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We search for the process B0 → π−τþντ using the full Belle data set of 711 fb−1, corresponding to
772 × 106BB̄ pairs, collected at the ϒð4SÞ resonance with the Belle detector at the KEKB asymmetric-
energy eþe− collider. We reconstruct one B meson in a hadronic decay and search for the B0 → π−τþντ
process in the remainder of the event. No significant signal is observed and an upper limit of
BðB0 → π−τþντÞ < 2.5 × 10−4 is obtained at the 90% confidence level.

DOI: 10.1103/PhysRevD.93.032007

I. INTRODUCTION

The decayB0 → π−τþντ [1] is mediated by theWþ boson
via the b̄→ ū transition.The transition amplitude is described
by [2]

hπ−juγμb̄jB0i ¼ fþðq2Þ
�
2pμ þ

�
1 −m2

B −m2
π

q2

�
qμ

�

þ f0ðq2Þm
2
B −m2

π

q2
qμ; ð1Þ

with p and q being the momentum transfers to the pion and
lepton pair, respectively.
The form factors fþ and f0 can be computed from

QCD light-cone sum rules [2,3] for q2 < 16 GeV2=c4

and lattice QCD [4–6] for q2 > 16 GeV2=c4. Various
parametrizations exist to interpolate between the two
regions. In this study, we use the parametrization
introduced by Bourrely, Caprini, and Lellouch
(BCL) [7], which can describe both form factors in
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m2
τ ≤ q2 ≤ ðmB −mπÞ2. The parameter values are taken

from Ref. [2].
It has been stated [2,8] that the differential ratio

dΓðB → πτντÞ=dq2
dΓðB → πlνlÞ=dq2

; l ¼ e; μ ð2Þ

can be used as a test for the Standard Model (SM) as it
depends solely on the ratio of the scalar and vector form
factors f0=fþ. The Cabibbo-Kobayashi-Maskawa (CKM)
matrix [9] element jVubj enters both differential branching
fractions and cancels in the ratio.
In new physics models like the two-Higgs-doublet model

(2HDM) [10,11], the decay B0 → π−τþντ can also be
mediated by a charged Higgs boson. Possible contribution
of a Hþ and other couplings in the 2HDM and MSSM
[12,13], which would affect the branching fraction and
the differential ratio of branching fractions, have been
evaluated in Refs. [2] and [14–17].
The decay B0 → π−τþντ has not been observed, nor has

an upper limit on the branching fraction been obtained.
Recent results [6] on the two form factors obtained from
a joint fit to (2þ 1)-flavor lattice QCD calculations and
B → πlν data from Belle [18,19] and BABAR [20,21]
result in BðB0 → π−τþντÞ=BðB0 → π−lþνlÞ ¼ 0.641ð17Þ
and BðB0 → π−τþντÞ ¼ 9.35ð38Þ × 10−5 [22].
The signal decay is reconstructed in the four one-prong

decays of the τ lepton, τ− → l−ν̄lντ with l ¼ e or μ,
τ− → π−ν̄τ, and τ− → ρ−ντ, corresponding to 72% of all τ
decays [23]. The most powerful decay modes are the two
aforementioned hadronic τ decays and the τ− → e−ν̄eντ
mode, while the τ− → μ−ν̄μντ decay mode does not
improve the final expected significance. This is mainly
due to low muon momenta in the signal decay and the
resulting low muon identification efficiency. The result of
this analysis is based on the three most powerful τ
decay modes.

II. DATA SAMPLE

The search for B0 → π−τþντ described in this paper is
performed on the full data sample collected with the Belle
detector at the KEKB asymmetric-energy eþe− (3.5 on
8.0 GeV) collider [24], operating at the ϒð4SÞ resonance.
The data sample consists of an integrated luminosity
of 711 fb−1, which corresponds to ð771.6� 10.6Þ ×
106BB̄ pairs.
The Belle detector is a large-solid-angle magnetic

spectrometer that consists of a silicon vertex detector
(SVD), a 50-layer central drift chamber (CDC), an array
of aerogel threshold Cherenkov counters (ACC), a barrel-
like arrangement of time-of-flight (TOF) scintillation
counters, and an electromagnetic calorimeter (ECL) com-
prised of CsI(Tl) crystals located inside a superconducting
solenoid coil that provides a 1.5 T magnetic field. An iron

flux-return yoke located outside of the coil is instrumented
to detect K0

L mesons and to identify muons (KLM). Two
inner detector configurations were used. A 2.0 cm beam
pipe and a 3-layer SVD were used for the first sample of
152 × 106BB̄ pairs, while a 1.5 cm beam pipe, a 4-layer
silicon detector and a small-cell inner drift chamber were
used to record the remaining 620 × 106BB̄ pairs [25]. The
detector is described in detail in Ref. [26].
The study was performed as a blind analysis based on

simulated data. Monte Carlo (MC) samples were generated
with EvtGen [27] and the detector simulation was per-
formed by GEANT3 [28]. Recorded beam background
was added to the MC samples. The expected non-beam
background is estimated using MC samples that describe
all physics processes at Belle. A resonant ϒð4SÞ event at
Belle produces a BB̄ pair. Two samples of b → c decays for

B0B0 and BþB− events, respectively, each contain 10 times
the integrated luminosity of the data sample. Semileptonic
b → u decays are simulated in a sample containing 20 times
the integrated luminosity. Rare b → s and other rare decays
are described in another sample corresponding to 50 times
the integrated luminosity of the data. Continuum eþe− →
qq̄ ðq ¼ u; d; s; cÞ was generated with PYTHIA [29] and
included in the analysis in an MC sample containing
5 times the integrated luminosity of the data sample.
Additionally, a high statistics sample of B0 → Xuτν con-
taining 24 × 106 events was generated with a phase space
and ISGW2 [30] model.
The signal MC sample is generated using BCL results for

the vector and scalar form factors [2]. A total of 84 × 106

B0B0 events were generated with one meson decaying into
the signal final state and the other decaying generically.
No constraints on the τ decay were applied. The signal

MC sample corresponds to approximately 2000 times the
expected BðB0 → π−τþντÞ ¼ 9.35 × 10−5.

III. EVENT SELECTION

The complete reconstruction of the B-meson decay into
the signal final state (Bsig) is not possible due to the
presence of at least two neutrinos. However, since the initial
state of the eþe− collision is completely defined by the
momenta of the colliding leptons, we can constrain the
signal side by fully reconstructing the other B meson (Btag)
in hadronic decay modes. Tracks and clusters in the event
that are not assigned to the Btag after the successful
reconstruction are assumed to originate from Bsig.

A. Tag side

This analysis uses the Belle hadronic full-reconstruction
algorithm [31] based on the artificial Neural Network
package NeuroBayes [32]. Neural networks were trained
to reconstruct B0 and Bþ candidates from a total of 1104
decay channels.
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Additional event shape variables are added to suppress
continuum events. B mesons of resonant events are nearly at
rest in the center-of-mass (c.m.) frame, leading to a spherical
distribution of their decay products. Continuumevents, on the
other hand, produce back-to-back jets due the large available
kinetic energy. Useful observables that differentiate between
the two event types are the thrust axis of the Btag meson [33]
and modified Fox-Wolfram moments [34]. For this analysis,
the thrust axis and the secondmodifiedFox-Wolframmoment
are included in the neural network for the full hadronic
reconstruction. If the algorithm does not succeed in recon-
structing a B0 candidate, the event is discarded.
Differences in the full reconstruction efficiency between

MC and data, depending on the network output and
Btag reconstruction channel, are observed [19] but depend
on the tag-side reconstruction only; a correction factor is
determined from charmed semileptonic decays of the
signal-side B meson.
The beam-energy-constrained mass,

Mbc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
beam − ð~pBtag

cÞ2
q

=c2;

is required to be greater than 5.27GeV=c2, where Ebeam

and ~pBtag
denote the beam energy and reconstructed

three-momentum, respectively, of the Btag, evaluated in
the eþe− c.m. frame. With this requirement and the
correction factor applied, we estimate a reconstruction
efficiency of 0.18% from the signal MC sample, which
is in very good agreement with the reconstruction effi-
ciency of B0 mesons in the Belle data sample [31]. The
neural network output, ocstag ∈ ½0; 1�, is a continuous vari-
able whose high (low) values correspond to candidates
which are likely (unlikely) to be a true Bmeson. It is used at
a later selection stage, as described below. The distributions
ofMbc and lnðocstagÞ for the three reconstruction channels are
shown in Fig. 1, where the green (solid) contribution shows
the dominant charmed B → Xc background decays. No
further requirements are applied to the Mbc distributions,
while Mbc > 5.27 GeV=c2 is required for the lnðocstagÞ
distributions.

B. Signal side

Only one-prong decays of the τ lepton are considered in
this search. For of a correctly reconstructed Btag, there
should be exactly two remaining oppositely charged tracks
in the detector. Additionally, the event should contain
undetected (missing) momentum. Since the initial state
of the eþe− collisions is given by the four-momenta of the
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FIG. 1. Distributions of lnðocstagÞ (top) and Mbc (bottom) of the tag-side candidate for the three reconstruction channels τ → e (left),
τ → π (middle) and τ → ρ (right) for signal and background, produced from Belle simulation. A requirement ofMbc > 5.27 GeV=c2 is
applied in the left plot but no further requirements are applied other than successful reconstruction into one of the three modes. The
histograms are produced from MC samples, normalized to the data sample size. The signal histogram is scaled by an arbitrary factor of
2000 for better visibility. The dashed vertical line indicates the minimal value required in the final selection; see Sec. III E.
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colliding leptons, the undetected momentum can be mea-
sured. The missing momentum is defined as

pmiss ¼ 2pbeam − pBtag
− pBvis

;

where 2pbeam ¼ peþ þ pe− is twice the beam momentum
and Bvis denotes the visible part of the Bsig meson. Tracks
with low transverse momentum pt can curl in the solenoi-
dal field and be detected as two tracks with opposite charge.
Any two tracks with pt < 275 MeV=c with an angle
between the momentum vectors, calculated at the points
closest to the interaction point, below 15° and total
momentum difference less than 100 MeV=c are therefore
counted as a single track. We reduce the number of poor
quality tracks by requiring that jdrj < 2.0 cm and
jdzj < 4.0 cm, where jdzj and jdrj are the distances of
closest approach of a track to the interaction point along the
z axis and in the transverse plane, respectively.
Electron identification [35] is performed by calculating a

likelihood ratio using the matching of charged tracks with
the shower position in the ECL, the shower shape, the ratio
of the energy deposited in the ECL and the measured
momentum, the energy loss dE=dx in the CDC, and the
Cherenkov light production in the ACC. Muon identifica-
tion [36] is also done by evaluating a likelihood ratio.
Clusters in the KLM are matched to charged tracks by
extrapolation. For matched tracks, the difference between
expected and measured penetration depth and the trans-
verse deviation of all KLM hits associated with the track are
used in this likelihood ratio. For a charged track not
identified as a lepton, a kaon veto is applied using a
likelihood ratio that discriminates between kaons and pions
[37]. The ratio is formed from the energy loss dE=dx in the
CDC, flight time information from the TOF, and photon
yield in the ACC. All remaining tracks are identified as a
pion. Neutral pions are reconstructed from pairs of photons.
The absolute difference between the invariant mass of the
π0 candidate and the nominal π0 mass, normalized to its
uncertainty, must be below 3.0. Photons are required to
have energies in the laboratory frame greater than 50 MeV
for the ECL barrel and 100ð150Þ MeV for the forward
(backward) end cap. Neutral pion candidates with at least
one photon being used in the tag-side full reconstruction are
discarded.
Events are required to have exactly two oppositely

charged particles within the allowed impact parameter
range, with one additional track allowed outside the range.
At least one charged pion is required. If the event contains
two charged pions and neutral pion candidates, we search
for ρ� candidates. The charged pion with the lower
momentum in the c.m. frame is combined with each neutral
pion candidate and a mass vertex fit is performed. A pair
that can be successfully fitted with χ2 < 20 is accepted
as a charged ρ� meson if its invariant mass is between 625
and 925 MeV=c2. If multiple candidates are found, the

candidate with a mass closest to the nominal ρþ mass [23]
is selected. Due to the broad ρ� mass range, not all τ− →
ρ−ντ events are correctly reconstructed. These events
contain two oppositely charged pions and a neutral pion
in the final state and are miscategorized in the τ− → π−ντ
channel. Each event is reconstructed in one of the four
reconstruction channels. In many τ− → μ−ν̄μντ events, the
momentum of the muon is too low to reach the KLM and
thus is not identified as a muon. In most of these cases, the
muon is identified as a pion so that the event is placed in the
τ− → π−ντ sample.
Since KL mesons do not completely deposit their energy

in the detector, charmed B decays with subsequent decays
D → KLπ or D → KLlνl have the signal’s missing-
momentum signature. A KL candidate is identified as a
cluster in the KLMwithout an associated charged track. An
ECL cluster without an associated charged track is asso-
ciated with the KL cluster in the KLM if it lies along the
flight path extrapolated from the interaction point to
the KLM cluster. As described below, the extra energy
in the ECL is used to determine the signal yield. Therefore,
only events with a KL without energy deposition in the
ECL are vetoed.

C. Extra energy

We extract the signal yield from a fit to the distribution
of the energy deposited in the ECL (EECL) by particles
not used in the full reconstruction or by the two remaining
charged signal tracks. To reduce background, the afore-
mentioned photon energy requirements are applied. For
signal decays, there is no additional energy deposition,
so EECL peaks strongly at zero. Misreconstructions of Btag

lead to a small tail towards higher energy depositions for
true signal events. In contrast, most background decays
exhibit nonvanishing extra energy due to the presence of
additional neutral particles.

D. Boosted decision trees

Final event selection uses requirements on three varia-
bles: lnðocstagÞ; missing mass squared (M2

miss ¼ p2
miss); and

the output of the boosted decision tree (BDT). For each τ
reconstruction mode, one BDT is trained using the TMVA
framework [38]. All use different input variables, back-
ground training samples, and BDT growth parameters. The
signal training sample consists of 3 × 107 events out of the
complete signal MC sample. To improve the training,
events are required to have EECL < 1 GeV and Btag is
required to have a quality of lnðocstagÞ > −7. One additional
track outside the impact parameter requirement is allowed.
Another 3 × 107 signal events are used for performance

tests of the BDT for receiver-operation characteristics
(ROC) calculation and overtraining evaluation.
The input variables of the BDT used in the τ− → e−ν̄eντ

selection are the magnitude of the three-momenta of the
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pion and electron, the squared lepton-pair momentum
transfer q2, M2

miss, and different combinations of all
available four-momenta. The momentum transfer can
be calculated using the fact that both B mesons are at
rest in the c.m. frame, which implies pBsig

¼ −pBtag
and

q ¼ pBsig
− pπ . Due to the low efficiency of the full

reconstruction, an additional signal sample is used with
2 × 107 τ− → e−ν̄eντ events on the signal side. The back-
ground training sample consists of charmed B0 decays and
B0 → Xulνl decays. The input variables are linearly
decorrelated before their use in the training.
The background sample used in the τ− → π−ντ selection

BDT contains b → c decays and semileptonic b → u
decays of B0 mesons. Principal-component analysis
(PCA) [38] is applied to the input variables. PCA is an
orthogonal transformation which rotates a sample of data
points such that the variability along the new axis is
maximized. In this way, the variables are decorrelated.
The input variables are M2

miss, the missing energy, q2, the
absolute three-momentum of Bvis in the c.m. frame,
combinations of available four-momenta, and the number
of unused neutral pions in the event.
The BDT training for the τ− → ρ−ντ selection uses the

same sample size of b → c decays, but not semileptonic
b → u decays. The correlation of the input variables is
again reduced by a PCA transformation. The variables used
in the training are M2

miss, the missing energy, q2, and
combinations of the available four-momenta in the decay.
The performance of the three final BDTs is shown in

form of the ROC curves in Fig. 2.

E. Final selection

The final selection criteria are determined from MC
samples by maximizing individually the expected signifi-
cance of each single τ reconstruction mode. We perform a
scan over three variables simultaneously to obtain the

optimal selection: lnðocstagÞ, M2
miss, and the BDT output.

We require lnðocstagÞ > −7 for the leptonic τ reconstruction
and lnðocstagÞ > −5 for the hadronic τ reconstruction, as
shown in Fig. 1. A minimum requirement on the M2

miss
is applied to reject semileptonic B → πlν events, which
have the same final state as the signal decay: since no
energy is deposited in the ECL, decays of this type peak
at zero extra energy. Also, as there is only a single neutrino
in these decays, M2

miss peaks at zero, unlike the case for
signal decays, which contain at least two neutrinos. We
requireM2

miss to be greater than 2.2 GeV=c4 in the electron
channel, 0.0 GeV=c4 in the pion channel, and 0.6 GeV=c2

in the ρ channel. The BDT output is the last variable
used in the scan. The expected significance is calculated
as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 lnðL0=L1Þ

p
; the likelihood is given by Lk ¼Q

i
bins Poissonðnobsjnbg þ k · nsigÞ, where nobs ¼ nbg þ nsig

is the best estimate from the MC samples.
The efficiency of the final selection is determined from

MC to be 4.57 × 10−4. The dominant reconstructed τ decay
modes and their relative occurrences are listed in Table I.
The dominant background in the low-EECL region arises

from B0 → Dð�Þlνl and B0 → Dð�Þρ decays with a sub-
sequent decay of D → KLπ. The KL is undetected in these
cases and the resulting decay signature resembles that of
the signal. No explicit selection is available to further
suppress decays of this type.

IV. SYSTEMATIC UNCERTAINTIES

In the computation of the significance level and upper
limit, systematic uncertainties are included in the likelihood
as nuisance parameters. The likelihood is built from
probability density functions (PDFs) determined from
MC predictions of each background sample, as described
in Sec. V. All systematic uncertainties are assumed to be
Gaussian distributed and are evaluated at one standard
deviation (σ).
Uncertainties of the particle identification and of the

correction factor needed for the full reconstruction effi-
ciency are included as a flat effect over all bins in EECL. All
other uncertainties are included in a bin-by-bin fashion. A
constant uncertainty of 0.35% has been determined for each
charged track with pt > 0.2 GeV=c. Tracks below that
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FIG. 2. Background rejection versus signal efficiency deter-
mined on the testing sample, from Belle simulation.

TABLE I. Signal reconstruction by τ decay modes. Percentages
are obtained from signal MC and sum to 100%.

τ− decay Relative Occurrence (%)

ρ−ντ 29.54
e−ν̄eντ 29.43
π−ντ 16.70
μ−ν̄μντ 13.21
a−1 ντ 8.72
Other 2.4
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threshold have to be treated differently depending on the
track momentum [39]. The uncertainty on the number of
producedB-meson pairs is 1.4%. The uncertainty due to the
KL veto is determined by varying the KL efficiency by its
uncertainty. The branching fractions of the dominant
backgrounds are varied by their errors stated in Ref. [23]
to determine the effect on the MC prediction. The uncer-
tainty on the correction factor of the tag-side reconstruction
is determined in Ref. [19] and applied to the samples. The
discrepancy between inclusive and exclusive jVubj mea-
surements has been included as a flat but asymmetric
uncertainty in the B → Xulν sample of ð þ5

−15Þ%. An
uncertainty of �10% is applied to the branching fractions
in the MC sample of rare b → s and other rare B decays.
Additionally, decays of type B → Xuτν are present in the
final event selection. The contribution to the EECL distri-
bution is evaluated from the MC sample assuming a
BðB0 → ρþτ−ντÞ ¼ 1.5 × 10−4 and found to be small; a
relative uncertainty of �50% is applied. Statistical uncer-
tainties in the PDF shape due to finite MC sample size are
included in a way similar to the approach by Barlow and
Beeston [40]. Instead of using one Poisson constraint per
background sample per bin per τ decay channel, only one
constraint term per bin per channel is used. The uncertainty
introduced by this approximation is negligible for bins with
nonvanishing content and reduces the amount of compu-
tation time needed. Instead of the finite MC uncertainty, the
fit error is included as a systematic uncertainty for the
dominant b → c contribution. The theoretical uncertainties
of the signal form factors fþ and f0 are included by
generating additional signal MC with one form factor fixed
and the other varied by its 1σ uncertainty. The relative
uncertainties determined in this way are combined into a
single uncertainty estimate. The systematic uncertainties
due to the tracking efficiency and particle identification
affect only the overall efficiency and are only included in
the calculation of the upper limit. The relative effect on the
branching fraction is determined by repeatedly fitting

modified PDFs to data. The PDFs are modified by
replacing each background contribution with the respective
contribution where the systematic effect is applied. For
each systematic uncertainty, two fits are performed for the
positive and negative deviation. The maximum, absolute
deviation is quoted in Table II.

V. RESULT

A binned maximum likelihood fit is performed to EECL
in bins of 0.15 GeV. Due to similar shapes in the back-
ground predictions, all background contributions except for
the dominant b → c transitions are fixed to the MC
prediction. Possible errors introduced by this approach
are accounted for as systematic uncertainties. The fit is
performed simultaneously in all three reconstruction
modes. The signal strength parameter μ is constrained
between the three modes while the background contribu-
tions of the three reconstruction modes are floating param-
eters. The fit result of the B0 → Xc background
contribution agrees well with the prediction obtained from
the MC sample. The signal strength has been chosen such
that μ ¼ 1.0 corresponds to BðB0→π−τþντÞ¼1.0×10−4.
We obtain a best fit of μ ¼ 1.52� 0.72, corresponding to
51.9� 24.3 signal events. The fit results by τ
reconstruction mode are listed in Table III. The EECL
distribution and fit results are shown in Fig. 3.
The significance of the measurement is obtained from a

pseudo MC study. A test statistic based on the profile
likelihood ratio is used. The likelihood is built in bins of
0.15 GeV in EECL. The binned likelihood is given by

L ¼
Y
c

Y
b

PoissonðncbjνcbÞ ·
Y
p∈P

fpðapjαpÞ; ð3Þ

where the indices c and b label the reconstruction channel
and bin in EECL, respectively, and P denotes the set of
systematic uncertainties p that are included as nuisance
parameters αp in the calculation of the number of expected
events νcb per channel per bin. The nuisance parameters are
parametrized as a relative effect on the nominal template
prediction, assumed to be Gaussian distributed with the
nominal value being the global observable ap. The number
of events in the background-only hypothesis is determined
from MC simulation and a fit to data for the dominant

TABLE II. Effects of the systematic uncertainties on the
branching fraction.

Source Relative Error (%)

Particle ID 2.4
Track efficiency 0.7
NðBB̄Þ 1.4
KL veto 3.2
BG B 2.8
Tag side 4.6
jVubj 2.8
Rare processes 2.0
B → Xuτν 2.2
Background fit 0.2
Signal model 1.8
Total 8.3

TABLE III. Fit results for signal yield. Total and split by τ
reconstruction mode.

Mode Signal Yield

e 13.2� 6.2
π 30.6� 14.3
ρ 8.1� 3.8
Total 51.9� 24.3
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b → c background. The likelihood is constructed using the
HistFactory tool in the RooStats package [41,42].
The distribution of the test statistic is obtained by

pseudoexperiments. A full frequentist approach is used
in both the computations of the significance level and the
upper limit. First, the likelihood is fitted to data to obtain
the maximum likelihood estimates (MLEs) of all nuisance
parameters on data. In each pseudoexperiment generation,
the nuisance parameters are fixed to their respective MLE.
In the subsequent maximization of the likelihood, the
nuisance parameters are free parameters. The global
observables are randomized in each pseudoexperiment.
Using pseudoexperiments, the p-value of the back-

ground-only hypothesis for data is determined and the
significance level Z is computed in terms of standard
deviations as

Z ¼ Φ−1ð1 − pÞ;

where Φ−1 is the cumulative distribution function of the
standard normal Gaussian.
We observe a signal significance of 2.8σ, not including

systematic uncertainties in the calculation. Including all
relevant systematic effects results in a significance of 2.4σ.
For this result, the test statistic has been computed on
10 000 background-only pseudoexperiments.

Given the level of significance of these results, we invert
the hypothesis test and compute an upper limit on the
branching fraction. Pseudoexperiments are generated for
different signal strength parameters for both signal-plus-
background and background-only hypotheses in order to
obtain CLsþb andCLb, respectively. The upper limit is then
computed using CLs ¼ CLsþb=CLb [43], where a scan
over reasonable signal strength parameter values is per-
formed. At each step, 10 000 pseudoexperiments have been
evaluated for both hypotheses.
At the 90% confidence level, we obtain an upper

limit of BðB0 → π−τþντÞ < 2.5 × 10−4. The upper limit
at the 95% confidence level has been computed to
BðB0 → π−τþντÞ < 2.8 × 10−4. This result is the first
result on BðB0 → π−τþντÞ and is in good agreement with
the SM prediction.
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