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Neutrino oscillations are now a well-established and deeply studied phenomena. Their mixing
parameters, except for the CP phase, are measured with good accuracy. The three-neutrino oscillation
picture in matter is currently of great interest due to the different long-baseline neutrino experiments that are
already running or under construction. In this work, we reanalyze the exact expression for the neutrino
probabilities (in a constant density medium) and introduce an approximate formula. Our results are shown
in a formulation that is independent of the parametrization and could be useful for unitary tests of the
leptonic mixing matrix. We illustrate how the approximation, besides being simple, can reproduce the
neutrino probabilities with good accuracy.
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I. INTRODUCTION

Neutrino oscillations are a well-established phenome-
non, with parameters that have been measured with great
accuracy [1], except for the CP-violating phase which is
expected to be precisely determined in the new generation
of long-baseline neutrino experiments. Despite this suc-
cess, all the analysis has been done in a particular para-
metrization [2]. In the case of neutrino physics, there are
other parametrizations that could be interesting [3–5],
taking into account the possibility of accounting for more
neutrino families as well as the richness of the possible
neutrino Majorana nature. Moreover, for a unitarity test [6],
it may be more interesting to analyze the experimental data
in a parameter-independent way, studying the values of the
matrix entrances. It is already known that, for three families
of Dirac fermions, the mixing matrix will have four
independent elements [7–11]. If neutrinos have a
Majorana nature, or if there are more neutrino families,
the situation will be more complex [12], but a test of the
“standard" picture through unitarity can be considered as a
first step into the search for new physics. On the other hand,
an important part of neutrino data comes from matter
effects [13], making the analysis more complicated due to
the need for computing numerical solutions to the neutrino
evolution equation, for the case of varying density profiles,
or for using approximate formulas for neutrino probabilities
in constant density environments [14–19].
In this work, we first discuss the exact formula for

neutrino oscillations in a constant density environment. We
show our results in terms of the entrances of the leptonic
mixing matrix and, therefore, they are independent of the
parametrization. Afterwards, we introduce a new approxi-
mation that, besides being simple, can be formulated in
terms of a series expansions and, therefore, can be

computed with a level of accuracy according to the
phenomenological needs of the given problem. The expres-
sions found here could be useful in analyzing the neutrino
data either in the standard parametrization or in other
contexts, such as unitary test in the neutrino sector.

II. THE EXACT CASE

The leptonic mixing matrix relates the mass and flavor
states through the relation να ¼

P
iUαiνi, where the matrix

Uαi could be parametrized, for instance, in the usual
convention adopted by the Particle Data Group (PDG)
[2]. The evolution equation in vacuum will be given by

i
d
dt

νj ¼
m2

j

2E
νj ð1Þ

That leads, through a well-known procedure, to the usual
expression for neutrino probabilities in vacuum:

Pνα→νβ ¼ δαβ − 4
Xn
l>j

Re½U�
αlUβlUαjU�

βj�sin2
�Δm2

ljL

4E

�

þ 2
Xn
l>j

Im½U�
αlUβlUαjU�

βj� sin
�Δm2

ljL

2E

�
: ð2Þ

Notice, however, that in the case when the extra neutrino
states are heavy, they do not participate in the oscillation
and the sum is cut up to three:

Pνα→νβ ¼
X3
l;j

U�
αlUβlUαjU�

βj

− 4
X3
l>j

Re½U�
αlUβlUαjU�
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4E

�

þ 2
X3
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βj� sin
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ljL

2E

�
; ð3Þ*jflores@fis.cinvestav.mx

†omr@fis.cinvestav.mx

PHYSICAL REVIEW D 93, 033009 (2016)

2470-0010=2016=93(3)=033009(6) 033009-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.033009
http://dx.doi.org/10.1103/PhysRevD.93.033009
http://dx.doi.org/10.1103/PhysRevD.93.033009
http://dx.doi.org/10.1103/PhysRevD.93.033009


and the δαβ appearing in Eq. (2) is substituted by the well-
known zero distance effect.
If we would like to consider matter effects, we need to

add the charged current potential due to electrons that,
again in the mass basis:

i
d
dt

νj ¼
1

2E

�
m2

jνj þ
X
k

AU�
ejUekνk

�
; ð4Þ

with A ¼ 2EVCC. It is known that, in this case, we can
express the probability in a similar form,

Pνα→νβ ¼ δαβ − 4
Xn
l>j

Re½V�
αlVβlVαjV�

βj�sin2
�ΔM2

ljL

4E

�

þ 2
Xn
l>j

Im½V�
αlVβlVαjV�

βj� sin
�ΔM2

ljL

2E

�
; ð5Þ

by defining

V ¼ UWT; ð6Þ
where W is an unitary matrix. We can also find the
correspoding expression for Eq. (3) in the presence of
matter:

Pνα→νβ ¼
X3
l;j

U�
αlUβlUαjU�

βj

− 4
X3
l>j

Re½V�
αlVβlVαjV�

βj�sin2
�ΔM2

ljL

4E

�

þ 2
X3
l>j

Im½V�
αlVβlVαjV�

βj� sin
�ΔM2

ljL

2E

�
; ð7Þ

where, as expected, the zero distance term remains
unchanged, thanks to the unitarity of the W matrix.
To find the expressions for the matrix V, we follow the

procedure described in Ref. [15]. We will arrive to the
same expressions, except that we maintain the matrix
elements of Uαi in a parameter independent form.
Although the following procedure is straightforward, it
will allow to see the nonunitary case in a more transparent
way. Even if we work in the standard parametrization, the
expression will be useful, as the numerical computations
will be slightly simplified by substituting the parametriza-
tion at the end.
We start by noticing that the term inside the parenthesis

in the right-hand side of equation (4) defines a matrix0
BB@

AjUe1j2 AU�
e1Ue2 AU�

e1Ue3

AU�
e2Ue1 Δm2

21 þ AjUe2j2 AU�
e2Ue3

AU�
e3Ue1 AU�

e3Ue2 Δm2
31 þ AjUe3j2

1
CCA ð8Þ

with a characteristic polynomial given by

λ03 −
λ02

2E
ðΔm2

21 þ Δm2
31 þ AÞ þ λ0

4E2
½Δm2

31Δm2
21

þ AðΔm2
21ð1 − jUe2j2Þ þ Δm2

31ð1 − jUe3j2ÞÞ�

−
1

8E3
Δm2

21Δm2
31AjUe1j2 ¼ 0 ð9Þ

where we have subtracted a term m2
1 from the main

diagonal in order to simplify the equation. We redefine
the eigenvalues λ0 as λ ¼ 2Eλ0, which implies that λi ¼ M2

i .
As is already known, for a polynomial of the form

λ3 − αλ2 þ βλ − γ ¼ 0; ð10Þ

the solutions for λ real, are given by

λn ¼
α

3
þ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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�
1

3
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�
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2
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p �
þ 2nπ

3

�
;

n ¼ 0; 1; 2; ð11Þ

that in our case imply

α ¼ Δm2
21 þ Δm2

31 þ AðjUe1j2 þ jUe2j2 þ jUe3j2Þ
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: ð12Þ

This leads us to the three eigenvalue equations which we
are going to label as

M2
1 ≡ λ1 ¼

α

3
−
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − 3β

q
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3

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q ffiffiffiffiffiffiffiffiffiffiffiffi
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q
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2 ≡ λ2 ¼

α

3
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1
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q
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3

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
;
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α

3
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q
η: ð13Þ

In order to construct the diagonalizing matrix, we need
the corresponding eigenvectors that will be given by
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jλ1i ¼
1

C1

0
B@

Λ1

AU�
e2Ue1ðM2
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31Þ

AU�
e3Ue1ðM2
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21Þ

1
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jλ2i ¼
1

C2

0
B@

AU�
e1Ue2ðM2

2 − Δm2
31Þ

Λ2

AU�
e3Ue2M2

2

1
CA;

jλ3i ¼
1

C3

0
B@

AU�
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21Þ

AU�
e2Ue3M2

3

Λ3

1
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Here, we define the normalization constants, Cj, as

Cj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
j þ A2jUejj2

X
i≠j

jUeij2ðM2
j − Δm2

k1Þ2
s

;

for k ≠ i ð15Þ

and we also define

Λj ¼ M4
j −

X
i≠j

�
M2

jðΔm2
i1 þ AjUeij2Þ

− AΔm2
i1jUekj2 −

1

2
Δm2

i1Δm2
k1

�
; for k ≠ i: ð16Þ

Now we can write the explicit form of the matrixW, that in
abbreviated form can be written as

ðWTÞkj ¼
Λk

Ck
δkj þ ð1− δkjÞA

UekU�
ejðM2

k −
P

i½Δm2
i1ϵ

2
ijk�Þ

Ck

ð17Þ

or, writing it explicitly,

W¼

0
BBBBB@

Λ1
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2
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Þ
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3
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Þ
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1
−Δm2

31
Þ
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CCCCCA:
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We have arrived to the explicit form of the diagonalizing
matrix W, such that

W−1HMW ¼ 1

2E

0
B@

M2
1 0 0

0 M2
2 0

0 0 M2
3

1
CA: ð19Þ

This matrix relates the mass states in vacuum with the
matter ones in the form jν0Mi ¼ WjνMi, where the primed

vector refers to the matter mass states. It is easy to see that
the vacuum case is restored when A ¼ 0. With this relation
we can find the oscillation probabilities in matter as a
function of the elements of the vacuum rotation matrix,
without the use of any parameterization and without using
the unitary relation. Therefore, they could be useful to
study the unitarity of the mixing matrix, a topic that could
be of interest now that we are entering into a precision era
in neutrino physics. As we have already mentioned, this
method is well known [15], although the treatment had
been done in a specific parametrization.

III. AN APPROXIMATION

Once we have discussed the exact solution for the
constant density matter case, we proceed to find an
approximate formula for the probabilities. In order to
preserve the parametrization-free structure, we look for
an approximation for the cubic roots λi in Eq. (11).
We start by noticing, from Eq. (12), that if Δm2

21 → 0,
then γ → 0 and the cubic equation (10) is reduced the
quadratic case. If this is the case, Eq. (13) will reduce to the
two typical solutions for a quadratic equation plus a third
solution, given by λ1 ¼ 0. In particular, we will have the
expression for η:

η ¼ cos

�
1

3
arccos

�
2α3 − 9αβ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα2 − 3βÞ3

p ��
: ð20Þ

In this simple case it is easy to find that

η ¼ cos θ ¼ − 1
2
αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 − 3β
p : ð21Þ

Now we can consider that γ is not zero, but it is “small,”
say γ ≪ αβ. This seems a natural hypothesis since
Δm2

21 ≪ Δm2
31. We can try to find the correction ε that

fulfills both

cos θ ¼ − 1
2
αþ εffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 − 3β
p ð22Þ

and

cos 3θ ¼ 4 cos3 θ − 3 cos θ≃ 2α3 − 9αβ þ 27γ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα2 − 3βÞ3

p : ð23Þ

If we work only up to first-order terms, below ðγβÞ2, it is easy
to find that

ε ¼ 3γ

2β
ð24Þ

fits both conditions. Therefore, the eigenvalues will be
approximately given by
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M2
1 ≡ λ3 ≃ 2

3
ε:

M2
2 ≡ λ1 ≃ 1

2

�
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3
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�

−
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2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
αþ 2

3
ε

�
2

− 4

�
β þ

�
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3
ε

�
2
�s
;

M2
3 ≡ λ2 ≃ 1

2

�
α −

2

3
ε

�

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
αþ 2

3
ε

�
2

− 4

�
β þ

�
2

3
ε

�
2
�s
; ð25Þ

This seems to be a reasonable approximation that leads to
the equation

λ3 − αλ2 þ βλ −
�
2

3
βε −

4

9
αε2 þ 8

27
ε3
�

¼ 0: ð26Þ

With the expression of ε at first order in γ
β, Eq. (24), we have

λ3 − αλ2 þ βλ −
�
γ −

αγ2

β2
þ γ3

β3

�
¼ 0: ð27Þ

We can go one step further and find the expression for ε at
second order in γ

β. In this case, we propose that

ε ¼ 3γ

2β
þ a2

�
γ

β

�
2

ð28Þ

and demand that Eq. (26) reduces to the usual cubic
expression, Eq. (10), up to second-order terms. This
condition is fulfilled when a2 ¼ 3

2
α
β. Therefore, at second

order, we have

ε ¼ 3γ

2β
þ 3α

2β

γ2

β2
: ð29Þ

We can continue with this procedure and find recursively
the coefficients ak for any order of approximation that we
would like to have. That is, we can write ε as an infinite
polynomial that, in principle, should give an exact solution.
The polynomial would have the form

ε ¼
X∞
k¼1

akðα; βÞ
�
γ

β

�
k

ð30Þ

with

a1 ¼
3

2

a2 ¼
3α

2β

akðα; βÞ ¼
3

2β

�
4α

9

X
i;j

iþj¼k

aiaj −
8

27

X
i;j;l

iþjþl¼k

aiajal

�
;

k > 2: ð31Þ

Once we have defined the approximation, we would like
to know how well it behaves with respect to the exact
formula. Although we have worked out all the computation
in a formulation that is independent of the parametrization,
we adopt now the standard PDG [2] parametrization in
order to substitute the current values for the neutrino
oscillation parameters. Therefore, in this case, we explicitly
adopt the unitary condition by making the following
substitutions in Eq. (12):

jUe1j2 þ jUe2j2 þ jUe3j2 ≡ 1jUe1j2 þ jUe3j2 ≡ 1

− jUe2j2jUe1j2 þ jUe2j2 ≡ 1 − jUe3j2: ð32Þ

Once we introduce the standard parametrization for
the mixing matrix, U, we adopt as central values
of the mixing angles the ones reported by Ref. [1]
(sin2 θ12 ¼ 0.320, sin2 θ23 ¼ 0.613, sin2 θ13 ¼ 0.0246) as
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FIG. 1. Comparison of the exact electron neutrino survival probability in the three flavor case. The left panel shows the exact survival
probability prediction for the central values of the mixing angles and mass squared differences and the approximated result for our
approximation at order one and two. In the right panel we show the absolute difference between the exact solution and the approximated
prescription at first (Pð1Þ

ee ), second (Pð2Þ
ee ), and third order (Pð3Þ

ee ). The baseline for different experiments and for the future DUNE
experimental proposal is shown as a reference. The neutrino energy has been fixed to Eν ¼ 1 GeV and the electron density has been
taken to be 5.92 × 109 eV3.
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well as the corresponding squared mass differences
(Δm2

21 ¼ 7.62× 10−5 eV2, Δm2
31 ¼ 2.55 × 10−3 eV2). For

the value of the CP phase we have taken δ ¼ 3π=2. We
have computed the survival probability Pee and the con-
version probability Pμe and compared our approximated
results with the exact formulation, for a neutrino energy of
1 GeV. The results are shown in Fig. (1) and Fig. (2) where
we have plotted these probabilities as functions of the
baseline. From these figures, it is possible to notice that
the approximation works reasonably well at first order
(especially for baselines below one thousand kilometers)
and has a great improvement when we consider next-order
approximations.

IV. CONCLUSIONS

In this work we have considered the case of three
neutrino evolution in a constant matter potential. We have
first reviewed the exact formulation and wrote the standard
neutrino probabilities in a parametrization-free scheme. We
have obtained an approximated formula for this scenario
that can be easily extended to the desired order of
approximation, based on the coefficients for the eigenvalue
problem, instead of considering specific oscillation param-
eters, such as Δm2

21. This approximation can be used either
for the parametrization-free scenario (that could be useful
in unitarity tests) or in a particular parametrization such as
the one adopted by the PDG. We have shown that the
formalism is simple and can be worked out at any order of
approximation, depending on the needs of the specific
problem. The formalism could also be used for scenarios of
physics beyond the Standard Model such as the case of
extra neutral heavy leptons [5,20].
Finally, we can study the validity of the three orders

of approximation for different energies and baselines.
In order to compare with other results [21], we use the
electron neutrino conversion probability into muon neu-
trinos and compute the absolute difference between our

approximation and the exact conversion formula. Our
results are summarized in Fig. (3) where we show the
regions with an absolute difference in the range 0.001–
0.01. We use the oscillation parameters already quoted
above. Comparing this result with the approximation
discussed in Ref. [21], it is possible to notice that our
formula, at first order, is not competitive in this channel;
however, for second and third order, our approximation
works well, especially for energies at one GeV and above.
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FIG. 2. Comparison of the exact muon to electron neutrino conversion probability in the three flavor case. The left panel shows the
exact survival probability prediction for the central values of the mixing angles and mass squared differences and the approximated
result for our approximation at order one and two. In the right panel we show the absolute difference between the exact solution and the

approximated prescription at first (Pð1Þ
μe ), second (Pð2Þ

μe ), and third order (Pð3Þ
μe ). The baseline for different experiments and for the future

DUNE experimental proposal is shown as a reference. The neutrino energy has been fixed to Eν ¼ 1 GeV and the electron density has
been taken to be 5.92 × 109 eV3.

FIG. 3. Absolute difference between the exact conversion
probability and the approximation discussed in this work. We
have considered conversion from electron to muon neutrinos and
computed the first-, second-, and third-order approximation for
the oscillation parameters discussed in the text. We show the
regions where the absolute difference lies in the range between
0.001 and 0.01. It is possible to see that the approximation works
well for a wide range of values of distance and energy, especially
at third order.
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