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We study the effect of the MeV-scale asymmetric dark matter annihilation on the effective number of
neutrinos Neff at the epoch of the big bang nucleosynthesis. If the asymmetric dark matter χ couples more
strongly to the neutrinos ν than to the photons γ and electrons e−, Γχγ;χe ≪ Γχν, or Γχγ;χe ≫ Γχν, the lower
mass limit on the asymmetric dark matter is about 18 MeV for Neff ≃ 3.0.
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I. INTRODUCTION

One of the big motivations for considering the asym-
metric dark matter (ADM) scenario [1] is that the abun-
dance of baryonΩb and dark matter (DM)ΩDM is observed
to be close to each other ΩDM ∼ 5Ωb. In an ADM model
[2], there is a common mechanism that might give rise
to the baryon asymmetry as well as the ADM asymmetry
and we obtainΩADM=Ωb ≃ ðηχ=ηbÞðmχ=mpÞ, whereΩADM,
ηb, ηχ , mχ and mp are the ADM abundance, the baryon
asymmetry, the ADM asymmetry, the ADM mass and the
proton mass, respectively. From this relation, the natural
scale for ADM is around 5 GeV, however, mass of the
ADM can be as low as a few keV in some models [3,4].
Moreover, the light non-asymmetric DM (we call it
symmetric DM or simply DM), such as MeV to GeV
DM, remains an elusive blind spot in the current under-
ground searches [5].
If there are light ADM particles, the energy density of

radiation at big bang nucleosynthesis (BBN) epoch could
be changed. It is not necessary that the particle be a dark
matter candidate to influence BBN. It only need be a
thermal relic, e.g., a particle that was in thermal equi-
librium with the standard model particles present when
the temperature was compatible with the mass of the relic
particle.
These extra particles contribute to the unknown radiation

content of the universe [6–8]. The energy density of the
relativistic particles at BBN (as well as at time of cosmic
microwave background (CMB) photons released) is usually
expressed in terms of the effective number of neutrinos
Neff . For the standard cosmology, Neff ¼ 3 is expected.
Including the effect of slight reheating of the neutrinos from
early eþe− annihilation, we obtain Neff ¼ 3.046 [9].
The relation between the symmetric DM at BBN and the

effective number of neutrinos is extensively studied in the
literature [10–23]. The extra particles at BBN contribute to
the effective number of neutrinos in the following two cases:

(1) Direct contribution case: If an extra particle is
light enough such as eV-scale sterile neutrino, it is
regarded as one of the radiation components. This
light particle has contributed directly to the effective
number of neutrinos as the so-called dark radia-
tion [14,15].

(2) Indirect contribution case: Although the extra par-
ticles are not light enough to contribute directly to the
effective number of neutrinos, its annihilation heats
other particles via entropy transfer. Consequently,
these extra particles contribute to the effective number
of neutrinos indirectly even in the absence of dark
radiation. Either increase or decrease of the effective
number of neutrinos occurs as follows:
(i) If an extra particle couples more strongly to the

neutrinos ν than to the photons γ and electrons
e−, Γχγ;χe ≪ Γχν, its late time annihilation heats
the neutrinos more than the photons. Ulti-
mately, this type of extra particle yields an
excess of the effective number of neutrinos,
Neff > 3 [10,11,18,19,21].

(ii) On the contrary, if an extra particle couples more
strongly to the electrons and photons than to the
neutrinos, Γχγ;χe ≫ Γχν, its annihilation heats the
electron-photon plasma relative to the neutrino
background, leading to a reduction in the effec-
tive number of neutrinos below the standard
model value, Neff < 3 [10,11,13,18,19,21].

The relic density of ADM in the original models is set by
the asymmetry around the time of baryogenesis to obtain
the single explanation for both baryon and dark matter
densities [24–27].
Some scenarios to generate primordial dark and baryon

asymmetry in the ADM models are proposed such as
lepton-number and/or baryon-number violating decay, the
Affleck-Dine mechanisms, via phase transition at electro-
weak baryogengesis, scenarios with dark gauge group and
messengers between dark and visible sector (see Ref. [1]
and references therein). For some of these scenarios, since
both DM and anti-DM particles may populate the thermal
bath in the early universe, the relic number density of ADM
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is determined not only by the initial number asymmetry but
also the annihilation cross section [28–30]. This asymmetric
WIMP framework can accommodate a wide range of dark
matter masses and annihilation cross sections. For example,
Graesser et al. applied the asymmetric WIMP scenarios to
lepton-number violating and baryon-number violating ADM
models [28]. Another example is given by Lin et al., they
reported the model independent constraints on the quantities
of light ADM with mass ∼1 MeV-10 GeV in the asym-
metric WIMP framework [29,30].
The generation mechanism of initial asymmetry, along

with ongoing self-annihilation, would be important subject
in the study of ADM. We keep the similar mechanism
which is proposed in Ref. [28] in mind and we put aside
discussion of the particular mechanism to generate the
initial asymmetry. We would like to show a model
independent analysis in this asymmetric WIMP paradigm.
In the ADM scenarios, the ADM particle χ and its

antiparticle χ̄ have nonzero chemical potentials and the
particle χ is not self-conjugate of the antiparticle χ̄. To study
the dependence of the light ADM on the effective number
neutrinos, we should take care of the chemical potential
of ADM.
We have a little knowledge about the dependence of

the extra particle with nonzero chemical potential on the
effective number of neutrinos. For the direct contribution
case, a constraint on the chemical potential for a fermionic
light DM has been deduced from BBN calculation by
Boeckel and S.-Bielich [31]. The correlation between the
effective number of neutrinos and the cosmological param-
eters with light DM particles (including ADM) have been
studied by Blennow et al. [32]. These two papers give us
many interesting results related to the ADM, however,
the dependence of the ADM number asymmetry on the
effective number of neutrinos is not clear yet. For the
indirect contribution case, there was no study of
the relationship between the ADM and the effective number
of neutrinos.
In this paper, the known two methods to estimate the

effective number of neutrinos with light extra symmetric
DM by Boeckel and S.-Bielich in the direct contribution
case [31] and by Steigman in the indirect contribution case
[18] are slightly extended to the light ADM in a straight-
forward way. By using the extended methods, we discuss
some constraints on a MeV-scale ADM with the effective
number of neutrinos in both of direct and indirect con-
tribution cases. Significant lower limit on the ADMmass is
obtained in the indirect contribution case. The upper limit
on the ADM number asymmetry is also obtained in both
cases, however, we observe that this upper limit is not
strongly constrained by the relic abundance consideration.
This paper is organized as follows. In Sec. II, we review

the basic picture of the ADM and the effective number of
neutrinos. This review does not include any new findings.
We would like to present a brief review of the ADM, a

detailed analysis of the calculation of the relic abundance of
a thermal dark matter candidate that is presented in many
previously published papers. We also show our notations in
this section.
The new results are reported in Secs. III and IV. In

Sec. III, we show the method to obtain a constraint on the
chemical potential of ADM in the direct contribution case
which is developed by Boeckel and S.-Bielich [31]. We use
their method to obtain the limit on the ADM number
asymmetry with the effective number of neutrinos. This is
the first result in this paper. In Sec. IV, we show the useful
method which is developed by Steigman [18] to estimate
the effective number of neutrinos with symmetric DM at
BBN in the indirect contribution case. Then, we extend this
method to include ADM. This extension is the second and
main result in this paper. In the same section, the constraints
on the mass, number asymmetry and cross sections for
ADM are obtained numerically. The actual calculations are
important complement to any previously reported results in
the literature. These complementary results are the third
result in this paper. Finally, Sec. V is devoted to a summary.

II. ASYMMETRIC DARK MATTER AND
EFFECTIVE NUMBER OF NEUTRINOS

A. Relic abundance

Relic abundance of the ADM has been studied
[28–30,33–38] based on the methods for the symmetric
DM [33,39–42]. We assume that, at the moment close to the
ADM decoupling epoch, the only reactions that change the
number of χ and χ̄ are annihilations and pair creation of
χχ̄ ↔ ff̄ (there is no self-annihilation and creation such as
χχ ↔ ff̄ and χ̄ χ̄ ↔ ff̄ [35]). With this assumption in
mind, the relic density of χ and χ̄ is determined by solving
the following Boltzmann equations

dnχ
dt

þ 3Hnχ ¼
dnχ̄
dt

þ 3Hnχ̄

¼ −hσχχ̄viðnχnχ̄ − nEQχ nEQχ̄ Þ; ð1Þ

where nχ and nχ̄ denote the number density of χ and χ̄,
respectively. Both χ and χ̄ may populate the thermal
bath (equilibrium) in the early universe. The equilibrium
densities nEQχ and nEQχ̄ in the presence of asymmetry differ by
the chemical potential μχ . The detail of the annihilation
process is included by the thermally averaged annihilation
cross section hσχχ̄vi. The Hubble expansion rate is calcu-
lated as

H ¼ πT2

MPl

ffiffiffiffiffi
g�
90

r
; ð2Þ

during the radiation dominated epoch where MPl ¼
2.4 × 1018 GeV, g� and T denote the reduced Planck mass,
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the effective relativistic degrees of freedom for the energy
density, and the temperature of the thermal bath (temperature
of the photons), respectively. The effective relativistic
degrees of freedom is defined as

g�ðTÞ ¼
X

i¼bosons

gi

�
Ti

T

�
4

þ 7

8

X
i¼fermions

gi

�
Ti

T

�
4

; ð3Þ

where Ti and gi are the temperature and the number of
internal degrees of freedom of species i, respectively [43,44].
We use the standard definitions

x ¼ mχ

T
; Yχ ¼

nχ
s
; Y χ̄ ¼

nχ̄
s
; ð4Þ

where

s ¼ 2π2

45
g�sT3; ð5Þ

is the entropy density and

g�sðTÞ ¼
X

i¼bosons

gi

�
Ti

T

�
3

þ 7

8

X
i¼fermions

gi

�
Ti

T

�
3

; ð6Þ

is the effective relativistic degrees of freedom for the entropy
density for relativistic particles, which turns out to be

g�sðTÞ ¼
X

i¼bosons

giF−
i þ 7

8

X
i¼fermions

giF
þ
i ; ð7Þ

in a more general case, where

F�
i ¼ 45

4π4

�
8

7

�1�1
2

x4i

Z
∞

0

y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p
eyxi�1

4y2 − 1

3y
dy; ð8Þ

is a function of the particle mass mi that change smoothly
from F�

i ¼ 1 when the particle is ultrarelativistic
(xi ¼ mi=T ≪ 1) to F�

i ¼ 0 when it becomes nonrelativ-
istic (xi ≫ 1) [32].
We assume that the universe expands adiabatically and

that g� as well as g�s are treated as a constant during the
χχ̄ annihilation period. In terms of Yχ , Y χ̄ and x, the
Boltzmann equations become

dYχ

dx
¼ dY χ̄

dx
¼ − hσχχ̄vi

H
2π2

45

g�m3
χ

x4
ðYχY χ̄ − YEQ

χ YEQ
χ̄ Þ; ð9Þ

and we obtain dðYχ − Y χ̄Þ=dx ¼ 0. Thus the ADM number
asymmetry, namely, the net comoving densities,

ϵ ¼ Yχ − Y χ̄ ; ð10Þ

is constant. Because the number asymmetry ϵ is conserved,
the ADM asymmetry in equilibrium ϵEQ remains at any time.

Using the definition of the number asymmetry ϵ in Eq. (10),
we obtain the final form of the Boltzmann equations

dYχ

dx
¼ − hσχχ̄vi

H
2π2

45

g�m3
χ

x4
ðY2

χ − ϵYχ − YEQ
χ YEQ

χ̄ Þ;
dY χ̄

dx
¼ −

hσχχ̄vi
H

2π2

45

g�m3
χ

x4
ðY2

χ̄ þ ϵY χ̄ − YEQ
χ YEQ

χ̄ Þ: ð11Þ

We express the present relic abundance of the particle χ
in the terms of the density parameter Ωχ times the scale
factor for the Hubble expansion rate h ¼ 0.673:

Ωχh2 ¼
ρχ
ρcrit

h2 ¼ mχs0Yχðx → ∞Þ
ρcrit

h2; ð12Þ

where s0 ¼ 2.89 × 103 cm−3 and ρcrit ¼ 3H2
0=ð8πGÞ ¼

1.05h2 × 10−5 GeV cm−3 are the present entropy
density and the present critical density, respectively. We
use the relation of the Hubble expansion rate H0 ¼
100h km s−1 Mpc−1 with the Newtonian gravitational con-
stant G ¼ 6.67 × 10−11 m3 kg−1 s−2 [45]. The present relic
abundance of the ADM is calculated to be

ΩADMh2 ¼ Ωχh2 þ Ωχ̄h2

¼ 2.75 × 108
mχ

GeV
YADMðx → ∞Þ; ð13Þ

where

YADMðxÞ ¼ YχðxÞ þ Y χ̄ðxÞ: ð14Þ

The observed energy density of the cold dark matter
component in ΛCDMmodel by the Planck Collaboration is
ΩDMh2 ¼ 0.1188� 0.0010 (68% C.L.) [46].

B. Asymmetry and chemical potential

The distribution function of particle species i is given by

fi ¼
gi

eðEi−μiÞ=Ti þ Θi
; ð15Þ

where gi, Ei, μi, and Ti denote number of internal degrees
of freedom, energy, chemical potential, and temperature of
particle i, respectively. The discrete parameter Θi takes only
the following three values: Θi ¼ þ1 and Θi ¼ −1 corre-
spond the Fermi-Dirac distribution and the Bose-Einstein
distribution while Θi ¼ 0 corresponds the Maxwell-Boltz-
mann distribution. In this paper, we consider a fermionic
Dirac type ADM χ and we take Θχ ¼ þ1.
The number density ni, energy density ρi, pressure Pi

and entropy density si of particle species i with mass mi in
the isotropic universe are obtained as follows [43,47]:
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ni ¼
1

2π2

Z
∞

mi

EðE2 −m2
i Þ1=2fidE; ð16Þ

ρi ¼
1

2π2

Z
∞

mi

E2ðE2 −m2
i Þ1=2fidE; ð17Þ

Pi ¼
1

6π2

Z
∞

mi

ðE2 −m2
i Þ3=2fidE; ð18Þ

si ¼
ρi þ Pi − μini

Ti
: ð19Þ

If the degeneracy of the particle i is small (μi ≪ Ti), the
Fermi-Dirac distribution can be well approximated by the
Maxwell-Boltzmann distribution. In the approximation of
Maxwell-Boltzmann statistics, the equilibrium number
density of the ADM particle χ becomes

nEQχ ¼ gχ

�
mχTχ

2π

�
3=2

eð−mχþμχÞ=Tχ

�
1þ 15

8x
þOðx−2Þ

�
;

ð20Þ

for the nonrelativistic limit, mχ ≫ Tχ (x ≫ 1), and

nEQχ ¼ gχ
T3
χ

π2
eμχ=Tχ

�
1 − x2

4
þOðx4Þ

�
; ð21Þ

for the ultrarelativistic limit, mχ ≪ Tχ (x ≪ 1) [47]. The
number density of antiparticle χ̄ is also obtained with the fact
that μχ ¼ −μχ̄ in equilibrium. As a result, chemical potential

drops out in the product YEQ
χ YEQ

χ̄ :

YEQ
χ YEQ

χ̄ ¼ 1

ð2πÞ3
�
45

2π2

�
2
�
gχ
g�s

�
2

x3e−2x; ð22Þ

for the nonrelativistic and

YEQ
χ YEQ

χ̄ ¼ 1

π4

�
45

2π2

�
2
�
gχ
g�s

�
2

; ð23Þ

for the ultrarelativistic cases. The absence of the chemical
potential in YEQ

χ YEQ
χ̄ simplifies the Boltzmann equations in

Eq. (11) in the nonrelativistic and ultrarelativistic cases [29].
The chemical potential of the ADM in equilibrium is still

surviving on the asymmetry

ϵEQ ¼ YEQ
χ − YEQ

χ̄ ¼ 1

s
ðnEQχ − nEQχ̄ Þ: ð24Þ

For the examples, we obtain

ϵEQ ¼ 45

2π2
gχ
g�s

�
mχ

2πTχ

�
3=2

e−mχ=Tχ ðeμχ=Tχ − e−μχ=Tχ Þ; ð25Þ

for the nonrelativistic [36] and

ϵEQ ¼ 45

2π4
gχ
g�s

ðeμχ=Tχ − e−μχ=Tχ Þ; ð26Þ

for the ultrarelativistic cases. From these equations, we
have [36]

μχ
Tχ

¼ ln

"
1

2

 
ϵEQ

λ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ϵEQ

λ

�
2

þ 4

s !#
; ð27Þ

where

λ ¼ 45

2π2
gχ
g�s

�
mχ

2πTχ

�
3=2

e−mχ=Tχ ; ð28Þ

for the nonrelativistic and

λ ¼ 45

2π4
gχ
g�s

; ð29Þ

for the ultrarelativistic cases.
We observed the ratio μχ=Tχ in many equations. This

ratio is the so-called degeneracy parameter or the pseu-
dochemical potential. In the remaining part of this paper,
we use the following definition

ξ ¼ μχ
Tχ

; ð30Þ

to denote the chemical potential of the ADM particle χ and
call ξ chemical potential simply.

C. Effective number of neutrinos

The energy density of relativistic particles, i.e., radiation
components in the early universe, ρrad is given by

ρrad ¼ ργ þ ρstdν þ ρDR; ð31Þ

whereργ ¼ ðπ2=30ÞgγT4
γ is the energydensity of photons and

ρstdν ¼ Nstd
ν ρν ¼ Nstd

ν ð7=8Þðπ2=30ÞgνT4
ν is the energy density

of standard-model massless neutrinos for Nstd
ν neutrino

families. By the simple estimation in the standard particle
cosmology, we have Nstd

ν ¼ 3. Including the effect of slight
reheating of the neutrinos from early eþe− annihilation, we
obtain Nstd

ν ¼ 3.046, which is due to the small overlap of
neutrino decoupling and eþe− annihilation [9].
The energy density of extra radiation, dark radiation, is

generally parametrized through the number of extra effec-
tive neutrino species ΔNν as follows [8]

ρDR ¼ ΔNνρν ¼ ΔNν
7π2

120
T4
ν: ð32Þ
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In terms of the following effective number neutrinos

Neff ¼ Nstd
ν þ ΔNν; ð33Þ

the total energy density of radiation components is estimated
to be

ρrad ¼ ργ þ Neffρν ¼
�
1þ Neff

7

8

gν
gγ

�
Tν

Tγ

�
4
�
ργ: ð34Þ

As we mentioned in the introduction, if there is an extra
light particle as a dark radiation that particle increases the
effective number of neutrinos (the direct contribution case)
[7,18]. On the other hand, although the extra particles are
not light enough to be a dark radiation, its annihilation heats
other particles via entropy conservation and changes the
ratio of ðTν=TγÞ in Eq. (34). The extra particle contributes
to the total energy density of radiation components ρrad.
Consequently, the change of ρrad reflects to the enhance or
the reduce of the effective number of neutrinos Neff via the
relation of ρrad ¼ ργ þ Neffρν even in the absence of dark
radiation (the indirect contribution case).
The effective number of neutrino can be probed by its

effect on the CMB and the outcome of BBN. The recent
observational result on the effective number of neutrinos by
the Planck Collaboration is Neff ¼ 3.04� 0.18 (68% C.L.)
from CMB data [46]. On the other hand, we have
Neff ¼ 3.71þ0.47−0.45 from BBN data [6].

III. DIRECT CONTRIBUTION

A. Methods

The method to obtain a constraint on the chemical
potential of fermionic DM with the effective number of
neutrinos in the case of direct contribution is developed by
Boeckel and S.-Bielich [31]. First, we review their method
and then we slightly extend their approach to estimate
the upper limit on the ADM number asymmetry with the
effective number of neutrinos.
Because the energy density of ADM ρχχ̄ cannot excess

the energy density of dark radiation ρDR [31], we find the
following constraint on the energy density of ADM

gχ
ð2πÞ3

Z
E½fχð~p; tÞ þ fχ̄ð~p; tÞ�d3p ≤ ΔNν

7π2

120
T4
ν; ð35Þ

where fið~p; tÞ is the distribution function of ADM
(i ¼ χ, χ̄). In general, the energy density of fermion
increases with its chemical potential. We obtain the upper
bound on the chemical potential of ADM, μmax

χ as a function
of the excess of the effective number of neutrinos ΔNν at
BBN, e.g., μmax

χ ¼ fðΔNνÞ.
We slightly extend this method to estimate the upper

limit on the ADM number asymmetry with the effective
number of neutrinos. Because the number density of

fermion increases with its chemical potential, the upper
bound on the net ADM number density, nχχ̄ ¼ nχ − nχ̄ is a
function of the excess of effective number of neutrinosΔNν

at BBN, e.g., nmax
χχ̄ ¼ fðΔNνÞ. We can calculate the upper

bound of the ADM number asymmetry at BBN

ϵBBNmax ¼ nmax
χχ̄ ðΔNνÞ

s
; ð36Þ

where s is the total entropy density s ¼Pisi. Recall that
the number asymmetry is conserved, the upper limit of
the ADM number asymmetry at any time ϵmax, at the epoch
of equilibrium ϵEQmax and at BBN ϵBBNmax , is the same as
ϵmax ¼ ϵEQmax ¼ ϵBBNmax .

B. Constraints

For the ultrarelativistic ADM with temperature Tχ , the
energy density is obtained as

ρχχ̄ ¼ gχT4
χ

�
7π2

120
þ 1

4
ξ2 þ 1

8π2
ξ4
�
; ð37Þ

and we have

gχ

�
7π2

120
þ 1

4
ξ2 þ 1

8π2
ξ4
�

≤ ΔNν
7π2

120

�
Tν

Tχ

�
4

; ð38Þ

from the relation of ρχχ̄ ≤ ρDR. The upper bound of the
chemical potential μχ (more precisely degeneracy parameter
ξ) of the ultrarelativistic ADM is obtained [31]:

ξBBNmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−π2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7π4

15

�
ΔNν

gχ

�
Tν

Tχ

�
4

þ 8

7

�svuut : ð39Þ

The number density of ultrarelativistic ADM is estimated
as nχχ̄ ¼ ðgχT3

χ=6π2Þðπξþ ξ3Þ and the upper bound of the
ADM number asymmetry is calculated to be

ϵmax ¼ ϵBBNmax ¼ gχT3
χ

6π2s
½πξBBNmax þ ðξBBNmax Þ3�: ð40Þ

The ratio of the temperature of neutrinos to the
temperature of ADM, Tν=Tχ , can be estimated by con-
sidering conservation of the comoving entropy. At BBN,
we have [31]

Tν

Tχ
¼
�

g�sðTχdÞ
g�sðTBBNÞ

�
1=3

; ð41Þ

where Tχd is the ADM decoupling temperature and TBBN

is the BBN temperature around 1MeV. The effective degrees
of freedom at BBN for standard model particles is obtained
as g�sðTBBNÞ ¼ 2þ ð7=8Þð2 · 2þ 2 · 3Þ ¼ 10.75 for
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photons, e� and three neutrinos. Including ADM, we
have

g�sðTBBNÞ ¼ 10.75þ 7

8
gχðFþ

χ þ Fþ
χ̄ Þ; ð42Þ

where F�
χ is given by Eq. (8). We take Fþ

χ ¼ Fþ
χ̄ ¼ 1 and

gχ ¼ 2 for the ultra-relativistic Dirac ADM, g�s ¼ 14.25.
The effective degrees of freedom at ADM decoupling
g�sðTχdÞ depends on the details of the model of the
ADM [31]. If the ADM is decoupled when all standard
model particles were present and in equilibrium, we obtain
g�sðTχdÞ ¼ 106.75. In this section, we treat g�sðTχdÞ as a
free parameter.
Figure 1 shows the dependence of the extra effective

number of neutrinos ΔNν on the maximum ADM number
asymmetry ϵmax with mχ ¼ 1 MeV. In the case of ϵmax≲
0.01, the dependence of ΔNmax

ν on the ϵmax is almost
negligible, e.g., we obtain the plateau for ϵmax ≲ 0.01 in
each curves. The constraint on ϵ with ΔNν is obtained:

ϵmax ≃ 0.01; ð43Þ

for ΔNν ≲ 2.67 and g�sðTχdÞ≳ 10.75.
In the appropriate GeV-scale ADM models, small

number asymmetry ϵ≃ 10−11 is favorable to explain
the observed dark matter density ΩDM (for example, see
[29]). For the MeVADM, the small number asymmetry is
still expected (we will consider the relic abundance in
Sec. IV B). The result of ϵmax ≃ 0.01 is not a strong
constraint. The cosmological consequences of ξBBNmax on
some problems are important [31], however, we leave the
discussion of the number asymmetry of the ultrarelativistic
ADM in the direct contribution case.
Because the nonrelativistic particles role as matter

components, the direct contribution of such particles to
the energy density of radiation components should be
negligible. Consequently, we can hardly probe the chemical

potential as well as the asymmetry for nonrelativistic ADM
via BBN [31].

IV. INDIRECT CONTRIBUTION

A. Methods

The method to obtain the constraint on the effective
number of neutrinos with the symmetric MeV DM in
the indirect contribution is developed in the literature
[10,11,13–15,18,19,21,31]. First, we review the useful
method for the symmetric MeV DM developed by
Steigman [18] and then we extend his method to study
the ADM in a straightforward way.
Symmetric DM case (i) Γχγ;χe ≪ Γχν: If the symmetric

MeV DM χ couples more strongly to the neutrinos ν than to
the photons γ and electrons e−, e.g., Γχγ;χe ≪ Γχν, its late
time annihilation heats the neutrinos more than the photons
while the annihilation of the e� pairs heats the photons (but
not the decoupled neutrinos). The entropy in the comoving
volume of photons and e� pairs Sγe ¼ R3ðsγ þ seÞ and of
the neutrinos and the symmetric MeV DM Sνχ ¼R3ðsνþsχÞ
are conserved individually where R denotes the scale factor
[43]. The ratio of neutrino to photon temperatures after both
of the e� and the symmetric MeV DM are obtained by
consideration of entropy conservation as follows:

�
Tν

Tγ

�
3

¼ gγ½1þ ð~gχ=~gνÞðϕχ=ϕνÞ�
gγ þ ~geϕe

¼ 1þ 4
21
~gχϕχ

1þ 7
4
ϕe

; ð44Þ

where ~gi denotes effective internal degrees of freedom of
the particle i; ~gi ¼ ð7=8Þ · 2 · 2 ¼ 7=2 for the Dirac fer-
mions, ~gi ¼ ð7=8Þ · 2 · 1 ¼ 7=4 for the Majorana fermions.
Although we consider the only fermionic Dirac type DM, we
can also use ~gi ¼ 1 for the scalar bosons and 3 for the vector
bosons with the bosonic distribution function [Eq. (15) with
Θi ¼ −1]. The function of ϕ denotes the normalized entropy
density

ϕαðxÞ ¼
snetα ðxÞ
snetα ð0Þ ; ð45Þ

where snetα ðxÞ is the net entropy density of particle species α
with vanishing chemical potential [18]:

snetα ðxÞ¼ sαðμα¼0Þþsᾱðμᾱ¼0Þ¼
X
i¼α;ᾱ

ρiþPi

Ti
: ð46Þ

For e� pairs, ϕe is evaluated at x ¼ xed ¼ me=Tνd, while for
the symmetric DM, ϕχ is evaluated at x ¼ xχd ¼ mχ=Tνd

where Tνd denotes the decoupling temperature of neutrinos.
Because the difference between Majorana or Dirac nature of
symmetric MeV DM is taken into account by the effective
internal degrees of freedom ~gχ , we take gχ ¼ 1 in Eq. (15)
through our calculations.
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FIG. 1. The dependence of the extra effective number of
neutrinos ΔNν on the maximum ADM number asymmetry ϵmax.
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With the appropriate assumptions of Tνd ¼ 2 MeV and
ϕe ¼ 0.993 [18], we obtain

Neff ¼ 3

�
11

4

�
Tν

Tγ

�
3
�
4=3

¼ 3.018

�
1þ 4~gχϕχ

21

�
4=3

: ð47Þ

If the symmetric MeV DM particle is sufficiently massive,
this particle is regarded as a matter component and ϕχd ∼ 0.
As a result, the usual result Neff ≃ 3 is recovered. On the
contrary, for the very light symmetric DM, we obtain
ϕχ ¼ snetχ ðxχdÞ=snetχ ð0Þ ∼ snetχ ð0Þ=snetχ ð0Þ ¼ 1 and the excess
of the effective number of neutrinos Neff > 3 without the
dark radiation. The effective number of neutrinos is a
function of the mass of symmetric MeV DM.
Symmetric DM case (ii) Γχγ;χe ≫ Γχν: On the other hand,

if the symmetric MeV DM couples more strongly to the
electrons and photons than to the neutrinos, Γχγ;χe ≫ Γχν,
its annihilation heats the electron-photon plasma relative to
the neutrino background. By the consideration of entropy
conservation, we have

�
Tν

Tγ

�
3

¼ gγ
gγ þ ~geϕe þ ~gχϕχ

¼ 2

2þ 7
2
ϕe þ ~gχϕχ

; ð48Þ

and

Neff ¼ 3

�
11

4

�
Tν

Tγ

�
3
�
4=3

¼ 3

�
11

10.95þ 2~gχϕχ

�
4=3

:

ð49Þ

If the symmetric MeV DM particle is sufficiently massive,
the usual result Neff ≃ 3 is recovered. On the contrary, an
annihilation of more light symmetric MeV DM reduces the
effective number of neutrinos to be Neff < 3.
ADM case: We extend the method of calculating Neff

with symmetric MeV DM in a simple way. To take care
of the chemical potential of the ADM for the entropy
calculations, we use the following net entropy density of
the ADM

snetχ ðx; μχÞ ¼ sχ þ sχ̄ ¼
X
i¼χ;χ̄

ρi þ Pi − μini
Ti

; ð50Þ

instead of Eq. (46). The normalized entropy density of the
ADM to be a function of not only xχd but also μχ is given as
follows:

ϕχðxχd; μχÞ ¼
snetχ ðxχd; μχÞ
snetχ ð0; μχÞ

: ð51Þ

Other quantities in Eq. (44) and Eq. (48), such as ~gχ , ϕe,
remain the same.
The effective number of neutrinos with the MeVADM is

estimated in the same form of Eq. (47) and Eq. (49). If the

MeVADM χ couples more strongly to the neutrinos ν than
to the photons γ and electrons e− (Γχγ;χe ≪ Γχν), we obtain

Neff ¼ 3.018

�
1þ 4~gχϕχðxχd; μχÞ

21

�
4=3

; ð52Þ

while if theMeVADMcouplesmore strongly to the electrons
and photons than to the neutrinos (Γχγ;χe ≫ Γχν), we have

Neff ¼ 3

�
11

10.95þ 2~gχϕχðxχd; μχÞ
�

4=3
: ð53Þ

These derivations of the effect of light ADM on the
effective number of ultrarelativistic species at the epoch of
BBN, Eqs. (52) and (53), are the main new findings in
this paper.
In the following numerical calculations, we vary the

mass of the MeV ADM in the range of mχ ¼
0.1−100 MeV. In this case, both of the ultrarelativistic
limit and the nonrelativistic limit are inappropriate. We
estimate the thermodynamic quantities such as the number
density from the first principle (most fundamental formu-
lae) in Eq. (16), Eq. (17), Eq. (18), and Eq. (19) numerically
by the Gauss-Laguerre integration method:

Z
∞

0

xαe−xFðxÞdx ¼
XN
j¼1

wjFðxjÞ; ð54Þ

where FðxÞ and wj denote a function of x and “Gauss-
Laguerre weights,” respectively [48]. In our calculation,
α ¼ 0 and N ¼ 50 are chosen. In order to apply the formula
in Eq. (54) to calculate the number density ni, we estimate
the following integral [49,50]

ni ¼
1

2π2

Z
∞

0

TiðTixþmiÞ½ðTixþmiÞ2 −m2
i �1=2fidx;

ð55Þ

instead of Eq. (16), where x ¼ ðEi −miÞ=Ti and the
distribution function in Eq. (15) is replaced by

fi ¼
gi

eðTixþmi−μiÞ=Ti þ Θi
: ð56Þ

Similarly, the energy density ρi and the pressure Pi are
calculated as

ρi ¼
1

2π2

Z
∞

0

TiðTixþmiÞ2½ðTixþmiÞ2 −m2
i �1=2fidx;

Pi ¼
1

6π2

Z
∞

0

Ti½ðTixþmiÞ2 −m2
i �3=2fidx; ð57Þ

instead of Eq. (17) and Eq. (18), respectively.
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Before we show the results from the numerical calcu-
lations, we would like to comment on the role of asym-
metry at BBN. The effect of the annihilating thermal relic
particles to heat either the photons or the light particles. The
bulk of this heat is created when the temperature is within a
factor of a few of the relic particle mass T ∼mχ . At these
temperatures the number asymmetry between particles and
antiparticles may be small without large chemical potential.
At these temperatures the number of particle and anti-
particle pairs could be much larger than the relic number
when annihilations have ceased, at a temperature much
lower than the particle mass. Thus, the effect of the number
asymmetry of unobserved MeV scale particles is not strong
at BBN (except the very light and degenerate (asymmetric)
neutrinos. For example, see Refs. [51,52]).
Although the case of asymmetric dark matter is not

significantly different from the case of symmetric dark
matter without large chemical potential of ADM, we would
like to announce that the explicit considerations of the
relation between the chemical potential of ADM and
effective number of neutrinos at BBN are first shown in
this paper. Some numerical results are expected without
actual calculations, however, the actual calculations are an
important complement to any previously reported results in
the literature.

B. Constraints

1. Lower mass limits: Figure 2 shows the dependence of
the effective number of neutrinos Neff on the mass of the
ADM mχ with the various chemical potentials ξ at BBN
(T ¼ 2 MeV). The figure (a) shows the dependence in the
case of Γχγ;χe ≪ Γχν while the figure (b) shows the
dependence in the case of Γχγ;χe ≫ Γχν.
The value of Neff with the vanishing chemical potential

(ξ ¼ 0) is compatible with the previously reported results
for the symmetric MeV DM case [12,18,21,53]. For
example, Bœhm et al. obtained the lower bound on the
mass of Dirac fermion DM from the CMB data (and BBN
considerations) at 95% C.L. as mχ > 7.3 MeV for Neff ¼
3.30þ0.54−0.51 ¼ 2.79−3.84 in the case of Γχγ;χe ≪ Γχν [53].
We obtain the same lower limit of mχ for Neff ¼ 3.86 from
Fig. 2. We note that the value of Neff at CMB and at BBN
may be different, e.g., a MeV scale particle with the
vanishing chemical potential (mass ≲10 MeV) may lead
to the value of Neff at CMB formation which is lager than at
BBN [12]. In this paper, we take Neff to be defined at BBN.
The similar figure of Fig. 2 has already reported by

Nollett and Steigman for symmetric DM [19,21]. The
curves with nonvanishing chemical potential in Fig. 2
are newly obtained in our study. The dependence of the
chemical potentials of ADM on the effective number of
neutrinos is shown explicitly for the first time in this
paper. Compere with the symmetric DM case, the effective
number of neutrinos Neff increases with the increasing

asymmetry (chemical potential ξ) and with the decreasing
mass mχ if ADM particle mainly interacts to neutrinos
(Γχγ;χe ≪ Γχν). On the contrary, Neff decreases with the
increasing ξ and with the decreasing mχ if ADM particle
mainly interacts to photons and electrons (Γχγ;χe ≫ Γχν).
Also, in the Nollett and Steigman papers for symmetric
DM [19,21], Neff depends on the nature of the quantum
statistics of thermal relic (i.e., fermion or boson). We can
take the effective internal degrees of freedom as ~gχ ¼
1; 7=4; 2; 7=2 for a real scalar, Majorana fermion, complex
scalar, and Dirac fermion in Eqs. (52) and (53). Thus, Neff
depends on the difference of the nature of the thermal
relic not only in the symmetric DM case but also in the
ADM case.
The lower mass limit is obtained with the upper bound

or lower bound on the effective number of neutrinos. For
example, we obtain mχ ≳mmin

χ ¼ 18.1 if Nmax
eff ¼ 3.0 in the

figure (a), while mχ ≳mmin
χ ¼ 18.3 if Nmin

eff ¼ 3.0 in the
figure (b). Thus, the sets of fðξ; mmin

χ Þg for the fixed Nmax
eff

or Nmin
eff is obtained. The lower bound on the ADM mass is

the case when the asymmetry and chemical potential are
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FIG. 2. The dependence of the effective number of neutrinos
Neff on the ADM mass mχ with the various chemical potential ξ
at BBN. The figure (a) shows the dependence in the case of
Γχγ;χe ≪ Γχν while the figure (b) shows the dependence in the
case of Γχγ;χe ≫ Γχν.
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small. The bound gets stronger as asymmetry ϵ and
chemical potential ξ grow. It shows the smooth transition
from asymmetric to the symmetric WIMP limit.
The sets of fðξ; mmin

χ Þg is shown in Fig. 3. This figure
shows the dependence of the lower mass limit of the ADM
mmin

χ on the chemical potential ξ with the various bound of
the effective number of neutrinos Neff at BBN. The figure
(a) shows the Γχγ;χe ≪ Γχν case while the figure (b) shows
the Γχγ;χe ≫ Γχν case. The ADM mass mmin

χ increases with
the decreasing upper bound of the effective number of
neutrinos Nmax

eff in the Γχγ;χe ≪ Γχν case. On the contrary,
mmin

χ increases with the increasing the lower bound of Nmin
eff

in the Γχγ;χe ≫ Γχν case. Moreover mmin
χ increases with the

increasing chemical potential ξ in both cases.
From Fig. 3, the following constraint onmmin

χ withNeff is
obtained:

mmin
χ ≃

�
8.1 − 18.1 MeV ðNmax

eff ¼ 3.0 − 3.7Þ
8.2 − 18.3 MeV ðNmin

eff ¼ 2.5 − 3.0Þ ð58Þ

for Γχγ;χe ≪ Γχν (upper) and Γχγ;χe ≫ Γχν (lower) cases,
more concretely,

mmin
χ ≃

�
18.1 MeV ðΓχγ;χe ≪ Γχν; Nmax

eff ¼ 3.0Þ
18.3 MeV ðΓχγ;χe ≫ Γχν; Nmin

eff ¼ 3.0Þ ð59Þ

with the standard value of the effective number of neutrinos.
2. Maximum number asymmetry: Once the sets of

fðξ; mmin
χ Þg is obtained, we can estimate the ADM number

asymmetry at ðξ; mmin
χ Þ:

ϵðξ; mmin
χ Þ ¼ 1

s
½nχðξ; mmin

χ Þ − nχ̄ðξ; mmin
χ Þ�: ð60Þ

The total entropy density s is calculated as s ¼ snetSM þ snetχ

where snetSM ≃ snetγ þ snete þ 3snetν denotes the sum of the net
entropy densities of the standard model particles at BBN and
snetχ denotes the net entropy density of the ADM χ. In the
numerical calculation of the entropy density [see Eq. (19)
with Eq. (55) and Eq. (57)], the masses of all particles except
neutrinos are taken from the particle data group [45].
Although, the recent results of the Planck experiment give
us a constraint on the sum of the light neutrino masses asP

mν < 0.17 eV (95% C.L.) [46], we assume that all
neutrino masses are the same as mν ¼ mνe ¼ mνμ ¼ mντ ¼
1 eV in our calculation for the sake of simplicity. The
unknown tiny masses of the neutrinos are irrelevant in our
study. Moreover, we neglect the chemical potential of all
standard model particles.
Because the ADM number asymmetry ϵ decreases with

the increasing mass mχ (we will see below), we obtain the
upper limit of the ADM number asymmetry

ϵmax ¼ ϵðξ; mmin
χ Þ; ð61Þ

and the set of fðξ; ϵmaxÞg for the fixed Nmax
eff or Nmin

eff .
Figure 4 shows the ADM number asymmetry. Figure

(a) describes the dependence of the ADM number asym-
metry ϵ on the mass mχ with fixed chemical potential ξ.
Figures (b) and (c) describe the dependence of the upper
limit of the ADM number asymmetry ϵmax on the chemical
potential ξ with the various bound of the effective number
of neutrinos Nmax

eff or Nmin
eff at BBN. The figure (b) shows

the Γχγ;χe ≪ Γχν case while the figure (c) shows the
Γχγ;χe ≫ Γχν case. In the figure (a), we see that the
ADM number asymmetry ϵ decreases with the increasing
mass mχ . The figure (b) shows that the upper bound of the
ADM number asymmetry ϵmax increases with the increas-
ing effective number of neutrinos Nmax

eff in the Γχγ;χe ≪ Γχν

case. On the contrary, the figure (c) shows that ϵmax

increases with the decreasing Nmin
eff in the Γχγ;χe ≫ Γχν case.

From Fig. 4, the following constraint on ϵmax with Neff is
obtained:
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FIG. 3. The dependence of the lower mass limit of the ADM
mmin

χ on the chemical potential ξ with the various effective
number of neutrinos Neff at BBN (T ¼ 2 MeV). The figure
(a) shows the Γχγ;χe ≪ Γχν case while the figure (b) shows the
Γχγ;χe ≫ Γχν case.
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ϵmax ≃
�
1.35 × 10−7 − 7.20 × 10−6 ðNmax

eff ¼ 3.0 − 3.7Þ
1.23 × 10−7 − 6.95 × 10−6 ðNmin

eff ¼ 2.5 − 3.0Þ
for ξ≳ 0.0025; ð62Þ

for Γχγ;χe ≪ Γχν (upper) and Γχγ;χe ≫ Γχν (lower) cases,
more concretely,

ϵmax ≃
�
1.35 × 10−7 ðΓχγ;χe ≪ Γχν; Nmax

eff ¼ 3.0Þ
1.23 × 10−7 ðΓχγ;χe ≫ Γχν; Nmin

eff ¼ 3.0Þ ð63Þ

with the standard value of the effective number of neutrinos.
We note that, as shown in figure (b) and figure (c), ϵmax

increases with the increasing chemical potential ξ. It is
naturally expected because the origin of the ADM number
asymmetry is the nonvanishing chemical potentials of χ
and χ̄. Although there is no indication of the upper limit of
the ADM number asymmetry ϵmax for ξ ¼ 0 in Fig. 4,
ϵmax ¼ 0 is obtained correctly for ξ ¼ 0.
As we show below, in consideration of the relic abun-

dance of the MeV ADM, the obtained upper limit on the
ADM number asymmetry in Eq. (62) and Eq. (63) is not a
strong constraint, if the origin of the observed 511 keV
gamma-ray is the annihilating light MeV ADM.
3. Relic abundance: The relic abundance of the ADM

ΩADMh2 depends on not only the ADM number asymmetry
ϵ but also the thermally averaged annihilation cross section
hσχχ̄vi [see Eq. (11)]. The averaged cross section is
obtained by [42]

hσχχ̄vi ¼
1

8m4
χTχK2

2ðxÞ

×
Z

∞

4m2
χ

σχχ̄ðsÞðs − 4m2
χÞ

ffiffiffi
s

p
K1ð

ffiffiffi
s

p
=TχÞds; ð64Þ

where σχχ̄ , Ki, s. and x denote the annihilation cross
section, the modified Bessel function of order i, one of
the Mandelstam variable (not an entropy density) and
x ¼ mχ=Tχ , respectively. Practically, the averaged cross
section can be expanded in power of the relative velocity
of incoming particles v. The standard approximation of the
averaged cross section is [33,35]:

hσχχ̄vi≃ aþ bx−1 þOðx−2Þ: ð65Þ

If the s-wave annihilation is dominant, we can take a ≠ 0
and b ¼ 0. On the other hand, if the p-wave annihilation is
dominant, we can put a ¼ 0 and b ≠ 0. In this study, the
coefficients a and b are taken as free parameters to perform a
model independent analysis.
Figures 5 and 6 show the dependence of the relic

abundance of the MeV ADM ΩADMh2 on the mass mχ

in the s-wave dominant case (Fig. 5) and in the p-wave
dominant case (Fig. 6), respectively. In Fig. 5, the figure
(a) shows the dependence with the various number asym-
metry ϵ, while the figure (b) shows the dependence with
the various cross section hσχχ̄vi≃ aþ bx−1. The figure
(c) shows the value of parameter “a” required to satisfy the
observed relic abundance of DM, ΩADMh2 ¼ 0.12 and
lower mass limit for the Neff ¼ 3.0. The vertical line in
figure (c) shows the lower mass limit. The relic abundance
of the MeV ADM ΩADMh2 decreases with the decreasing
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FIG. 4. ADM number asymmetry. Figure (a): the dependence
of the ADM number asymmetry ϵ on the mass mχ with fixed
chemical potential ξ. Figure (b) and (c): the dependence of the
upper limit of the ADM number asymmetry ϵmax on the chemical
potential ξ with the various bound of the effective number of
neutrinos Nmax
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Γχν case while the figure (c) shows the Γχγ;χe ≫ Γχν case.
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ADM number asymmetry ϵ as shown in the figure (a). The
mass dependence on the ΩADMh2 is significant for the very
lightmχ ≲ 5 MeV and the highly asymmetric ϵ≳ 1 × 10−7
case. In other words, we can ignore the mass dependence
on the relic abundance for the case of ϵ≲ 1 × 10−8. Indeed,

for ϵ≲ 1 × 10−8, the s-wave dominant cross section is
almost degenerate for ΩADMh2 ¼ 0.12 as shown in figure
(c). The behavior of the relic abundance in the p-wave
dominant case (Fig. 6) is similar to the s-wave dominant
case (Fig. 5).
The cosmological constraints on the annihilation cross

section of the symmetric DM are extensively studied in the
literature, such as the constraints from the galactic 511 keV
gamma-ray line [54–64], from the galactic 3.5 keV x-ray
line [65–67], from other cosmic rays [68–73], from the
CMB [74–77] and from the BBN consideration [78].
For the symmetric MeV DM, the significant constraints

on the annihilation cross section are obtained from the
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FIG. 5. The dependence of the relic abundance of the MeV
ADM ΩADMh2 on the mass mχ in the s-wave dominant case.
The figure (a) shows the dependence with the various number
asymmetry ϵ, while the figure (b) shows the dependence with
the various cross section hσχχ̄vi≃ aþ bx−1. The figure
(c) shows the value of parameter “a” required to satisfy the
observed relic abundance of DM, ΩADMh2 ¼ 0.12 and lower
mass limit for the Neff ¼ 3.0. The vertical line in figure
(c) shows the lower mass limit.
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galactic 511 keV gamma-ray line observation. The light
particles χ (mχ ∼ 1 − 100 MeV) annihilating into eþe−
pairs in the galactic bulge may be the source of the
observed gamma-ray [54]. According to this scenario, if
the s-wave annihilation is dominant, mχ ∼ 100 MeV is
required to obtain the observed cosmic ray flux without the
final state radiation/bremsstrahlung, the so-called internal
bremsstrahlung (IB), effects. Including IB effects, we may
expect that the upper bound of the symmetric dark matter
particles is around 3 MeV [79] or 7.5 MeV [80]. On
the contrary, if the cross section is p-wave dominant, the
lighter DM (mχ ∼ 1 MeV) is possible for b ∼ 10 − 200 pb
(b ∼ 2.6 × 10−8 − 5.1 × 10−7 GeV−2) [54,58].
If the s-wave annihilation is dominant, the upper bound

of symmetric dark matter mχ ≲ 3 or 7.5 MeV is at almost
margin of our result in Eq. (58) for Neff ¼ 2.5 − 3.7.
Moreover, for Neff ¼ 3.0, mχ ≲ 3 or 7.5 MeV is not
consistent with our result mmin

χ ∼ 18 MeV in Eq. (59).
Although, we may expect that the constraint on the
symmetric MeV DM is also appropriate for the MeV
ADM approximately, there is a little study for the cosmo-
logical constraints on the annihilation cross section of the
ADM [81]. The upper mass limit of ADM may be a few
MeV, however, we take a conservative upper limit of the
mass of ADM as a few 10 MeV in this paper.
Figure 5 shows that the s-wave dominant annihilation

with a≃ 8 × 10−9 GeV−2, b ¼ 0 and ϵ≃ 1.0 × 10−8 is
consistent with the observed energy density of the cold dark
matter component ΩDMh2 ≃ 0.1. For the p-wave dominant
annihilation, a¼0, b≃3×10−7GeV−2 and ϵ≃1.0×10−8
is consistent with data as shown in Fig. 6. If the origin of the
observed 511 keV gamma-ray is the annihilating MeV
ADM and/or all of the cold dark matter is made of the MeV
ADM ΩADMh2 ¼ ΩDMh2, the ADM number asymmetry ϵ
should be less than the obtained upper limit ϵmax in Eq. (62)
and Eq. (63) at least under 10−1. If the effective number
of neutrinos is just the standard value Neff ¼ 3.0, the ADM
number asymmetry should be ϵ≃ ϵmax × 10−3. As a
consequence, the upper limit on the ADM number asym-
metry in Eq. (62) and Eq. (63) is not a strong constraint.
We comment that the constraints in Eq. (62) and Eq. (63)

may be more strict in the combination of the following cases:
(a) if the chemical potential of the ADM is tiny ξ ≪ 0.0025,
(b) if the origin of the observed 511 keV gamma-ray is not
the annihilating MeVADM and (c) the MeVADM is a part
of the cold dark matter ΩADMh2 < ΩDMh2.

V. SUMMARY

We have extended the known two methods by Boeckel
and S.-Bielich [31] as well as by Steigman [18] to obtain
the constraints on the MeV asymmetric dark matter with
the effective number of neutrinos Neff at big bang
nucleosynthesis.

If an extra particle is light enough, this light particle has
contributed directly to the effective number of neutrinos as
the so-called dark radiation (direct contribution case). From
the requirement of ρχ ≤ ρDR, we have obtained the upper
limit on the asymmetric dark matter number asymmetry
ϵmax ∼ 0.01 for ΔNν ≲ 2.67.
Although the extra particles are not light enough to

contribute directly to the effective number of neutrinos, its
annihilation yields either increase or decrease the effective
number of neutrinos (indirect contribution case). If the
MeV asymmetric dark matter couples more strongly to the
neutrinos than to the photons and electrons (Γχγ;χe ≫ Γχν)
or if the MeV asymmetric dark matter couples more
strongly to the electrons and photons than to the neutrinos
(Γχγ;χe ≪ Γχν), the constraint on mmin

χ with Neff is obtained
in Eq. (58). For example,

mmin
χ ≃ 18 MeV; ð66Þ

if the effective number of neutrinos is just the standard value
Neff ¼ 3.0 as shown in Eq. (59). The constraint on ϵ with
Neff is also obtained in Eq. (62). For example ϵmax ≃ 10−7
for Neff ¼ 3.0 as shown in Eq. (63).
If the origin of the observed 511 keV gamma-ray is the

annihilating MeV asymmetric dark matter and/or the all of
cold dark matter is made of the MeV asymmetric dark
matter, ϵ≃ 1.0 × 10−8 is consistent with data. The con-
straint on ϵ is not a strong constraint in both of direct
(ϵmax ∼ 0.01, for ΔNν ≲ 2.67) and indirect contribution
cases (ϵmax ≃ 10−7 for Neff ¼ 3.0).
On the other hand, the lower limit of the asymmetric dark

matter mass mmin
χ ≃ 18 MeV for Neff ≃ 3.0 in the indirect

contribution case is strict constraint. From the galactic
511 keV gamma-ray line observation, the symmetric dark
matter mass may be less than about a few 10 MeV (or a
few MeV). We can expect that the range of the asymmetric
(as well as symmetric) MeV dark matter mass is so narrow
to satisfy mχ ≃ 18 MeV in the case of Γχγ;χe ≫ Γχν or
Γχγ;χe ≪ Γχν. The constraint may be useful to check or
construct the MeV asymmetric dark matter models.
The role of the number asymmetry of unobserved

MeV scale particles is not strong at BBN. The case of
ADM is not significantly different from the case of
symmetric DM without large chemical potential; how-
ever, the explicit considerations of the relation between
the chemical potential of ADM and effective number of
neutrinos at BBN are shown for the first time. Our
actual calculations are important complement to any
previously reported results in the literature. The method
to discuss the dependence of the chemical potential of
ADM on the effective number of neutrinos give a little
useful step toward solving puzzles in the dark matter
problems.
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