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We studied the evolution of the Wightman correlator in a thermalizing state modeled by AdS3-Vaidya
background. We gave a prescription for calculating the Wightman correlator in coordinate space without
using any approximation. For equal-time correlator hOðv; xÞOðv; 0Þi, we obtained an enhancement factor
v2 due to long range correlation present in the initial state. This was missed by previous studies based on
geodesic approximation. We found that the long range correlation in initial state does not lead to significant
modification to thermalization time as compared to known results with generic initial state. We also studied
the spatially integrated Wightman correlator and showed evidence on the distinction between long distance
and small momentum physics for an out-of-equilibrium state. We also calculated the radiation spectrum of
particles weakly coupled to O and found that lower frequency mode approaches thermal spectrum faster
than high frequency mode.
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I. INTRODUCTION AND SUMMARY

The phenomenon of thermalization, where a quantum
field state evolves unitarily from a pure state to an apparent
thermal state, exists in many different areas of physics,
including heavy ion collisions, the cold atom system etc.
Since systems having the thermalization phenomenon are
usually strongly coupled, theoretical studies of thermal-
ization remain a difficult task. The application of gauge/
gravity duality allows us to study dynamics of strongly
coupled field theory by solving weakly coupled gravity in
one dimension higher, providing a useful alternative to
traditional methods. Recently, there has been significant
progress in understanding thermalization using the holo-
graphic method.
Useful probes of the thermalization process are corre-

lation functions. These include local probes like the one-
point function and nonlocal probes like the two-point
function. They contain different information on the ther-
malization process. For example, in the context of heavy
ion collisions, the one-point function of stress energy tensor
determines the spectrum of hadron, which is emitted only at
freeze-out, while the two-point function of electromagnetic
current determines the spectrum of photon/dilepton, which
is emitted throughout the history of quark gluon plasma
evolution. The calculation of one-point functions, usually
involving solving Einstein equations, has been pursued
by many groups; see for example [9,11,12,14,17,20–24,34,
35,37,38,43,48,49]. We focus on two-point functions in
this work. The calculation of two-point functions, as
pointed out in [16], depends on the order of operators.
While the retarded correlator is independent of the field

theory state, the Wightman correlator does depend on the
state. Consequently, the former can be obtained by studying
response of bulk field to external boundary source. On the
contrary, the calculation of the latter must be formulated as
an initial value problem, with the initial value encoding
state information.
Previous studies on the two-point function used different

approximation schemes, such as quasistatic approximation
[2,3,10,25,26,36,42,46,47], geodesic approximation [1,4–8,
13,33], geometric optics approximation [16,18,19,30–32,39]
etc.Recently, a rigorouscalculationhasbeendonebyKeränen
and Kleinert (KK) for the Wightman correlator in (spatial)
momentum space [41]; see also [27,29,40] for related
attempts. In this work, we present results for the same
correlator in coordinate space. For technical reasons, we
focus onAdS3 Vaidya or thermalization of 1þ 1Dconformal
field theory (CFT). Our results in coordinate space allow for
direct comparison to general CFT results by Calabrese and
Cardy (CC) [15].WhileCCassume finite correlation length in
the initial state, our initial (vacuum) state contains long range
correlation. Consequently our results are reminiscent of long
rangecorrelation:Theequal-timecorrelator hOðv; xÞOðv; 0Þi
for a scalar operatorOwith dimension 2 has power law factor
v2=x4 in the regime x ≫ v ≫ 1. Previous studies based on
geodesic approximation captured the x-dependence, but
missed the v-dependence. The general results of CC deter-
mine a thermalization timexþOð1=TÞ forpointswith spatial
separationx, anda thermalization timeOð1=TÞ forpointswith
temporal separation δv. We confirmed that the conclusion is
still true when initial state has long range correlation.
We have also studied the spatially integrated correlator,

that is, the zero (spatial) momentum mode of the Wightman
correlator. While low momentum mode is usually regarded
as equivalent to long distance physics, we found a*linshu8@mail.sysu.edu.cn
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counterexample: when the state is far from equilibrium, the
zero momentum correlator receives dominant contribution
from integrating over the correlator with small separation,
i.e. short distance physics. Furthermore, we calculate the
spectrum of particles weakly coupled to operator O at
different stages of thermalization. Our results indicate that
high frequency modes tend to appear thermal slower than
low frequency modes.

II. PROBING A THERMALIZATION PROCESS
WITH THE WIGHTMAN CORRELATOR

We consider a thermalizing state modeled by AdS3-
Vaidya background below

ds2 ¼ −fdv2 − 2dvdzþ dx2

z2
; ð1Þ

with f ¼ 1 −mz2θðvÞ. Here v is a light cone coordinate,
which is related to usual coordinates t and z by

dv ¼ dt −
Z

z

0

dz0

fðz0Þ : ð2Þ

The metric corresponds to a lightlike shell (shock wave)
collapsing from the boundary at v ¼ 0. The hypersurface
v ¼ 0, x ¼ arbitrary separates empty anti–de Sitter (AdS)
and Banados-Teitelboim-Zanelli (BTZ) metrics on different
sides of the shell. Empty AdS and BTZ metrics are dual to
vacuum and thermal CFT states respectively. The Vaidya
background is dual to a thermalization process, triggered
by an instantaneous injection of energy density to vacuum
state at t ¼ 0. The end point of the thermalization process is
a thermal state with temperature T ¼ ffiffiffiffi

m
p

=2π. We set
m ¼ 1 from now on. We choose to probe the thermalizing
state by the Wightman correlator hOðt; xÞOðt0; x0Þi. O is a
dimension 2 scalar operator dual to bulk dilaton. Unlike the
retarded correlator, the Wightman correlator cannot be
calculated from the response of bulk field to source on
the boundary. This is because the retarded correlator is state
independent, while theWightman correlator depends on the
state. In [16], the calculation of the generic correlator was
formulated as an initial value problem. The equivalence of
the formulation with standard holographic dictionary was
shown by KK [41], based on a more general prescription
for real-time holography [44,45]. We use the formulation
for our specific setup. The bulk Wightman correlator can be
written as

G>ð4j3Þ ¼
Z

dz1dx1dz2dx2G>
0 ð2j1Þ

×D
↔v1

D
↔v2

GR
thð3j1ÞGR

thð4j2Þ; ð3Þ

where iG>
0 ð2j1Þ ¼ hϕ̂ðv2; x2; z2Þϕ̂ðv1; x1; z1Þi is the bulk

Wightman correlator evaluated on the hypersurface of the

shell v2 ¼ v1 ¼ 0. This is our initial value. Assuming the
continuity of the bulk correlator across the shell, we can
use the value of G>

0 ð2j1Þ in empty AdS. iGR
thð3j1Þ ¼

h½ϕ̂ðv3; x3; z3Þ; ϕ̂ðv1; x1; z1Þ�iθðt3 − t1Þ and iGR
thð4j2Þ

defined similarly are retarded bulk-bulk propagators in
BTZ, which propagate points 1 and 2 from empty AdS to
points 3 and 4 on the BTZ side. The resulting bulk
correlator G>ð4j3Þ ¼ ihϕ̂ðv4; x4; z4Þϕ̂ðv3; x3; z3Þi gives
us the boundary Wightman correlator:

hG>ð4j3Þi → z24z
2
3hOðv4; x4ÞOðv3; x3Þi; as z4; z3 → 0:

ð4Þ

The symbol D
↔v ¼ ffiffiffiffiffiffi−gp

gvz∂↔z is a two-way differential
operator. Note that it only involves derivative with respect
to z. It means that we need only one initial value G>

0 ð2j1Þ.
This is in contrast to conventional initial value problems
where we need both position and velocity. The reason is
that we are using light cone coordinate v and our initial
value hypersurface is also lightlike. The simplification
comes with a price: The initial value G>

0 ð2j1Þ is singular
as the points 2 and 1 approach the light cone. Nevertheless,
we can eliminate the singularity by subtracting the
same quantity evaluated in BTZ space: iG>

thð2j1Þ ¼
hϕ̂ðv4; x4; z4Þϕ̂ðv3; x3; z3ÞijBTZ. Applying (3) to BTZ back-
ground with fictitious hypersurfaces v2 ¼ v1 ¼ 0, we
obtain

G>
thð4j3Þ ¼

Z
dz1dx1dz2dx2G>

thð2j1Þ

×D
↔v1

D
↔v2

GR
thð3j1ÞGR

thð4j2Þ: ð5Þ

Subtracting (5) from (3) and noting that Dv is the same for
AdS and BTZ spaces, we obtain

ΔG>ð4j3Þ ¼
Z

dz1dx1dz2dx2ΔG>ð2j1Þ

×D
↔v1

D
↔v2

GR
thð3j1ÞGR

thð4j2Þ; ð6Þ

with ΔG>ð4j3Þ ¼ G>ð4j3Þ −G>
thð4j3Þ being the difference

between bulk correlators in the Vaidya background and
BTZ background and ΔG>ð2j1Þ ¼ G>

0 ð2j1Þ − G>
thð2j1Þ

being the initial value for ΔG>ð4j3Þ. Below we show that
ΔG>ð2j1Þ is free of singularity. It is useful to note that
AdS3 and BTZ metrics are related by coordinate trans-
formation.

ds2AdS ¼
1

z2

�
−ð1 − z2Þdt2 þ dz2

1 − z2
þ dx2

�
;

ds2BTZ ¼ 1

z̄2
ð−dt̄2 þ dz̄2 þ dx̄2Þ: ð7Þ
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The explicit coordinate transformation is given by

x̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
ex cosh t;

t̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
ex sinh t;

z̄ ¼ zex: ð8Þ
The bulk-bulk correlator in Euclidean AdS is known [28],

GEð2j1Þ ¼
2−ΔCΔ

2Δ − d
ξΔF

�
Δ
2
;
Δþ 1

2
;Δ −

d
2
þ 1; ξ2

�
: ð9Þ

For our case of interest Δ ¼ d ¼ 2, GE is reduced to

GEð2j1Þ ¼
1

4π

�
1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p − 1

�
: ð10Þ

Using analytic continuation and the coordinate transformation, we obtain the following:

iG>
0 ð2j1Þ ¼ GE

�
ξ ¼ 2z2z1

z22 þ z21 − ðv2 − v1 þ z2 − z1 − iϵÞ2 þ ðx21Þ2
�
;

iG>
thð2j1Þ ¼ GE

�
ξ ¼ z2z1

coshðx21Þ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z22

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z21

p
coshðv2 − v1 þ y2 − y1 − iϵÞ

�
; ð11Þ

with yi ¼ − 1
2
ln 1−zi

1þzi
, i ¼ 1, 2. We have also used the shorthand notation xij ¼ xi − xj. From (11), we find that both G>

0 and
G>

th have singularities as v2, v1 → 0 and x21 → 0. In this case ξ → 1 and iϵ-prescription become relevant. The singularities
arise when the two points pinch ds2 → 0 [according to (1)] thus owing to short distance physics. Indeed the singularity
disappears in the difference ΔG>ð2j1Þ, which allows us to drop the iϵ-prescription:

iΔG>ð2j1Þ ¼ GE

�
ξ ¼ 2z2z1

2z2z1 þ ðx21Þ2
�
−GE

�
ξ ¼ z2z1

coshðx21Þ − 1þ z2z1

�
: ð12Þ

By taking a different limit z1 → 0, z2 → 0 of (11), we can also obtain the Wightman correlators in the vacuum and thermal
state of 1þ 1D CFT:

iG>
0 ð2j1Þ ¼

2

π

1

ð−ðv2 − v1 − iϵÞ þ x21Þ2
;

iG>
thð2j1Þ ¼

1

2π

1

ð−coshðv2 − v1 − iϵÞ þ cosh x21Þ2
: ð13Þ

Now we turn to the propagators GR
thð3j1Þ and GR

thð4j2Þ. To be specific, we discuss GR
thð3j1Þ as an example. It is given by

iGR
thð3j1Þ ¼ iðG>

thð3j1Þ −G<
thð3j1ÞÞθðt3 − t1Þ

¼
�
GE

�
ξ ¼ z3z1

coshðx31Þ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z23

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z21

p
coshðv3 − v1 þ y3 − y1 − iϵÞ2

�

−GE

�
ξ ¼ z3z1

coshðx31Þ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z23

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z21

p
coshðv3 − v1 þ y3 − y1 þ iϵÞ2

��
θðt3 − t1Þ: ð14Þ

In the limit z3 → 0 needed in the calculation of the boundary correlator, the propagator simplifies:

GR
thð3j1Þ ¼ −

i
8π

z23

�
z21

ðcoshðx31Þ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z21

p
coshðv3 − y1 − iϵÞÞ2

−
z21

ðcoshðx31Þ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z21

p
coshðv3 − y1 þ iϵÞÞ2

�
θðt3 − t1Þ; ð15Þ
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where we have used v1 ¼ 0. Note that the propagator is
only nonvanishing on the light cone:

coshðx31Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z21

q
coshðv3 − y1Þ: ð16Þ

Since coshðx31Þ ≥ 1, it follows that v3 ≥ 2y1. It is con-
venient to write (15) as derivative of a delta function:

GR
thð3j1Þ ¼ −

1

4
z23z

2
1δ

0ðcoshðx31Þ − coshðv3Þ þ sinhðv3Þz1Þ:
ð17Þ

Now we can use GR
thð3j1Þ to propagate point 1 to point 3.

We use the delta function to eliminate the integration of z1.
1

The following trick is used:

Z
dz1ΔG>ð2j1ÞD↔v1

GR
thð3j1Þ

¼
Z

dz1ΔG>ð2j1Þ
�
−

1

z1
∂↔z1

�
GR

thð3j1Þ

¼
Z

dz1
ΔG>ð2j1Þffiffiffiffiffi

z1
p ð−∂↔z1Þ

GR
thð3j1Þffiffiffiffiffi
z1

p

¼
Z

dz12∂z1

�
ΔG>ð2j1Þffiffiffiffiffi

z1
p

�
GR

thð3j1Þffiffiffiffiffi
z1

p : ð18Þ

We have redistributed the factor 1
z1

into ΔG>ð2j1Þ and
GR

thð3j1Þ. This is justified because the terms from deriva-
tives on 1ffiffiffi

z1
p cancel pairwise. We have also used partial

integration in the last step because GR
thð3j1Þ only has finite

support on z1. Now we are ready to put everything together
to obtain

ΔG>ð4j3Þ ¼
Z

dz1dx1dz2dx2∂z1∂z2

×

�
ΔG>ð2j1Þffiffiffiffiffiffiffiffiffi

z2z1
p

�
ðz2z1Þ3=2δ0ðcoshðx31Þ − Γ1Þδ0

× ðcoshðx42Þ − Γ2Þ; ð19Þ

where

Γ1 ¼ coshðv3Þ − sinhðv3Þz1;
Γ2 ¼ coshðv4Þ − sinhðv4Þz2: ð20Þ

Careful elimination of the delta functions in (19)
leads to

ΔhOðv4; x4ÞOðv3; x3Þi

¼
Z

dx31dx42
∂z1
∂Γ1

∂z2
∂Γ2

∂z1∂z2

×
�∂z1
∂Γ1

∂z2
∂Γ2

∂z1∂z2

�
iΔG>ð2j1Þffiffiffiffiffiffiffiffiffi

z2z1
p

�
ðz2z1Þ3=2

�

¼ 1

sinh2v3sinh2v4

Z
dx31dx42∂z1∂z2

×

�
∂z1∂z2

�
iΔG>ð2j1Þffiffiffiffiffiffiffiffiffi

z2z1
p

�
ðz2z1Þ3=2

�
; ð21Þ

with z1 ¼ coshðv3Þ−coshðx31Þ
sinhðv3Þ and z2 ¼ coshðv4Þ−coshðx42Þ

sinhðv4Þ . The
integrations of x31 and x42 are bounded by jx31j ≤ v3
and jx42j ≤ v4 respectively. By construction, ΔhOðv4; x43Þ
Oðv3; 0Þi is the difference of correlation in the thermalizing
state minus the counterpart in the thermal state:

ΔhOðv4; x4ÞOðv3; x3Þi
¼ hOðv4; x43ÞOðv3; 0Þi − hOðv4; x43ÞOðv3; 0Þith: ð22Þ

We evaluate (21) in different kinematic regimes and show
the results in the next section.

III. RESULTS IN COORDINATE SPACE

We are interested in two classes of correlators: (i.) equal-
time correlator ΔhOðv; xÞOðv; 0Þi and (ii.) equal-space
correlator ΔhOðv4; 0ÞOðv3; 0Þi. The first class measures
evolution of spatial correlation, and the second class
measures the evolution of temporal correlation. We evalu-
ate them separately.

A. Equal-time correlator

We start from the definition (22). For the equal-time
correlator, only the first term evolves with time v. The
second term is stationary. At initial time of thermalization
v ¼ 0, we expect the first term to reduce to the vacuum
correlator. According to (13), we obtain

ΔhOðv; xÞOðv; 0Þi⟶v→0 2

π

1

x4
−

1

2π

1

ð−1þ cosh xÞ2 : ð23Þ

We see that the first term is a power law decay in
separation, which indicates long range correlation in the
vacuum of CFT. The second term features an exponential
decay, which characterizes Debye screening, with the
screening length set by 1=T ∼ 1 in our unit. From now
on, we specialize to two limiting cases: x ≫ 1 and x ≪ 1.
The two cases correspond to the spatial separation much
larger/smaller than the spatial screening length.
When x ≫ 1, we can ignore the exponential decaying

term. ΔhOðv; xÞOðv; 0Þi simply measures decay of the
vacuum correlator. For this reason, we parametrize the
correlator as ΔhOðv; xÞOðv; 0Þi ¼ 1

x4 F ðvÞ. The decaying

1We could eliminate the integration of x1 instead, but then the
integration of z1 sees a divergence as y1 → v3=2. This is not a true
divergence but requires more careful treatment of the delta
function.
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function F ðvÞ can be obtained from numerical integration
of (21). Figure 1 shows numerical results of F ðvÞ. We also
include analytic approximation of F ðvÞ. The specific form
of the analytic expression will be obtained later. Next we
consider x ≪ 1. In this case, the leading 1

x4 behavior in
vacuum and thermal correlators cancels out. (23) reduces to

ΔhOðv; xÞOðv; 0Þi⟶v→0 1

3π

1

x2
: ð24Þ

We further restrict ourselves to the regime v ≪ 1. In this
regime, we expect the following scaling: ΔhOðv; xÞ
Oðv; 0Þi ¼ 1

x2 GðvxÞ. In Fig. 2, we confirm the scaling
behavior by showing numerical results of GðvxÞ obtained
when different x agree with each other. However, we do not
have an analytic expression for the scaling function GðvxÞ.

B. Analytic results for the spacelike correlator

It is a good point to present analytic results for spacelike
correlator hOðv4; x43ÞOðv3; 0Þi, which include the equal-
time correlator discussed in the previous subsection. One

limit allowing for analytic treatment is x43 ≫ 1,
x43 ≫ v3; v4. In this case, x21 ¼ x43 − x42 þ x31 ≃ x43
because jx31j ≤ v3, jx42j ≤ v4 and jx43j ≫ v3, v4. Since
x21 ≃ x43 > 0, we have ξ < 1; thus regularization is not
needed. We can calculate hOðv4; x43ÞOðv3; 0Þi directly.
This is possible as long as x43 > v4 þ v3, which can be
viewed as a generalized spacelike condition for correlator
hOðv4; x43ÞOðv3; 0Þi. To proceed, we note x43 ≫ 1 > z1z2;
therefore we can approximate the invariant distance in AdS

ξAdS ¼
2z2z1

2z2z2 þ x221
≃ 2z2z1

x243
≪ 1: ð25Þ

Note that GEðξÞ ∼ ξ2 as ξ → 0. As a result, ΔG>ð2j1Þ
simplifies significantly:

iG>ð2j1Þ≃ ξ2AdS
8π

≃ 1

8π

�
2z2z1
x243

�
2

: ð26Þ

With (26), we can evaluate (21) analytically to obtain

hOðv4; x4ÞOðv3; x3Þi

≃ 18

πx443

v3 cothðv3Þ − 1

sinh2ðv3Þ
v4 cothðv4Þ − 1

sinh2ðv4Þ
: ð27Þ

Note that (27) is valid for arbitrary v3, v4 as long as
x43 ≫ v3, v4. (27) gives the fitting function in Fig. 1 upon
setting v3 ¼ v4 ¼ v. It gives for v3, v4 ≪ 1

hOðv4; x4ÞOðv3; x3Þi≃ 2

πx443
; ð28Þ

which reproduces Eq. (5.7) of [1]. On the other hand,
for v3, v4 ≫ 1

hOðv4; x4ÞOðv3; x3Þi≃ 18

πx443
v3v4e−2v3−2v4 ; ð29Þ

while the geodesic approximation in [1] gives

hOðv4; x4ÞOðv3; x3Þi ∼
1

x443
e−2v3−2v4 : ð30Þ

We note that the geodesic approximation misses the
enhancement factor v3v4 in the spacelike correlator. It is
not difficult to understand the reason from the gravity point
of view: since geodesic approximation only knows about
the bulk geometry lying between boundary insertion times
v3 and v4, the enhancement factor results from the history
of the bulk geometry (from the time of energy injection
v ¼ 0 to the times of measurement at v3 and v4).
It is informative to compare our results with general

results obtained by CC [15]. In the latter case, the correlator
hOðv4; xÞOðv3; 0Þi in a thermalizing state is given by

1 2 3 4 5
v

10 5

10 4

0.001

0.01

0.1

1

v

FIG. 1. F ðvÞ ¼ x4ΔhOðv; xÞOðv; 0Þi as a function of v for
x ¼ 15. The analytic fitting function is given by 18

π ðv coth v−1sinh2 v Þ2.
It fits very well in a wide range of v.

1 2 3 4 5
v x

10 5

10 4

0.001

0.01

0.1

v x

FIG. 2. Gðv=xÞ ¼ x2ΔhOðv; xÞOðv; 0Þi as a function of
v=x for x ¼ 1=50ðblue pointÞ, x ¼ 1=20ðpurple triangleÞ and
x ¼ 1=10ðbrown squareÞ. The tail is numerically consistent with
a power law GðvxÞ ∼ ðxvÞ4.
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hOðv4; x43ÞOðv3; 0Þi

∼

(
e−2πðv3þv4Þ=2τ0 x43 > v3 þ v4
e−2πx43=2τ0 jv4 − v3j < x43 < v3 þ v4
e−2πjv4−v3j=2τ0 x43 < jv4 − v3j:

ð31Þ

τ0 is proportional to inverse temperature adapted to our
model. Comparing (31) in the long time (thermal) limit
with (13), we identify 2τ0 ¼ π. However, (31) does not
contain the power law factor 1=x443 present in (29). As
already pointed out in [1], it is because the initial state in the
formulation of CC has finite correlation length, while the
power law is reminiscent of long range correlation present
in the initial state modeled by the Vaidya background. We
argue now that the time factor v3v4 missed in geodesic
approximation is also due to the long range correlation in
the initial state: as hΔOðv4; x4ÞOðv3; x3Þi receives contri-
bution from regions in the backward light cone, factors of
v3 and v4 come from the distance of the correlated regions
that propagate initial state correlation to point x3 and x4
respectively.
We note that in the case of CC (31), a spacelike

correlator hOðv4; x43ÞOðv3; 0Þi changes from exponential
decaying form e−2ðv3þv4Þ to thermal form e−2x43 when
v3 þ v4 exceeds x43, up to correction of order inverse
temperature. If we define thermalization time to be the
largest possible value of v3 or v4 across which the
correlator hOðv4; x43ÞOðv3; 0Þi appears thermal, (31)
implies that points separated by distance x43 take a
time x43 þOð1Þ to thermalize.2 When the initial state
has long range correlation, the spacelike correlator
hΔOðv4; x43ÞOðv3; 0Þi is modified by power law factor
v3v4=x443. This seems to imply that the thermalization
time could be modified to x43 þOðln x43Þ. We show
below that it is not the case.
It is desirable to find analytic results for the correlator

near the light cone: v3 þ v4 ≃ x43. It turns out to be
possible in the following regime: x43 ≫ 1 and x43 − v4 ≡
δ ∼Oð1Þ ≫ v3. We consider δ > 0, which satisfies gener-
alized spacelike condition x43 − v4 − v3 > 0; thus regu-
larization is not needed. We evaluate hOðv4; x43ÞOðv3; 0Þi
directly and compare to the thermal correlator
hOð0; x43ÞOð0; 0Þith. In the regime we work in, x21 ¼
x43 − x42 þ x31 > x43 − v4 − v3 ≃ δ. Furthermore z1 <
cosh v3−1
sinh v3

¼ tanh v3
2
≪ δ and z2 < 1; thus x21 ≫ z1z2.

Combining the above, we can approximate

ξAdS ≃ 2z2z1
x43 − x42

: ð32Þ

The integration of x31 and x42 factorizes. The integration of
x31 and x42 can be done separately as follows:

Z
v3

−v3
dx31

z1
sinh2v3

¼ 2ðv3 coth v3 − 1Þ
sinh2v3

;Z
v4

−v4
dx42

z2
sinh2v4

1

ðx43 − x42Þ4

¼ 1

sinh3v4

�
cosh v4 − cosh x42
3ðx43 − x42Þ3

þ sinh x42
6ðx43 − x42Þ2

−
cosh x42

6ðx43 − x42Þ
−

1

12
ðex43Eiðx42 − x43Þ

− e−x43Eiðx43 − x42ÞÞ
�
jv4x42¼−v4 : ð33Þ

Working in the limit v4 ≫ 1, v3 ≪ 1 of (33), we find the
x31 integral approaches a constant, and the x42 integral
asymptotes to

e−2v4

12

�
1

δ2
−
1

δ
− eδEið−δÞ

�
: ð34Þ

The correlator hOðv4; x43ÞOðv3; 0Þi given by the product of
two integrals in (33) (up to overall numerical factor) does
not have enhancement factor v4 close to the light cone.
Comparing (34) with thermal correlator e−2x43, we conclude
that the thermalization time in this case is given by
v4 þOð1Þ≃ x43 þOð1Þ, thus free from ln x43 correction.
For completeness, we also plot the function in the bracket
of (34) in Fig. 3, which is a monotonously decreasing
function of δ.
We have also performed numerical studies of equal-time

correlator hOðv; xÞOðv; 0Þi for large v and x near the
generalized light cone x ¼ 2v. Defining the point at which
the equal-time correlator drops to twice the thermal
correlator as the thermalization time, we find the thermal-
ization time is still given by v≃ xþOð1Þ, free from
correction of order ln x.

0.5 1.0 1.5 2.0

2

4

6

8

10
h

FIG. 3. hðδÞ≡ 1
δ2
− 1

δ − eδEið−δÞ as a function of δ. It is a
monotonously decreasing function of δ. As δ → 0, the two
insertion points ðv4; x43 ¼ v4 þ δÞ and ðv3; 0Þðv3 ≪ 1Þ approach
the light cone. The dropping of hðδÞ corresponds to the thermal-
ization of the correlator, which occurs on a time scale of Oð1Þ.2This is realized when v4 → x43 and v3 → 0 for example.
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C. Equal-space correlator

Now we look at equal-space correlator ΔhOðv4; 0Þ
Oðv3; 0Þi with v4 ≡ vþ δv and v3 ≡ v. Parallel to the
equal-time case, we study the regimes δv ≪ 1 and δv ≫ 1.
Similar to the equal-time correlator, we might expect equal-
space correlator ΔhOðvþ δv; 0ÞOðv; 0Þi to reduce to the
difference between the vacuum and thermal correlator as
v → 0, which is

ΔhOðvþ δv; 0ÞOðv; 0Þi⟶v→0 2

π

1

δv4
−

1

2π

1

ð−1þ cosh δvÞ2 :

ð35Þ

In the regime δv ≪ 1, that is, when the temporal separation
is much less than the screening length, (35) reduces to 1

3π
1
δv2.

This motivates the following scaling behavior for ΔhOðvþ
δv; 0ÞOðv; 0Þi ¼ 1

δv2 Hð vδvÞ when δv ≪ 1, v ≪ 1. Indeed,
we can confirm the scaling behavior from numerical
results. Figure 4 shows the scaling function Hð vδvÞ for
different δv. However, the expectation (35) turns out to be
incorrect. The expectation would predict that Hð vδvÞ
approaches the constant 1

3π, while the numerical results
blow up as v

δv → 0. Interestingly, if we consider the limit
δv → 0, the correlator ΔhOðvþ δv; 0ÞOðv; 0Þi always
gives a finite value. This shows a noncommutativity
between the limit v → 0 and δv → 0.
Now we study the regime δv ≫ 1. We would like to

find the thermalization time for temporal interval δv ≫ 1.
For the equal-space correlator, CC results (31) imply a
thermalization time of order inverse temperature, indepen-
dent of δv. We define thermalization time to be v at which
ΔhOðvþ δv; 0ÞOðv; 0Þi drops to the thermal correlator
hOðδv; 0ÞOð0; 0Þith. We perform numerical studies and find
ΔhOðvþ δv; 0ÞOðv; 0Þi ∼ e−2δv for δv ≫ 1 and v ¼ Oð1Þ.
On the other hand, hOðδv; 0ÞOð0; 0Þith ∼ e−2δv. Figure 5
includes a plot of rðvÞ≡ ΔhOðvþ δv; 0ÞOðv; 0Þi=
hOðδv; 0ÞOð0; 0Þith.

Summarizing this section, we have found analytic expres-
sions of the equal-time correlator and spacelike correlator
near the light cone. While the expressions deviate from CC
and holographic results obtained with geodesic approxima-
tion, the thermalization time is not significantly modified due
to the presence of long range correlation in the initial state: a
thermalization time x43 þOð1=TÞ for spacelike correlator
ΔhOðv4; x43ÞOðv3; 0Þi and a thermalization time Oð1=TÞ
for equal-space correlator ΔhOðvþ δvÞOðv; 0Þi.

IV. RESULTS FOR THE SPATIALLY
INTEGRATED CORRELATOR

In this section, we work in (spatial) momentum space,
but still use temporal coordinates. In particular, we focus on
the spatially integrated correlator, i.e. the mode with k ¼ 0.
Fourier transform of (21) gives usZ

dx43ΔhOðv4; x4ÞOðv3; x3Þi

¼
Z

dx31dx42
∂z1
∂Γ1

∂z2
∂Γ2

∂z1∂z2

×

�∂z1
∂Γ1

∂z2
∂Γ2

∂z1∂z2

�Z
dx21

iΔG>ð2j1Þffiffiffiffiffiffiffiffiffi
z2z1

p
�
ðz2z1Þ3=2

�
:

ð36Þ

The spatially integrated initial value is given byZ
dx21iΔG>ð2j1Þ ¼

Z
dx21iðG>

0 ð2j1Þ −G>
thð2j1ÞÞ: ð37Þ

The integration of G>
0 ð2j1Þ is easily done, with the

following result,

Z
dx21iG>

0 ð2j1Þ ¼
ffiffiffi
b

p

2π
Q1=2

�
1 −

ϵ

b

�
; ð38Þ

0.04 0.06 0.08 0.10
v

0.8

1.0

1.2

1.4

1.6

1.8

2.0

r v

FIG. 5. rðvÞ ¼ ΔhOðvþ δv; 0ÞOðv; 0Þi=hOðδv; 0ÞOð0; 0Þith
as a function of v for δv ¼ 10. It is a monotonously decreasing
function of order one, indicating a thermalization time of order
inverse temperature for large temporal interval.

1 2 3 4
v v

10 5

10 4

0.001

0.01

0.1

v v

FIG. 4. Hðv=δvÞ ¼ δv2ΔhOðvþ δv; 0ÞOðv; 0Þi as a function
of v=δv for δv ¼ 1=50 (blue point), δv ¼ 1=20 (purple triangle)
and δv ¼ 1=10 (brown square) falls onto the same scaling curve.
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where b ¼ z2z1 and ϵ ¼ ðv2 − v1Þðz2 − z1Þ. The integra-
tion of iG>

thð2j1Þ requires some effort,

1

4π

Z þ∞

−∞
dx21

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ξ2BTZ
p − 1

�

¼ 1

2π

Z
∞

1

dsffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 1

p
�

s − affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs − aþ bÞðs − a − bÞp − 1

�
;

ð39Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z22

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z21

p
ðcoshðv2 − v1 þ y2 − y1ÞÞ. In

the limit v2, v1 → 0 relevant for our initial condition,
a ¼ 1 − bþ ϵ. In calculating the integral in (39), we note
that separate integrations of two terms in the bracket both
diverge, but the divergences cancel out in the their differ-
ence yielding a finite result. We calculate (39) from the
regulated integralZ

Λ

1

dsffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 1

p
�
s − aþ b
s − a − b

�
1=2

þ
Z

Λ

1

dsffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 1

p
�
s − a − b
s − aþ b

�
1=2

− 2

Z
Λ

1

dsffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 1

p :

ð40Þ
The limit Λ → ∞, ϵ → 0 of the above integral can be
obtained analytically. We only show the final result and
collect technical details in the Appendix.Z

dx21iG>
thð2j1Þ

¼
ð−4 lnð1þ ffiffiffi

b
p Þ − ffiffiffi

b
p ð2 lnð1þ 1ffiffi

b
p Þ þ ln ϵ

32
ÞÞ

4π
: ð41Þ

We see that although (38) and (41) contain separate
logarithmic divergences in ϵ (light cone singularities),
the divergences cancel out in their difference:Z

dx21iðG>
0 ð2j1Þ −G>

thð2j1ÞÞ

¼ ð−2 ffiffiffi
b

p þ ð2þ ffiffiffi
b

p Þ lnð1þ ffiffiffi
b

p ÞÞ
2π

: ð42Þ

Plugging (42) into (36), we obtain the following simple
representation,Z

dx43ΔhOðv4; x4ÞOðv3; x3Þi

¼ 3

16πsinh2ðv3Þsinh2ðv4Þ
Z

dx31dx42

ffiffiffiffiffiffiffiffiffi
z2z1

p
ð1þ ffiffiffiffiffiffiffiffiffi

z2z1
p Þ4 ;

ð43Þ

with z1 ¼ coshðv3Þ−coshðx31Þ
sinhðv3Þ and z2 ¼ coshðv4Þ−coshðx42Þ

sinhðv4Þ . We con-

sider the regime v3 ≪ 1 and v4 arbitrary. This regime

allows us to do the integral analytically. Note that z1 ≤
coshðv3Þ−1
sinhðv3Þ ≤ v3 ≪ 1 and z2 ≤ 1. We can then drop

ffiffiffiffiffiffiffiffiffi
z2z1

p
in

the denominator and the integral can be expressed in terms
of elliptic integrals

Z
dx43ΔhOðv4; x4ÞOðv3; x3Þi≃ 3

ffiffiffi
2

p

16
ffiffiffiffiffi
v3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cothðv4=2Þ

p
sinh2ðv4Þ

× ðKðtanhðv4=2ÞÞ
− Eðtanhðv4=2ÞÞÞ: ð44Þ

We consider the early time and late time regime of (44).
At early time v4 ≪ 1, we obtainZ

dx43ΔhOðv4; x4ÞOðv3; x3Þi≃ 3π

128
ffiffiffiffiffiffiffiffiffi
v3v4

p : ð45Þ

The dependence 1ffiffiffiffiffiffiffi
v3v4

p can be understood in the following

way: We claim that the spatial integration receives dom-
inant contribution from the domain with x43 ≪ 1, i.e. short
distance. This is most easily seen in equal-time correlator
ΔhOðv; xÞOðv; 0Þi. For v, x ≪ 1, the equal-time correlator
is given by

ΔhOðv; xÞOðv; 0Þi ¼ 1

x2
G
�
v
x

�
: ð46Þ

Integrating the above over x, we obtain ∼ 1
v. Numerically

integrating the scaling function GðvxÞ, we can confirm the
numerical factor in (45). Therefore, the spatially integrated
equal-time correlator in the far from equilibrium regime
receives dominant contribution from short distance physics.
This is in contrast to the equilibrium intuition that small
momentum is equivalent to long distance physics. With
more sophisticated analysis, we could show that the
conclusion remains true for the more generic correlator
ΔhOðv4; x43ÞOðv3; 0Þi. At late time v4 ≫ 1, we obtain

Z
dx43ΔhOðv4; x4ÞOðv3; x3Þ≃ 3

ffiffiffi
2

p

32
ffiffiffiffiffi
v3

p v4e−2v4 : ð47Þ

A. Out-of-equilibrium emission spectrum

As an application, we calculate a physical observable:
emission spectrum of particles weakly coupled to operator
O. We can draw an analogy with dilepton emission: we can
regard O as current, and radiated particles as dilepton. The
coupling constant gO between radiated particle and O is
small like the electromagnetic coupling e. With an abuse of
terminology, we refer to the radiated particle as dilepton
and the field created by O as photon. In the absence of
translational invariance in time, we use the following
operational definition for the local emission rate of dilep-
ton: as the dilepton is being radiated continuously in the
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thermalization process, we define the differential yield at
time v as the emission rate. We formulate the differential
rate as follows: the transition amplitude from an initial state
jii to a final state jfi with photon is given by

Sfi ¼ gO

Z
d2XeiQXhfjOðXÞjii: ð48Þ

The total yield of dilepton is given by

X
f

jSfij2 ¼ g2O

Z
d2Xd2YeiQðX−YÞ

×
X
f

hijOðYÞjfihfjOðXÞjii

¼ g2O

Z
d2Xd2YeiQðX−YÞhijOðYÞOðXÞjii: ð49Þ

We count the yield through time v; thus the integration of
X0 and Y0 is taken from −∞ to v. Using translational
invariance in spatial direction, we can simplify the total
rate as

X
f

jSfij2 ¼ g2O

Z
v

−∞
dX0

Z
v

−∞
dY0V

×
Z

dðX1 − Y1ÞeiQðX−YÞhijOðYÞOðXÞjii;

ð50Þ

where V is the one-dimensional volume. We have used
spatial translation invariance in (50). Now we identify (50)
with spacetime integral of differential emission rate

V
Z

v

−∞
dt

dΓðtÞ
d2Q

¼ g2O

Z
v

−∞
dX0

Z
v

−∞
dY0V

×
Z

dðX1 − Y1ÞeiQðX−YÞhijOðYÞOðXÞjii: ð51Þ

Canceling the volume factor and taking the derivative with
respect to v, we obtain the following representation of
differential rate:

dΓðω; vÞ
d2Q

¼ g2O

�Z
v

−∞
dX0eiωðX0−vÞjY0¼v

þ
Z

v

−∞
dY0eiωðv−Y0ÞjX0¼v

�

×
Z

dðX1 − Y1Þe−ikðX1−Y1ÞhijOðYÞOðXÞjii:

ð52Þ

For k ¼ 0, the regularized version of the quantity
R
dðX1 −

Y1Þe−ikðX1−Y1ÞhijOðYÞOðXÞjii has already been calculated
in (43). To obtain the full result, we add back the thermal
part:

Z
dðX1 − Y1ÞhijOðYÞOðXÞjii

¼
Z

dx43ðΔhOðv4; x43ÞOðv3; 0Þi

þ hOðv4; x43ÞOðv3; 0ÞithÞ: ð53Þ

The thermal part is given byZ
dx43hOðv4; x43ÞOðv3; 0Þith

¼
Z

dx43
1

2π

1

ð− coshðv4 − v3 − iϵÞ þ cosh x43Þ2

¼ 1

2π

ðv4 − v3Þ cothðv4 − v3Þ − 1

sinh2ðv4 − v3Þ
: ð54Þ

From (43) and (54), we can see that
R
dðX1 − Y1Þ

hijOðYÞOðXÞjii is invariant under exchange of X and Y.
It is not difficult to show that the exchange symmetry leads
to the spectrum being an even function of ω. Note that (43)
is valid only after v > 0; therefore the integration of dX0

and dY0 starts from t ¼ 0 through t ¼ v. Before v ¼ 0, the
state is vacuum state, which does not radiate any dilepton.
To compare the emission rate with different frequencies, we
normalize the rate by dividing the thermal rate, which is
given by the Fourier transform of (54),

dΓðωÞth
d2Q

ðωÞ ¼ g2O

Z
dte−iωt

1

2π

t coth t − 1

sinh2t
: ð55Þ

As a separate reference, we also calculate the emission rate,
assuming instantaneous thermalization of the state at
v ¼ 0. The emission rate in this case is given by

dΓinstðω; vÞ
d2Q

¼ g2O

�Z
v

0

dX0eiωðX0−vÞjY0¼v

þ
Z

v

0

dY0eiωðv−Y0ÞjX0¼v

�

×
Z

dðX1 − Y1ÞhijOðYÞOðXÞjiith: ð56Þ

We present our results for ω ¼ 1, ω ¼ 2 and ω ¼ 2.5
in Fig. 6. We see that both dΓðω; vÞ=d2Q and
dΓinstðω; vÞ=d2Q approach the thermal rate at large time.
The deviation of the former comes from the out-of-
equilibrium effect and missing radiation before v ¼ 0.
The deviation of the latter includes only missing radiation
before v ¼ 0. We do observe that the rates become negative
at early time. We believe this is an artifact of our definition:
strictly speaking, we need to know the past and future of
radiation in order to define plane wave spectrum, while
we only know the history up to our measurement point at v.
With the caveat in mind, we do observe interesting
hierarchy in frequency: low frequency mode tends to
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appear thermal faster than high frequency mode. Previous
studies have shown that short distance physics tends to
thermalize faster than long distance physics. Our results can
be viewed as a complementary picture to this, although in a
counterintuitive way. We also note that high frequency
mode shows more oscillations in relaxing to thermal
spectrum.
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APPENDIX: EVALUATION OF (40)

We reproduce (40) below for easy reference:

Z
Λ

1

dsffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 1

p
�
s − aþ b
s − a − b

�
1=2

þ
Z

Λ

1

dsffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 1

p
�
s − a − b
s − aþ b

�
1=2

− 2

Z
Λ

1

dsffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 1

p :

ðA1Þ

We are interested in the Λ → ∞, ϵ ¼ 1 − a − b → 0 limit
of (A1). The limit ϵ → 0 of the second integral can be taken
directly, after which the integral can be expressed in terms
of elementary function. In taking the limit Λ → ∞, we only
need to keep up to constant terms

lim
ϵ→0;Λ→∞

Z
Λ

1

dsffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 1

p
�
s − a − b
s − aþ b

�
1=2

¼ lim
Λ→∞

Z
Λ

1

ds

�
1

ðsþ 1Þðs − 1þ 2bÞ
�

1=2

¼ 2 ln 2 − 2 lnð
ffiffiffi
2

p
þ

ffiffiffiffiffiffi
2b

p
Þ þ lnΛþOðΛ−1Þ: ðA2Þ

The third term is done in a similar way:

lim
Λ→∞

Z
Λ

1

dsffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 1

p ¼ ln 2þ lnΛþOðΛ−1Þ: ðA3Þ

The evaluation of the first term needs some effort. The first
term can be expressed in terms of elliptic integrals. The
formal expression is not very helpful in obtaining asymp-
totics. We instead use the following representation,

Z
Λ

1

dsffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 1

p
�
s − aþ b
s − a − b

�
1=2

¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − aþ bÞð1þ aþ bÞp �
ð1 − a − bÞ

×
Z

sin ν

0

dx

ð1 − 2
1þaþb x

2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − q2x2Þ

p
þ 2b

Z
sin ν

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − q2x2Þ

p �
;

where

sin ν ¼
�ð1þ aþ bÞðΛ − 1Þ

2ðΛ − a − bÞ
�

1=2
;

q2 ¼ 4b
ð1 − aþ bÞð1þ aþ bÞ : ðA4Þ
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FIG. 6. Emission rates dΓ
d2Q ðω; vÞ as a function of v in the thermalizing state (left) and in an instantaneous thermalization scenario

(right); see (52)–(56) for corresponding definitions. Both rates are in units of thermal emission rate dΓth
d2Q ðωÞ, defined in (55). The symbols

represent ω ¼ 1 (blue point), ω ¼ 2 (purple triangle) and ω ¼ 2.5 (brown square). All the rates approach thermal limit at late time. We
observe a hierarchy among spectra with different frequencies, with lower frequency mode tending to thermal spectrum faster. The high
frequency mode shows more oscillations in relaxing to thermal spectrum. A possible cause for the negative rate at early time is given in
the text.
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We first look at the second integral in (A4). Expanding the
denominator of the integrand, we obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − q2x2Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

�
λ −

1

2
þ 1

2b

�s
ϵþOðϵ2Þ;

ðA5Þ

where x2 ¼ 1 − ϵλ. The upper bound of x, in the limit
ϵ → 0, is given by

sin ν ¼ 1 −
ϵ

4

Λþ 1

Λ − 1
þOðϵ2Þ; ðA6Þ

which translates to the lower bound of λ: λ ≥ 1
2
Λþ1
Λ−1.

Assuming that the integral up to constant terms arises
from the region λ ∼Oð1Þ or 1 − x ∼OðϵÞ, we obtain the
result for the integral

ϵ

2

Z
λs

1
2
Λþ1
Λ−1

dλ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λðλ − 1
2
þ 1

2bÞ
q

ϵ

¼ 2 ln 2 − ln

� ffiffiffi
2

p
þ

ffiffiffi
2

b

r �
þ 1

2
ln λs; ðA7Þ

where λs ∼Oð1Þ is the cutoff of the integral. We note that
there is a logarithmic divergence in λs, which means that
there must be a contribution from region 1 − x ≫ OðϵÞ to
cancel the divergence. We evaluate the other contribution
below,

Z ffiffiffiffiffiffiffiffiffi
1−ϵλs

p

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − q2x2Þ

p
¼ 1

2

�
− ln

ϵ

4
− ln λs

�
þOðλ−1s Þ: ðA8Þ

The logarithmic divergences indeed cancel upon adding
(A7)–(A8). The term Oðλ−1s Þ can be ignored when we take
1 ≪ λs ≪ Oð1=ϵÞ. There is also a ln ϵ divergence term,
which can be traced back to light cone singularity inte-
grated over spatial coordinate. This term is canceled by the
zero temperature counterpart. The evaluation of the other
integral follows similar procedure. We expand the denom-
inator of the integrand as�

1 −
2

1þ aþ b
x2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − x2Þð1 − q2x2Þ
q

¼
�
λ −

1

2

� ffiffiffi
λ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ −

1

2
þ 1

2b

r
ϵ2 þOðϵ3Þ: ðA9Þ

The integration from region 1 − x ∼OðϵÞ gives

lim
Λ→∞

ϵ

2

Z
λs

1
2
Λþ1
Λ−1

1

ðλ − 1
2
Þ ffiffiffi

λ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ − 1
2
þ 1

2b

q
ϵ2

¼ −2
ffiffiffi
b

p
tanh−1ð ffiffiffi

b
p Þ þ ffiffiffi

b
p ðln 2 − lnð1 − bÞ þ lnΛÞ

ϵ
:

ðA10Þ
We do not see a dependence on the cutoff λs, suggesting
that we can take λs → ∞ safely. Adding (A7)–(A8)
and (A10), we obtain the final result for (A4) in the limit
ϵ → 0, Λ → ∞:

−2tanh−1
ffiffiffi
b

p
þ 6

ffiffiffi
b

p
ln 2 − 2

ffiffiffi
b

p
ln

� ffiffiffi
2

p
þ

ffiffiffi
2

b

r �

−
ffiffiffi
b

p
ln ϵ − ln

1 − b
2Λ

: ðA11Þ

As remarked before, the lnΛ term will be canceled by
(A2)–(A3) and the ln ϵ term will be canceled by the zero
temperature counterpart.
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