 100% in every bin. The Standard-
Model result for Fμ

H agrees with LHCb’s measurement, but

FIG. 6. Standard-Model differential branching fraction (gray band) for B → Kμþμ− decay (left) and B → Kτþτ− (right),
where B denotes the isospin average, using the Fermilab/MILC form factors [62]. Experimental results for B → Kμþμ− are from
Refs. [45,146–148]. The BABAR, Belle, and CDF experiments report isospin-averaged measurements.
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the comparison is limited by the large experimental errors,
which will improvewith newmeasurements after the LHCb
upgrade. For future comparisons, Tables IX and X of
Appendix A provide results for the binned Fl

Hðq2min; q
2
maxÞ

in both the charged and neutral decay modes, respectively.

3. Combinations of B → π and B → K observables

Figure 5 shows that the B → πμþμ− and B → Kμþμ−
Standard-Model partially integrated branching ratios are
larger than the experimental results for all four wide q2

bins. The four Standard-Model values are, however,
highly correlated. Thus the combination of all four mea-
surements disfavors the Standard-Model hypothesis at the
1.7σ level (χ2=dof ¼ 7.8=4, p ¼ 0.10). This significance
lies in between the individual exclusions from the two
B → πμþμ− bins and the two B → Kμþμ− bins.
The first observation of B → πlþl− by LHCb implies

that the ratio of branching fractions BðBþ → πþμþμ−Þ=
BðBþ → Kþμþμ−Þ ¼ 0.053ð14Þð1Þ, where the errors are
statistical and systematic, respectively [151]. More recently,
LHCb reported first results for the partially integrated
branching fractions for Bþ → πþμþμ− [55], and also
provided the ratio of ΔBðBþ → πþμþμ−Þ-to-ΔBðBþ →
Kþμþμ−Þ for the same q2 intervals above and below the
charmonium resonances. This ratio probes new-physics
scenarios that would affect the shape of the q2 distribution
differently for B → πlþl− and B → Klþl−. On the other
hand, it is not sensitive to new physics that would affect the
overallB → πlþl− andB → Klþl− rates in the sameway.
The ratios of partially integrated differential branching

fractions in the wide high-q2 and low-q2 bins, using the
Fermilab/MILC form factors [48,62,63], are our main
results in this section:

ΔBðBþ → πþμþμ−Þ
ΔBðBþ → Kþμþμ−Þ

SM
× 103

¼
�
26.8ð0.8Þð5.3Þð0.4Þ; 1 GeV2 ≤ q2 ≤ 6 GeV2;

47.2ð1.3Þð3.4Þð1.3Þ; 15 GeV2 ≤ q2 ≤ 22 GeV2;

ð4:7Þ

where the errors are from the CKM matrix elements,
hadronic form factors, and all others added in quadrature,
respectively. Binned Standard-Model values for additional
q2 intervals and for both the Bþ and B0 decay modes are
provided in Table XIII. Figure 8 compares the above
Standard-Model values with recent measurements from
LHCb for the same q2 bins [55]:

ΔBðBþ → πþμþμ−Þ
ΔBðBþ → Kþμþμ−Þ

exp
× 103

¼
�
38ð9Þð1Þ; 1 GeV2 ≤ q2 ≤ 6 GeV2;

37ð8Þð1Þ; 15 GeV2 ≤ q2 ≤ 22 GeV2;
ð4:8Þ

where the quoted errors are statistical and systematic,
respectively. The Standard-Model result for each individual
bin is consistent with its experimental measurement [55]—
within 1.1σ—but the theory band lies below experiment for
the 1 GeV2 ≤ q2 ≤ 6 GeV2 bin, while it lies above for the
15 GeV2 ≤ q2 ≤ 22 GeV2 bin. Combining the two bins,
including the theoretical correlations from Tables XIV and
XV, and treating the experimental bins as uncorrelated,
shows that the LHCb measurement is compatible with
the Standard Model within 1.1σ (χ2=dof ¼ 2.7=2 and
p ¼ 0.26). Given the present uncertainties, however, ample

FIG. 7. Standard-Model predictions for the Bþ → Kþlþl− flat term Fl
Hðq2Þ for l ¼ e; μ (left) and l ¼ τ (right) using the

Fermilab/MILC form factors [62].

FIG. 8. Ratio of partially integrated branching ratios ΔBðBþ →
πþμþμ−Þ=ΔBðBþ → Kþμþμ−Þ in the Standard Model using the
Fermilab/MILC form factors [48,62,63], compared with exper-
imental measurements from LHCb [55] The errors in the
Standard-Model results are dominated by the form-factor un-
certainties; the others are too small to be shown separately.
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room remains for new-physics contributions that may be
observable with improved measurements after the LHCb
upgrade.

4. Lepton-universality-violating observables

Lepton-universality-violating effects may give rise to
observable deviations in ratios of rare B decays to final
states with different charged leptons [9,13–18,152–155],
and would constitute a clear sign of physics beyond the
Standard Model. A useful observable to look for such
effects is the ratio of partially integrated decay rates to
different charged-lepton final states with the same q2 cuts
[156]:

Rl1l2
P ðq2min; q

2
maxÞ ¼

R q2max

q2min
dq2dBðB → Plþ

1 l
−
1 Þ=dq2R q2max

q2min
dq2dBðB → Plþ

2 l
−
2 Þ=dq2

;

ð4:9Þ

where P ¼ π; K and l1;l2 ¼ e; μ; τ. The quantities Rμe
π

and Rμe
K are predicted to be unity in the Standard Model, up

to corrections of order ðm2
l=M

2
B;m

4
l=q

4Þ [100,156], which
are tiny for l ¼ e; μ. Thus any observed deviation of Rμe

KðπÞ
from unity would indicate the presence of physics beyond
the Standard Model.
Measurements of RK at eþe− colliders by BABAR [146]

and Belle [147] are consistent with Standard-Model expect-
ations within large experimental uncertainties of about
20%–30%. The LHCb collaboration, however, recently
reported a measurement of the ratio Rμe

Kþð1 GeV2;
6 GeV2Þ ¼ 0.745ðþ97

−82Þ [42] that is 2.6σ lower than
Standard-Model expectations. Here we calculate lepton-
universality-violating ratios in the Standard Model using
the Fermilab/MILC B → K and B → π form factors
[48,62,63]. Our predictions for Rμl

π (l ¼ e; τ) are the first
to use only ab initio QCD information for the hadronic

physics, while results for Rl1l2
K (l1;l2 ¼ e; μ; τ) were

previously presented by the HPQCD collaboration using
their own lattice-QCD form-factor determinations [43].
Tables XI and XII show Rμl

π and Rμl
K for l ¼ e; τ,

respectively, using the same q2 bins employed by LHCb
[55]. Figure 9 plots the difference from unity of Rμe

Kþ (left)
and Rμe

πþ (right) for the wide q2 bins below and above the
charmonium resonances. For the same q2 cuts as LHCb’s
measurement [42], we obtain

½Rμe
Kþð1 GeV2; 6 GeV2Þ − 1� × 103 ¼ 0.50ð43Þ; ð4:10Þ

where the error is predominantly from the form-factor
uncertainties. This agrees with the earlier isospin-averaged
Standard-Model value ðRμe

K − 1Þ × 103 ¼ 0.74ð35Þ from
HPQCD for the same q2 interval [43] with a similar error.
Thus, explicit calculation with lattice QCD confirms the
intuitively significant deviation between experiment and
the Standard Model, observed by LHCb [42].

B. Rare b → qνν̄ðq ¼ d;sÞ decay observables

Rare B decays into neutrino-pair final states have not yet
been observed. The most recent bounds on BðB → Kνν̄Þ
from BABAR [157] and Belle [158] are, however, only
about a factor of 10 larger than Standard-Model expect-
ations, so prospects are good for its observation by Belle II
[57]. The Standard-Model decay rate for B → πνν̄ is further
suppressed below B → Kνν̄ by the relative CKM factor
jVtd=Vtsj2 ≈ 0.04, except for BðBþ → πþντν̄τÞ, which is
enhanced by long-distance contributions. Indeed, Bþ →
πþντν̄τ events are included in measurements of the leptonic
decay rate BðBþ → τþντÞ, where the τ subsequently decays
as τ → πþν̄τ [58–61].
In anticipation of such measurements, we provide

Standard-Model predictions for B → Kνν̄ and B → πνν̄
observables using the Fermilab/MILC form factors [48,62].
Previous analyses of B → KðπÞνν̄ used form factors from

FIG. 9. Standard-Model lepton-universality-violating ratios Rμe
Kþ − 1 (left) and Rμe

πþ − 1 (right) for ðq2min; q
2
maxÞ ¼ ð1 GeV2; 6 GeV2Þ

and ð15 GeV2; 22 GeV2Þ using the Fermilab/MILC form factors [48,62,63]. The errors in the Standard-Model results are dominated by
the form-factor uncertainties; the remaining contributions are too small to be visible. The left plot also shows LHCb’s measurement for
the low-q2 bin [42].
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light-cone sum rules (LCSR) [83,105] or perturbative QCD
(pQCD) [159]. One recent study of B → KðπÞνν̄ [18]
combined lattice-QCD form factors at high q2 [64] with
LCSR form factors [160] at low q2 in a simultaneous z-
expansion fit. Our calculations of B → KðπÞνν̄ observables
are the first to use only ab initio QCD information for the
hadronic physics. Because experiments cannot identify the
outgoing neutrino flavor, we present results for the sum of
contributions from νe; νμ, and ντ.
For the neutral decay modes B0 → K0ðπ0Þνν̄, the dom-

inant contributions to the Standard-Model decay rate are
from FCNC transitions [see Eq. (2.24)]. Figure 10 shows
our Standard-Model prediction for the differential branch-
ing fractions for B0 → π0νν̄ and B0 → K0νν̄. We obtain the
total branching fractions

BðB0 → π0νν̄Þ × 107 ¼ 0.668ð41Þð49Þð16Þ; ð4:11Þ

BðB0 → K0νν̄Þ × 107 ¼ 40.1ð2.2Þð4.3Þð0.9Þ; ð4:12Þ

where the errors are from the CKM elements, form factors,
and the quadrature sum of all other contributions, respec-
tively. The other errors in Eqs. (4.11) and (4.12) are so
much smaller than those from the CKM elements and form
factors because uū and cc̄ resonances do not contribute to
the rate in Eq. (2.2), and because the perturbative con-
tributions lumped into Xt are known to about a percent.
For the charged decay modes Bþ → KþðπþÞνν̄, we

obtain the following contributions to the Standard-Model
branching fractions from FCNC transitions:

BðBþ → πþνν̄ÞSD × 107 ¼ 1.456ð89Þð106Þð34Þ; ð4:13Þ

BðBþ → Kþνν̄ÞSD × 107 ¼ 43.2ð2.3Þð4.6Þð1.0Þ; ð4:14Þ

where again the errors are from the CKM elements, form
factors, and the quadrature sum of all other contributions.
Our result for BðBþ → Kþνν̄ÞSD is consistent with that in
Ref. [18], albeit with a slightly larger error. The smaller
error in Ref. [18] stems from their use of an additional input

at low-q2 from LCSR [160]. The results quoted in
Ref. [159] for the total B → KðπÞνν̄ branching fractions
for both the charged and neutral modes agree with ours, but
they have significantly larger errors.
As discussed in Sec. II C, the decay rates for Bþ →

KþðπþÞντν̄τ also receive substantial long-distance contri-
butions from intermediate tree-level τ decays. The numeri-
cal values for the long-distance contributions are given in
Eqs. (2.26) and (2.27). We add them to the short-distance
contributions in Eqs. (4.13) and (4.14) to obtain the full
branching ratios:

BðBþ → πþνν̄Þ × 106 ¼ 9.62ð1Þð92Þ; ð4:15Þ

BðBþ → Kþνν̄Þ × 106 ¼ 4.94ð52Þð6Þ; ð4:16Þ

where here the errors are from the short-distance and long-
distance contributions respectively. For Bþ → πþνν̄, the
intermediate τ-decay channel increases the Standard-Model
rate by an order of magnitude, whereas for Bþ → Kþνν̄ it
only generates about a 10% enhancement.

C. Tree-level b → ulν decay observables

The decay B → πτν has not yet been observed exper-
imentally. Recently, however, the Belle collaboration
reported their first search for B0 → π−τþντ decay [56],
obtaining a result for the total branching fraction with a
2.4σ significance, corresponding to an upper limit not far
from the Standard-Model prediction. The upcoming
Belle II experiment is therefore well positioned to measure
the branching fraction as well as the q2 spectrum for this
process.
Most previous Standard-Model predictions for B → πτν

have relied on estimates of the hadronic form factors from
LCSR [161–163] or pQCD [159]. Reference [164] employs
form factors from lattice QCD [65,142]. The scalar form
factor, however, was calculated only in Ref. [142], and
disagrees with more recent continuum-limit results [48,66].
Because the total uncertainty on BðB → πτνÞ in Ref. [164]
is dominated by the error on the scalar form factor, it is now

FIG. 10. Standard-Model differential branching fraction for B0 → π0νν̄ decay (left) and B0 → K0νν̄ (right) using the Fermilab/MILC
form factors [48,62].
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possible to improve the Standard-Model estimate. Here we
use the form factors and value of jVubj, 3.72ð16Þ × 10−3,
from Fermilab/MILC [48], obtained from a simultaneous
z-expansion fit of lattice-QCD results and the measured
B → πlν partial branching fractions. These form factors
and jVubj carry significant correlations, which we incor-
porate below. We reiterate that with this choice of inputs we
assume that there are no significant new-physics contribu-
tions to B → πlν decays with light charged leptons.
Figure 11 shows our Standard-Model prediction for the

B0 → π−τþντ differential branching fraction. For the total
integrated branching fractions we find

BðB0 → π−τþντÞ ¼ 9.35ð38Þ × 10−5; ð4:17Þ

BðBþ → π0τþντÞ ¼ 4.99ð20Þ × 10−5; ð4:18Þ

where the error includes the correlated uncertainties from
the form factors and jVubj. Because of the correlations
between the form factors and jVubj, it is not possible to
quote their errors individually. The uncertainties stemming
from the parametric inputs are negligible. Our results are
consistent with those quoted in Refs. [159,162] within their
much larger uncertainties. Because the Standard-Model
branching fraction for B → πτν is of the same order of
magnitude as for B → πμν, the Belle II experiment should
be in a good position to test our prediction of its differential
decay rate.
Deviations from Standard-Model expectations have been

observed for semileptonic B-meson decays to τντ final
states involving tree-level b → c charged-current inter-
actions. Given the combined 3.9σ excess quoted by
HFAG for their averages of RðDÞ and RðD�Þ [41], it is
interesting to consider the analogous ratio for B → πlν
decay, which instead proceeds through a tree-level b → u
transition. Assuming, again, that there are no new-physics
contributions to decays to light charged leptons, B → πlν
with l ¼ e; μ, the Fermilab/MILC form factors [48] yield
the Standard-Model prediction

RðπÞ≡ BðB → πτντÞ
BðB → πlνlÞ

¼ 0.641ð17Þ; ð4:19Þ

for both the charged and neutral B-meson decay modes.
Because jVubj cancels in the ratio, RðπÞ provides an
especially clean probe of new physics, particularly charged
Higgs bosons, independent of the currently observed
tension between determinations of jVubj from inclusive
and exclusive semileptonic B-meson decays [41,136,165].

V. CKM MATRIX ELEMENTS
AND WILSON COEFFICIENTS

We now illustrate the broader utility of the Fermilab/
MILC form factors [48,62,63] for Standard-Model and
beyond-the-Standard-Model phenomenology with two
concrete examples. First, in Sec. VA, starting with the
assumption that the Standard Model is a complete descrip-
tion of nature, we combine our predicted branching
fractions with the recent LHCb measurements to determine
the CKM matrix elements jVtdj, jVtsj, and their ratio. We
then compare them with results from other processes.
Second, in Sec. V B, we make no such assumption but
take the CKM matrix elements from unitarity and combine
our theoretical branching fractions with the experimental
measurements to constrain the Wilson coefficients of the
b → qllðq ¼ d; sÞ effective Hamiltonian. We then com-
pare them with Standard-Model values.
These analyses are possible because, as stressed above,

the B → π and B → K form factors are decoupled, via the
effective Hamiltonian, from physics at energy scales above
the electroweak scale.

A. Constraints on Vts, Vtd, and jVtd=Vtsj
In the Standard Model, the ratios of differential branch-

ing fractions

ΔBðB → πlþl−Þ
ΔBðB → Klþl−Þ and

ΔBðB → πνν̄Þ
ΔBðB → Kνν̄Þ

are both proportional to the ratio of CKM matrix elements
jVtd=Vtsj2. Thus, they enable determinations of jVtd=Vtsj,
independent of that from the ratio of Bd-to-Bs-meson
oscillation frequencies [136], which is currently the most
precise.
The LHCb experiment’s initial observation of B →

πμþμ− [151] enabled the first determination of this ratio
of CKM matrix elements from rare semileptonic B decays.
In that paper, they obtained jVtd=Vtsj ¼ 0.266ð35Þ using
form factors from light-cone sum rules [166] and neglect-
ing the theoretical uncertainty. More recently, LHCb
measured the differential decay rate for B → πμþμ− and
the ratio ΔBðB → πμþμ−Þ=ΔBðB → Kμþμ−Þ in two bins
of q2 below and above the charmonium resonances [55].
Although the measurement errors decreased, the quoted

FIG. 11. Standard-Model differential branching fraction for
B0 → π−τþντ decay using the Fermilab/MILC form factors and
determination of jVubj from Ref. [48].
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error in jVtd=Vtsj ¼ 0.23ðþ5
−4Þ increased from including now

the theory uncertainty. Here we obtain the first determi-
nation of jVtd=Vtsj from rare b → dðsÞlþl− decay proc-
esses using only ab initio lattice-QCD information for the
hadronic form factors.
Following Refs. [122,151] we calculate

Fπ=K ≡
���� Vts

Vtd

����2 ΔBðBþ → πþμþμ−Þ
ΔBðBþ → Kþμþμ−Þ ; ð5:1Þ

which removes the CKMmatrix elements. Taking Eq. (4.7)
for the second factor in Eq. (5.1) and removing the CKM
ratio used there (from Table XVII), we obtain

Fπ=K ¼
�
0.60ð12Þ; 1 GeV2 ≤ q2 ≤ 6 GeV2

1.055ð81Þ; 15 GeV2 ≤ q2 ≤ 22 GeV2;
ð5:2Þ

where the errors stem predominantly from the form-factor
uncertainties. Combining this Standard-Model calculation
of Fπ=K with LHCb’s recent measurement [55], Eq. (4.8),
yields

jVtd=Vtsj ¼
�
0.252ð25Þð30Þ; 1 GeV2 ≤ q2 ≤ 6 GeV2

0.187ð7Þð20Þ; 15 GeV2 ≤ q2 ≤ 22 GeV2;

ð5:3Þ

where the errors are from theory and experiment, respec-
tively. A joint fit over both bins including theoretical
correlations (which in practice are negligible) yields our
final result for the ratio of CKM matrix elements:

jVtd=Vtsj ¼ 0.201ð20Þ; ð5:4Þ

where the error includes both experimental and theor-
etical uncertainties, and the combined χ2=dof ¼ 2.3=1
(p ¼ 0.13). Equation (5.4) agrees with the more precise
determination from the oscillation frequencies of neutral
Bd;s mesons, jVtd=Vtsj ¼ 0.216ð1Þð11Þ, as well as that
from CKM unitarity, jVtd=Vtsj ¼ 0.2115ð30Þ [167].
The error on jVtd=Vtsj in Eq. (5.4) is more than 2 times

smaller than that obtained by LHCb in Ref. [55] using the
same experimental information. This improvement stems
entirely from the more precise form factors. Because the
error on jVtd=Vtsj in Eq. (5.4) is dominated by the
experimental uncertainty, especially for the high-q2 bin,
it will be reduced as measurements of B → KðπÞlþl−

decays improve. Better form-factor calculations will also
aid the determination of jVtd=Vtsj from the low-q2 region.
Future observations of B → KðπÞνν̄ in combination with
our Standard-Model predictions in Sec. II C will enable yet
another way to determine jVtd=Vtsj.
We can also determine the products of CKM elements

jVtbV�
tdj and jVtbV�

tsj that appear in the individual decay
rates for B → πlþl− and B → Klþl− decay, respectively.

In analogy with the analysis above, we combine our
calculations of the CKM-independent quantities ΔBðBþ →
πþμþμ−Þ=jVtbV�

tdj2 and ΔBðBþ → Kþμþμ−Þ=jVtbV�
tsj2

with experimental measurements of the partial branching
fractions for the same q2 intervals. Using the B → πμþμ−
partial branching fractions measured by LHCb [55], and
quoted in Eq. (4.2), we obtain

jVtbV�
tdj × 103

¼
�
8.34ð49Þð95Þ; 1 GeV2 ≤ q2 ≤ 6 GeV2;

6.90ð26Þð81Þ; 15 GeV2 ≤ q2 ≤ 22 GeV2:
ð5:5Þ

Similarly, using the B → Kμþμ− measurement from
Ref. [45], quoted in Eq. (4.5), we obtain

jVtbV�
tsj × 103

¼
�
33.3ð2.8Þð1.0Þ; 1.1 GeV2 ≤ q2 ≤ 6 GeV2;

36.0ð1.1Þð1.1Þ; 15 GeV2 ≤ q2 ≤ 22 GeV2:

ð5:6Þ

The errors given in Eqs. (5.5) and (5.6) are from theory and
experiment, respectively. Combining the values from the
individual q2 bins above including correlations gives

jVtbV�
tdj × 103 ¼ 7.45ð69Þ; ð5:7Þ

jVtbV�
tsj × 103 ¼ 35.7ð15Þ; ð5:8Þ

for our final results, where the errors include both the
experimental and theoretical uncertainties.
Taking jVtbj ¼ 0.9991 from CKM unitarity [167], where

the error is of order 10−5 and hence negligible, we can infer
values for the magnitudes of the individual CKM elements
jVtdj and jVtsj. We find

jVtdj ¼ 7.45ð69Þ × 10−3; ð5:9Þ

jVtsj ¼ 35.7ð1.5Þ × 10−3; ð5:10Þ

where the errors include both the experimental and
theoretical uncertainties. This determination of jVtdj
agrees with the Particle Data Group (PDG) value jVtdj¼
8.4ð6Þ×10−3 [136] obtained from the oscillation frequency
of neutral Bd mesons, with commensurate precision. Our
jVtsj is 1.4σ lower than jVtsj ¼ 40.0ð2.7Þ × 10−3 from
Bs-meson oscillations with an error that is almost
2 times smaller. Compared with the determinations jVtdj ¼
7.2ðþ9

−8Þ × 10−3 and jVtsj¼32ð4Þ×10−3 by LHCb [55]—
using the same experimental inputs but older form
factors—the uncertainties in Eqs. (5.9) and (5.10) are
1.2 and 2.7 times smaller, respectively. Again, this illus-
trates the value added from using the more precise hadronic
form factors. It is worth noting that the errors on the
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B-mixing results [136] are dominated by the uncertainties
on the corresponding hadronic matrix elements [168,169].
Therefore the errors on jVtdj and jVtsj from both neutral
B-meson oscillations and semileptonic B decays will
decrease with anticipated lattice-QCD improvements (see
Refs. [170,171] and our discussion in Sec. VII).
Finally, assuming CKM unitarity, our result for jVtsj

implies a value for jVcbj via jVcbj ¼ jVtsj ¼ Aλ2 þOðλ4Þ,
where the explicit expression for the correction can be
found in Ref. [167]. Taking numerical values for
fA; λ; ρ̄; η̄g from Table XVII to estimate the correction
term, we obtain jVcbj ¼ 36.5ð1.5Þ × 10−3, where the error
stems from the uncertainty in jVtsj in Eq. (5.9) and the
parametric uncertainty due to higher-order corrections in λ
is negligible. This alternate result for jVcbj is 1.6σ below
the exclusive jVcbj determination from B → D�lν [172],
2.6σ below that from B → Dlν [53], and 3.5σ below the
inclusive jVcbj determination [54]. This tension is simply
another perspective on the differences we found between
the experimental measurements for the B → Kμþμ− par-
tially integrated branching fractions and our Standard-
Model predictions, discussed in Sec. IVA 2.

B. Constraints on Wilson coefficients

In this section, we investigate the constraints on the
Wilson coefficients of the effective Hamiltonian implied by
present B → ðK; πÞμþμ− measurements combined with the
Fermilab/MILC form factors [48,62,63]. We focus on high-
scale (μ0 ≃ 120 GeV) contributions to the Wilson coef-
ficients C9 and C10:

C9ðμ0Þ ¼ CSM
9 ðμ0Þ þ CNP

9 ðμ0Þ; ð5:11Þ

C10ðμ0Þ ¼ CSM
10 ðμ0Þ þ CNP

10 ðμ0Þ; ð5:12Þ

where the Standard-Model matching conditions are given
in Eqs. (25) and (26) of Ref. [82] and, for our choice of
inputs, correspond to CSM

9 ðμ0Þ ¼ 1.614 and CSM
10 ðμ0Þ ¼

−4.255. The excellent agreement between the experimental
and theoretical determinations of B → Xsγ (see, for in-
stance, Ref. [173] and references therein) suggests that any
new-physics contributions to C7 and C8 are small, so we do
not consider them here. We also assume that the Wilson
coefficients for b → sll and b → dll transitions are
identical, as they would be in minimal flavor violation,
where new-physics contributions to the semileptonic oper-
ators for b → qll are proportional to VtbV�

tq. We further
assume that there are no new CP-violating phases and take
CNP
9 ðμ0Þ and CNP

10 ðμ0Þ to be real.
To obtain the constraints shown here, we employ the

measured Bþ → πþμþμ− and Bþ → Kþμþμ− branching
ratios in the wide q2 intervals ½1ð1.1Þ; 6� GeV2 and
½15; 22� GeV2 from LHCb [45,55], which are quoted in
Eqs. (4.2) and (4.5). We adopt a frequentist approach, and

construct a χ2 statistic for these four measurements
using a covariance matrix constructed from the correlation
matrices given in Tables VII and VIII, and from the errors
quoted in Table IV of Ref. [63] and in Table V. We obtain
the experimental contribution to the covariance matrix by
assuming that the four LHCb measurements in Eqs. (4.2)
and (4.5) are uncorrelated, which should be a good
approximation because the high- and low-q2 bins are
statistically independent, and the Bþ → πþμþμ− measure-
ment is dominated by statistical errors, while that for
Bþ → Kþμþμ− is limited by systematics.
The resulting allowed regions in the ReðCNP

9 Þ − ReðCNP
10 Þ

plane are shown in Fig. 12. In the top two panels we present
the 1σ constraints from Bþ → Kþμþμ− (left) and Bþ →
πþμþμ− (right), where we show the allowed regions
implied by each of the two bins separately (unfilled bands)
as well as their combination (solid bands). The lower left
panel shows the constraint from combining Bþ → Kþμþμ−
and Bþ → πþμþμ− branching ratios. Comparing the top
and bottom left panels, we see that the combined
B → ðK; πÞμþμ− constraint is currently controlled by the
high-q2 Bþ → Kþμþμ− ½15; 22� GeV2 bin. In the lower
right panel, the orange and yellow solid bands are the 1σ
and 2σ regions allowed by B → ðK; πÞμþμ− data. Allowing
for new-physics contributions to C9 andC10 yields a best fit
with χ2min=dof ¼ 1.8=2, corresponding to p ¼ 0.41. We
find a 2.0σ tension between the Standard-Model values for
CNP
9 ¼ CNP

10 ¼ 0 and those favored by the B → ðK; πÞμþμ−
branching ratios.
In the lower right panel of Fig. 12, we compare our

allowed region in the ReðCNP
9 Þ − ReðCNP

10 Þ plane obtained
from B → ðK; πÞμþμ− branching fractions alone with the
constraints from inclusive B → Xslþl− and exclusive
B → K�μþμ− measurements. The region favored by inclu-
sive observables (black contours) is taken from Ref. [174],
where the most recent experimental results from BABAR
[175,176] and Belle [177] were used. Similarly, the region
favored by B → K�μþμ− angular observables (red con-
tours) is taken from Ref. [36]. Global analyses of b → s
data similar to that performed in Ref. [36] have also been
presented in Refs. [9,152,178–186].
In Fig. 13 we add the constraint from the leptonic decay

rate BðBs → μþμ−Þ, for which lattice QCD also gives a
reliable input for the hadronic matrix element fBs

[108–
112,187]. The expression for the Standard-Model rate is
given in Eqs. (3) and (6) of Ref. [188], and is proportional
to f2Bs

and to the CKM combination jVtbV�
tsj2. For fBs

we
use the recent PDG value fBs

¼ 226.0ð2.2Þ GeV [107],
which was obtained by averaging the lattice QCD results of
Refs. [108,110,112,113,187]. We take the remaining para-
metric inputs from Table XVII to obtain the Standard-
Model total branching ratio,

BðBs → μþμ−ÞSM ¼ 3.39ð18Þð7Þð8Þ × 10−9; ð5:13Þ
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where the errors are from the CKM elements, decay constant,
and thequadrature sumof all other contributions, respectively.
We take the nonparametric uncertainties to be 1.5% [188].
In the most general Standard-Model extension, new-

physics contributions to Bs → μþμ− decay can arise from
six operators in the effective Hamiltonian: in addition to
Q10, there are operators with lepton currents l̄l and l̄γ5l,
and three additional operators obtained by flipping the
chirality of the quark current [189]. In order to combine
information from Bs → μþμ− with the constraints on the
Wilson coefficients C9 and C10 from B → KðπÞμþμ−
branching ratios presented above, we assume that only
C10 is affected by new physics. Under this assumption, the
Bs → μþμ− rate is proportional to jC10j2, so its inclusion

reduces constraint from a ring to a smaller, roughly
elliptical, region. Taking the measured branching ratio
BðBs→μþμ−Þexp¼2.8ðþ0.7

−0.6Þ×10−9 from CMS and LHCb
[190], we obtain the yellow and orange shaded bands in
Fig. 13. As shown in the left panel, at the 1σ level there are
four distinct allowed regions in the ReðCNP

9 Þ − ReðCNP
10 Þ

plane, which merge into two larger nearly horizontal bands
at 2σ. The lower-right orange contour is close to the
Standard-Model value, and we zoom in on this region in
Fig. 13, right. The region allowed by B → KðπÞμþμ−
and Bs→μþμ− branching ratios is compatible with
the constraint from B → K�μþμ− angular observables,
but is in slight tension with the constraint from inclusive
B → Xslþl− decays. Because the Standard-Model

FIG. 12. Constraints on the ReðCNP
9 Þ − ReðCNP

10 Þ plane implied by B → ðK; πÞμþμ− data. In the top two panels, the light and dark
unfilled bands show the 1σ constraints from the low-q2 (½1ð1.1Þ; 6� GeV2) and high-q2 (½15; 22� GeV2) bins, respectively, for
Bþ → Kþμþμ− (left) and Bþ → πþμþμ− (right). The filled bands show the 1σ allowed regions when the two bins are combined. Note
that the outer low- and high-q2 B → K contours almost completely overlap. The lower left panel shows these two 1σ regions with an
unfilled band obtained from combining the two constraints (almost coincident with the filled B → Klþl− band). The lower right panel
compares the 1σ and 2σ bands [in orange (gray) and yellow (light gray), respectively] from the B → ðK; πÞμþμ− data with the
constraints from B → K�ll angular observables (red unfilled contours, dotted for 2σ) [36] and inclusive processes (black open
contours, dashed for 2σ) [174].
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Bs → μþμ− total branching ratio is compatible with experi-
ment, including this information slightly decreases the
tension between the Standard-Model prediction and exper-
imental measurements of B → ðK; πÞμμ branching ratios.
The compatibility with the Standard-Model hypothesis
increases from p ¼ 0.10 to p ¼ 0.13, and the significance
of the tension decreases from 1.7σ to 1.5σ. Allowing for new
physics in C9 and C10 yields a best fit with χ2min=dof ¼
1.8=3, corresponding to p ¼ 0.61, and values of ReðCNP

9 Þ
and ReðCNP

10 Þ that differ by 2.1σ from the Standard Model.
Because the constraints from B → πðKÞμþμ− branching

ratios on the ReðCNP
9 Þ − ReðCNP

10 Þ plane are limited by the
experimental uncertainties, the widths of the corresponding
bands in Figs. 12 and 13 will be reduced with new
measurements by LHCb from the recently started LHC
run and by the upcoming Belle II experiment. Therefore,
these decays will continue to squeeze the allowed region in
the ReðCNP

9 Þ − ReðCNP
10 Þ plane.

VI. SUMMARY OF MAIN RESULTS

We now summarize our main results to help the reader
digest the large quantity of information presented in the
previous two sections. We present them in the same order in
which they appeared above.
We begin with tests of heavy-quark and SU(3) sym-

metries. By and large, the results given in Sec. III show
marginal-to-excellent agreement with the symmetry limits,
but the sizable q2 dependence we observe is an obstacle to
providing a simple rule of thumb.
Our findings for the Standard-Model observables for

decays with a charged-lepton pair in the final state, B →
KðπÞlþl− with l ¼ e; μ; τ are more interesting. Here, the
most reliable results are those for the wide q2 regions above
and below the charmonium resonances. For decays with a

muon pair, we compare our results for the partially
integrated branching fractions with the latest experimental
measurements from the LHCb experiment [45,55]. For the
wide q2 bins below and above the charmonium resonances,
we find that the Standard-Model expectations for both
ΔBðB → πμþμ−Þ and ΔBðB → Kμþμ−Þ are in slight
tension with the experimental measurements (see
Fig. 5), with the Standard-Model values being 1–2σ
higher. The Standard-Model expectations for the ratio
ΔBðB → πμþμ−Þ=ΔBðB → Kμþμ−Þ are compatible with
experiment, however, within 1.1σ (see Fig. 8). We also
provide Standard-Model values for the flat terms and
lepton-universality-violating ratios for all lepton final states
l ¼ e; μ; τ. We confirm the 2.6σ discrepancy observed for
Rμe
Kþ by LHCb [42]. Semileptonic B decays with τ pairs in

the final state have yet to be observed, so our results for the
associated observables are theoretical predictions that will
be tested by experiment.
For decays with a neutrino pair in the final state,

B → KðπÞνν̄, we provide Standard-Model predictions for
the total branching fractions. We do not present partially
integrated branching fractions because there are not yet
experimental measurements of these processes to guide our
choice of q2 intervals. Like B → KðπÞlþl−, these proc-
esses involve a b → dðsÞ FCNC transition, and thus probe
some of the same underlying physics. The decay rates for
B → KðπÞνν̄, however, depend on only a single operator in
the Standard-Model effective Hamiltonian. Hence, once
measured, they will provide complementary information.
Moreover, the B → KðπÞνν̄ decay rates do not receive
contributions from uū; cc̄ resonances or nonfactorizable
terms, making the theoretical predictions particularly clean.
Because the current bounds on BðB → Kνν̄Þ from BABAR
[157] and Belle [158] are only about a factor of 10 larger
than Standard-Model expectations, one may anticipate that

FIG. 13. Constraints on the ReðCNP
9 Þ − ReðCNP

10 Þ plane implied by B → ðK; πÞμþμ− and Bs → μþμ− data. The right panel shows the
same contours as the left panel, but focuses on the region near the Standard-Model value. The color and styling is the same as in Fig. 12
(lower right).

DAPING DU et al. PHYSICAL REVIEW D 93, 034005 (2016)

034005-22



this process will be observed by the forthcoming Belle II
experiment [57]. Once experimental analyses of the
B → KðπÞνν̄ differential decay rates have settled on bin
sizes, we can provide predictions for the partially integrated
branching fractions matched to the q2 bins employed.
We also predict the total branching ratio for the tree-level

decay B → πτν. Although this is not a FCNC process, the
large τ-lepton mass makes this process sensitive to con-
tributions from charged Higgs or other scalar bosons. The
ratio of the decay rate for B → πτν over the decay rate for
B → πlνðl ¼ e; μÞ is of particular interest given the
combined 3.9σ deviation from the Standard Model for
the analogous ratios for B → Dlν and B → D�lν semi-
leptonic decays [41]. We obtain

RðπÞ≡ BðB → πτντÞ
BðB → πlνlÞ

¼ 0.641ð17Þ; ð6:1Þ

where the error quoted includes statistical and systematic
uncertainties. Because theCKMelement jVubj cancels in the
ratio, RðπÞ provides an especially clean test of the Standard
Model independent of the tension between inclusive and
exclusive determinations [4,41,136,165,191]. The Belle
experiment recently presented a preliminary 2.4σ measure-
ment of theB0 → π−τþντ total branching fraction, setting an
upper limit only about 5 times greater than the Standard
Model prediction, so Belle II may be able to measure not
only the total branching fraction but also the q2 spectrum for
this process [57]. Again, we can provide partially integrated
branching ratios corresponding to the bins used in future
experimental analyses once they are needed.
The differential decay rates for B → πlþl−ðνν̄Þ and

B → Klþl−ðνν̄Þ decay are proportional to the combina-
tions of CKM elements jVtdV�

tbj and jVtsV�
tbj, respectively.

Thus they enable determinations of jVtdj, jVtsj, and their
ratio that can be compared with the current most precise
results obtained from the oscillation frequencies of neutral
Bd and Bs mesons. Assuming the Standard Model, we
combine the theoretical values for ΔBðB → πlþl−Þ,
ΔBðB → Klþl−Þ, and their ratio with the recent exper-
imental measurements from LHCb [45,55] to obtain the
CKM matrix elements,

jVtdj ¼ 7.45ð69Þ × 10−3; jVtsj ¼ 35.7ð1.5Þ × 10−3;����Vtd

Vts

���� ¼ 0.201ð20Þ; ð6:2Þ

where we take jVtbj from CKM unitarity [167], and the
errors include both experimental and theoretical uncertain-
ties. These results are compatible with the PDG values from
neutral B-meson oscillations [136], with a commen-
surate uncertainty for jVtdj, and an error on jVtsj that is
almost 2 times smaller. Compared with the determina-
tions jVtdj ¼ 7.2ðþ9

−8Þ × 10−3, jVtsj ¼ 32ð4Þ × 10−3, and

jVtd=Vtsj ¼ 0.24ðþ5
−4Þ by LHCb [55] using the same exper-

imental inputs but older form factors, the uncertainties
above are 1.2, 2.7, and 2.3 times smaller, respectively. This
illustrates the impact of using the precise hadronic form
factors from ab initio lattice QCD [48,62,63]. Further, our
predictions for BðB → πνν̄Þ, BðB → Kνν̄Þ, and their ratio
will facilitate new, independent determinations of jVtdj,
jVtsj, and their ratio once these processes have been
observed experimentally.
Finally, we also explore the constraints on possible new-

physics contributions to the Wilson coefficients C9 and C10

implied by the LHCb data for the partially integrated wide-
bin B → KðπÞμþμ− branching ratios when combined with
the new lattice-QCD form factors. We find a 1.7σ tension
between the Standard Model and the values for ReðC9Þ and
ReðC10Þ preferred by semileptonic B-meson decay data
alone, as shown in Fig. 12. Including the constraint from
Bs → μμ, for which reliable hadronic input from lattice
QCD is also available, shrinks the allowed region and also
slightly decreases the significance of the tension with the
Standard Model. The region allowed by these theoretically
clean decay modes is consistent with the constraints
obtained from B → K�ll observables, and the widths of
the bands are comparable in size. The B → K� constraints,
however, make use of additional theoretical assumptions,
which are not needed in lattice-QCD calculations of B-
meson leptonic decays or semileptonic decays with a
pseudoscalar meson in the final state. Hence, using the
Fermilab/MILC form factors from ab initio QCD
[48,62,63], we obtain theoretically clean constraints on
the Wilson coefficients with uncertainties similar to pre-
vious analyses.

VII. CONCLUSIONS AND OUTLOOK

Rare semileptonic B-meson decays provide a wealth of
processes and observables with which to test the Standard
Model and search for new physics. Exploiting this wealth,
however, requires that both the experimental measurements
and the corresponding theoretical calculations are suffi-
ciently precise and reliable. Recent progress in both areas
has been significant, in particular, on the form factors that
parametrize the momentum-dependent hadronic contribu-
tions to B-meson semileptonic decays with a pseudoscalar
meson in the final state. In this paper, we explore the
phenomenological implications of new calculations of the
B → π [48,63] and B → K [62] transition form factors by
the Fermilab Lattice and MILC collaborations. With the
new ab initio QCD information on the hadronic matrix
elements, we are able to calculate the observables with
fewer assumptions than previously possible. Indeed,
the comparison of our Standard-Model results for the
B → KðπÞμþμ− partial branching fractions with experi-
mental measurements reveals that the theoretical uncer-
tainties are now commensurate with the experimental
errors, especially in the high-q2 region. As a result, these
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decays are already providing theoretically clean and
quantitatively meaningful tests of the Standard Model
and constraints on new physics. Once the rare decays
B → KðπÞνν̄ and B → πτν are observed, our predictions
for these processes will enable further Standard-Model
tests, and, if deviations are seen, provide complementary
information on the underlying new physics.
Our work reveals 1–2σ deviations between the Standard

Model and experiment for both B → πμþμ− and
B → Kμþμ− decays, where the theory values lie system-
atically above the measurements for all four wide q2 bins
outside the charmonium resonance region. Although the
combined tension is less than 2σ, at the current level of
uncertainty, there is still ample room for new physics.
Sharpening this and other tests and potentially revealing
evidence for new physics will require improvements in both
experiment and theory, both of which are expected. On the
experimental side, measurements will continue to improve
at the currently running LHCb experiment. Further, the
soon-to-start Belle II experiment expects a great increase in
luminosity compared to the previous Belle experiment. It
may therefore observe heretofore unseen decays such as
B → KðπÞνν̄ and B → πτν, for which the Standard-Model
predictions are particularly clean. On the theoretical side,
more precise B → K and B → π form factors from lattice
QCD are anticipated. A dominant uncertainty in the form
factors from Refs. [48,62,63] employed in this paper, and
for similar efforts using different light- and b-quark actions
[66,143,192], is the combined statistical plus chiral-
extrapolation error. Fortunately, three- and four-flavor
lattice gauge-field ensembles with the average light-quark
mass ðmu þmdÞ=2 tuned to the physical value are becom-
ing increasingly available [193–196], the use of which will
essentially eliminate this source of error. Further, the form-
factor uncertainties at q2 ¼ 0 are quite large due to the
extrapolation from the range of simulated lattice momenta
q2 ≳ 16 GeV2 to the low-q2 region using the model-
independent z expansion. Reducing the form-factor uncer-
tainties at low-q2 is necessary in order to make better use of
experimental data at low-q2, and to sharpen comparisons of
q2 spectra between theory and experiment. Lattice-QCD
ensembles with finer lattice spacings but similar spatial
volumes will enable simulations with larger pion and kaon
momenta, thereby shortening the extrapolation range and
reducing the associated error. In particular, the form-factor
calculations of Refs. [48,62,63] will be repeated by the
Fermilab Lattice and MILC collaborations on a new set of
ensembles recently generated by the MILC collaboration
[196,197] using the highly improved staggered quark
action [198]. These four-flavor ensembles include dynami-
cal up, down, strange, and charm quarks; physical-mass
light quarks; and planned lattice spacings as small as
approximately 0.03 fm.
We note that semileptonic B-meson decays with a vector

meson in the final state, such as B → K�ll, provide an

even richer set of observables with which to test the
Standard Model, many of which are already measured
experimentally. For example, for the analysis of the Wilson
coefficients, the constraint from B → K�μþμ− angular
observables in the ReðCNP

9 Þ − ReðCNP
10 Þ plane is approx-

imately perpendicular to that from B → πðKÞμþμ− branch-
ing ratios and provides complementary information. The
presence of an unstable hadron in the final state, however,
makes ab initio calculations of their form factors much
more complicated. In fact, finite-volume methods for
properly including the width of an unstable final state
hadron in semileptonic B-meson decays are still being
developed [72]. Once such methods are fully established,
they will bring the hadronic uncertainties for B → K�μþμ−
observables under equally good theoretical control as
for B → πðKÞμþμ−.
B-meson leptonic and semileptonic decays are

already testing the Standard Model in the quark-flavor
sector, in some cases yielding tantalizing discrepancies at
the 2–3σ level. As discussed above, even more experi-
mental and theoretical progress is anticipated. We are
therefore optimistic that the rare semileptonic B-meson
decays studied in this paper—B→KðπÞμþμ−, B→KðπÞνν̄,
or B → πτν—may eventually reveal the presence of new
flavor-changing interactions or sources of CP-violation in
the quark sector.
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APPENDIX A: NUMERICAL RESULTS FOR B → KðπÞlþl− OBSERVABLES

Here we tabulate the numerical values of B → KðπÞlþl− observables in the Standard Model integrated over different q2

intervals. We select the same ranges of momentum transfer as the most recent experimental measurements from
LHCb [45,55].

TABLE II. Standard-Model binned flat term Fl
Hðq2min; q

2
maxÞ for Bþ → πþlþl− decay. Errors shown are from

form factors and the quadrature sum of all other contributions, respectively.

½q2min; q
2
max� (GeV2) 108Fe

H 103Fμ
H 101Fτ

H

[0.10, 2.00] 242.0(2.2,0.6) 96.1(0.8,0.2)
[2.00, 4.00] 50.6(1.1,0.1) 21.5(0.5,0.1)
[4.00, 6.00] 28.6(1.0,0.1) 12.2(0.4,0.0)
[6.00, 8.00] 19.9(0.9,0.1) 8.5(0.4,0.0)
[15.00, 17.00] 10.2(0.6,0.3) 4.3(0.3,0.1) 8.5(0.1,0.2)
[17.00, 19.00] 10.1(0.6,0.3) 4.3(0.3,0.1) 8.0(0.1,0.2)
[19.00, 22.00] 10.9(0.6,0.3) 4.7(0.3,0.1) 7.8(0.1,0.2)

[1.00, 6.00] 52.7(1.3,0.2) 22.3(0.5,0.1)
[15.00, 22.00] 10.4(0.6,0.3) 4.4(0.3,0.1) 8.0(0.1,0.2)
½4m2

l; ðMBþ −MπþÞ2� 55.6(3.6,1.8) 17.1(1.0,0.5) 8.2(0.1,0.2)

TABLE III. Standard-Model binned flat term Fl
Hðq2min; q

2
maxÞ for B0 → π0lþl− decay. Errors shown are from

form factors and the quadrature sum of all other contributions, respectively.

½q2min; q
2
max� (GeV2) 108Fe

H 103Fμ
H 101Fτ

H

[0.10, 2.00] 249.6(1.8,0.8) 98.9(0.7,0.3)
[2.00, 4.00] 51.0(1.0,0.1) 21.7(0.4,0.1)
[4.00, 6.00] 28.7(0.9,0.1) 12.2(0.4,0.0)
[6.00, 8.00] 19.9(0.8,0.1) 8.5(0.4,0.0)
[15.00, 17.00] 10.1(0.6,0.3) 4.3(0.3,0.1) 8.5(0.1,0.2)
[17.00, 19.00] 10.0(0.6,0.3) 4.3(0.3,0.1) 8.0(0.1,0.2)
[19.00, 22.00] 10.8(0.6,0.3) 4.6(0.3,0.1) 7.7(0.1,0.2)

[1.00, 6.00] 53.1(1.2,0.2) 22.5(0.5,0.1)
[15.00, 22.00] 10.3(0.6,0.3) 4.4(0.3,0.1) 8.0(0.1,0.2)
½4m2

l; ðMB0 −Mπ0Þ2� 58.1(3.9,2.0) 17.4(1.0,0.6) 8.2(0.1,0.2)

TABLE IV. Standard-Model partially integrated branching fractions for Bþ → πþμþμ− decay. Results for Bþ →
πþeþe− are nearly identical. Errors shown are from the CKM elements, form factors, and the quadrature sum of all
other contributions, respectively. Results are from Ref. [63], but additional digits are presented and the scale error
has been included in the other error quoted here, to facilitate use with the correlation matrices in Tables VIII and IX.

½q2min; q
2
max� (GeV2) 109ΔBðBþ → πþμþμ−Þ

[1.00, 6.00] 4.781(0.286,0.541,0.165)
[15.00, 22.00] 5.046(0.303,0.338,0.162)
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TABLE V. Standard-Model partially integrated branching fractions for Bþ → Kþlþl− decay. Results for Bþ →
Kþeþe− are nearly the same as for Bþ → Kþμþμ−. Errors shown are from the CKM elements, form factors, and the
quadrature sum of all other contributions, respectively. Results for the electron and muon final states are
indistinguishable at the current level of precision. At low q2, we present two wide bins ½1 GeV2; 6 GeV2� and
½1.1 GeV2; 6 GeV2� to enable comparison with the LHCb measurements in Refs. [55] and [45], respectively.

½q2min; q
2
max� (GeV2) 109ΔBðBþ → Kþμþμ−Þ 109ΔBðBþ → Kþτþτ−Þ

[0.10, 2.00] 68.03(3.70,13.72,1.55)
[2.00, 4.00] 71.72(3.91,12.44,1.63)
[4.00, 6.00] 70.59(3.84,10.36,1.54)
[6.00, 8.00] 68.94(3.75,8.47,1.46)
[15.00, 17.00] 46.15(2.51,2.48,1.62) 39.92(2.17,2.22,1.40)
[17.00, 19.00] 34.91(1.90,1.68,1.13) 39.31(2.14,1.81,1.33)
[19.00, 22.00] 25.73(1.40,1.17,0.86) 43.23(2.35,1.80,1.57)

[1.00, 6.00] 178.35(9.71,29.80,4.00)
[1.10, 6.00] 174.75(9.52,29.07,3.92)
[15.00, 22.00] 106.79(5.82,5.21,3.49) 122.46(6.67,5.63,4.17)
½4m2

l; ðMBþ −MKþÞ2� 605.33(32.96,65.14,17.03) 160.36(8.73,7.87,5.46)

TABLE VI. Standard-Model partially integrated branching fractions for B0 → K0lþl− decay. Results for
B0 → K0eþe− are nearly the same as for B0 → K0μþμ−. Errors shown are from the CKM elements, form factors,
and the quadrature sum of all other contributions, respectively. Results for the electron and muon final states are
indistinguishable at the current level of precision. At low q2, we present two wide bins ½1 GeV2; 6 GeV2� and
½1.1 GeV2; 6 GeV2� to enable comparison with the LHCb measurements in Refs. [55] and [45], respectively.

½q2min; q
2
max� (GeV2) 109ΔBðB0 → K0μþμ−Þ 109ΔBðB0 → K0τþτ−Þ

[0.10, 2.00] 63.38(3.45,12.70,1.51)
[2.00, 4.00] 65.88(3.59,11.35,1.46)
[4.00, 6.00] 64.94(3.54,9.47,1.37)
[6.00, 8.00] 63.60(3.46,7.76,1.32)
[15.00, 17.00] 42.76(2.33,2.30,1.51) 36.96(2.01,2.04,1.30)
[17.00, 19.00] 32.25(1.76,1.55,1.04) 36.34(1.98,1.67,1.23)
[19.00, 22.00] 23.53(1.28,1.07,0.79) 39.74(2.16,1.65,1.44)

[1.00, 6.00] 164.09(8.94,27.23,3.59)
[1.10, 6.00] 160.75(8.75,26.56,3.51)
[15.00, 22.00] 98.54(5.37,4.80,3.22) 113.05(6.16,5.19,3.85)
½4m2

l; ðMB0 −MK0Þ2� 558.80(30.43,59.72,15.73) 147.45(8.03,7.22,5.02)

TABLE VII. Correlations between the form-factor contributions to the errors in the Standard-Model partially
integrated branching fractions for Bþ → πþlþl− decay and Bþ → Kþlþl− decay. These should be combined with
the central values and form-factor errors in the bottom panels of Table IV from Ref. [63] and Table V above. The
results for the neutral decay modes B0 → π0ðK0Þlþl− should be taken as 100% correlated with those for the
charged decays.

½q2min; q
2
max� (GeV2) ½1; 6�πþ ½15; 22�πþ ½1; 6�Kþ ½1.1; 6�Kþ ½15; 22�Kþ

½1; 6�πþ 1.0000 0.6071 0.0426 0.0428 0.1190

½15; 22�πþ 0.6071 1.0000 0.1020 0.1023 0.2631

½1; 6�Kþ 0.0426 0.1020 1.0000 1.0000 0.5099

½1.1; 6�Kþ 0.0428 0.1023 1.0000 1.0000 0.5112

½15; 22�Kþ 0.1190 0.2631 0.5099 0.5112 1.0000
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TABLE VIII. Correlations between the other contributions to the errors in the Standard-Model partially integrated
branching fractions for Bþ → πþlþl− decay and Bþ → Kþlþl− decay. These should be combined with the
central values and other errors in the bottom panels of Table IV from Ref. [63] and Table V above. The correlation
between the combinations of CKM elements that enter the Bþ → πþlþl− and Bþ → Kþlþl− decay rates
(jVtdV�

tbj and jVtsV�
tbj) is 0.878. The results for the neutral decay modes B0 → π0ðK0Þlþl− should be taken as

100% correlated with those for the charged decays.

½q2min; q
2
max� (GeV2) ½1; 6�πþ ½15; 22�πþ ½1; 6�Kþ ½1.1; 6�Kþ ½15; 22�Kþ

½1; 6�πþ 1.0000 0.4504 0.9730 0.9728 0.4860

½15; 22�πþ 0.4504 1.0000 0.4212 0.4207 0.6098

½1; 6�Kþ 0.9730 0.4212 1.0000 1.0000 0.4510

½1.1; 6�Kþ 0.9728 0.4207 1.0000 1.0000 0.4504

½15; 22�Kþ 0.4860 0.6098 0.4510 0.4504 1.0000

TABLE IX. Standard-Model binned flat term Fl
Hðq2min; q

2
maxÞ for Bþ → Kþlþl− decay. Errors shown are from

form factors and the quadrature sum of all other contributions, respectively.

½q2min; q
2
max� (GeV2) 108Fe

H 103Fμ
H 101Fτ

H

[0.10, 2.00] 248.0(2.2,0.5) 98.3(0.8,0.2)
[2.00, 4.00] 55.7(0.7,0.0) 23.6(0.3,0.0)
[4.00, 6.00] 33.3(0.6,0.0) 14.2(0.2,0.0)
[6.00, 8.00] 24.3(0.5,0.0) 10.3(0.2,0.0)
[15.00, 17.00] 14.0(0.3,0.4) 6.0(0.1,0.2) 8.9(0.0,0.3)
[17.00, 19.00] 14.7(0.3,0.5) 6.3(0.1,0.2) 8.6(0.0,0.2)
[19.00, 22.00] 19.7(0.4,0.7) 8.4(0.2,0.3) 8.7(0.0,0.2)

[1.00, 6.00] 57.8(1.1,0.1) 24.5(0.5,0.0)
[15.00, 22.00] 15.6(0.3,0.5) 6.6(0.1,0.2) 8.7(0.0,0.2)
½4m2

l; ðMBþ −MKþÞ2� 71.5(6.1,2.1) 22.2(1.7,0.7) 8.9(0.0,0.3)

TABLE X. Standard-Model binned flat term Fl
Hðq2min; q

2
maxÞ for B0 → K0lþl− decay. Errors shown are from the

form factors and the quadrature sum of all other contributions, respectively.

½q2min; q
2
max� (GeV2) 108Fe

H 103Fμ
H 101Fτ

H

[0.10, 2.00] 258.6(2.4,0.4) 101.8(0.9,0.2)
[2.00, 4.00] 55.8(0.7,0.0) 23.6(0.3,0.0)
[4.00, 6.00] 33.3(0.6,0.0) 14.2(0.2,0.0)
[6.00, 8.00] 24.3(0.5,0.0) 10.3(0.2,0.0)
[15.00, 17.00] 14.0(0.3,0.4) 6.0(0.1,0.2) 8.9(0.0,0.3)
[17.00, 19.00] 14.7(0.3,0.5) 6.3(0.1,0.2) 8.6(0.0,0.2)
[19.00, 22.00] 19.8(0.4,0.7) 8.4(0.2,0.3) 8.7(0.0,0.2)

[1.00, 6.00] 58.0(1.1,0.1) 24.5(0.5,0.0)
[15.00, 22.00] 15.6(0.3,0.5) 6.7(0.1,0.2) 8.7(0.0,0.2)
½4m2

l; ðMB0 −MK0Þ2� 73.5(6.4,2.2) 22.4(1.7,0.7) 8.9(0.0,0.3)
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TABLE XI. Standard-Model lepton-universality-violating ratios for B → πlþl− decay. Results are shown for
both the charged (Rπþ , left) and neutral (Rπ0 , right) modes. Errors shown are from the form factors and the
quadrature sum of all other contributions, respectively.

½q2min; q
2
max� (GeV2) 103ðRμe

πþ − 1Þ Rμτ
πþ 103ðRμe

π0
− 1Þ Rμτ

π0

[0.10, 2.00] −5.81ð0.62 0.07Þ −4.70ð0.50 0.02Þ
[2.00, 4.00] −1.66ð0.46 0.06Þ −1.49ð0.41 0.05Þ
[4.00, 6.00] −1.38ð0.42 0.05Þ −1.33ð0.40 0.04Þ
[6.00, 8.00] −1.14ð0.39 0.04Þ −1.13ð0.39 0.04Þ
[15.00, 17.00] 0.14(0.64 0.01) 0.52(0.08 0.00) 0.11(0.63 0.00) 0.54(0.08 0.00)
[17.00,19.00] 0.58(0.82 0.02) 0.21(0.06 0.00) 0.54(0.82 0.02) 0.22(0.06 0.00)
[19.00, 22.00] 1.38(1.21 0.05) −0.05ð0.04 0.01Þ 1.33(1.21 0.05) −0.04ð0.04 0.01Þ
[1.00, 6.00] −1.64ð0.45 0.06Þ −1.45ð0.40 0.05Þ
[15.00, 22.00] 0.72(0.90 0.02) 0.18(0.06 0.01) 0.68(0.90 0.02) 0.19(0.06 0.01)

TABLE XII. Standard-Model lepton-universality-violating ratios for B → Klþl− decay. Results are shown for
both the charged (RKþ , left) and neutral (RK0 , right) modes. Errors shown are from the form factors and the
quadrature sum of all other contributions, respectively.

½q2min; q
2
max� (GeV2) 103ðRμe

Kþ − 1Þ Rμτ
Kþ 103ðRμe

K0 − 1Þ Rμτ
K0

[0.10, 2.00] −3.30ð0.20 0.02Þ −4.27ð0.22 0.03Þ
[2.00, 4.00] 0.50(0.38 0.02) 0.44(0.39 0.02)
[4.00, 6.00] 0.62(0.59 0.02) 0.59(0.59 0.02)
[6.00, 8.00] 0.72(0.86 0.02) 0.70(0.85 0.02)
[15.00, 17.00] 1.79(3.20 0.06) 0.16(0.02 0.01) 1.78(3.20 0.06) 0.16(0.02 0.01)
[17.00, 19.00] 2.55(4.23 0.09) −0.11ð0.02 0.01Þ 2.56(4.23 0.09) −0.11ð0.02 0.01Þ
[19.00, 22.00] 5.08(5.95 0.19) −0.40ð0.01 0.01Þ 5.13(5.94 0.19) −0.41ð0.01 0.01Þ
[1.00, 6.00] 0.50(0.43 0.02) 0.43(0.44 0.02)
[15.00, 22.00] 2.83(4.20 0.10) −0.13ð0.02 0.01Þ 2.84(4.19 0.10) −0.13ð0.02 0.01Þ

TABLE XIV. Correlations between the form-factor contributions to the errors in the Standard-Model ratio of
partially integrated branching ratios ΔBðB → πlþl−Þ=ΔBðB → Klþl−Þ. These should be combined with the
central values and form-factor errors in the bottom panel of Table XIII above. The results for the ratio of neutral
decay modes should be taken as 100% correlated with those for the charged decays.

½q2min; q
2
max� (GeV2) [1, 6] [15, 22]

[1, 6] 1.0000 0.4905
[15, 22] 0.4905 1.0000

TABLE XIII. Standard-Model ratio of partially integrated branching ratios ΔBðB → πlþl−Þ=ΔBðB → Klþl−Þ.
Errors shown are from the CKM elements, form factors, and the quadrature sum of all other contributions,
respectively.

½q2min; q
2
max� (GeV2) 103

ΔBðBþ→πþμþμ−Þ
ΔBðBþ→Kþμþμ−Þ 103

ΔBðB0→π0μþμ−Þ
ΔBðB0→K0μþμ−Þ

[0.10, 2.00] 26.63(0.76,6.31,0.42) 13.07(0.37,3.12,0.20)
[2.0, 4.0] 26.73(0.76,5.48,0.37) 13.04(0.37,2.68,0.17)
[4.0, 6.0] 27.01(0.77,4.74,0.35) 13.20(0.37,2.32,0.16)
[6.0, 8.0] 27.47(0.78,4.11,0.34) 13.46(0.38,2.02,0.16)
[15.0, 17.0] 36.64(1.04,2.95,1.05) 18.18(0.52,1.47,0.52)
[17.0, 19.0] 43.37(1.23,3.15,1.24) 21.63(0.61,1.58,0.62)
[19.0, 22.0] 71.37(2.02,4.69,2.03) 36.11(1.02,2.38,1.03)

[1.0, 6.0] 26.82(0.76,5.30,0.37) 13.09(0.37,2.60,0.17)
[15.0, 22.0] 47.21(1.34,3.38,1.34) 23.59(0.67,1.70,0.67)
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APPENDIX B: B → KðπÞlþl−

DIFFERENTIAL DECAY RATES

Here we summarize the theoretical expressions for
the B → KðπÞlþl− differential decay rates in the
Standard Model, including the complete dependence on
the charged-lepton mass ml. We encourage the users of
these formulae to cite explicitly the original papers [73,76–
78,90,91,98,99,199–204], in which the results collected
below were first derived. In Appendix B 1 we present a
complete set of expressions needed to describe the high-q2

region. The discussion of the running of the tensor form
factor fT surrounding Eq. (B9) has not been discussed in
reference to exclusive b → sll decays elsewhere in the
literature. The additional nonfactorizable terms of the
type ϕB⋆T⋆ΦP required at low-q2 are collected in
Appendix B 2. For the l ¼ τ case, the lower boundary
of kinematic range, q2min ¼ 4m2

τ , is larger than the ψ 0 mass
implying that the high-q2 OPE is sufficient to completely
describe this mode. Relations between the form factors fT
and fþ valid at low and high-q2 are presented in
Appendix B 3. A discussion of scale and power-correction
uncertainties is given in Appendix B 4.

1. Main formulas

The double differential B → PllðP ¼ K; π;l ¼ e; μ; τÞ
decay rate is given by (see, for instance, Ref. [78])

d2Γ
dq2d cos θ

¼ aþ b cos θ þ ccos2θ; ðB1Þ

a ¼ Γ0λ
1=2
0 βl

�
λ0
4
jGj2 þ jC10j2

�
λ0
4
β2l jfþj2

þm2
l

q2
ðM2

B −M2
PÞ2jf0j2

��
; ðB2Þ

b ¼ 0; ðB3Þ

c ¼ −
1

4
Γ0λ

3=2
0 β3lðjGj2 þ jC10fþj2Þ; ðB4Þ

G ¼ Ceff
9 fþ þ 2mMS

b ðμÞ
MB þMP

Ceff
7 fT; ðB5Þ

Γ0 ¼ CP
G2

Fα
2
ejVtbV�

tqj2
512π5M3

B
; ðB6Þ

λ0 ¼ 4M2
BjpPj2 ¼ M4

B þM4
P þ q4 − 2ðM2

BM
2
P

þM2
Bq

2 þM2
Pq

2Þ; ðB7Þ

βl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
l

q2

s
; ðB8Þ

where θ is the angle between the negative lepton direction
and the B incoming direction in the dilepton center of mass
frame, and jpPj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
P −M2

P

p
is the three-momentum of

the final-state meson in the B-meson rest frame. The
isospin factor in Eq. (B6) CP ¼ 1 for decays to kaons
and charged pions (π�), while CP ¼ 1=2 for decays to
neutral pions (π0). When ml ¼ 0, c ¼ −a.
The form factor fþ is scale independent while the scale

dependence of fT is simply controlled by the anomalous
dimension of the tensor current:

fTðμ2Þ ¼ fTðμ1Þ
�
αsðμ2Þ
αsðμ1Þ

�
−γð0ÞT =2β0

; ðB9Þ

where β0 ¼ ð11Nc − 2NfÞ=3 ¼ 23=3 (with Nf ¼ 5 active
flavors) is the leading order QCD beta function, and the
leading order anomalous dimension of the tensor current is
given by the anomalous dimension of the operator Q7

minus the contribution of the explicit bottom mass that

appears in Q7, γð0ÞT ¼ γð0Þ7 − γð0Þm ¼ 8CF − 6CF ¼ 2CF ¼
8=3 (see, for instance, Ref. [205]).
We obtain the expressions for the effective Wilson

coefficients Ceff
7 and Ceff

9 starting from Eq. (47) of
Ref. [201] where the notation ~Ceff

7;9 is used; we also use
results from Refs. [90,99,204]. We have made a number of
changes in notation, however, and also removed some
terms, as described below. Reference [201] uses the
notation ξi ¼ VibV�

id with i ¼ u; c; t, which can be gener-
alized to replace d by q so that the final state quark can be
either d or s. In either case, third-column and qth-column
unitarity implies ξu þ ξc þ ξt ¼ 0, or equivalently, ξc=ξt ¼
−1 − ξu=ξt ¼ −1 − λðqÞu , defining λðqÞu ¼ V�

uqVub=ðV�
tqVtbÞ.

Also, the extra factor αs=ð4πÞ in the definition of the
operators Q7;9 has to be taken into account by replacing
4π=αsC7;9 → C7;9 in Eq. (48) of Ref. [201]. Our notation
simplifies that of Ref. [201] by not being explicit about the
μ dependence of the Ci. We set ω7;9 → 0 to remove
bremsstrahlung contributions. We absorb the terms propor-
tional to lnðmb=μÞ in Eq. (48) of Ref. [201] into the
definitions of the functions hðm; q2Þ that we adopt here in
Eqs. (B12)–(B14), so that they are scale dependent. We use

the exact relation Fð7Þ
2;c ¼ −6Fð7Þ

1;c to simplify Eq. (B10).
Finally, we keep only the first term for A8 in Eq. (48) of
Ref [201] since the other terms are higher order, and take
A8 ¼ C8 because of different operator normalization.

TABLE XV. Correlations between the other contributions to the
errors in the Standard-Model ratio of partially integrated branch-
ing ratios ΔBðB → πlþl−Þ=ΔBðB → Klþl−Þ. These should be
combined with the central values and other errors in the bottom
panel of Table XIII above. The CKM errors are 100% correlated
between the two bins. The results for the ratio of neutral decay
modes should be taken as 100% correlated with those for the
charged decays.

½q2min; q
2
max� (GeV2) [1, 6] [15, 22]

[1, 6] 1.0000 0.0917
[15, 22] 0.0917 1.0000
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With the above choices, our expressions for Ceff
7 and Ceff

9 become

Ceff
7 ¼ C7 −

1

3

�
C3 þ

4

3
C4 þ 20C5 þ

80

3
C6

�
−
αs
4π

½ðC1 − 6C2ÞFð7Þ
1;c þ C8F

ð7Þ
8 � − αs

4π
λðqÞu ðC1 − 6C2ÞðFð7Þ

1;c − Fð7Þ
1;uÞ; ðB10Þ

Ceff
9 ¼ C9 þ

4

3
C3 þ

64

9
C5 þ

64

27
C6 þ hð0; q2Þ

�
−
1

2
C3 −

2

3
C4 − 8C5 −

32

3
C6

�
þ hðmb;q2Þ

�
−
7

2
C3 −

2

3
C4 − 38C5 −

32

3
C6

�

þ hðmc;q2Þ
�
4

3
C1 þC2 þ 6C3 þ 60C5

�
þ λðqÞu ½hðmc;q2Þ− hð0; q2Þ�

�
4

3
C1 þC2

�
−
αs
4π

½C1F
ð9Þ
1;c þC2F

ð9Þ
2;c þC8F

ð9Þ
8 �

−
αs
4π

λðqÞu ½C1ðFð9Þ
1;c −Fð9Þ

1;uÞ þC2ðFð9Þ
2;c −Fð9Þ

2;uÞ�: ðB11Þ

Numerically, the CKM factor jλðsÞu j≃ 0.02 ≪ jλðdÞu j≃ 0.4;

thus terms proportional to λðqÞu are significant only for the
B → π mode. Reference [204] provides a MATHEMATICA

notebook for the functions Fð7;9Þ
1;2 in the charm-pole-mass

scheme. Our expressions for Ceff
7 and Ceff

9 are similar to
Eqs. (2.6) and (2.7) in Ref. [90]; however, we have included

terms proportional to λðqÞu for C eff
7 , and for Ceff

9 we have not

expanded hðmc; q2Þ and Fð7;9Þ
i;c in powers of m2

c=q2 as in
Eq. (2.7) of Ref. [90].
The function hðmq; q2Þ is given in Eq. (11) of Ref. [99].

The function hðmq; q2Þ for mq ¼ 0; mb is also given
explicitly in Eqs. (3.11) and (3.12) of Ref. [76]. The

functions Fð7;9Þ
8 , B0, and C0 are given in Eqs. (B1)–(B3),

and (29) of Ref. [99]. The functions Fð7;9Þ
1;u , Fð7;9Þ

2;u are given
in Eqs. (22)–(31) of Ref. [202] but with an extra minus sign
compared with the convention adopted here and in
Refs. [200,201,204]). For the convenience of the reader,
we present the explicit expressions for all required func-
tions here:

hðmc; q2Þ ¼
4

9

�
ln

μ2

m2
c
þ 2

3
þ z

�
−
4

9
ð2þ zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jz − 1j

p

×

(
arctan 1ffiffiffiffiffiffi

z−1
p z ¼ 4m2

c
q2 > 1

ln 1þ ffiffiffiffiffiffi
1−z

pffiffi
z

p − iπ
2

z ¼ 4m2
c

q2 ≤ 1;
ðB12Þ

hð0; q2Þ ¼ 8

27
þ 4

9

�
ln
μ2

q2
þ iπ

�
; ðB13Þ

hðmb; q2Þ ¼
4

9

�
ln

μ2

m2
b

þ 2

3
þ z

�

−
4

9
ð2þ zÞ ffiffiffiffiffiffiffiffiffiffi

z − 1
p

arctan
1ffiffiffiffiffiffiffiffiffiffi
z − 1

p ;

z ¼ 4m2
b

q2
; ðB14Þ

Fð7Þ
8 ¼−

32

9
ln

μ

mb
−
8

9

ŝ
1− ŝ

ln ŝ−
8

9
iπ−

4

9

11−16ŝþ8ŝ2

ð1− ŝÞ2

þ4

9

1

ð1− ŝÞ3 ½ð9ŝ−5ŝ2þ2ŝ3ÞB0ðŝÞ

− ð4þ2ŝÞC0ðŝÞ�; ðB15Þ

Fð9Þ
8 ¼ 16

9

1

1 − ŝ
ln ŝþ 8

9

5 − 2ŝ
ð1 − ŝÞ2

−
8

9

4 − ŝ
ð1 − ŝÞ3 ½ð1þ ŝÞB0ðŝÞ − 2C0ðŝÞ�; ðB16Þ

B0ðŝÞ ¼ − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=ŝ − 1

p
arctan

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=ŝ − 1

p ; ðB17Þ

C0ðŝÞ ¼
Z

1

0

dx
1

xð1 − ŝÞ þ 1
ln

x2

1 − xð1 − xÞŝ ; ðB18Þ

Fð7Þ
1;u ¼ Fð7Þ

1;cjmc→0 ¼ −AðŝÞ; ðB19Þ

Fð7Þ
2;u ¼ Fð7Þ

2;cjmc→0 ¼ −6Fð7Þ
1;cjmc→0 ¼ 6AðŝÞ; ðB20Þ

Fð9Þ
1;u ¼ Fð9Þ

1;cjmc→0 ¼ −BðŝÞ − 4CðŝÞ; ðB21Þ

Fð9Þ
2;u ¼ Fð9Þ

2;cjmc→0 ¼ −3CðŝÞ þ 6BðŝÞ; ðB22Þ
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AðŝÞ ¼ −
104

243
ln

�
m2

b

μ2

�
þ 4ŝ
27ð1 − ŝÞ ½Li2ðŝÞ þ lnðŝÞ lnð1 − ŝÞ� þ 1

729ð1 − ŝÞ2 ½6ŝð29 − 47ŝÞ lnðŝÞ þ 785 − 1600ŝ

þ 833ŝ2 þ 6πið20 − 49ŝþ 47ŝ2Þ� − 2

243ð1 − ŝÞ3 ½2
ffiffiffiffiffiffiffiffiffiffi
z − 1

p ð−4þ 9ŝ − 15ŝ2 þ 4ŝ3Þarccotð ffiffiffiffiffiffiffiffiffiffi
z − 1

p Þ þ 9ŝ3ln2ðŝÞ

þ 18πiŝð1 − 2ŝÞ lnðŝÞ� þ 2ŝ
243ð1 − ŝÞ4 ½36arccot

2ð ffiffiffiffiffiffiffiffiffiffi
z − 1

p Þ þ π2ð−4þ 9ŝ − 9ŝ2 þ 3ŝ3Þ�; ðB23Þ

BðŝÞ ¼ 8

243ŝ

�
ð4 − 34ŝ − 17πiŝÞ ln

�
m2

b

μ2

�
þ 8ŝln2

�
m2

b

μ2

�
þ 17ŝ lnðŝÞ ln

�
m2

b

μ2

��

þ ð2þ ŝÞ ffiffiffiffiffiffiffiffiffiffi
z − 1

p

729ŝ

�
−48 ln

�
m2

b

μ2

�
arccotð ffiffiffiffiffiffiffiffiffiffi

z − 1
p Þ − 18π lnðz − 1Þ þ 3iln2ðz − 1Þ − 24iLi2ð−x2=x1Þ − 5π2i

þ 6ið−9ln2ðx1Þ þ ln2ðx2Þ − 2ln2ðx4Þ þ 6 lnðx1Þ lnðx2Þ − 4 lnðx1Þ lnðx3Þ þ 8 lnðx1Þ lnðx4ÞÞ

− 12πð2 lnðx1Þ þ lnðx3Þ þ lnðx4ÞÞ
�
−

2

243ŝð1 − ŝÞ ½4ŝð−8þ 17ŝÞðLi2ðŝÞ þ lnðŝÞ lnð1 − ŝÞÞ

þ 3ð2þ ŝÞð3 − ŝÞln2ðx2=x1Þ þ 12πð−6 − ŝþ ŝ2Þarccotð ffiffiffiffiffiffiffiffiffiffi
z − 1

p Þ�

þ 2

2187ŝð1 − ŝÞ2 ½−18ŝð120 − 211ŝþ 73ŝ2Þ lnðŝÞ

− 288 − 8ŝþ 934ŝ2 − 692ŝ3 þ 18πiŝð82 − 173ŝþ 73ŝ2Þ� − 4

243ŝð1 − ŝÞ3 ½−2
ffiffiffiffiffiffiffiffiffiffi
z − 1

p ð4 − 3ŝ − 18ŝ2 þ 16ŝ3

− 5ŝ4Þarccotð ffiffiffiffiffiffiffiffiffiffi
z − 1

p Þ − 9ŝ3ln2ðŝÞ þ 2πiŝð8 − 33ŝþ 51ŝ2 − 17ŝ3Þ lnðŝÞ�

þ 2

729ŝð1 − ŝÞ4 ½72ð3 − 8ŝþ 2ŝ2Þarccot2ð ffiffiffiffiffiffiffiffiffiffi
z − 1

p Þ − π2ð54 − 53ŝ − 286ŝ2 þ 612ŝ3 − 446ŝ4 þ 113ŝ5Þ�; ðB24Þ

CðŝÞ ¼ −
16

81
ln

�
ŝ
m2

b

μ2

�
þ 428

243
−
64

27
ζð3Þ þ 16

81
πi; ðB25Þ

where ŝ ¼ q2=m2
b, x1 ¼ ð1þ i

ffiffiffiffiffiffiffiffiffiffi
z − 1

p Þ=2, x2 ¼ ð1−
i

ffiffiffiffiffiffiffiffiffiffi
z − 1

p Þ=2, x3¼ð1þ i=
ffiffiffiffiffiffiffiffiffi
z−1

p Þ=2, x4¼ð1− i=
ffiffiffiffiffiffiffiffiffi
z−1

p Þ=2
and z ¼ 4=ŝ. Note that our functions Fð9Þ

i follow the
conventions used in Ref. [204]. All charm- and bottom-
quark masses that appear in these formulas are in the pole
scheme, with the exception of the explicit instance of the
bottom MS mass in Eq. (B5).

2. Additional nonfactorizable contributions
required at low q2

The additional contributions of the form ϕB⋆T⋆ϕP that
arise in the SCET expansion at low q2 have been
calculated in the ml ¼ 0 limit in Ref. [99]. Some of
these terms are truly nonfactorizable effects while others
appear when fT is expressed in terms of fþ [see
Eq. (B48) below]; the latter have to be removed because,
in this paper, we use the tensor form factor fT computed
directly from lattice QCD.
Following the notation of Ref. [100], all of these terms

are included in the quantity τP defined in Eq. (B1) of that

paper. Compared to that paper,2 we set the terms Cð0;f;nfÞ
P

and TðfÞ
P;� to zero in our formulas (where the superscripts “f”

and “nf” denote factorizable and nonfactorizable, respec-
tively). Some of these terms correspond to contributions
that we have already included in Ceff

7;9. Others appear in the
SCET expansion of fT , which we do not use here because
we have the tensor form factor from lattice QCD, or in the
perturbative expansion of the MS b-quark mass in terms of
the potential subtracted one, which is not relevant because
we adopt the MS scheme.

The remaining contributions Tð0;nfÞ
P;� are genuine non-

factorizable corrections. From the expression for FV ¼
G=fþ given in Eq. (3.2) of Ref. [100], we see that these
terms all can be included in a shift in the effective
coefficient Ceff

9 :

ΔCeff
9 ¼ 2mb

MB

ΔτP
fþ

; ðB26Þ

2Note that in Eq. (B2) of Ref. [100] there is a typo in the
definition of CðfÞ

P and its overall sign has to be reversed.
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ΔτP ¼ π2

Nc

fBfP
MB

X
�

Z
dω
ω

ΦB;�ðωÞ

×
Z

1

0

duΦPðuÞ½Tð0Þ
P;� þ ~αsCFT

ðnfÞ
P;��: ðB27Þ

The functions Tð0;nfÞ
P;� ¼ −Tð0;nfÞ

∥;� are given in Eqs. (17) and
(18), (25) and (26), and (28)–(32) of Ref. [99] and read

Tð0Þ
P;þ ¼ 0; ðB28Þ

Tð0Þ
P;− ¼ eq

MBω

MBω − q2 − iϵ
4MB

mb

×

�
C3 þ

4

3
C4 þ 16C5 þ

64

3
C6

�
; ðB29Þ

TðnfÞ
P;þ ¼ −

MB

mb
½eut∥ðu;mcÞð−C1=6þ C2 þ 6C6Þ

þ edt∥ðu;mbÞðC3 − C4=6þ 16C5 þ 10C6=3Þ;
þ edt∥ðu; 0ÞðC3 − C4=6þ 16C5 − 8C6=3Þ�;

ðB30Þ

t∥ðu;mqÞ ¼
2MB

ūE
I1ðmqÞ

þ ūM2
B þ uq2

ū2E2
ðB0ðūM2

B þ uq2; mqÞ
− B0ðq2; mqÞÞ; ðB31Þ

E ¼ M2
B þM2

P − q2

2MB
; ðB32Þ

I1ðmqÞ ¼ 1þ 2m2
q

ūðM2
B − q2Þ ½L1ðxþÞ þ L1ðx−Þ

− L1ðyþÞ − L1ðy−Þ�; ðB33Þ

L1ðxÞ ¼ ln
x − 1

x
lnð1 − xÞ − π2

6
þ Li2

�
x

x − 1

�
; ðB34Þ

x� ¼ 1

2
�
�
1

4
−

m2
q

ūM2
B þ uq2

�
1=2

; ðB35Þ

y� ¼ 1

2
�
�
1

4
−
m2

q

q2

�
1=2

; ðB36Þ

B0ðq2; mqÞ ¼ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

q=q2 − 1

q
arctan

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

q=q2 − 1
q ;

ðB37Þ

TðnfÞ
P;− ¼ −eq

MBω

MBω − q2 − iϵ

�
8Ceff

8

ūþ uq2=M2
B
þ 6MB

mb

�
hðmc; ūM2

B þ uq2Þð−C1=6þ C2 þ C4 þ 10C6Þ

þ hðmb; ūM2
B þ uq2ÞðC3 þ 5C4=6þ 16C5 þ 22C6=3Þ þ hð0; ūM2

B þ uq2ÞðC3 þ 17C4=6þ 16C5 þ 82C6=3Þ

−
8

27
ð−15C4=2þ 12C5 − 32C6Þ

��
; ðB38Þ

Ceff
8 ¼ C8 þ C3 −

1

6
C4 þ 20C5 −

10

3
C6; ðB39Þ

where ~αs ¼ αs=ð4πÞ, ū ¼ 1 − u, hðmq; q2Þ is defined in
Eq. (B12), and eq, which appears in Eq. (B29), is the
charge of the spectator quark (i.e., eq ¼ −1=3 for neutral
B and eq ¼ 2=3 for B�). The correct imaginary parts are
obtained by replacing m2

q → m2
q − iε. Note that in

Ref. [99] the functions repeated above are given in terms
of barred coefficients C̄i that are simple linear combi-
nations of the coefficients Ci (explicit expressions that
relate the two sets of coefficients are given in Appendix A
of Ref. [99]). The nonfactorizable contribution ΔτP in
Eq. (B27) depends upon the light-cone distribution
amplitudes (LCDA) of the kaon, ΦKðuÞ, of the pion,

ΦπðuÞ, and of the B meson, ΦB;�ðωÞ. It is customary to
expand the kaon and pion LCDAs in terms of Gegen-
bauer polynomials and keep only the first few terms
[206] [see Eqs. (48)–(54) in Ref. [99]):

ΦKðuÞ ¼ 6uð1 − uÞ½1þ aK1 C
ð3=2Þ
1 ð2u − 1Þ

þ aK2 C
ð3=2Þ
2 ð2u − 1Þ þ…�; ðB40Þ

ΦπðuÞ ¼ 6uð1 − uÞ½1þ aπ2C
ð3=2Þ
2 ð2u − 1Þ

þ aπ4C
ð3=2Þ
4 ð2u − 1Þ þ…�: ðB41Þ

Note that aπ1 vanishes due to G-parity. The u dependence
of ΦPðuÞ is needed because the convolutions involve

DAPING DU et al. PHYSICAL REVIEW D 93, 034005 (2016)

034005-32



nontrivial functions of u. The first few coefficients aπ;Ki
have been computed in lattice QCD [206–209]. The
B-meson LCDAs are known less precisely, but enter only
through the first inverse moments:

λ−1B;þ ¼
Z

∞

0

dω
ΦB;þðωÞ

ω
; ðB42Þ

λ−1B;−ðq2Þ ¼
Z

∞

0

dω
ΦB;−ðωÞ

ω − q2=MB − iϵ
: ðB43Þ

Following Ref. [99], we model ΦB;þ and ΦB;− as

ΦB;þðωÞ ¼
ω

ω2
0

e−ω=ω0 ; ðB44Þ

ΦB;−ðωÞ ¼
1

ω0

e−ω=ω0 : ðB45Þ

The value of ω0 can be fixed using λB;þ, giving

ω0 ¼ λB;þ; ðB46Þ

λ−1B;−ðq2Þ ¼
e−q

2=ðMBλB;þÞ

λB;þ

�
−Ei

�
q2

MB
λB;þ

�
þ iπ

�
: ðB47Þ

3. Form-factor relations

We now present details on the relations between the form
factors fT and fþ, tested in Sec. III B. At low-q2 SCET
gives [98]

MB

MB þMP
fT ¼ fþ

�
1þ αs

4π
CF

�
ln
m2

b

μ2
þ 2L

��

−
π

Nc

fBfP
E

αsCF

Z
dω
ω

ΦB;þðωÞ

×
Z

1

0

du
ū
ΦPðuÞ; ðB48Þ

where L ¼ −½2E=ðMB − 2EÞ� lnð2E=MBÞ. The extension
of this relation to order α2s is also available [210].
At high-q2 the corresponding relation obtained from the

high-q2 OPE reads [73,78]

MB

MB þMP
fT ¼ M2

B

q2
fþκðμÞ ¼

M2
B

q2
fþ

�
1þ 2

DðvÞ
0

CðvÞ
0

�
mb

MB
;

ðB49Þ

DðvÞ
0 ¼ αs

4π
CF

�
2 ln

μ

mb
þ 2

�
; ðB50Þ

CðvÞ
0 ¼ 1 −

αs
4π

CF

�
3 ln

μ

mb
þ 4

�
: ðB51Þ

Note that we do not use these expressions, except to test
them, because we take the form factors directly from
lattice QCD.

4. Scale and power-correction uncertainties

Scale uncertainties are intended to account for errors
introduced by truncating a perturbative expansion, and
should reflect the size of omitted higher-order perturbative
corrections. The standard approach for estimating such
missing terms is to vary the unphysical scales: in our case
we vary the two scales μb ∼mb and μ0 ∼mW;mt. Higher-
order corrections will cancel exactly the explicit depend-
ence in the expressions for the branching ratios that we use,
while the residual scale dependence will be suppressed by
one more power of the strong coupling αs. In this paper we
adopt the standard choices μb ¼ 5 GeV and μ0 ¼ffiffiffiffiffiffiffiffiffiffiffiffi
mWmt

p ¼ 120 GeV. The scale uncertainty is then
obtained by varying simultaneously these scales by a factor
of 2 and taking half the difference between the maximum
and minimum observed values.
Uncertainties associated with power corrections are more

difficult to estimate because higher-order terms in the OPE
are dynamically suppressed; i.e., the suppression is expected
to appear in the nonperturbative calculation of the matrix
elements of higher-dimensional operators. We estimate this
uncertainty by varying by 10% all terms in the amplitude that
are not directly proportional to C9;10fþ or C7fT.

APPENDIX C: NUMERICAL INPUTS

Here we tabulate the numerical inputs used for the
Standard-Model predictions in Secs. IV and V.
Table XVI provides the Wilson coefficients, while
Table XVII provides the other inputs.

TABLE XVI. Numerical values of the Standard-Model Wilson
coefficients used for the calculations in this paper, taken from
Ref. [82]. The dominant source of error in the coefficients is from
the variation of the scale μlow ∈ ½2.5; 10� GeV. The scale
dependencies of the coefficients in some cases are somewhat
large, but are meant to cancel against the corresponding scale
dependence of the matrix elements.

CiðμbÞ Value

C1 −0.29ð16Þ
C2 1.009(10)
C3 −0.0047ð42Þ
C4 −0.081ð39Þ
C5 0.00036(31)
C6 0.00082(97)
C7 −0.297ð26Þ
C8 −0.152ð15Þ
C9 4.04(33)
C10 −4.292ð73Þ
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