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Asymmetric dark matter and effective number of neutrinos
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We study the effect of the MeV-scale asymmetric dark matter annihilation on the effective number of
neutrinos N at the epoch of the big bang nucleosynthesis. If the asymmetric dark matter y couples more

strongly to the neutrinos v than to the photons y and electrons e~, I" < I

s Uy e wrorly, o >T,,, the lower

mass limit on the asymmetric dark matter is about 18 MeV for N = 3.0.
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I. INTRODUCTION

One of the big motivations for considering the asym-
metric dark matter (ADM) scenario [1] is that the abun-
dance of baryon Q, and dark matter (DM) Qp; is observed
to be close to each other Qpy ~ 5€2;,. In an ADM model
[2], there is a common mechanism that might give rise
to the baryon asymmetry as well as the ADM asymmetry
and we obtain Qapm /€2, = (1,/my) (M, /my,), where Qap,
Mbs 1y» M, and m, are the ADM abundance, the baryon
asymmetry, the ADM asymmetry, the ADM mass and the
proton mass, respectively. From this relation, the natural
scale for ADM is around 5 GeV, however, mass of the
ADM can be as low as a few keV in some models [3,4].
Moreover, the light non-asymmetric DM (we call it
symmetric DM or simply DM), such as MeV to GeV
DM, remains an elusive blind spot in the current under-
ground searches [5].

If there are light ADM particles, the energy density of
radiation at big bang nucleosynthesis (BBN) epoch could
be changed. It is not necessary that the particle be a dark
matter candidate to influence BBN. It only need be a
thermal relic, e.g., a particle that was in thermal equi-
librium with the standard model particles present when
the temperature was compatible with the mass of the relic
particle.

These extra particles contribute to the unknown radiation
content of the universe [6-8]. The energy density of the
relativistic particles at BBN (as well as at time of cosmic
microwave background (CMB) photons released) is usually
expressed in terms of the effective number of neutrinos
Ng. For the standard cosmology, Ny = 3 is expected.
Including the effect of slight reheating of the neutrinos from
early eTe™ annihilation, we obtain N4 = 3.046 [9].

The relation between the symmetric DM at BBN and the
effective number of neutrinos is extensively studied in the
literature [10-23]. The extra particles at BBN contribute to
the effective number of neutrinos in the following two cases:
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(1) Direct contribution case: If an extra particle is
light enough such as eV-scale sterile neutrino, it is
regarded as one of the radiation components. This
light particle has contributed directly to the effective
number of neutrinos as the so-called dark radia-
tion [14,15].

(2) Indirect contribution case: Although the extra par-
ticles are not light enough to contribute directly to the
effective number of neutrinos, its annihilation heats
other particles via entropy transfer. Consequently,
these extra particles contribute to the effective number
of neutrinos indirectly even in the absence of dark
radiation. Either increase or decrease of the effective
number of neutrinos occurs as follows:

(1) If an extra particle couples more strongly to the
neutrinos v than to the photons y and electrons
e, Iy, e <I,,its late time annihilation heats
the neutrinos more than the photons. Ulti-
mately, this type of extra particle yields an
excess of the effective number of neutrinos,
Neg > 3 [10,11,18,19,21].

(i1) On the contrary, if an extra particle couples more
strongly to the electrons and photons than to the
neutrinos, I, ., > I',,, its annihilation heats the
electron-photon plasma relative to the neutrino
background, leading to a reduction in the effec-
tive number of neutrinos below the standard
model value, N < 3 [10,11,13,18,19,21].

The relic density of ADM in the original models is set by
the asymmetry around the time of baryogenesis to obtain
the single explanation for both baryon and dark matter
densities [24-27].

Some scenarios to generate primordial dark and baryon
asymmetry in the ADM models are proposed such as
lepton-number and/or baryon-number violating decay, the
Affleck-Dine mechanisms, via phase transition at electro-
weak baryogengesis, scenarios with dark gauge group and
messengers between dark and visible sector (see Ref. [1]
and references therein). For some of these scenarios, since
both DM and anti-DM particles may populate the thermal
bath in the early universe, the relic number density of ADM
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is determined not only by the initial number asymmetry but
also the annihilation cross section [28—30]. This asymmetric
WIMP framework can accommodate a wide range of dark
matter masses and annihilation cross sections. For example,
Graesser et al. applied the asymmetric WIMP scenarios to
lepton-number violating and baryon-number violating ADM
models [28]. Another example is given by Lin et al., they
reported the model independent constraints on the quantities
of light ADM with mass ~1 MeV-10 GeV in the asym-
metric WIMP framework [29,30].

The generation mechanism of initial asymmetry, along
with ongoing self-annihilation, would be important subject
in the study of ADM. We keep the similar mechanism
which is proposed in Ref. [28] in mind and we put aside
discussion of the particular mechanism to generate the
initial asymmetry. We would like to show a model
independent analysis in this asymmetric WIMP paradigm.

In the ADM scenarios, the ADM particle y and its
antiparticle 7 have nonzero chemical potentials and the
particle y is not self-conjugate of the antiparticle . To study
the dependence of the light ADM on the effective number
neutrinos, we should take care of the chemical potential
of ADM.

We have a little knowledge about the dependence of
the extra particle with nonzero chemical potential on the
effective number of neutrinos. For the direct contribution
case, a constraint on the chemical potential for a fermionic
light DM has been deduced from BBN calculation by
Boeckel and S.-Bielich [31]. The correlation between the
effective number of neutrinos and the cosmological param-
eters with light DM particles (including ADM) have been
studied by Blennow et al. [32]. These two papers give us
many interesting results related to the ADM, however,
the dependence of the ADM number asymmetry on the
effective number of neutrinos is not clear yet. For the
indirect contribution case, there was no study of
the relationship between the ADM and the effective number
of neutrinos.

In this paper, the known two methods to estimate the
effective number of neutrinos with light extra symmetric
DM by Boeckel and S.-Bielich in the direct contribution
case [31] and by Steigman in the indirect contribution case
[18] are slightly extended to the light ADM in a straight-
forward way. By using the extended methods, we discuss
some constraints on a MeV-scale ADM with the effective
number of neutrinos in both of direct and indirect con-
tribution cases. Significant lower limit on the ADM mass is
obtained in the indirect contribution case. The upper limit
on the ADM number asymmetry is also obtained in both
cases, however, we observe that this upper limit is not
strongly constrained by the relic abundance consideration.

This paper is organized as follows. In Sec. 1I, we review
the basic picture of the ADM and the effective number of
neutrinos. This review does not include any new findings.
We would like to present a brief review of the ADM, a
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detailed analysis of the calculation of the relic abundance of
a thermal dark matter candidate that is presented in many
previously published papers. We also show our notations in
this section.

The new results are reported in Secs. III and IV. In
Sec. III, we show the method to obtain a constraint on the
chemical potential of ADM in the direct contribution case
which is developed by Boeckel and S.-Bielich [31]. We use
their method to obtain the limit on the ADM number
asymmetry with the effective number of neutrinos. This is
the first result in this paper. In Sec. IV, we show the useful
method which is developed by Steigman [18] to estimate
the effective number of neutrinos with symmetric DM at
BBN in the indirect contribution case. Then, we extend this
method to include ADM. This extension is the second and
main result in this paper. In the same section, the constraints
on the mass, number asymmetry and cross sections for
ADM are obtained numerically. The actual calculations are
important complement to any previously reported results in
the literature. These complementary results are the third
result in this paper. Finally, Sec. V is devoted to a summary.

II. ASYMMETRIC DARK MATTER AND
EFFECTIVE NUMBER OF NEUTRINOS

A. Relic abundance

Relic abundance of the ADM has been studied
[28-30,33-38] based on the methods for the symmetric
DM [33,39-42]. We assume that, at the moment close to the
ADM decoupling epoch, the only reactions that change the
number of y and y are annihilations and pair creation of
7 < ff (there is no self-annihilation and creation such as
xx < ff and gy < ff [35]). With this assumption in
mind, the relic density of y and j is determined by solving
the following Boltzmann equations

dn)( dn)?
W—‘r 3Hl’l)( = W + 3Hn)?
= —~(o,40)(n,n; — n;°n2), (1)

where n, and n; denote the number density of y and j,
respectively. Both y and y may populate the thermal
bath (equilibrium) in the early universe. The equilibrium
densities an and n;:Q in the presence of asymmetry differ by
the chemical potential p,. The detail of the annihilation
process is included by the thermally averaged annihilation
cross section (o,;v). The Hubble expansion rate is calcu-
lated as

zT* [g,
Ly - 2
My \/ 90° @)

during the radiation dominated epoch where Mp =
2.4 x 10'8 GeV, g, and T denote the reduced Planck mass,
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the effective relativistic degrees of freedom for the energy
density, and the temperature of the thermal bath (temperature
of the photons), respectively. The effective relativistic
degrees of freedom is defined as

£ )

i=bosons i=fermions

9.(T) =

where T; and g; are the temperature and the number of
internal degrees of freedom of species i, respectively [43,44].
We use the standard definitions

_ My _ M
x = YI—S, Y, o (4)
where
272
EQ*STG’ (5)

is the entropy density and

£ () o

i=bosons i=fermions

9us(T) =

is the effective relativistic degrees of freedom for the entropy
density for relativistic particles, which turns out to be

> giF7 +— > gF (7)

i=bosons 1 fermions

9:s(T) =

in a more general case, where

pt 45 IS /
i 471’ 7 i 0

is a function of the particle mass m; that change smoothly
from Ff =1 when the particle is ultrarelativistic
(x; =m;/T < 1) to F¥ =0 when it becomes nonrelativ-
istic (x; > 1) [32].

We assume that the universe expands adiabatically and
that g, as well as g,, are treated as a constant during the
y¥ annihilation period. In terms of Y,, Y; and x, the
Boltzmann equations become

yV/y? — 14y? —1

oYX +1 3)’

(8)

dy, dY;  (ozv)27*g.m
il b QU Y,y - VYR 9
dx dx H 45 x* ( ) ( )

and we obtain d(Y, — Y;)/dx = 0. Thus the ADM number
asymmetry, namely, the net comoving densities,

e=Y,~ Y, (10)

is constant. Because the number asymmetry € is conserved,
the ADM asymmetry in equilibrium €FQ remains at any time.
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Using the definition of the number asymmetry € in Eq. (10),
we obtain the final form of the Boltzmann equations

dy (0,,0) 27% g.m} EQ LEQ

o H 45 x4X(Y’2f_€Y’f—Y” Vi),

dy, 27° g,

dxX__<H>47;gx4 (V7 +eX, V009, (1)

We express the present relic abundance of the particle y
in the terms of the density parameter €, times the scale
factor for the Hubble expansion rate 7 = 0.673:
p_}{h2 _ mxsoYX(x — 00)
Perit Perit

Q h? =

, h?, (12)

where sy =2.89x 10° cm™ and py = 3H}/(87G) =

1.05h> x 1075 GeVem™ are the present entropy
density and the present critical density, respectively. We
use the relation of the Hubble expansion rate Hy =
1007 kms~' Mpc~! with the Newtonian gravitational con-

stant G = 6.67 x 107! m?kg~! s=2 [45]. The present relic
abundance of the ADM is calculated to be

Qupuh* = Q, h? + Q; h?
m,
=275x 108G VYADM(x—> ), (13)
where
Y apm(x) = Y, (x) + Y3(x). (14)

The observed energy density of the cold dark matter
component in ACDM model by the Planck Collaboration is
Qpvh? = 0.1188 £0.0010 (68% C.L.) [46].

B. Asymmetry and chemical potential

The distribution function of particle species i is given by

fi= ( g (15)

e Ei=m)/Ti | 0, ’

where g;, E;, u;, and T; denote number of internal degrees
of freedom, energy, chemical potential, and temperature of
particle i, respectively. The discrete parameter ®; takes only
the following three values: ®; = 41 and ®; = —1 corre-
spond the Fermi-Dirac distribution and the Bose-Einstein
distribution while ®; = 0 corresponds the Maxwell-Boltz-
mann distribution. In this paper, we consider a fermionic
Dirac type ADM y and we take ©, = +1.

The number density n;, energy density p;, pressure P;
and entropy density s; of particle species i with mass m; in
the isotropic universe are obtained as follows [43,47]:
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1 o
nj==— [ E(E*—m})'/?fdE, (16)
277 I,

1 o

Pi=753 E*(E* —m})'f,dE,  (17)
27° Jom,
1 oo

Pi= o [T —mpPra (8)

67~ Jm,

pi + Py —pin;

=t T TR 19
=0 (19

If the degeneracy of the particle i is small (4; < T;), the
Fermi-Dirac distribution can be well approximated by the
Maxwell-Boltzmann distribution. In the approximation of
Maxwell-Boltzmann statistics, the equilibrium number
density of the ADM particle y becomes

T\ 3/2 15
nEQ — g (M) ol=mtm)IT, (1 + 24 O(x_z)),

27 8x
(20)
for the nonrelativistic limit, m,, > T, (x > 1), and
T3 )C2
nyd = gxﬂ—geﬂx/% (1 s (’)(x4)>, (21)

for the ultrarelativistic limit, m, < T, (x <1) [47]. The
number density of antiparticle y is also obtained with the fact
that u, = —p; in equilibrium. As a result, chemical potential

drops out in the product Y;];:Q Y)]-?Q:

1 [45\2(g,\>
EQvEQ __ X 3 —2x
VoY = Gy <E) (?) we (2)

for the nonrelativistic and

1L (45\2( g, \?
EQyEQ __
”Y?—FG?>Q9’ 23

for the ultrarelativistic cases. The absence of the chemical

potential in Y)I;:Q Y)]-?Q simplifies the Boltzmann equations in

Eq. (11) in the nonrelativistic and ultrarelativistic cases [29].
The chemical potential of the ADM in equilibrium is still
surviving on the asymmetry

1

E E E E

eFQ =y — Y}?Q = (nyQ — n}?Q). (24)
For the examples, we obtain

3/2
s 0 () o eniny,
2 s 27TT)(
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for the nonrelativistic [36] and

eEQ f—t ﬁ& (e/‘;{/T)( —_ eiﬂx/T)()’ (26)
27% g

for the ultrarelativistic cases. From these equations, we
have [36]

1 {EQ EQ\ 2
7= HGT+ (%) +4> @)
X
where
45 g m, \3/2 .
ﬂsz(ﬁ) e, (28)
*§ X
for the nonrelativistic and
45 g

for the ultrarelativistic cases.

We observed the ratio u,/T, in many equations. This
ratio is the so-called degeneracy parameter or the pseu-
dochemical potential. In the remaining part of this paper,
we use the following definition

et (30)

to denote the chemical potential of the ADM particle y and
call £ chemical potential simply.

C. Effective number of neutrinos
The energy density of relativistic particles, i.e., radiation
components in the early universe, pq is given by

std

Prad = Py + P + PR, (31)

wherep, = (7?/30) 9y T;,‘ is the energy density of photons and
pd = NsUp = N59(7/8)(x%/30)g,T# is the energy density
of standard-model massless neutrinos for N neutrino
families. By the simple estimation in the standard particle
cosmology, we have N$Y = 3. Including the effect of slight
reheating of the neutrinos from early e™e™ annihilation, we
obtain N5 = 3.046, which is due to the small overlap of
neutrino decoupling and e™ e~ annihilation [9].

The energy density of extra radiation, dark radiation, is
generally parametrized through the number of extra effec-
tive neutrino species AN, as follows [§]

77

AN
N, 120

PDR = AND/)I/ = Tﬁ (32)
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In terms of the following effective number neutrinos
Neff :Nzld+ANy’ (33)

the total energy density of radiation components is estimated
to be

79, (T,
Prad = Py + Negip, = |:1 + Netr 5 — (?) :|py- (34)

89, \T,

As we mentioned in the introduction, if there is an extra
light particle as a dark radiation that particle increases the
effective number of neutrinos (the direct contribution case)
[7,18]. On the other hand, although the extra particles are
not light enough to be a dark radiation, its annihilation heats
other particles via entropy conservation and changes the
ratio of (T,/T,) in Eq. (34). The extra particle contributes
to the total energy density of radiation components p,.q-
Consequently, the change of p,,q reflects to the enhance or
the reduce of the effective number of neutrinos N via the
relation of p,q = p, + Negp, even in the absence of dark
radiation (the indirect contribution case).

The effective number of neutrino can be probed by its
effect on the CMB and the outcome of BBN. The recent
observational result on the effective number of neutrinos by
the Planck Collaboration is N = 3.04 £ 0.18 (68% C.L.)
from CMB data [46]. On the other hand, we have
Neg = 3.71704] from BBN data [6].

III. DIRECT CONTRIBUTION
A. Methods

The method to obtain a constraint on the chemical
potential of fermionic DM with the effective number of
neutrinos in the case of direct contribution is developed by
Boeckel and S.-Bielich [31]. First, we review their method
and then we slightly extend their approach to estimate
the upper limit on the ADM number asymmetry with the
effective number of neutrinos.

Because the energy density of ADM p,; cannot excess
the energy density of dark radiation ppp [31], we find the
following constraint on the energy density of ADM

I D (D 3, < 7_”2 4
1) / E[f, (B 1) + [3(P.Dld’p < AN, 55T0 - (35)

where f;(p,t) is the distribution function of ADM
(i=y, y). In general, the energy density of fermion
increases with its chemical potential. We obtain the upper
bound on the chemical potential of ADM, y;'** as a function
of the excess of the effective number of neutrinos AN, at
BBN, e.g., uy™ = f(AN,).

We slightly extend this method to estimate the upper
limit on the ADM number asymmetry with the effective
number of neutrinos. Because the number density of
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fermion increases with its chemical potential, the upper
bound on the net ADM number density, n,; = n, —n; is a
function of the excess of effective number of neutrinos AN,
at BBN, e.g., nji* = f(AN,). We can calculate the upper
bound of the ADM number asymmetry at BBN

N (AN,)
epgy =22, (36)

where s is the total entropy density s = > .s;. Recall that
the number asymmetry is conserved, the upper limit of
the ADM number asymmetry at any time €,,,,, at the epoch

of equilibrium €53, and at BBN ¢BBN, is the same as
EQ __ BBN

€max — €max = €max -

B. Constraints

For the ultrarelativistic ADM with temperature 7, the
energy density is obtained as

T2 1 1
Py = QXT; (m"’zfz +8_7r2€4>’ (37)

and we have
it 1, 1, T (T, \*
— - — <AN,— = , 38
g;(( +§+ﬂé)_ 120 \7, (38)

from the relation of p,; < ppg. The upper bound of the
chemical potential y, (more precisely degeneracy parameter
&) of the ultrarelativistic ADM is obtained [31]:

77 (AN, (T\* 8
BBN _ 2 e v(i_v —. 39
o) ”*\/15<gx (T) 3 )
The number density of ultrarelativistic ADM is estimated

as n,; = (g,T;/6m%)(n& + &) and the upper bound of the
ADM number asymmetry is calculated to be

9,T;
€max = €0oN = # [ZEBBN + (EBBN)3]. (40)

The ratio of the temperature of neutrinos to the
temperature of ADM, T,/T,, can be estimated by con-
sidering conservation of the comoving entropy. At BBN,
we have [31]

Ty - g*x(T)(d) 1/3
T_;(i (g*S(TBBN)> ’ (41)

where T, is the ADM decoupling temperature and Tggy
is the BBN temperature around 1 MeV. The effective degrees
of freedom at BBN for standard model particles is obtained
as  G.(Teen) =2+ (7/8)(2-2+2-3)=10.75 for
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photons, e* and three neutrinos. Including ADM, we
have

7
9.s(Tagn) = 1075 + £ g, (F; + F{).

(42)
where F; is given by Eq. (8). We take F; = F} =1 and
g, = 2 for the ultra-relativistic Dirac ADM, g,, = 14.25.
The effective degrees of freedom at ADM decoupling
9:s(T,q) depends on the details of the model of the
ADM [31]. If the ADM is decoupled when all standard
model particles were present and in equilibrium, we obtain
9s5(Tq) = 106.75. In this section, we treat g,,(7T,,) as a
free parameter.

Figure 1 shows the dependence of the extra effective
number of neutrinos AN, on the maximum ADM number
asymmetry €p,, with m, =1 MeV. In the case of €, <
0.01, the dependence of AN} on the €., 1s almost
negligible, e.g., we obtain the plateau for €,,, < 0.01 in
each curves. The constraint on ¢ with AN, is obtained:

~0.01, (43)

€max
for AN, <2.67 and g,,(T,4) 2 10.75.

In the appropriate GeV-scale ADM models, small
number asymmetry e==10""" is favorable to explain
the observed dark matter density Qpy; (for example, see
[29]). For the MeV ADM, the small number asymmetry is
still expected (we will consider the relic abundance in
Sec. IV B). The result of ¢, =0.01 is not a strong
constraint. The cosmological consequences of £BEN on
some problems are important [31], however, we leave the
discussion of the number asymmetry of the ultrarelativistic
ADM in the direct contribution case.

Because the nonrelativistic particles role as matter
components, the direct contribution of such particles to
the energy density of radiation components should be
negligible. Consequently, we can hardly probe the chemical

° " geg(T,)=10.75 - N
rstlya)=10.70 —— - |
9+¢(T5g)=20.00 - - - - my=1Mev |,
4T gi(T,)=50.00 LT
9+5(T,@)=106.75 :
3t N .
4 !
< 1
2F ) 4
7777777777777777777777777777 ’//
1F 4
0 L 1 L 1 L 1 L 1 L I L 1
10" 10"  10®  10%  10* 107 10°
Emax
FIG. 1. The dependence of the extra effective number of

neutrinos AN, on the maximum ADM number asymmetry €,,,.
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potential as well as the asymmetry for nonrelativistic ADM
via BBN [31].

IV. INDIRECT CONTRIBUTION
A. Methods

The method to obtain the constraint on the effective
number of neutrinos with the symmetric MeV DM in
the indirect contribution is developed in the literature
[10,11,13-15,18,19,21,31]. First, we review the useful
method for the symmetric MeV DM developed by
Steigman [18] and then we extend his method to study
the ADM in a straightforward way.

Symmetric DM case (i) T, ,, < T, If the symmetric
MeV DM y couples more strongly to the neutrinos v than to
the photons y and electrons e~, e.g., I, ,, < T, its late
time annihilation heats the neutrinos more than the photons
while the annihilation of the e* pairs heats the photons (but
not the decoupled neutrinos). The entropy in the comoving
volume of photons and e* pairs S,, = R*(s, + s,) and of
the neutrinos and the symmetric MeV DM S, = R (s, +s,,)
are conserved individually where R denotes the scale factor
[43]. The ratio of neutrino to photon temperatures after both
of the e* and the symmetric MeV DM are obtained by
consideration of entropy conservation as follows:

(5)3 _ 9L+ G/9)@ /)] _ 1 +315,4

! - . (44
T, 9y + Gebe 1+70,

where g; denotes effective internal degrees of freedom of
the particle i; g; = (7/8)-2-2="7/2 for the Dirac fer-
mions, g; = (7/8) -2 - 1 = 7/4 for the Majorana fermions.
Although we consider the only fermionic Dirac type DM, we
can also use §; = 1 for the scalar bosons and 3 for the vector
bosons with the bosonic distribution function [Eq. (15) with
®; = —1]. The function of ¢ denotes the normalized entropy
density

Sa ()
sa(0)”

P (x) = (45)

where s (x) is the net entropy density of particle species «
with vanishing chemical potential [18]:
$40) = 5t = 0) 53 =0) = S 2L ()
a a a a a Tl

i=a,a

For e pairs, ¢, is evaluated at x = x,; = m,/T,4, while for
the symmetric DM, ¢, is evaluated at x = x,,; = m, /T,
where T, denotes the decoupling temperature of neutrinos.
Because the difference between Majorana or Dirac nature of
symmetric MeV DM is taken into account by the effective
internal degrees of freedom g,, we take g, = 1 in Eq. (15)
through our calculations.
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With the appropriate assumptions of 7,;, = 2 MeV and
¢, = 0.993 [18], we obtain

11 /T.\374/3 4q,¢,\4/3
N =3|— (£ =3018(1+22%) . (47
=g (@) o) @

If the symmetric MeV DM particle is sufficiently massive,
this particle is regarded as a matter component and ¢4 ~ 0.
As a result, the usual result N i = 3 is recovered. On the
contrary, for the very light symmetric DM, we obtain
¢, = 5;(x,4)/5;7(0) ~ 55°(0)/s5(0) = 1 and the excess
of the effective number of neutrinos N > 3 without the
dark radiation. The effective number of neutrinos is a
function of the mass of symmetric MeV DM.

Symmetric DM case (ii) I, ,, > I',,: On the other hand,
if the symmetric MeV DM couples more strongly to the
electrons and photons than to the neutrinos, I',, ,, >T,,
its annihilation heats the electron-photon plasma relative to
the neutrino background. By the consideration of entropy
conservation, we have

s ey ey (48)
T}/ gy + ge¢e + g){‘ﬁ;{ 2 + %¢g + glqb)(

and

N2 5 (7) | = (ossimn)
eff = 2|7\ 7+ = ~ :
2 \7, 1095 + 25,4,

If the symmetric MeV DM particle is sufficiently massive,
the usual result N = 3 is recovered. On the contrary, an
annihilation of more light symmetric MeV DM reduces the
effective number of neutrinos to be N4 < 3.

ADM case: We extend the method of calculating N
with symmetric MeV DM in a simple way. To take care
of the chemical potential of the ADM for the entropy
calculations, we use the following net entropy density of
the ADM

i T Pi —pin;

p
S)I;et(x,,u)() =5, + 85, = Z
=y

instead of Eq. (46). The normalized entropy density of the
ADM to be a function of not only x,, but also y,, is given as
follows:

S5 (Xyas )
45)((36;((1’/‘)() = w- (51)

Other quantities in Eq. (44) and Eq. (48), such as g,, ¢,,
remain the same.

The effective number of neutrinos with the MeV ADM is
estimated in the same form of Eq. (47) and Eq. (49). If the

PHYSICAL REVIEW D 93, 033002 (2016)

MeV ADM y couples more strongly to the neutrinos v than

to the photons y and electrons e~ (I, ,, < T,,), we obtain

47 ’ 4/3
Neff_3.018<1+7g*¢*(2?" : *)> . (52

while if the MeV ADM couples more strongly to the electrons
and photons than to the neutrinos (I',, ,, > T,), we have

N 3( L )4/3 (53)
T N10.95 + 2,4, (0 1,))

vxe

These derivations of the effect of light ADM on the
effective number of ultrarelativistic species at the epoch of
BBN, Egs. (52) and (53), are the main new findings in
this paper.

In the following numerical calculations, we vary the
mass of the MeV ADM in the range of m, =
0.1—100 MeV. In this case, both of the ultrarelativistic
limit and the nonrelativistic limit are inappropriate. We
estimate the thermodynamic quantities such as the number
density from the first principle (most fundamental formu-
lae) in Eq. (16), Eq. (17), Eq. (18), and Eq. (19) numerically
by the Gauss-Laguerre integration method:

/)oo x*e ™ F(x)dx = Z: w;F(x;), (54)

where F(x) and w; denote a function of x and “Gauss-
Laguerre weights,” respectively [48]. In our calculation,
a = 0and N = 50 are chosen. In order to apply the formula
in Eq. (54) to calculate the number density n;, we estimate
the following integral [49,50]

1 0

o2 T(Tix + m;)[(Tix + m;)> — m?)V/2 fdx,
= Jo

n;

(55)

instead of Eq. (16), where x = (E; —m;)/T; and the
distribution function in Eq. (15) is replaced by

9i
e(Tixtmi—u)/T; | 0, ’ (56)

fi=

Similarly, the energy density p; and the pressure P; are
calculated as

1 )
pPi = ZﬂZA Ti(Tix + m;)*[(Tix + m;)* — m?]'/2 fdx,
1 ©
Pi= g [T m? = i) (57)

instead of Eq. (17) and Eq. (18), respectively.
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Before we show the results from the numerical calcu-
lations, we would like to comment on the role of asym-
metry at BBN. The effect of the annihilating thermal relic
particles to heat either the photons or the light particles. The
bulk of this heat is created when the temperature is within a
factor of a few of the relic particle mass T ~ m,,. At these
temperatures the number asymmetry between particles and
antiparticles may be small without large chemical potential.
At these temperatures the number of particle and anti-
particle pairs could be much larger than the relic number
when annihilations have ceased, at a temperature much
lower than the particle mass. Thus, the effect of the number
asymmetry of unobserved MeV scale particles is not strong
at BBN (except the very light and degenerate (asymmetric)
neutrinos. For example, see Refs. [51,52]).

Although the case of asymmetric dark matter is not
significantly different from the case of symmetric dark
matter without large chemical potential of ADM, we would
like to announce that the explicit considerations of the
relation between the chemical potential of ADM and
effective number of neutrinos at BBN are first shown in
this paper. Some numerical results are expected without
actual calculations, however, the actual calculations are an
important complement to any previously reported results in
the literature.

B. Constraints

1. Lower mass limits: Figure 2 shows the dependence of
the effective number of neutrinos N on the mass of the
ADM m, with the various chemical potentials £ at BBN
(T =2 MeV). The figure (a) shows the dependence in the
case of I, ., <TI,, while the figure (b) shows the
dependence in the case of I';, ,, >T,,.

The value of N with the vanishing chemical potential
(¢ = 0) is compatible with the previously reported results
for the symmetric MeV DM case [12,18,21,53]. For
example, Boehm et al. obtained the lower bound on the
mass of Dirac fermion DM from the CMB data (and BBN
considerations) at 95% C.L. as m, > 7.3 MeV for N4 =
3.30703 =2.79—3.84 in the case of [, ,, <T,, [53].
We obtain the same lower limit of m,, for N = 3.86 from
Fig. 2. We note that the value of N at CMB and at BBN
may be different, e.g., a MeV scale particle with the
vanishing chemical potential (mass <10 MeV) may lead
to the value of N at CMB formation which is lager than at
BBN [12]. In this paper, we take N to be defined at BBN.

The similar figure of Fig. 2 has already reported by
Nollett and Steigman for symmetric DM [19,21]. The
curves with nonvanishing chemical potential in Fig. 2
are newly obtained in our study. The dependence of the
chemical potentials of ADM on the effective number of
neutrinos is shown explicitly for the first time in this
paper. Compere with the symmetric DM case, the effective
number of neutrinos N increases with the increasing

PHYSICAL REVIEW D 93, 033002 (2016)

(8) 6
: Fx‘{,xe<<rxv
5r
4k
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[7)
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0.1 1 10 100
mX[MeV]
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FIG. 2. The dependence of the effective number of neutrinos
Negr on the ADM mass m,, with the various chemical potential &
at BBN. The figure (a) shows the dependence in the case of
r < T, while the figure (b) shows the dependence in the

xXvxe
case of " >1,.

xrxe

asymmetry (chemical potential £) and with the decreasing
mass m, if ADM particle mainly interacts to neutrinos
(yyye <T). On the contrary, Ny decreases with the
increasing & and with the decreasing m,, if ADM particle
mainly interacts to photons and electrons (I, ,, >T,).
Also, in the Nollett and Steigman papers for symmetric
DM [19,21], N depends on the nature of the quantum
statistics of thermal relic (i.e., fermion or boson). We can
take the effective internal degrees of freedom as g, =
1,7/4,2,7/2 for a real scalar, Majorana fermion, complex
scalar, and Dirac fermion in Egs. (52) and (53). Thus, N
depends on the difference of the nature of the thermal
relic not only in the symmetric DM case but also in the
ADM case.

The lower mass limit is obtained with the upper bound
or lower bound on the effective number of neutrinos. For
example, we obtain m, 2 mI"" = 18.1 if Nj* = 3.0 in the
figure (a), while m, 2 m™ = 18.3 if N%" = 3.0 in the
figure (b). Thus, the sets of {(&, mi"™™)} for the fixed NI
or N™n is obtained. The lower bound on the ADM mass is

the case when the asymmetry and chemical potential are
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small. The bound gets stronger as asymmetry ¢ and
chemical potential £ grow. It shows the smooth transition
from asymmetric to the symmetric WIMP limit.

The sets of {(£, m™")} is shown in Fig. 3. This figure
shows the dependence of the lower mass limit of the ADM
m)‘(Ilin on the chemical potential £ with the various bound of
the effective number of neutrinos N at BBN. The figure
(a) shows the I',, ,, < T, case while the figure (b) shows
the T, ,, > T, case. The ADM mass m)‘(nin increases with
the decreasing upper bound of the effective number of
neutrinos Ngg* in the '), < T',, case. On the contrary,
mM™ increases with the increasing the lower bound of N
inthe I, , > T, case. Moreover m)‘{“i“ increases with the
increasing chemical potential £ in both cases.

From Fig. 3, the following constraint on m?i" with N is
obtained:

. 8.1—18.1 MeV (NI =3.0-3.7)
my'" = i (58)
82—183 MeV (NI =25-3.0)
(a) 30 T ;
Tyyve << Ty
25 F E
20 F ]
) .
2 5f ]
E = I - - ]
[ L ettt ]
10 | ]
3 Ngy=3.04 ——
5L NCI=3.25 ]
i Nef=3.5
[ Ne“=3.69
0 " 1 saal il
0.01 0.1 1 10
g
(b) 30 [T 7777 T ML | T M | AT
- /If
t (b) Tyyae >> Ty e
25 Vas
[ Vi ]
[ /e ]
20 et .
) F-— == — T
2 [~ TT ]
2 15f ]
Ex [ 1
£ : ]
10 | ]
3 Ng=3.0 — — — ]
s Ngi2.99 -~ - -
: Ngi=2.75 ]
: Neg=2.5
0 PR | " PR | " PR | " MR
0.01 0.1 1 10
g
FIG. 3. The dependence of the lower mass limit of the ADM

m)‘;‘i" on the chemical potential £ with the various effective
number of neutrinos Ny at BBN (7' =2 MeV). The figure
(a) shows the I, ,, < T, case while the figure (b) shows the
r

xrxe

e
>T,, case.
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for I',, . <T',, (upper) and T,

more concretely,

vqe > 1, (lower) cases,

. { 18.1 MeV (T, < T, N™> = 3.0) 59)
#1183 MeV (T, > [, Nt —30)

with the standard value of the effective number of neutrinos.
2. Maximum number asymmetry: Once the sets of
{(&, m)} is obtained, we can estimate the ADM number

asymmetry at (&, mn):

. 1
6(5, m}r{nm) —

= <l (& mp™) =y (&, mim)]. - (60)

The total entropy density s is calculated as s = s§3; + 53
where sgf; = 5% + 50 + 35)° denotes the sum of the net
entropy densities of the standard model particles at BBN and
sy denotes the net entropy density of the ADM y. In the
numerical calculation of the entropy density [see Eq. (19)
with Eq. (55) and Eq. (57)], the masses of all particles except
neutrinos are taken from the particle data group [45].
Although, the recent results of the Planck experiment give
us a constraint on the sum of the light neutrino masses as
> m, <0.17eV (95% C.L.) [46], we assume that all
neutrino masses are the same as m, = m, = m, =m, =
1 eV in our calculation for the sake of simplicity. The
unknown tiny masses of the neutrinos are irrelevant in our
study. Moreover, we neglect the chemical potential of all
standard model particles.

Because the ADM number asymmetry e decreases with
the increasing mass m,, (we will see below), we obtain the
upper limit of the ADM number asymmetry

€max — 6(57 m?]in)’ (61)

and the set of {(&, epay )} for the fixed N or NN,
Figure 4 shows the ADM number asymmetry. Figure
(a) describes the dependence of the ADM number asym-
metry e on the mass m, with fixed chemical potential &.
Figures (b) and (c) describe the dependence of the upper
limit of the ADM number asymmetry €,,,, on the chemical
potential ¢ with the various bound of the effective number
of neutrinos N™ or N™i" at BBN. The figure (b) shows
the I’ < T, case while the figure (c) shows the

xy.xe

I, e>T, case. In the figure (a), we see that the

ADM number asymmetry ¢ decreases with the increasing
mass m,,. The figure (b) shows that the upper bound of the
ADM number asymmetry e,,, increases with the increas-
ing effective number of neutrinos Ng* in the I',, ., < T,
case. On the contrary, the figure (c) shows that e,
increases with the decreasing N Q}“ inthel’,, ., >T,, case.
From Fig. 4, the following constraint on €,,,, with N is

obtained:
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FIG. 4. ADM number asymmetry. Figure (a): the dependence
of the ADM number asymmetry e on the mass m, with fixed
chemical potential . Figure (b) and (c): the dependence of the
upper limit of the ADM number asymmetry €,,,, on the chemical
potential £ with the various bound of the effective number of
neutrinos Ni* or N;‘}}“ at BBN. The figure (b) shows the I’ ,, <
I',, case while the figure (c) shows the T,

vxe

yqe > Ty case.

N { 1.35x 1077 =720 x 107 (Nm* =3.0—3.7)

€max H
123 x 1077 = 6.95x 107¢ (NMn =2.5-3.0)
for £ = 0.0025, (62)
for I, . <I',, (upper) and I',,,,>1,, (lower) cases,

more concretely,

PHYSICAL REVIEW D 93, 033002 (2016)

135x 107 ([, 0 < T, N = 3.0)
Emax = 4 (63)
123 %107 (T, > [, N = 3.0)

with the standard value of the effective number of neutrinos.

We note that, as shown in figure (b) and figure (c), €pax
increases with the increasing chemical potential £. It is
naturally expected because the origin of the ADM number
asymmetry is the nonvanishing chemical potentials of y
and jy. Although there is no indication of the upper limit of
the ADM number asymmetry €,,,, for £ =0 in Fig. 4,
€max = 0 1s obtained correctly for & = 0.

As we show below, in consideration of the relic abun-
dance of the MeV ADM, the obtained upper limit on the
ADM number asymmetry in Eq. (62) and Eq. (63) is not a
strong constraint, if the origin of the observed 511 keV
gamma-ray is the annihilating light MeV ADM.

3. Relic abundance: The relic abundance of the ADM
Q,pmh? depends on not only the ADM number asymmetry
€ but also the thermally averaged annihilation cross section
(o,;v) [see Eq. (11)]. The averaged cross section is
obtained by [42]

1
(6,,0) = ——5—
< 8myT,K3(x)
% [ (o) (s 4mIEKAVS/T s, (64
where o6,;, K;, s. and x denote the annihilation cross

V74
section, the modified Bessel function of order i, one of

the Mandelstam variable (not an entropy density) and
x=m,/T,, respectively. Practically, the averaged cross
section can be expanded in power of the relative velocity
of incoming particles v. The standard approximation of the
averaged cross section is [33,35]:

(o,0) =a+bx™' +O(x?). (65)

If the s-wave annihilation is dominant, we can take a # 0
and b = 0. On the other hand, if the p-wave annihilation is
dominant, we can put a = 0 and b # 0. In this study, the
coefficients a and b are taken as free parameters to perform a
model independent analysis.

Figures 5 and 6 show the dependence of the relic
abundance of the MeV ADM Q,pyv/A* on the mass m,
in the s-wave dominant case (Fig. 5) and in the p-wave
dominant case (Fig. 6), respectively. In Fig. 5, the figure
(a) shows the dependence with the various number asym-
metry €, while the figure (b) shows the dependence with
the various cross section (6,;v) = a + bx~'. The figure
(c) shows the value of parameter “a” required to satisfy the
observed relic abundance of DM, Qupyh* = 0.12 and
lower mass limit for the N s = 3.0. The vertical line in
figure (c) shows the lower mass limit. The relic abundance

of the MeV ADM Q,pyp/? decreases with the decreasing
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ADM number asymmetry € as shown in the figure (a). The
mass dependence on the Q4 is significant for the very
light m, <5 MeV and the highly asymmetric € 2 1 X 1077
case. In other words, we can ignore the mass dependence
on the relic abundance for the case of ¢ < 1 x 1078, Indeed,

(a) 5 T T T T T T T 5 T
- " - =1x1 — 4
10°F  azx10° Gev?, b=0 ST T T
e=1x108
5 e<1x10°
10

10-2 I 1 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50
m, [MeV]
(b) T T T T T T -9' _b T
| 8 a=3x10_ GeVZ, ——
1ol | =0 e=1.0x10 a=5x1072 GeV2 ---- ]
L a=8x10, GeV, 1
a=2x10" GeV,
0 a=5x10_ GeV, 1
~ 100 F a=1x10" GeV*= ——- 7
< 4
E [ ——
B o
gt Eo e 4
1027 -
10-3 1 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50
m, [MeV]
(C) 1 T T T T T T T
095 | PO e i
_. 09 ]
q
E 0.85 _
© Qapyh?=0.12
o 0.8 -
el
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-8
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0.7 e=5.0x10; - 7
e=1.0x107 -+
065 1 1 1 1 1
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m, [MeV]
FIG. 5. The dependence of the relic abundance of the MeV

ADM Q,pph? on the mass m,, in the s-wave dominant case.
The figure (a) shows the dependence with the various number
asymmetry €, while the figure (b) shows the dependence with
the various cross section (o,;v)=a+ bx~'. The figure
(c) shows the value of parameter “a” required to satisfy the
observed relic abundance of DM, Qapyh? = 0.12 and lower
mass limit for the N = 3.0. The vertical line in figure
(c) shows the lower mass limit.
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for € <1x 1078, the s-wave dominant cross section is
almost degenerate for Q,ppA> = 0.12 as shown in figure
(c). The behavior of the relic abundance in the p-wave
dominant case (Fig. 6) is similar to the s-wave dominant
case (Fig. 5).

The cosmological constraints on the annihilation cross
section of the symmetric DM are extensively studied in the
literature, such as the constraints from the galactic 511 keV
gamma-ray line [54-64], from the galactic 3.5 keV x-ray
line [65-67], from other cosmic rays [68—73], from the
CMB [74-77] and from the BBN consideration [78].

For the symmetric MeV DM, the significant constraints
on the annihilation cross section are obtained from the

T _b T
5=1x107 — 4
.*3=1x10:8 il
e=1x10
€< 1x10°

(a) > [ T T T T T T
10°F 220, b=2x107 GeV2
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5 10 15 20 25 30 35 40 45 50
m, [MeV]
T T T T T T T T
(o) I 8 b=5x108 GeV2 —— |
101 a=0, e=1.0x10 b=1X10-7 Gev'2 ----
b=2x1077 GeV> ]
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o 107 ¢ b=5x10" GeV™* ——-- o
- .
S0t e 3
w02k o7 —
/
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FIG. 6. Same as Fig. 5 but p-wave dominant case.
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galactic 511 keV gamma-ray line observation. The light
particles y (m, ~1—100 MeV) annihilating into e*e~
pairs in the galactic bulge may be the source of the
observed gamma-ray [54]. According to this scenario, if
the s-wave annihilation is dominant, m, ~ 100 MeV is
required to obtain the observed cosmic ray flux without the
final state radiation/bremsstrahlung, the so-called internal
bremsstrahlung (IB), effects. Including IB effects, we may
expect that the upper bound of the symmetric dark matter
particles is around 3 MeV [79] or 7.5 MeV [80]. On
the contrary, if the cross section is p-wave dominant, the
lighter DM (m,, ~ 1 MeV) is possible for b ~ 10 — 200 pb
(b~2.6x10"%—51x 1077 GeV~?) [54,58].

If the s-wave annihilation is dominant, the upper bound
of symmetric dark matter m, < 3 or 7.5 MeV is at almost
margin of our result in Eq. (58) for Nz =2.5—3.7.
Moreover, for Neg = 3.0, m, <3 or 7.5 MeV is not
consistent with our result m)‘(“i“ ~ 18 MeV in Eq. (59).
Although, we may expect that the constraint on the
symmetric MeV DM is also appropriate for the MeV
ADM approximately, there is a little study for the cosmo-
logical constraints on the annihilation cross section of the
ADM [81]. The upper mass limit of ADM may be a few
MeV, however, we take a conservative upper limit of the
mass of ADM as a few 10 MeV in this paper.

Figure 5 shows that the s-wave dominant annihilation
with a =8 x 1072 GeV2, b=0 and e=1.0x 1078 is
consistent with the observed energy density of the cold dark
matter component Qpy 2% = 0.1. For the p-wave dominant
annihilation, a=0, b=3x10"7 GeV2 and e=1.0x 1078
is consistent with data as shown in Fig. 6. If the origin of the
observed 511 keV gamma-ray is the annihilating MeV
ADM and/or all of the cold dark matter is made of the MeV
ADM Qupyvh? = Qpuh?, the ADM number asymmetry e
should be less than the obtained upper limit €,,,, in Eq. (62)
and Eq. (63) at least under 10~'. If the effective number
of neutrinos is just the standard value N = 3.0, the ADM
number asymmetry should be € =¢,, x 1073. As a
consequence, the upper limit on the ADM number asym-
metry in Eq. (62) and Eq. (63) is not a strong constraint.

We comment that the constraints in Eq. (62) and Eq. (63)
may be more strict in the combination of the following cases:
(a) if the chemical potential of the ADM is tiny & < 0.0025,
(b) if the origin of the observed 511 keV gamma-ray is not
the annihilating MeV ADM and (c) the MeV ADM is a part
of the cold dark matter Qpyh> < Qpuh’.

V. SUMMARY

We have extended the known two methods by Boeckel
and S.-Bielich [31] as well as by Steigman [18] to obtain
the constraints on the MeV asymmetric dark matter with
the effective number of neutrinos N at big bang
nucleosynthesis.

PHYSICAL REVIEW D 93, 033002 (2016)

If an extra particle is light enough, this light particle has
contributed directly to the effective number of neutrinos as
the so-called dark radiation (direct contribution case). From
the requirement of p, < ppgr, we have obtained the upper
limit on the asymmetric dark matter number asymmetry
€max ~ 0.01 for AN, < 2.67.

Although the extra particles are not light enough to
contribute directly to the effective number of neutrinos, its
annihilation yields either increase or decrease the effective
number of neutrinos (indirect contribution case). If the
MeV asymmetric dark matter couples more strongly to the
neutrinos than to the photons and electrons (I, ,, >1T7,,)
or if the MeV asymmetric dark matter couples more
strongly to the electrons and photons than to the neutrinos
T < I,), the constraint on m)‘}rlin with N is obtained

xrxe
in Eq. (58). For example,

min = 18 MeV, (66)

if the effective number of neutrinos is just the standard value
N = 3.0 as shown in Eq. (59). The constraint on € with
N is also obtained in Eq. (62). For example €, = 10~/
for N = 3.0 as shown in Eq. (63).

If the origin of the observed 511 keV gamma-ray is the
annihilating MeV asymmetric dark matter and/or the all of
cold dark matter is made of the MeV asymmetric dark
matter, € = 1.0 x 10~® is consistent with data. The con-
straint on € is not a strong constraint in both of direct
(émax ~ 0.01, for AN, <2.67) and indirect contribution
cases (Eyax = 1077 for Noy = 3.0).

On the other hand, the lower limit of the asymmetric dark
matter mass m)‘}m = 18 MeV for N = 3.0 in the indirect
contribution case is strict constraint. From the galactic
511 keV gamma-ray line observation, the symmetric dark
matter mass may be less than about a few 10 MeV (or a
few MeV). We can expect that the range of the asymmetric
(as well as symmetric) MeV dark matter mass is so narrow
to satisfy m, =18 MeV in the case of I' >, or

xve
Iy, <TI,,. The constraint may be useful to check or
construct the MeV asymmetric dark matter models.

The role of the number asymmetry of unobserved
MeV scale particles is not strong at BBN. The case of
ADM is not significantly different from the case of
symmetric DM without large chemical potential; how-
ever, the explicit considerations of the relation between
the chemical potential of ADM and effective number of
neutrinos at BBN are shown for the first time. Our
actual calculations are important complement to any
previously reported results in the literature. The method
to discuss the dependence of the chemical potential of
ADM on the effective number of neutrinos give a little
useful step toward solving puzzles in the dark matter
problems.
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