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The Δð1232Þ → γ�N magnetic dipole form factor (G�
M) is described here within a new covariant model

that combines the valence quark core together with the pion cloud contributions. The pion cloud term is
parametrized by two terms: one connected to the pion electromagnetic form factor, the other to the photon
interaction with intermediate baryon states. The model can be used in studies of pp and heavy ion
collisions. In the timelike region this new model improves the results obtained with a constant form factor
model fixed at its value at zero momentum transfer. At the same time, and in contrast to the Iachello model,
this new model predicts a peak for the transition form factor at the expected position, i.e. at the ρmass pole.
We calculate the decay of the Δ → γN transition, the Dalitz decay (Δ → eþe−N), and the Δ mass
distribution function. The impact of the model on dilepton spectra in pp collisions is also discussed.
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I. INTRODUCTION

To understand the structure of hadrons, baryons in
particular, in terms of quarks and gluons at low energies,
is theoretically challenging due to the intricate combination
of confinement and spontaneous chiral symmetry breaking,
and the nonperturbative character of QCD in that energy
regime. Fortunately, experimentally electromagnetic and
hadron beams in accelerator facilities are decisive tools to
reveal that structure and seem to indicate a picture where
effective degrees of freedom as baryon quark cores dressed
by clouds of mesons play an important role. For a review on
these issues see [1]. Although different, experiments with
electromagnetic and strong probes complement each other.
In electron scattering, virtual photons disclose the region of
momentum transfer q2 < 0, and spacelike form factors are
obtained [1–3]. Scattering experiments of pions or nucleons
with nucleon targets involving Dalitz decays of baryon
resonances [2–5] provide information on timelike form
factors, defined in the q2 > 0 region where the meson
spectrum arises. The results of all these different measure-
ments have to match at the photon point (q2 ¼ 0).
Among the several baryon resonances the Δ excitation

and decays have a special role and are not yet fully
understood. The electromagnetic transition between the
nucleon and the Δð1232Þ, and in particular its dominant
magnetic dipole form factor G�

Mðq2Þ, as function of q2, is a
prime example that discloses the complexity of the electro-
magnetic structure of the excited states of the nucleon

and illustrates the limitations of taking into account only
valence quark degrees of freedom for the description of the
transition.
In the region of small momentum transfer G�

Mðq2Þ is
usually underestimated by valence quark contributions
alone. Several models have been proposed in order to
interpret this finding. Most of them are based on the
interplay between valence quark degrees of freedom and
the so-called meson cloud effects, in particular, the dom-
inant pion cloud contribution [1,6–11]. Other recent works
on the Δ → γ�N transition can be found in Refs. [12–15].
In this work we propose a hybrid model which combines

the valence quark component, determined by a constituent
quark model, constrained by lattice QCD and indirectly by
experimental data, with a pion cloud component. The pion
cloud component is written in terms of the pion electro-
magnetic form factor and therefore constrained by data.
The Δ → γ�N transition in the timelike region was

studied using vector meson dominance (VMD) models
[16–19], the constant form factor model [5,20], a two
component model (model with valence quark and meson
cloud decomposition), hereafter called the Iachello model
[5,21,22], and the covariant spectator quark model [4]
(which incidentally also assumes VMD for the quark
electromagnetic current).
The Iachello model pioneered the timelike region studies

of the Δ → γ�N transition. The model was successful in
the description of the nucleon form factors [21] but has
been criticized for generating the pole associated with
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the ρ-meson pole near q2 ≃ 0.3 GeV2, below q2 ¼ m2
ρ≃

0.6 GeV2 [5] as it should. The constant form factor model
is a good starting point very close to q2 ¼ 0 but, on the
other hand, does not satisfactorily take into account the
finite size of the baryons and their structure of nonpointlike
particles.
In the covariant spectator quark model the contributions

for the transition form factors can be separated into valence
quark and meson cloud effects (dominated by the pion).
The valence quark component is directly constrained by
lattice QCD data, and has been seen to coincide with the
valence quark core contributions obtained from an exten-
sive data analysis of pion photoproduction [8,23,24]. Its
comparison to experimental data enables the extraction of
information on the complementary meson cloud compo-
nent in the spacelike region [4,6]. However the extension to
the timelike region of the meson cloud is problematic given
the difficulty of a calculation that comprises also in a
consistent way the whole meson spectrum. In Ref. [4] the
meson cloud was parametrized by a function Fρ, taken
from the Iachello model where it describes the dressing
of the ρ-propagator by intermediate ππ states. As noted
before, unfortunately, the function Fρ has a peak that is
displaced relatively to the ρ-meson pole mass. Here, by
directly using the pion form factor data we corrected for
this deficiency.
Moreover, in previous works [4,6–9] we have assumed

that the pion cloud contributions for the magnetic dipole
form factor could be represented by a simple parametriza-
tion of one term only. But in the present work we introduce
an alternative parametrization of the pion cloud which
contains two terms. These two leading order contributions
for the pion cloud correspond to the two diagrams of Fig. 1.
We use then a parametrization of the pion cloud contribu-
tions for G�

M where diagram (a) is related to the pion
electromagnetic form factor Fπðq2Þ, and is separated from
diagram (b). Diagram (a), where the photon couples
directly to the pion, is dominant according to chiral
perturbation theory, which is valid in the limit of massless
and structureless quarks. But the other contribution, from
diagram (b), where the photon couples to intermediate
(octet or decuplet) baryon states while the pion is
exchanged between those states, becomes relevant in

models with constituent quarks with dressed masses and
nonzero anomalous magnetic moments. This was shown in
Ref. [10] on the study of the meson cloud contributions to
the magnetic dipole moments of the octet to decuplet
transitions. The results obtained for the Δ → γ�N transition
in particular, suggests that both diagrams contribute with
almost an equal weight.

II. IACHELLO MODEL

In the Iachello model the dominant contribution to the
Δ → γ�N magnetic dipole form factor is the meson cloud
component (99.7%) [5]. The meson cloud contributions
is estimated by VMD in terms of a function Fρ from
the dressed ρ propagator, which in the limit q2 ≫ 4m2

π ,
reads [4]

Fρðq2Þ ¼
m2

ρ

m2
ρ − q2 − 1

π
Γ0
ρ

mπ
q2 log q2

m2
π
þ i Γ0

ρ

mπ
q2

;

¼ m2
ρ

m2
ρ þQ2 þ 1

π
Γ0
ρ

mπ
Q2 log Q2

m2
π

: ð2:1Þ

In the previous equation Q2 ¼ −q2, mπ is the pion mass,
and Γ0

ρ is a parameter that can be fixed by the experimental
ρ decay width into 2π, Γ0

ρ¼ 0.149GeV or Γ0
ρ ¼ 0.112 GeV

depending on the specific model [4,22].

III. COVARIANT SPECTATOR QUARK MODEL

Within the covariant spectator quark model frame-
work the nucleon and the Δ are dominated by the S-wave
components of the quark-diquark configuration [6,25,26].
In this case the only nonvanishing form factor of the
Δ → γ�N transition is the magnetic dipole form factor,
which anyway dominates in all circumstances.
One can then write [6–8]

G�
Mðq2;WÞ ¼ GB

Mðq2;WÞ þGπ
Mðq2Þ; ð3:1Þ

whereGB
M is the contribution from the bare core andGπ

M the
contribution of the pion cloud. Here W generalizes the Δ
mass MΔ to an arbitrary invariant mass W in the inter-
mediate states [4]. We omitted the argumentW onGπ

M since
we take that function to be independent of W.
Following Refs. [4,6–8] we can write

GB
Mðq2;WÞ ¼ 8

3
ffiffiffi
3

p M
M þW

fvðq2ÞIðq2;WÞ; ð3:2Þ

where

Iðq2;WÞ ¼
Z
k
ψΔðPþ; kÞψNðP−; kÞ; ð3:3Þ

is the overlap integral of the nucleon and the Δ radial wave
functions which depend on the nucleon (P−), the Delta

FIG. 1. Pion cloud contributions for the Δ → γ�N electromag-
netic transition form factors. Between the initial and final state
there are several possible intermediate octet baryon and/or decuplet
baryon states: B1 in diagram (a); B2 and B3 in diagram (b).
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(Pþ) and the intermediate diquark (k) momenta. The
integration symbol indicates the covariant integration over
the diquark on-shell momentum. For details see Refs. [4,6].
As for fvðq2Þ it is given by

fvðq2Þ ¼ f1−ðq2Þ þ
W þM
2M

f2−ðq2Þ ð3:4Þ

where fi− (i ¼ 1, 2) are the quark isovector form factors
that parametrize the electromagnetic photon-quark cou-
pling. The form of this parametrization assumes the VMD
mechanism [6,25,27]. See details in Appendix A.
In this work we write the pion cloud contribution as

Gπ
Mðq2Þ ¼ 3

λπ
2

�
Fπðq2Þ

�
Λ2
π

Λ2
π − q2

�
2

þ ~G2
Dðq2Þ

�
; ð3:5Þ

where λπ is a parameter that defines the strength of the pion
cloud contributions, Fπðq2Þ is a parametrization of the
pion electromagnetic form factor, and Λπ is the cutoff of the
pion cloud component from diagram (a). The function ~G2

D
in Eq. (3.5) simulates the contributions from the diagram
(b) and therefore includes the contributions from several
intermediate electromagnetic transitions between octet and/
or decuplet baryon states.
From perturbative QCD arguments it is expected that the

latter effects fall off with 1=Q8 [28]. At high Q2 a baryon-
meson system can be interpreted as a system with N ¼ 5
constituents, which produces transition form factors domi-
nated by the contributions of the order 1=ðQ2ÞðN−1Þ¼1=Q8.
This falloff power law motivates our choice for the form of
~G2
D: the timelike generalization of a dipole form factor

GD ¼ ð Λ2
D

Λ2
D−q

2Þ2, where ΛD is a cutoff parameter defining the

mass scale of the intermediate baryons.
The equal relative weight of the two terms of Eq. (3.5),

given by the factor 1
2
λπ, was motivated by the results from

Ref. [10], where it was shown that the contribution from
each diagram (a) and (b) for the total pion cloud in the
Δ → γ�N transition is about 50%. The overall factor 3 was
included for convenience, such that in the limit q2 ¼ 0
one has Gπ

Mð0Þ ¼ 3λπ . Since G�
Mð0Þ≃ 3, λπ represents the

fraction of the pion cloud contribution to G�
Mð0Þ.

In the spacelike regime, in order to describe the valence
quark behavior (1=Q4) of the form factors associated with
the nucleon and Δ baryons, the dipole form factor GD with
a cutoff squared value Λ2

D ¼ 0.71 GeV2 had been used in
previous works [6,25]. As wewill show, a model withΛ2

D ¼
0.71 GeV2 provides a very good description of theΔ → γ�N
form factor data in the region−2 GeV2 < q2 < 0. However,
since in the present work we are focused on the timelike
region, we investigate the possibility of using a larger
value for Λ2

D, such that the effects of heavier resonances
(Λ2

D ≈ 1 GeV2) can also be taken into account.

To generalize GD to the timelike region we define
~GDðq2Þ

~GDðq2Þ ¼
Λ4
D

ðΛ2
D − q2Þ2 þ Λ2

DΓ2
D
; ð3:6Þ

where ΓDðq2Þ is an effective width discussed in
Appendix B, introduced to avoid the pole q2 ¼ Λ2

D.
Since ΓDð0Þ ¼ 0, in the limit q2 ¼ 0, we recover the
spacelike limit ~GDð0Þ ¼ GDð0Þ ¼ 1. We note that differ-
ently from the previous work [4] ~GD is the absolute value of
GD, and not its real and imaginary parts together.
To summarize this section: Eq. (3.5) modifies the

expression of the pion cloud contribution from our previous
works, by including an explicit term for diagram (b) of
Fig. 1. Diagram (a) is calculated from the pion form factor
experimental data. Diagram (b) concerns less known
phenomenological input. The q2 dependence of that com-
ponent is modeled by a dipole function squared. Since λπ
was fixed already by the low q2 data, in the spacelike
region, the pion cloud contribution is defined only by the
two cutoff parameters Λπ and ΛD.
Next we discuss the parametrization of the pion electro-

magnetic form factor Fπðq2Þ, which fixes the term for
diagram (a) and is known experimentally.

IV. PARAMETRIZATION OF Fπðq2Þ
The data associated with the pion electromagnetic form

factor Fπðq2Þ is taken from the eþe− → πþπ− cross-section
(the sign of Fπðq2Þ is not determined).
The function Fπðq2Þ is well described by a simple

monopole form as Fπðq2Þ ¼ α
α−q2−iβ, where α is a cutoff

squared and β is proportional to a constant width. An
alternative expression for Fπðq2Þ, that replaces the Iachello
function Fρ is,

Fπðq2Þ ¼
α

α − q2 − 1
π βq

2 log q2

m2
π
þ iβq2

: ð4:1Þ

Equation (4.1) simulates the effect of the ρ pole with an
effective width regulated by the parameter β. Note that also
Eq. (4.1) has a form similar to the function Fρ of
the Iachello model given by Eq. (2.1). In particular, when

α → m2
ρ and β → Γ0

ρ

mπ
, we recover Eq. (2.1). The advantage

of Eq. (4.1) over Eq. (2.1) is that α and β can be adjusted
independently to the jFπj2 data. The result for those
parameters from the fit in both time- and spacelike regions
gives

α ¼ 0.696 GeV2; β ¼ 0.178: ð4:2Þ
In the Iachello model (2.1) one has β≃ 1.1, a very different
value. The fit is illustrated in Fig 2. The best fit selects
α≃ 0.7 GeV2, which is larger than m2

ρ ≃ 0.6 GeV2.
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However, in the best fit to the data, the value of α is
corrected by the logarithmic counterterm in the denomi-
nator of Eq. (4.1), that pushes the maximum of jFπðq2Þj2 to
the correct position, q2 ≃ 0.6 GeV2. In the Iachello model,
since β≃ 1.1, the correction is too strong, and the
maximum moves to q2 ≃ 0.3 GeV2, differing significantly
from the jFπðq2Þj2 data.
To describe the physics associated with the ρ-meson, we

restricted the fit to q2 < 0.6 GeV2, which causes a less
perfect description of Fπ at the right side of the peak.
However increasing q2 beyond that point slightly worsens
the fit. This probably indicates that although the ω width is
small, there may be some interference from the ω mass
pole, and that the parameters α and β account for these
interference effects. Although the spacelike data was also
included in the fit, the final result is insensitive to the
spacelike constraints. We obtain also a good description of
the spacelike region (examine the region q2 < 0 GeV2 in
Fig 2). The full extension of the region where a good
description is achieved is −1 GeV2 < q2 < 1 GeV2.
A similar quality of the fit is obtained with both a

constant width or a q2-dependent ρ-width. However a better
fit can be obtained with a more complex q2-dependence,
which accounts better for the ω-meson pole effect, as
shown in previous works [31,32]. Since this work is meant
to probe the quality of the results that one can obtain for the
transitions form factors, the simple analytic form of
Eq. (4.1) suffices for Fπðq2Þ.
In addition, the covariant spectator quark model built

from this function describes well the Δ → γ�N form factor
in the spacelike region as shown in Fig. 3. Using the best fit
of Fπ given by the parameters (4.2) we can calculate the
pion cloud contribution Gπ

Mðq2Þ through Eq. (3.5), and
consequently the result forG�

Mðq2;MΔÞ. For the parameters
λπ and Λ2

π we use the results of the previous works λπ ¼
0.441 and Λ2

π ¼ 1.53 GeV2, obtained from the comparison
of the constituent quark model to the lattice QCD data and
experimental data [4,7,8].
In Fig. 3 we present the result of our model for

jG�
Mðq2;WÞj for the case W ¼ MΔ. In that case the

imaginary contribution (when q2 > 0) is very small and
the results can be compared with the spacelike data
(q2 < 0). In the figure the dashed-dotted-line indicates
the result for GB

Mðq2;MΔÞ discussed in a previous work [4].
In the same figure we show the sensitivity to the cutoff

ΛD of the pion cloud model, by taking the cases Λ2
D ¼

0.71 GeV2 and Λ2
D ¼ 0.90 GeV2. They are consistent with

the data, although the model with Λ2
D ¼ 0.71 GeV2 gives a

slightly better description of the data. The two models are
also numerically very similar to the results of Ref. [4] for
W ¼ MΔ. For higher values of W the results of the present
model and the ones from Ref. [4] will differ.
Although the model with Λ2

D ¼ 0.71 GeV2 gives a
(slightly) better description of the spacelike data, for the
generalization to the timelike region it is better to have a
model with large effective cutoffs when compared with the
scale of the ρmeson pole (the ρmassmρ). This is important
to separate the effects of the physical scales from the
effective scales (adjusted cutoffs).

V. RESULTS

The results for jG�
Mðq2Þj from the covariant spectator

quark model for the casesW ¼ 1.232 GeV,W ¼ 1.6 GeV,
W ¼ 1.8 GeV, and W ¼ 2.2 GeV are presented in Fig. 4.
The thin lines represent the contribution from the bare
quark core component of the model, and the thick line the
sum of bare quark and pion cloud contributions.
In the figure the results for each value W are restricted

by the timelike kinematics through the condition
q2 ≤ ðW −MÞ2, since the nucleon and the resonance (with
mass W) are treated both as being on their mass shells.
Therefore the form factor covers an increasingly larger
region on the q2 axis, as W increases. See Ref. [4] for a
complete discussion.
The figure illustrates well the interplay between the pion

cloud and the bare quark core components. The pion cloud
component is dominating in the region near the ρ peak.

FIG. 2. Fit to jFπðq2Þj2 data using Eq. (4.1). The data are from
Refs. [29,30].

FIG. 3. Results for jG�
Mðq2Þj for the covariant spectator quark

model combined with the pion cloud contribution from Eq. (3.5).
The data are from Refs. [33]. The dashed-dotted-line is the
contribution from the core [4].
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Away from that peak it is the bare quark contribution that
dominates. The flatness of the W ¼ 2.2 GeV curve for
q2 > 1 GeV2 is the net result of the falloff of the pion
cloud and the rise of the quark core terms. In addition, the
figure shows that the dependence on W yields different
magnitudes at the peak, and we recall that this dependence
originates from the bare quark core contribution alone.
This bare quark core contribution is mainly the conse-
quence of the VMD parametrization of the quark current
where there is an interplay between the effect of the ρ pole
and a term that behaves as a constant for intermediate
values of q2 (see Appendix A).
Wewill discuss now the results for the widths Γγ�Nðq;WÞ

of the Δ Dalitz decay, and for the Δ mass distribu-
tion gΔðWÞ.

A. Δ Dalitz decay

The width associated with the Δ decay into γ�N can be
determined from the Δ → γ�N form factors for the Δ mass
W. Assuming the dominance of the magnetic dipole form
factors over the other two transition form factors, we can
write [4,5,34]

Γγ�Nðq;WÞ ¼ α

16

ðW þMÞ2
M2W3

×
ffiffiffiffiffiffiffiffiffiffiffi
yþy−

p
y−jG�

Mðq2;WÞj; ð5:1Þ

where q ¼
ffiffiffiffiffi
q2

p
, α≃ 1=137 is the fine-structure constant

and y� ¼ ðW �MÞ2 − q2.
At the photon point (q2 ¼ 0), in particular, we obtain the

ΓγN in the limit q2 ¼ 0 from Eq. (5.1) [5,18,35]

ΓγNðWÞ ¼ Γγ�Nð0;WÞ: ð5:2Þ

We can also calculate the derivative of the Dalitz decay
width Γeþe−Nðq;WÞ from the function Γγ�Nðq;WÞ using the
relation [5,18,34,35]

Γ0
eþe−Nðq;WÞ≡ dΓeþe−N

dq
ðq;WÞ

¼ 2α

3πq
Γγ�Nðq;WÞ: ð5:3Þ

The Dalitz decay width Γeþe−Nðq;WÞ is given by

Γeþe−NðWÞ ¼
Z

W−M

2me

Γ0
eþe−Nðq;WÞdq; ð5:4Þ

where me is the electron mass. Note that the integration
holds for the interval 4m2

e ≤ q2 ≤ ðW −MÞ2, where the
lower limit is the minimum value necessary to produce an
eþe− pair, and ðW −MÞ2 is the maximum value available
in the Δ → γ�N decay for a given W value.
The results for dΓeþe−N

dq ðq;WÞ for several mass values W
(1.232, 1.6 and 2.2 GeV) are presented in Fig. 5. These
results are also compared to the calculation given by the
constant form factor model, from which they deviate
considerably.
Also, the Δ decay width can be decomposed at tree level

into three independent channels

ΓtotðWÞ ¼ ΓπNðWÞ þ ΓγNðWÞ þ Γeþe−NðWÞ; ð5:5Þ

given by the decays Δ → πN, Δ → γN and Δ → eþe−N.
The two last terms are described respectively by Eqs. (5.2)
and (5.4). The ΓπN term can be parametrized as in [36,43]

ΓπNðWÞ ¼ MΔ

W

�
qπðWÞ
qπðMΔÞ

�
3 κ2 þ q2πðMΔÞ
κ2 þ q2πðWÞ Γ0

πN; ð5:6Þ

where Γ0
πN is the Δ → πN partial width for the physical Δ,

qπðWÞ is the pion momentum for a Δ decay with mass W,
and κ a cutoff parameter. Following Refs. [37,38] we took
κ ¼ 0.197 GeV. The present parametrization differs from
other forms used in the literature [5,35] and from our
previous work [4].

FIG. 4. Results for jG�
MðQ2Þj for W ¼ 1.232 GeV,

W ¼ 1.6 GeV,W ¼ 1.8 GeV andW ¼ 2.2 GeV. The thick lines
indicate the final result. The thin lines indicate the contribution of
the core.

FIG. 5. Results for dΓeþe−N
dq ðq;WÞ for three different values of

energies W. The solid line is the result of our model. The dotted
line is the result of the constant form factor model.
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The results for the partial widths as functions of the mass
W are presented in Fig. 6. On the left panel we compare ΓγN

and Γeþe−N with the result of the constant form factor
model. On the right panel we present the total width
ΓtotðWÞ as the sum of the three partial widths.

B. Δ mass distribution

To study the impact of the Δ resonance propagation in
nuclear reactions like the NN reaction, it is necessary to
know the Δ mass distribution function gΔðWÞ. As dis-
cussed before, W is an arbitrary resonance mass that may
differ from the resonance pole mass (MΔ). The usual ansatz
for gΔ is the relativistic Breit-Wigner distribution-[4,5]

gΔðWÞ ¼ A
W2ΓtotðWÞ

ðW2 −M2
ΔÞ2 þW2½ΓtotðWÞ�2 ; ð5:7Þ

where A is a normalization constant determined byR
gΔðWÞdW ¼ 1 and the total width ΓtotðWÞ (5.6).
The results for gΔðWÞ and the partial contributions

gΔ→γNðWÞ ¼ ΓγNðWÞ
ΓtotðWÞ gΔðWÞ; ð5:8Þ

gΔ→eþe−NðWÞ ¼ Γeþe−NðWÞ
ΓtotðWÞ gΔðWÞ; ð5:9Þ

gΔ→πNðWÞ ¼ ΓπNðWÞ
ΓtotðWÞ gΔðWÞ; ð5:10Þ

are presented in Fig. 7. The results are also compared with
the constant form factor model.

C. Dilepton production from NN collisions

The Δ → γ�N magnetic dipole form factor in the time-
like region is known to have a significant influence on
dilepton spectra. Therefore we show in Fig. 8 a transport-
model calculation of the inclusive dielectron production
cross section dσ=dmee for proton-proton collisions
(pp → eþe−X), where mee ¼ q. These results have been
obtained with the GiBUU model [36,37] for three different
proton beam energies and are compared to experimental
data measured with the HADES detector [39–41]. Except
for the contribution of the Δ Dalitz decay, the calculations
are identical to those presented in an earlier publication
[38]. The Δ Dalitz decay is shown in two variants, once
with a constant form factor fixed at the photon point (i.e., in
“QED” approximation) and once using the form-factor
model described in the preceding sections.
At the lowest beam energy of 1.25 GeV, the produced Δ

baryons are close to the pole mass and therefore the results
with and without the form factor are very similar. At higher
beam energies, however, the model for the Δ → γ�N form
factor has a much larger impact, because higher values of
W are reached, where the form factor deviates strongly
from the photon point value. In Fig. 9 we illustrate the
influence of W by showing the W distribution of produced
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Δþ;0 baryons in the GiBUU simulations. We note that
several different processes contribute to the inclusive Δþ;0

production, such as NN → NΔ, ΔΔ, ΔN� etc., each of
which will produce a different W distribution due to
different kinematics and phase space. Furthermore it should
be remarked that the tails of this distribution, just as the Δ
spectral function in Eq. (5.7), depend significantly on the
specific parametrization of the hadronic width for Δ → πN.
However, for electromagnetic observables as shown in
Fig. 8, the dependence on the hadronic width is very weak,
since in Eq. (5.9) the total width cancels out in the
numerator and only stays in the denominator.
Coming back to Fig. 8, it should be noted that the choice

of the form factor has little influence on the overall
agreement of the total dilepton spectrum with the exper-
imental data at the two lowest beam energies, because the
influence of the form factor is weak or the Δ contribution is
small compared to other channels. At the highest beam
energy of 3.5 GeV, however, the choice of the form factor
does have an impact on the total spectrum for masses above
600 MeV. While the constant-form-factor result combined
with the other channels from GiBUU shows a good
agreement with the data, using the q2 dependent form
factor results in a slight overestimation of the data, which is
most severe for masses of around 700 MeV. However, we
note that the Δ contribution by itself does not overshoot
the data. Only in combination with the other channels
(in particular the heavier baryons, such as N� and Δ�) the
overestimation is seen.
There could be various reasons for this enhancement

over the data, but we want to mention here only the two
most likely ones. One could lie in the form factor itself,
more precisely in the omission of a W dependence of the
overall weight λπ for the pion cloud. This parameter for the
weight of the pion cloud should probably depend on W.

If the two diagrams (a) and (b) of the pion cloud
contribution would decrease simultaneously with W, as
we can expect from the drop of the mπ=W ratio, this could
potentially cure the observed overestimation.
On the other hand, the reason for the disagreement could

also be found in the other channels that are part of the
transport calculation. In particular the contributions of the
higher baryonic resonances (N� andΔ�) are subject to some
uncertainties. These resonance contributions were recently
investigated via exclusive pion production at 3.5 GeV with
the HADES detector [42], which showed that the GiBUU
model does a rather good job in describing the resonance
cocktail for the exclusive channels (with some minor
deviations). However, there are also significant nonexclu-
sive channels for pion and dilepton production at this
energy. Moreover, the form factors of the higher resonances

FIG. 8. Transport-model calculations of dilepton mass spectra dσ=dmee from proton-proton collisions (pp → eþe−X) at three different
beam energies, with and without a Δ → γ�N form factor, compared to experimental data measured with the HADES
detector [39–41].
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are a matter of debate (they are treated in a strict-VMD
assumption in the calculation).
It was remarked in [42] that some of the branching ratios

for R → ρN, which directly influence the dilepton yield via
the VMD assumption, might be overestimated in GiBUU,
in particular for the N�ð1720Þ and the Δ�ð1905Þ. Both have
a very large ρN branching ratio of 87% in GiBUU [37] (as
adopted from [43]) and also in the current PDG database
these branching ratios are listed with rather large values
[44], which are essentially compatible with the GiBUU
values. However, some recent partial-wave analyses
[45,46] claim much smaller values for these branching
ratios, showing some tension with the PDG and GiBUU
values. We show in Fig. 10 the effect of using smaller
values for these branching ratios on the dilepton spectra,
adopting the upper limits from the Bonn-Gatchina analysis
[45] (as given in [42]), namely 10% for N�ð1720Þ → ρN
and 42% for Δ�ð1905Þ → ρN. We note that the values in
[46] are even smaller. As seen in Fig. 10, this change indeed
reduces the contributions from the N� and Δ� resonances
by a fair amount, in particular in the high-mass region
(mee > 600 MeV). This improves the agreement with the
highest data points at 2.2 GeV, and it also mitigates the
overshooting over the data at 3.5 GeV when the Δ → γ�N
form factor is used, but it does not fully cure it.
Thus it is quite likely that the remaining excess is caused

by the negligence of the W dependence in the pion cloud
contribution of the form factor. A more detailed inves-
tigation of the W dependence of the pion cloud is planned
in a further study that will analyze all these aspects.

VI. SUMMARY AND CONCLUSIONS

In this work we present a new covariant model for the
Δ → γ�N transition in the timelike region. The model is
based on the combination of valence quark and meson
cloud degrees of freedom. The bare quark contribution was
calibrated previously to lattice QCD data. One of the pion

cloud components is fitted to the pion electromagnetic form
factor Fπ (with the fit being almost insensitive to the
spacelike data and strongly dependent on the timelike data)
and the other, associated with intermediate octet/decuplet
baryon states, parametrized by an effective cutoff ΛD.
Our model induces a strong effect on the Δ → γ�N

magnetic dipole form factor in the region around the
ρ−meson pole (where the magnitude is about four times
larger than at q2 ¼ 0). This effect was missing in the
frequently used Iachello model. The pion cloud effects
dominate in the region q2 ≤ 1.5 GeV2. For larger q2 the
effects of the valence quark become dominant, and the
q2-dependence is smoother. At low energies, the new form
factor has little influence on the overall agreement of the
total dilepton spectrum in NN collisions with the exper-
imental data, and no large difference between our new
model and the VMD model is seen. However at the highest
beam energy of 3.5 GeV, the choice of the form factor does
affect the total spectrum for masses above 600 MeV.
Measurements of independent channels, for instance

exclusive pion induced Δ production data, can help to
better constrain the pion cloud contribution. The methods
presented in this work can in principle be extended to
higher mass resonances as N�ð1440Þ, N�ð1520Þ,
N�ð1535Þ, N�ð1710Þ and Δ�ð1600Þ, for which there are
already predictions of the covariant spectator quark model
[47,48] in the spacelike region. The calculation of the
N�ð1520Þ form factors in the timelike region [49], extend-
ing the results from Ref. [47] is already under way.
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APPENDIX A: QUARK FORM FACTORS

We use a parametrization of the quark isovector form
factors motivated by VMD [8,23,25]

f1−ðq2Þ¼ λqþð1−λqÞ
m2

ρ

m2
ρ−q2

−c−
M2

hq
2

ðM2
h−q2Þ2

f2−ðq2Þ¼ κ−

�
d−

m2
ρ

m2
ρ−q2

þð1−d−Þ
M2

h

M2
h−q2

�
; ðA1Þ

wheremρ ¼ 775 MeV is the ρ-meson mass,Mh is the mass
of an effective heavy vector meson, κ− is the quark
isovector anomalous magnetic moment, c−, d− are mixture
coefficients, and λq is a parameter related with the quark
density number in the deep inelastic limit [25]. The term in
Mh, where Mh ¼ 2M, simulates the effects of the heavier
mesons (short range physics) [25], and behaves as a
constant for values of q2 much smaller than 4M2. The
width associated with the pole q2 ¼ M2

h is discussed in the
Appendix B.
The ρ pole appears when one assumes a stable ρ with

zero decay width Γρ ¼ 0. For the extension of the quark
form factors to the timelike regime we consider therefore
the replacement

m2
ρ

m2
ρ − q2

→
m2

ρ

m2
ρ − q2 − imρΓρðq2Þ

: ðA2Þ

On the right-hand side (r.h.s.) we introduce Γρ the ρ decay
width as a function of q2.
The function Γρðq2Þ represents the ρ → 2π decay width

for a virtual ρ with momentum q2 [31,50]

Γρðq2Þ ¼ Γ0
ρ
m2

ρ

q2

�
q2 − 4m2

π

m2
ρ − 4m2

π

�3
2

θðq2 − 4m2
πÞ; ðA3Þ

where Γ0
ρ ¼ 0.149 GeV.

APPENDIX B: REGULARIZATION OF HIGH
MOMENTUM POLES

For a given W the squared momentum q2 is limited by
the kinematic condition q2 ≤ ðW −MÞ2. Then, if one has a
singularity at q2 ¼ Λ2, that singularity will appear for
values of W such that Λ2 ≤ ðW −MÞ2, or W ≥ M þ Λ.
To avoid a singularity at q2 ¼ Λ2, where Λ2 is any of

the cutoffs introduced in our pion cloud parametrizations,
and quark current (pole Mh) we implemented a simple
procedure. We start with

Λ2

Λ2 − q2
→

Λ2

Λ2 − q2 − iΛΓXðq2Þ
; ðB1Þ

where

ΓXðq2Þ ¼ 4Γ0
X

�
q2

q2 þ Λ2

�
2

θðq2Þ; ðB2Þ

In the last equation Γ0
X is a constant given by

Γ0
X ¼ 4Γ0

ρ ≃ 0.6 GeV.
In Eq. (B2) the function ΓXðq2Þ is defined such that

ΓXðq2Þ ¼ 0 when q2 < 0. Therefore the results in the
spacelike region are kept unchanged. For q2 ¼ Λ2 we
obtain ΓX ¼ Γ0

X, and for very large q
2 it follows ΓX ≃ 4Γ0

X.
Finally the value of Γ0

X was chosen to avoid very narrow
peaks around Λ2.
While the width Γρðq2Þ associated with the ρ-meson pole

in the quark current is nonzero only when q2 > 4m2
π ,

one has for ΓXðq2Þ nonzero values also in the interval
4m2

π > q2 > 0. However, the function ΓXðq2Þ changes
smoothly in that interval and its values are negligible.
This procedure was used in Refs. [4,37] for the calcu-

lation of the Δ → γ�N form factors in the timelike regime.
In the present case the emerging singularities for W >
M þ ΛD ≃ 1.84 GeV are avoided, and forW < 1.84 GeV,
the results are almost identical to the ones without
regularization. The suggested procedure avoids the singu-
larities at high momentum and at the same time preserves
the results for low momentum. In the cases considered the
high q2 contributions are suppressed and the details of
regularization procedure are not important.
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