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Fermionic response in finite-density ABJM theory with broken symmetry
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We calculate fermionic response in domain wall backgrounds of four-dimensional gauged supergravity
interpolating between distinct stable anti—de Sitter (AdS) vacua, holographically dual to zero-temperature
states of ABJM theory at finite density for monopole charge. The backgrounds were found by Bobev ef al.
and are similar to zero-temperature limits of holographic superconductors, but with a symmetry-breaking
source as well. The condensed scalar mixes charged and neutral fields dual to composite fermionic
operators in the top-down Dirac equations. Both gapped and gapless bands of stable quasiparticles are

found.
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I. INTRODUCTION

Understanding the behavior of strongly coupled fer-
mionic systems at nonzero density is of great interest.
Holographic methods using the AdS/CFT correspondence
are a powerful tool for exploring such systems, and they have
been employed profitably both from a “bottom-up” per-
spective, where a custom gravity theory can be tailored to
produce the desired dynamics, and a “top-down” perspec-
tive, where fields and solutions of supergravity and string
theory can be matched precisely to operators and states of
known dual quantum field theories. Nonzero density means
turning on a chemical potential for a conserved charge,
associated to a background gauge field on the gravity side.

One class of solutions that has been studied extensively
leaves the corresponding symmetry unbroken. Holographic
Fermi surfaces at zero temperature were studied, initially
from a bottom-up perspective of generic fermions in
Reissner-Nordstrom backgrounds [1-4] and later from a
top-down perspective in gravity duals to four-dimensional
N =4 super-Yang-Mills theory and three-dimensional
ABJM theory involving more complicated black hole
geometries with running neutral scalars [5-11]. The game
is to calculate retarded fermionic Green’s functions by
solving the Dirac equation in the appropriate gravity back-
ground, interpreting bulk fermion (quasi)normal modes at
zero energy as holographic Fermi surfaces and studying the
corresponding dispersion relations around them. In bottom-
up models, parameters of the bulk Lagrangians can be
adjusted so that the excitations near the holographic Fermi
surface resemble those of either a Fermi liquid (with stable
quasiparticles) or a non-Fermi liquid (without stable quasi-
particles). In the top-down models of strongly coupled
N =4 super-Yang-Mills and ABJM theories, however,
the bulk Lagrangian is fixed, and the fermionic excitations
that appear reflect actual dynamics of these field theories at
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finite density, modulo possible instabilities. Generic back-
grounds in both cases have nonzero entropy at zero temper-
ature, and associated dispersion relations characteristic of
non-Fermi liquids. At special values of the chemical
potentials the zero-point entropy vanishes and an energy
band of absolutely stable quasiparticles appears around the
Fermi surface. Fermions at finite temperature were also
studied for top-down models, leading to agreement with the
zero-temperature cases.

Another interesting class of backgrounds, which we
focus on here, breaks the symmetry of the conserved
charge. This includes the holographic superconductors,
in which a charged scalar condenses outside the horizon in
the gravity background for sufficiently low temperature
[12—15]. The zero-temperature limits of such backgrounds
are expected to be horizonless domain wall-type geom-
etries, where Lorentz invariance or even conformal invari-
ance may be regained in the infrared [16-18]. Such
backgrounds could be related to the non-Fermi liquids
discussed previously, as real-world non-Fermi strange
metals in high-temperature superconductors become hid-
den behind a superconducting dome below a critical
temperature, but the zero-temperature quantum critical
point is still thought to control their behavior.
Symmetry-breaking systems have been studied using
bottom-up generic fermion actions in [19]. In [20], a
Majorana Yukawa coupling was studied where a charged
fermion couples to itself (not its conjugate) as well as a
“Cooper pair” scalar with twice the charge. It is interesting
to ask whether the Fermi system becomes gapped in the
presence of symmetry breaking; [20] found that the
Majorana coupling could lead to the generation of such
a gap by a “level crossing” repulsion between two lines of
poles in Green’s function.

Naturally, it is interesting to consider symmetry-breaking
systems from a top-down perspective. Holographic
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superconductors descending from string/M theory were
constructed in [21-25], and one may ask about the
fermionic response of these systems, using the Dirac
equations derived from the top-down theory. Here we
focus on a class of symmetry-breaking geometries
described in [26]. These backgrounds are solutions to
the equations of four-dimensional A" = 8 gauged super-
gravity invariant under a SO(3) x SO(3) subgroup of the
SO(8) gauge group, and besides the metric involve a gauge
field corresponding to the chemical potential and a charged
scalar. These geometries are domain walls, interpolating
between the maximally symmetric AdS, vacuum in the UV
and a different AdS, region corresponding to a nonsuper-
symmetric critical point of the scalar potential in the IR, and
as such are similar to the zero-temperature limit of holo-
graphic superconductors. Both the UV and IR fixed points
are known to be stable under perturbative scalar fluctua-
tions [27]. The dual descriptions of these solutions are
states of three-dimensional superconformal ABJM theory
with a chemical potential for monopole charge, and both a
“source” and an expectation value turned on for charged
operators dual to the bulk scalar; as a result the system is
not precisely a superconductor, since the associated U(1) is
broken explicitly as well as spontaneously.

To understand fermion response in these ABJM states,
we analyze the spectrum of fermionic fluctuations in the
holographically dual backgrounds. We study spin-1/2
modes whose SO(3) x SO(3) quantum numbers prevent
them from mixing with the gravitino fields. While they do
not mix with the gravitino, these spin-1/2 modes mix with
each other; another system of mixed fermionic excitations
in a symmetry-breaking background was studied in [25]. In
a more intricate generalization of the Majorana Cooper pair
coupling of [20], we find a charged fermion mixing with a
neutral fermion via the condensed charged scalar, which in
turn has a Majorana-type coupling to its own conjugate.
Thus the analog of a Cooper pair in this system is a
condensation of a charged/neutral bound state. Since the
charge is monopole charge, the associated charged oper-
ators may be thought of as bound states of fundamental
fermions with vortices, so-called “composite” fermions.

We study two backgrounds, one having a source for a
fermion bilinear and an expectation value for a boson
bilinear, and the other with the roles reversed. We first
elaborate on the analysis of [26] of the conductivities of
these backgrounds. In geometries approaching AdS in the
infrared, the emergent Lorentz invariance generates a light-
cone structure on the energy momentum, and modes living
outside this light cone have regular (rather than “infalling”)
IR boundary conditions; normal modes in this region are
associated to fluctuations in the field theory with zero
dispersion. We determine the locations of such normal
modes, and find in both cases two lines of modes, one
gapped and the other ungapped. By studying the pole
structure of the matrix of Green’s functions, we can see that
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each line is a mixture of both charged and neutral fermionic
excitations. This matrix also provides information about the
presence of unstable fluctuations “inside” the light cone.

Following the ideas of [20], it is natural to inquire how
the charged fermion/neutral fermion coupling in our system
of Dirac equations affects the dynamics, and, in particular,
whether it causes a repulsion between lines of poles. We
study a modification of the Dirac equations removing the
couplings between different fermions, and see that without
the charged/neutral coupling there is an ungapped, purely
charged band, a purely neutral band that asymptotes to the
origin in energy/momentum space, and a new gapped band
with the conjugate charge; each pair of bands has a point of
intersection. The charged/neutral coupling thus has a
number of effects: it pushes the third band outside the
region of stable excitations, it repels the crossing between
the other two bands while mixing the charged and neutral
contributions, and it turns what was the neutral band away
from the origin, leaving it fully gapped. While modifying
the Dirac equations departs from the top-down structure of
N = 8 supergravity, it allows us to see how the couplings
are “responsible” for the structure of the quasiparticle
excitations.

II. GAUGED SUPERGRAVITY AND
ABJM THEORY

In this section we review the maximally supersymmetric
gauged supergravity theory in four dimensions and a
particular truncation of it in which the backgrounds we
consider can be constructed, as well as its duality to
(2 + 1)-dimensional ABJM theory.

A. Four-dimensional A/ = 8 gauged supergravity

The four-dimensional maximally supersymmetric
gauged supergravity theory [28,29] is the consistent trun-
cation of eleven-dimensional supergravity compactified on
a seven-sphere to retain only the supermultiplet of the four-
dimensional graviton. The bosonic degrees of freedom are
the vierbein, 28 gauge fields in the adjoint of the gauge
group SO(8), and 70 real scalars; the fermions are eight
Majorana gravitini and 56 Majorana spinors. The scalars
parametrize the coset E;(7)/SU(8) as a 56-bein, which can
be written

u; 1 Vi O
V= < vkleJ MI:Z%) = exp<¢IJKL ¢I(J)KL > (1)

where the complex ¢//KL = @7, obey the self-duality
relation

1
brkr = ﬂ €1JKLMNPQ¢MNPQ- (2)

In the second equality of (1) we have gauge fixed the
internal SU(8) symmetry. This “unitary gauge” removes
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the distinction between SO(8) index pairs [/J] and SU(8)
pairs [ij], and allows us to associate definite SO(8)
representations to all the fields: the scalars split into a
35, of parity-even scalars and a 35, of parity-odd pseu-
doscalars; the gravitini are in the 8, and the Majorana
spinors are in the 56;.

For the backgrounds we study we are interested in a
particular truncation of the gauged supergravity, retaining
only modes invariant under an SO(3) x SO(3) subgroup of
SO(8). We choose I =3, 4,5 and [ =6, 7, 8 to be the
directions in which the two SO(3) groups act on the 8; the
1,2 directions correspond to an additional SO(2) gauge
symmetry commuting with SO(3) x SO(3). The truncation
corresponds to an N = 2 gravity multiplet plus a hyper-
multiplet, with the bosonic sector consisting of the vierbein,
a single graviphoton gauge field for the SO(2) in the
12-directions, and two complex scalars charged under it.
Moreover, it is consistent with the equations of motion to
set one complex scalar to zero, and we do this in what
follows. The SO(3) x SO(3)-invariant truncation is char-
acterized by the ansatz [30]

_Mx) cosa(x) (Y] iYy
brixL(x) = 2\@[ ( )(YIJKL + YIJKL)
—sina(x)(Zj;x, = iZijks)); (3)

where 1 and a are four-dimensional scalars, and Y= and Z*
are self-dual (+) and anti-self-dual (—) invariant four-forms
on the scalar manifold, defined as

+ — 3451 2678 - _ 3452 1678
YIJKL - 4!(6IJKL + 5IJKL) YI.IKL - 4'!(5IJKL + 51JKL)’

4)
Zike = 418775 — O15kL)-
(5)

The more general case of two complex scalars would
involve four independent coefficients for the four
tensors.

Given the scalar ansatz (3), it is a straightforward matter
to obtain the Lagrangian of the truncated theory. The
bosonic sector of the gauged N =8 theory in four
dimensions can be written [29]

- — 3451 2678
ZIJKL - 4!(51JKL - 6IJKL)

1 .

1
-7 [F},(28"KE — SMOFY +He] =2P.

(6)

Let us discuss the terms in turn. The curvature scalar R is
the usual Einstein-Hilbert term. The tensor A, ;; determin-
ing the scalar kinetic terms follows from the definition
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1 0 itjkl
py == Yo
2V2 \ Aynpy O

This expression also implicitly fixes the composite SU(8)
connection 3, which we discuss in Sec. IV. The gauge
fields have non-Abelian field strengths of the standard
form, F} = 28MA£]J - ZgAI[ﬂKAﬁJ with F* being the self-
dual part of the field strength; these couple to the scalars in

their kinetic terms via the S-tensor defined as

(Uil + v SVKL = yil (8)
The SU(8) covariant T-tensor
1( = (“klu + Ukm)(uimmlﬂmm - UimJKU]mKI) (9)

T.

in turn defines the tensors A; and A,,

ij_ 4 ik ki 4, ik
AY = iTkj Ay = _§T£/ ]» (10)
which appear in the scalar potential,
3 1. .
— _2 _Al./2__ J/flz . 11

Evaluating the Lagrangian (6) in the SO(3) x SO(3)-
invariant truncation gives

1 1
€_1£ = ER —ZF”,,F”D - 0”/18’%
inh?(22
R ) 4( ) (0,0 — gA,) (O — gA¥) =P, (12)

where x? has been set to one, the gauge field is A = A,
and the potential is

P ="-(s*-8s>—12) with s=sinhi. (13)

(SIASW

It is easy to see that this potential has critical points at s = 0
and s = £2. In anticipation of the domain wall geometry,
we refer to the corresponding values of the scalar 4 as

Joy=0 and AR ==+log(2+5), (14)
corresponding to AdS, solutions with AdS radii Lyy = ﬁg
and Lig = \/%LUV, respectively. Solutions to the equations

of motion coming from (12) provide the classical back-
grounds we wish to probe, and we discuss them in more
detail in Sec. IIL.

026001-3



DEWOLFE, GUBSER, HENRIKSSON, and ROSEN
B. The holographic dual ABJM theory

The maximally superconformal theory in three dimen-
sions living on a stack of N coincident M2-branes is
holographically dual to M-theory compactified on
AdS, x S7; in the large-N limit this reduces to eleven-
dimensional supergravity, and hence the four-dimensional
gauged supergravity theory we have discussed describes a
set of low-dimension operators in this theory. For a single
M2-brane the theory is eight free scalars in the 8, and eight
free spinors in the 8 of the SO(8) R symmetry; for N > 1,
however, the theory becomes interacting. While it can be
characterized as the IR limit of three-dimensional super-
Yang-Mills theory, it is most conveniently formulated as
ABJM theory.

ABJM theory ([31-35]; for reviews see [36,37]) is a 3D
U(N) x U(N) Chern-Simons theory at levels (k,—k)
coupled to bifundamental matter. The manifest supersym-
metry is A/ =6 and the manifest global symmetry is
SU(4) x U(1),,. For general k this represents the theory
of N M2-branes at a Z, orbifold singularity. However, for
the cases k =1, 2 there is an enhancement to A/ =8
supersymmetry and SO(8) R symmetry; the decomposition
of the eight-dimensional representations of SO(8) into
SU4)x U(1), is
8V g 41 ® Z“_l s

8(:—)‘1]@4_1, 85—)60@12@1_2.

(15)

Here we are interested in the k = 1 case, corresponding to a
stack of N M2-branes with no orbifold.

The bifundamental matter may be written as four
complex scalars Y4, A = 1...4 in the 4 of SU(4) and four
complex spinors y4 in the 4; both sets of fields are in the
N x N of U(N) x U(N) and neutral under U(1),. Alone,
these fields do not assemble into complete SO(8) repre-
sentations; however, they combine with monopole oper-
ators, representing the scalars dual to the gauge fields, into
gauge-invariant objects with proper SO(8) transformation
properties. We denote by ¢9° the monopole operator with
U(1), charge ¢ in the g-fold tensor product of N x N;
monopole operators are neutral under SU(4). We then have
gauge-invariant operators such as

4: Yhe', AL Yie™, Ay yaet, 4 ylle,

(16)

assembling into complete 8, and 8, representations accord-
ing to (15). It is these combinations that are analogous to
the free bosons and fermions in the N = 1 case; the ABIM
presentation fractionalizes the symmetry carriers into
“ordinary” matter charged under SU(4) and monopole
operators charged under U(1),, which bind into gauge-
invariant composite bosons and fermions.
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The supergravity modes discussed in the previous sub-
section are dual to such gauge-invariant operators. These
are described in the table, with the dual ABJM operators
indicated schematically:

SUGRA mode eq wl Al yuk Re ¢y Im dpyir
SO(8) rep 1 8 28 56, 35, 35,
Dual ABIM operator ~ T# S* J4 Yy Y2 w?
Conformal dimension A 3 5/2 2 3/2 1 2

The first three sets of operators are the energy-
momentum tensor, supercurrents and SO(8) R-symmetry
currents. The 28 R-symmetry current operators include 15
SU(4) currents, one U(1), current, and 12 additional
operators including e** monopoles, corresponding to
the decomposition

28 - 150 @ 10 @ 62 @ 6_2. (17)

We note that while some operators include monopoles and
some do not, the enhancement to full SO(8) symmetry
means that they are all treated on equal footing. Indeed, one
can imagine distinct embeddings of SU(4) x U(1),, inside
SO(8) where a monopole operator in one case becomes a
nonmonopole operator in the other.

Let us now discuss how the SO(3) x SO(3) x SO(2)
subgroup of the previous section relates to the ABIM
picture. Since one has a full SO(8) to work with, one can
imagine embedding SO(3) x SO(3) x SO(2) in SO(8) in
a way that does not play nicely with SU(4) x U(1),.
However, it is natural and convenient to take the simplest
choice, where SO(3) x SO(3) is realized as the subgroup
of SU(4) = SO(6) under which

6 - (3,1) & (1,3), 4.4 - (2,2), (18)
and the remaining SO(2) of the gauge field (12) is simply
U(1), itself. Hence the charge carried by supergravity
fields that condenses in the backgrounds we study next is
most simply realized on the field theory side as the
monopole charge.

III. THE DOMAIN WALL BACKGROUND

The results of the previous section isolate a sector of
maximal gauged SUGRA in D = 4 whose bosonic content
includes the vierbein, one U(1) gauge field, and one
complex scalar. The dynamics of this sector are encoded
in the Lagrangian (12), and any solution to the correspond-
ing equations of motion can in principle be uplifted to a
solution of SUGRA in D = 11. This feature is particularly
notable in that it will allow us to confidently exploit the
holographic duality between solutions of M-theory and
states in ABJM theory to study the properties of an
explicitly known field theory at strong coupling.

We are interested in solutions to the equations of motion
wherein the scalar interpolates between the two fixed points
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(14) of P, and the geometry asymptotes to different AdS,
regions in the IR and UV. Holographically, these solutions
are dual to zero-temperature states of ABJM theory in
which both the low energy and high energy physics is
governed by (distinct) conformal field theories. In [26] such
domain wall solutions were found numerically, and their
identification with zero-temperature limits of novel states in
the ABJM theory was discussed in some detail. We now
review these solutions, and provide further commentary on
their dual holographic description.

A. Interpolating gravity solutions

The solutions of interest [26] are given in the ansatz,

dr?

G(r)’
a=0. (19)

ds?> = =G(r)e*de + r2dx* +

A = V(r)de,

This ansatz sets g = 1, equivalent to Lyy = 1/ V2. The
equations of motion are

inh?(24)¥?
0=-— e%%r — 22—y, (20)
0 1 +73 Xsinh2(2/1)\112+ G e +eZ\If’2 1)
R Te rG 2G
sinh?(2) ¥ 20" 1
0:_72((;) +— +§;/\IJ/+\IJ”, (22)
sinh2(42) W2 P’ 2 G 1

[ A S = = ) "

0=e Yes 2G+/1<r+G 2)()—1—/1.
(23)

Near the boundary, the solution approaches the maximally
supersymmetric AdS, vacuum with 1 = 0, given by

YUy = const, Wy = const,

(24)

while in the IR region far from the boundary, the scalar

approaches the extremal value A = log(2 + +/5) and the
equations are solved by

14, r?
Gr=—=r

=—, =const, and Wi =0.
3 L%R XIR IR

(25)

By rescaling the time coordinate one sees only yyy — yir 18
physical, but for convenience in finding solutions we allow
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both to be free. Fixing Ujg = 0 allows us to identify Wyy as
proportional to the chemical potential y of the U(1),
conserved current.

A useful invariant of the domain wall solution is the
index of refraction n, defined by the ratio of the speed of
light in the UV and IR CFTs:

n= DUJ — L&g%(}(m—)(uv) — \/ge%(){m—)(uv)' (26)
vr  Lyy 7

This quantity is invariant under coordinate transformations,
and characterizes the causal properties of the emergent IR
conformal dynamics.

To construct the domain wall geometries, it is convenient
to consider IR-irrelevant perturbations about the fixed point
solution (25). These perturbations can be used to numeri-
cally integrate away from the IR critical point at r =0
along the radial direction, tracking the RG flow “upstream”
to the UV fixed point at r = co. To identify these
perturbations, one performs a linearized fluctuation analy-
sis by substituting into the equations of motion the
following ansatz for the IR form of the bulk fields:

G(r) = 13—4;»2(1 +6Gr), (27)
x(r) =y + 6xr%, (28)
U(r) =60, (29)

A(r) =log (2 + V/5) + 6Ar®. (30)

The requirement that the perturbations represent irrelevant
deformations to the IR fixed point constrains the various
exponents. Specifically, one requires «a, f, &> 0 and
y > =2.

Substituting the fluctuations (27)—(30) into the equations
of motion (20)—(23) one finds that the linearized equations
decouple, can be solved nontrivially by

/303 3 247 1
5G*5X*0, a = ﬁ_i and ﬂi K—E’
(31)

and that the amplitude 6¥ can be rescaled to any value
under symmetries of the equations of motion. Thus the IR
deformations are described by a single free parameter, 64,
which we will tune to produce domain wall solutions with
various UV asymptotics.

The asymptotic mass of the scalar field 4 near the
boundary is

182 2
m=10P 2 (32)
2 047 1= Ly
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FIG. 1. The massive boson background, with §¥ =1 and
1k = 4. The dashed lines in the plot of G/r? are at 14/3 and
2, indicating the values obtained in the IR and UV AdS, fixed
points respectively. The ratio of the speed of light in the UV CFT
compared to that of the IR theory is n = 26.900.

which implies that near the UV boundary the scalar
behaves like

A A
i(r—»oo)~7l+r%+... (33)

We consider two particular cases, solutions in which either
A1 or A, vanishes. For reasons we explain in the next
subsection, we refer to these as “massive boson” and
“massive fermion” backgrounds, respectively. In practice,
it is straightforward to produce such solutions by integrat-
ing the equations of motion from very near the IR fixed
point to the UV boundary. This involves employing the
scaling symmetries of the equations of motion to fix 5W¥ and
¥R, then using the fluctuations defined in (27)—(30) to
produce IR boundary conditions for the numerical integra-
tion of (20)—(23) for many choices of d1. After each
successful integration throughout the bulk, one can fit
the near boundary behavior of the numerical solution
obtained for A to the form given in (33), and subsequently
extract the values of 4; and 4,, yyy and Wyy characterizing
that solution.

Massive boson and massive fermion solutions con-
structed from this procedure are shown in Figs. 1-2.'
The massive boson solution, with nonzero 4,, has interest-
ing similarities to the extremal anti—de Sitter Reissner-
Nordstrom (AdSRN) solution, and in some sense is
“almost” AdSRN. Extremal AdSRN is characterized by
an AdS, x R? near horizon geometry, which manifests as a
double pole in the metric function g,.. From Fig. 1,

"It is possible that these solutions are not unique, even up to
rescalings; there may be additional solutions with nodes in A. If
such additional solutions exist, they are probably unstable toward
bosonic perturbations.
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FIG. 2. The massive fermion background, with oW =1
and yr = 4. The dashed lines in the plot of G/r? are at 14/3
and 2, indicating the values obtained in the IR and UV AdS,
fixed points respectively. This geometry is characterized by
DUV/UIR = 1.861.

a similar feature can be seen around r ~ 0.4 where G very
nearly vanishes quadratically, before reverting to a nonzero
value. Moreover, the figure shows that nearly all the scalar
hair is bunched behind this almost horizon. Perhaps not
surprisingly, similar properties have been observed in the
extremal limits of various holographic superconductors
studied in the literature [18].

The index of refraction in this solution is large,
n = 26.900, which implies that the effective speed of light
is very slow in the IR CFT compared to the UV theory, in
turn suggesting that the IR dynamics is nearly 0+ 1
dimensional, reminiscent of the semilocal quantum liquid
[38]. This is another sense in which the solution is almost
extremal AdSRN, since the black hole horizon corresponds
to an n — oo limit. We learn in the next subsection that 4, is
proportional to a dimension-2 source for a scalar bilinear;
the dimensionless ratio of the source to the U(1) chemical
potential can be measured to be

/11/2
=2 ~0.0308, (34)
\IJUV

indicating that indeed this solution can be thought of as a
small perturbation by 4 on top of the no-scalar background,
which has extremal AdSRN as a solution.

The massive fermion background has 4, = 0, and unlike
the previous case, this geometry is not almost AASRN in
any sense. The function G(r) never comes “close” to
vanishing, so the solution is not close to having a horizon.
The index of refraction is substantially closer to unity at
n = 1.861, so the speed of light does not change that
dramatically between the UV and the IR. In this case 4, is
proportional to a dimension-1 source for a fermion bilinear,
and we have
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FIG. 3. In units where the UV light cone is 45° (dotted black),
we compare the massive boson (solid blue) and massive fermion
(dashed red) IR light cones.

A
— = 1.227, 35
Ty (35)

so the two massive perturbations to ABJM theory, the
source and the chemical potential, are the same to a factor
of order unity. We plot the IR light cones for the two
solutions next to a UV light cone normalized at right angles
in Fig. 3.

These backgrounds interpolate between UV and IR fixed
points that are known to be stable in the following sense.
The ultraviolet AdS, is stable on account of supersym-
metry; this corresponds simply to the unitarity of ABJM
theory. It is shown in [27] that all the scalar fluctuations in
the nonsupersymmetric IR AdS,; geometry satisfy the
Breitenlohner-Freedman bound [39,40]. However, we do
not know of a demonstration of stability of the non-
supersymmetric AdS, solution against perturbations
involving nonscalars; also, stability of the anti—de Sitter
end points of these domain wall solutions does not by itself
demonstrate the stability of the whole domain wall.
Nonetheless, these domain wall backgrounds are the best
candidates available for a stable holographic dual of a
finite-density state in ABJM theory.

B. Holographic interpretation

The domain wall backgrounds constructed in the pre-
vious subsection are horizonless solutions to N =8
gauged supergravity with a nonvanishing electric potential
for the gauge field. Thus, we broadly expect that these bulk
solutions provide a holographic description of certain zero-
temperature states of ABJM theory at finite density. The
fact that a charged scalar is turned on in these backgrounds
implies that we are studying either a deformation of the
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ABIM theory by the addition of a dual scalar operator, a
state of the ABJM theory with nonvanishing expectation
values for this scalar operator, or some combination of
these. Since we have a top-down solution, we can deter-
mine the nature of the background precisely using the
explicit mapping between the bulk fields and various single
trace operators of the ABJM theory.

The truncation of the maximal gauged supergravity
breaks the SO(8) gauge symmetry to SO(3) x SO(3) x
SO(2). The surviving bulk fields are all singlets under the
SO(3) x SO(3), and carry charge only under the remaining
SO(2) = U(1). The gauge field associated with this U(1) is
A, the active gauge field in the domain wall backgrounds
constructed above. The gauge symmetry present in the
SUGRA theory is holographically dual to the global R
symmetry of the ABJM theory, and thus bulk solutions with
nonzero A, = W correspond to ABJM theory with a
chemical potential p turned on for the conserved global
U(1), current. The dual U(1), current counts the monop-
ole number, and hence takes the form

Ty ~ e Tr(F,, + F ), (36)

where F and F are the field strengths for U(N) x U(N).

Let us now connect the scalar 1 in our background to
dual ABJM operators. As mentioned previously, the
SO(3) x SO(3)-invariant sector of N/ = 8 gauged super-
gravity contains a hypermultiplet, corresponding to two
complex scalars, which can be packaged in various ways.
The gauged supergravity naturally gives rise to ¢y, ¢,
which are a complex SO(2) doublet, the real parts being
parity-even scalars and the imaginary parts being pseudo-
scalars. We can define ¢, = %(S, +iP;) and ¢, =
% (S, + iP,), and can assemble charge and parity eigen-
states as S = S| + iS,, P = P, + iP,. [26] also makes use
of the combinations ¢; = %((ﬁl —igy) = \/%(ST +iP")

and §, = 5 (¢ + i) = J5 (S + iP).

To identify the dual ABJM operators, recall the 70
scalars of the gauged supergravity theory live in a
35, @ 35., each of which decomposes into SU(4) x
U(1), representations as

35,515,910, @ 10_,, 35. - 15, @ 10_, @ 10,,

(37)

corresponding to the “Y?” operators dual to the parity-even
scalars,

L1
15,: YAY'B—Z(ngCYTC, 10,: Y(AyBe2e,

10,: Y[, v}

M e, (38)

)

as well as the “y>” operators dual to the pseudoscalars,
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1 _
150: yup'® — ZQ?WCV/TC, 10, wawp)e™.

10_,: yiAytB)e—2e, (39)

Under SU(4) — SO(3) x SO(3) the 15 does not contain a
singlet, while both the 10 and the 10 become (3,3) &
(1,1). Thus the complex scalar S and pseudoscalar P living
in the SO(3) x SO(3)-invariant truncation correspond to
the U(1),-charge 2 operators

Oy = YAYAe®, Op =y qe”. (40)
The ansatz (3) truncates the scalar sector down to one

complex scalar. The truncation can be described in various
equivalent forms:

G=00¢ =ip) > S=iP S =-P.P =8,
(41)

and the remaining two degrees of freedom can be identified
with A and a from (3) as

tanh e = ¢, = V25 = iV/2P. (42)

We note that while the Lagrangian (12) indicates the scalar
has charge ¢g in a convention where the gauge field is
dimensionless, it is convenient for us to match the natural
field theory convention and refer to this as charge 2. Thus
our background involves a simultaneous turning on of
sources and/or expectation values for the A = 1 operator
YAY4e> and the A = 2 operator y e, with a fixed
relative phase.

All the scalars of the supergravity theory have the
asymptotic mass m*L$,, = —2, lying in the window where
both the leading terms in the near boundary expansion (33)
are normalizable deformations of AdS,, and correspond-
ingly the scalars can be quantized in one of two ways.
Supersymmetry [39,40] requires that the pseudoscalars in
the 35, have the standard quantization dual to an operator
with A =2, while the scalars in the 35, must have the
alternate quantization, and be dual to operators with A = 1.
For regular quantization fields, the mode A; in (33)
corresponds to the source, while the subleading term 4,
corresponds to the expectation value; this holds for our
wap e’ operator. For alternate quantization fields, 1, is
the expectation value, while 4, is the source, which holds
for YAY4e?". Hence we find each parameter in the solution
controls both a source for one operator and an expectation
value for the other,’

?Additional finite boundary counterterms could in principle
shift these relations at the nonlinear level, but the terms required
by supersymmetry found in [41] vanish in our background.
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M~ Jim,2 = (ReY?), (43)

Ao ~ Jgeyr = —<Imy/2>, (44)

where Y? and y? are shorthand for YAY4e% and y 4y, e
respectively. Thus for a solution where 4, = 0, the back-
ground corresponds to a source for the scalar bilinear,
hence the name massive boson, as well as an expectation
value for the fermion bilinear, while for the massive
fermion solution with 4, =0 we have a source for a
fermion bilinear and an expectation value for the boson
bilinear. Since either ReYAY4e? or Iy 4y, e’ is explicitly
added to the ABJM field theory Lagrangian, in either case
one breaks the U(1) symmetry explicitly. Hence these
domain wall backgrounds are not precisely holographic
superconductors, which should involve only spontaneous
breaking of the symmetry.

We note in passing that it is possible to cast these
backgrounds as true holographic superconductors, if we
pass to an alternate quantization of some of the scalars or
pseudoscalars and hence move away from ABJM theory to
a nonsupersymmetric boundary theory. In a quantization
where all the active scalars are dual to A = 2 operators,
A1 = 0 backgrounds involve only expectation values of the
dual operators; conversely 4, = 0 backgrounds have no
sources if all the active scalars are dual to A = 1 operators.
In these two scenarios, the solutions are in fact holographic
superconductors in the usual sense. The former case can be
obtained as the infrared limit of a deformation of ABIM
theory by a relevant double trace operator, essentially the
square of YAY4e?*. We prefer, however, to work in the
quantization dual to the ABJM theory when analyzing
fermionic Green’s functions, because there can be no doubt
about the operators dual to the supergravity fermions, and
the Dirac equations we study are precisely determined.
In this approach, we cannot claim to be analyzing fermionic
response in a true holographic superconductor, but in
a member of a broader class of symmetry-breaking
backgrounds.

C. Conductivities

Before we turn to the task of probing the fermionic
properties of these SUGRA backgrounds, it is sensible to
wonder what lessons we can learn from the linear response
of bosonic probes. An obvious candidate is the conductivity
of ABJM matter charged under the global U(1),. The
imaginary part of this conductivity appeared previously in
[26], where it was claimed that the 1/w pole in the
imaginary part of the dc conductivity was indicative of
superconductivity in the boundary gauge theory. We briefly
revisit this claim before turning to the real part of this U(1)
conductivity.

The linear response of the gauge theory current to an
applied electric field is encoded in the retarded Green’s
function, which in turn dictates the ac conductivity, o(w):
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FIG. 4. The real (left) and imaginary (right) ac conductivity in massive boson (darker) and massive fermion (lighter) backgrounds. The
imaginary part of the conductivity has been multiplied by w to highlight the 1/® pole at low energies giving rise to the delta function

in Reo.

- 2G5, (@) (45)

Roughly speaking, (45) shows that the real part of the ac
conductivity gives a measure of the density of states for
charged matter at zero spatial wave number.

From a bulk perspective, computing this conductivity is
by now a standard exercise in applied holography. The
computation begins by turning on the coupled perturbations
A - A+ 06A and g — g+ 6g where

SA = 8A,(r)edx, 89 = 6g,c(r)e~ ' dtdx, (46)
and continues by solving the equations of motion linearized
about these perturbations. The near boundary behavior of
0A, fully determines the current-current correlator G’f{ - It

(1) (1)

0, BAY o OA
6Ax(r e OO) 5Ax + P + e then ij‘lx == 25A)(CO) )
(47)

and using (45) results in the conductivity.

In Fig. 4 the real and imaginary parts of the ac
conductivity are shown for charge transport in both massive
boson and massive fermion backgrounds. From the right-
most plot, it is immediately clear that Imo ~ 1/w at low
energies. By the Kramers-Kronig relations, this necessarily
implies a delta function contribution to the real part of the
conductivity. Such a delta function does not imply that the
backgrounds we are studying are holographic supercon-
ductors, since any translationally invariant background
with nonzero charge density will show a similar delta
function peak in the conductivity [14]. Indeed, as we saw in
the previous subsection, our backgrounds are not true
superconductors for ABJM theory, since the U(1) is
explicitly broken, although the same conductivity calcu-
lations apply to the true holographic superconductors
associated to nonsupersymmetric alternate quantizations.

Res(w) is characterized in both backgrounds by the
aforementioned infinite dc contribution separated from the
conformal plateau at high energies by a soft gap. The fact
that the massive fermion background gives rise to a
broader gap can be used to argue that this state has an
enhanced suppression of charge carrying states at inter-
mediate energies relative to the massive boson back-
ground’s dual. As indicated above, this suppression can
be inferred only for the states near the origin in momen-
tum space, and thus is of limited utility for uncovering
what is happening to the fermionic degrees of freedom in
the dual ABJM state. This is because the natural expect-
ation for a system of fermions at finite density is to
organize into a Fermi surface at some finite k = kz. Thus,
to address questions related to the fermionic nature of
these states it would be more appropriate to study current-
current correlators at nonzero k along the lines of [42,43].
An alternative approach, which we adopt in this work, is
to study the fermion response of the ABJM states directly,
using appropriate fermion probes.

IV. FERMION RESPONSE IN THE DOMAIN
WALL SOLUTIONS

We study the linear response of states in the gauge theory
to the insertion of various fermionic operators, which is
characterized by an assortment of fermionic two-point
functions. Holographically, these two-point functions are
computed from the linearized fluctuations of supergravity
fermions about the classical (bosonic) backgrounds of
interest. The way to do this and the results we find are
the topics of this section.

A. Coupled Dirac equations and holographic
operator map

We focus on spin-1/2 fields that cannot mix with the
gravitino sector. Under the SO(8) — SU(4) x U(1), —

SO(3) x SO(3) x SO(2) decomposition, we have for the
gravitini in the 8,
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83—)606912691_2
-3 1), ®(1.3),® (1.1), ® (1,1),, (48)

and thus we can avoid mixing in the SO(3) x SO(3)-
invariant backgrounds as long as we study fermions in
representations other than (3,1), (1,3) or (1, 1). The spin-
1/2 fields live in the 56, which decomposes as

56, — 15, ® 15_, ® 10, & 10, ® 6,
- (33,031, (1,3),® (3.3)_,
®((3.1), & (1.3),®2(3.3), d2(1.1),
® (3.1), & (1.3),. (49)

and thus we see there are fermions in the (3, 3) of SO(3) x
SO(3) that cannot mix with the gravitini. They may,
however, mix with each other, and in fact do, as we shall
see. The different SO(2) charges of the fermions in the
(3, 3) representations are no obstacle to mixing because the
SO(2) symmetry is broken by nonzero 4 in our back-
grounds. These (3,3) fermions are not in the fermionic
sector of the SO(3) x SO(3) truncation discussed previ-
ously, and thus to obtain their dynamics we must return to
the full A/ = 8 supergravity theory.

Dropping gravitino pieces that will not couple, the
relevant terms for the spinor y;; =y in the full
N = 8 gauged SUGRA Lagrangian are [29]

. »
'L, = o MDDy — 7 T* <D yiin)

1

__( ;—Uuslj.KLOﬂwKL_‘_H.C_)

V2
144

o

+g (eijklmnquglmn)_(ijkxl’(ir + HC) (50)

The fermion tensor O is defined through

ij 0 1J ijkim y
u ]IJ el = 144 e npq)(klml—wy)(npq’ (51)

and the covariant derivative is

1 1 1
Dutije = Vuttiji = 5 Buitije = 5 Buitt e = 5 Budtigr - (52)

PHYSICAL REVIEW D 93, 026001 (2016)

where V, is the covariant derivative defined with respect to
the spin connection @,,,:

1

VvV, = 8” - Zwﬂabrab’ (53)

u

and the composite SU(8) connection B is determined
through the vanishing of the diagonal blocks of (7) to be

BL,' = —2914;14] +§(uikLMDﬂ MjkLM - UikLMDﬂ UjkLM)v (54)
where D, is covariant only with respect to SO(8).

We now derive the Dirac equations for the y;; in the
(3,3). If we take the first SO(3) to act on greek indices
a=3, 4,5, the second SO(3) to act on roman indices
a = 6,7, 8, and the SO(2) which corresponds to the active
gauge field to act on hatted indices a = 1, 2, the fermions
that transform as four distinct copies of (3,3) in (49) are
readily seen to be those of the form yus., ¥ape, and gz,
where we recall the SO(3) antisymmetric product
3 ®4 3 = 3. Thus, an example of a set of fermions with
the same SO(3)xSO(3) quantum numbers is
{xa67-X538> X 416> X426 } > these fields may all mix with each
other, but not with any others. We study these four
fermions; any other analogous quartet has results related
by group theory.

The Dirac equation for these fermions can be obtained
from (50), plugging in the values for the supergravity
quantities described in Sec. II appropriate to the back-
grounds discussed in Sec. III. The result takes the form

(iM"V,1+8)7 =0, (55)

where 1 is the identity, y is a four-component vector
containing the spinors, and S= A + P+ M with A, P,
and M describing gauge, Pauli, and mass-type couplings,
respectively. We find that these matrices fail to commute,
and the four spinors mix nontrivially. Assembling the
fermions into charge eigenstates,

X2 = X426 — Y416

X0 = X467 — X538 (56)

X2 = X426 T X416
X0 = X467 T X538

the full coupling matrix S becomes

— 1 A(3 + cosh 22) —sinh 4 0
0 +A(3 + cosh 22) 0 —sinh 1
S - . i 1 . 2 B (57)
—sinh A ﬁ F 3 AsinhA
0 —sinh 1 yAsinh®A - F

where we have written A =T1*%A,, F =I"F,,.

026001-10



FERMIONIC RESPONSE IN FINITE-DENSITY ABJM ...

This basis is diagonal at the ultraviolet fixed point 4 = 0,
and therefore corresponds to the basis of dual operators in
ABJM theory, which we work out momentarily. One can
see that y, and jy, are charged, and as with the charged
scalar, we identify this as charge +2 in the natural
normalization of the field theory. Meanwhile y, and j,
are neutral, but have Pauli couplings to the field strength.
All the fermions are massless at the maximally symmetric
point. As the scalar turns on away from the boundary, it
rescales the gauge couplings of y, and ), and, most
importantly, introduces couplings between different fer-
mions: there is an interaction between the neutral and the
charged fermion of the schematic form ¢y,y, with ¢ the
charged scalar, and a coupling between the neutral fermion
and its conjugate of the form A|p|>yi0-

It is interesting to compare our Dirac system to other
fermionic equations used in holographic superconductors.
In [19] an ordinary Dirac equation with tunable charge and
mass was studied, and the superconducting character was
inherited from interactions with the background. In [20],
new terms were added to the Dirac equation to emulate the
effects of the Cooper pair condensate by coupling the
spinor to its conjugate, with “Majorana” terms

AL~ ¢ x"C(n+nsTs)y +He., (58)
leading to a Dirac equation of the form
(i"V, —m + qU'A, )y + (n+nsUs)pBy* =0, (59)

where n and 75 are coupling constants, ['5 is the chirality
matrix, and B is related to the charge conjugation matrix via
C = B'T°. The scalar must have 44 = 2q,, and its con-
densation breaks the U(1). This leads to terms like
xx +x*x* in the effective Lagrangian, analogous to the
cc + c'c' terms in a BCS superconductor Lagrangian.

Our system can be viewed as an elaboration of (59).
Instead of coupling a single charged field to its conjugate,
our system has a Cooper pair coupling between the charged
scalar, the charged field y, and the neutral field y,, breaking
gauge invariance when the scalar condenses, as well as a
Majorana coupling between the neutral field y, and its own
conjugate j,, mediated by the gauge field and the scalar
squared. We discuss this structure further as we examine
the results.

Our fermionic fields (56) are dual to spinor ABIM
operators of the form “Yy,” with A =3/2 and the 56,
arising in the product 8, x 8. = 56, @ 8. Under SU(4) x
U(1), the 56, decomposes as

56, > 15, ® 15, 10, ® 10, H 6,,  (60)

corresponding to the ABJM operators
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1
15,: (YAWB - Z5§Ycll/c> e,
, 1 b
15_,: (YLWTB -7% Yéw“) e, (61)
100: Y(AIIITB), 1_00: YZAI//B),
6: comb. of YAy 8 and Y-[I-AII/B], (62)

where the other linear combination of the antisymmetric
part is part of the 8;. Under SU(4) - SO(3) x SO(3), the
15, 10 and 10 all contain a (3,3). The fields y, and j, are
charged under U(1),, and hence will lie in the 15, and
15_,, while y, and j, sit in the 10, and 10,. Tracing
through the indices one finds

J2 < (Yly = Yy + Yy = Yiyg)e™,  (63)
e (Vy? =Yiy' + Yy - YigP)e™,  (64)
Ko< Yy vy — vy vy (65)

Yo < Yiwa+ Yy — Yiys — Yiu,. (66)

Looking at a coupling like (58), it is somewhat natural to
think of the scalar field as being dual to the Cooper pair
fermion bilinear. Our system is a little more complicated:
the two fermionic operators are of the form Yy, so the
Cooper pair is some part of Yy Yy, while the operator dual
to the scalar that condenses is either of the form Y2 or y?.
In the next subsection we discuss solving the Dirac
equations (55) and (57) and relating the results to Green’s
functions for these operators, from which we can calculate
the normal mode spectrum and the spectral functions.

B. Solving the Dirac equations and spinor
Green’s functions

The analysis of Dirac equations in nonzero density
backgrounds is by now standard in the literature; for more
details see for example [4,8—10]. We rescale the spinors by
a factor® (r*Ge™)~!/4 to cancel the spin connection term in
the Dirac equations, and Fourier transform as eilk=o1) \ith
frequency w and spatial momentum k chosen to lie in the
x-direction. Next, we make a convenient choice of Clifford
basis where the relevant I'-matrices are block diagonal,

. i63 0 ~ (] 0
I = . Ti= :
0 iO'3 0 (]

Fff:<ia2 0 ) (67)

0 —i62

3The metric function y appearing in this factor should not be
confused with the spinor.
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By then defining the projectors

M,==(1 — (=)%Y, Po=-(1+i"), (68)

N =
| =

we can write the four components of the spinor y as

)(aj:EHaP:t)(’ (69)
with @ = 1, 2. With our choice of Clifford basis, it is fairly
easy to see that the Dirac equations do not mix spinor
components with different @, meaning we can split them up
into two decoupled sets of equations, and one can show the
solutions of the two sets are related simply by k — —k. We
also note that our Dirac equations have a discrete con-
jugation symmetry, being unchanged under the simulta-
neous substitutions

k — —k,

W = -, X< =X,

(70)

Xy < Xt

where y, represents the £-components of both y, and y,.
Thus we can restrict to k > 0 and a = 1 (dropping the
a-label), using (70) to reconstruct k < 0 and obtaining
a = 2 simply by changing the sign of k.

Even having restricted to half the spinor components, our
system still involves eight coupled first-order equations.
Beginning in the deep IR, as per the usual holographic
dictionary we want to impose appropriate boundary con-
ditions to compute retarded Green’s functions. In the
infrared limit, the coupling matrix S is off diagonal in
the charge basis {y»,72,0,%0}, but becomes diagonal in
the “mass basis”

XW = X538 — X416»
Xy = X538 T Xal6

XX = X467 — X426
Xz = X461 T X426 (71)
which diagonalizes the mass matrix M. As r — 0 each of

the mass basis spinors a = W, X, Y, Z obeys a second-
order uncoupled equation of motion of the form

2L mr(l —m
pr4IR+ IR( IR))){H’ (72)

2
0= 7 =)
;(u+r;(a+( 2

where myr is the dimensionless fermion mass at the IR

fixed point,
6
mr = mLg = i\/;» (73)

and p is the 4-momentum combining @ and k in a way
respecting the IR Lorentz invariance:

=== (74)
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The character of the solutions depends strongly on whether
p is timelike or spacelike. When p is spacelike, (72) admits
solutions that are either regular or divergent in the IR. The
regular solutions are of the form

pLRr

1
)(a(r) = NaWKi%—mIR( r >’

with N, being a normalization constant. On the other hand,
for timelike p, the solutions are oscillatory in the IR, being
either infalling or outgoing.

In the far UV, the charge basis spinors decouple and
solve massless second-order equations of the form

(75)

ot 2a =0 (76)
where the index o now stands for the +-components of
each charge basis spinor, and we are suppressing an index
labeling the distinct elements of the charge basis. The
leading constant solutions” for the - modes are associated
to the expectation values (O) of the dual operators, and
those for the y, modes are associated to the sources J:

x4 (r) ~ J(w.k) +O(r~Y). x-(r) ~ (O, k)) + O(r7").

(77)

The choice of which y is associated with the source and
which with the expectation value is determined for ABJM
theory by supersymmetry [10,39,40].

Were the fermions decoupled, we could solve the Dirac
equation for just one of them with the others vanishing;
imposing suitable boundary conditions in the IR would
compute the relationship between that dual operator’s
source and its expectation value. In our system this is
not the case; a general solution to the system of equations
leads to all four sources J and all four expectation values
(O) turning on. Considering the response of the four
expectation values to varying the four sources, we obtain
a matrix of Green’s functions, which schematically takes
the form

Gi — 5(@ ) .
R 5Jl jk=0

(78)

To properly define this matrix Green’s function, we follow
a recipe very similar to the one advocated in [25,44],
searching for solutions to the equations of motion with
suitable IR boundary conditions in which only one ABIM
operator is sourced at a time. Given such a solution,
standard application of the AdS/CFT dictionary for spinors
allows us to read off the linear response of the operators to

4Th/e rescaling described above (67) removed a leading factor
of r3/2.
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FIG. 5.

Cartoon of regions with dispersionless modes, meaning regular, rather than infalling, boundary conditions in the IR. At left is

an extremal horizon, such as AASRN; in the middle, an IR AdS region, as in this paper; and at right, an IR singularity.

this source, and the associated entries in the matrix Green’s
function.

In practice we proceed as follows. The IR normalization
constants N, (75) can be chosen independently for each of
the bulk spinors. This is guaranteed by the linearity of the
equations of motion combined with the fact that the bulk
fermions completely decouple in the IR. Imposing the
proper boundary conditions in the IR, one can vary the N,
and see how the sources J in the UV change. In this way we

can construct a linear map T between the IR data N and the
UV sources J = (JA,JB,JC,JP):

TN = J. (79)

The inverse of this map allows us to construct the IR data
needed to produce a bulk solution with any desired values
for the dual sources. Once such a solution is known,
sources and expectation values can be read off using (77)
and plugged into (78) to obtain Green’s function matrix.
From a practical standpoint, constructing the 4 x 4 matrix
T is a straightforward but computationally tedious affair.
One can completely determine the 16 complex entries by
integrating the equations of motion four times, with four

distinct (but arbitrary) N. After each integration the values

of J are computed from the UV asymptotics of the solution,
eventually yielding 16 equations for the unknown entries of

T. This process must be repeated for each value of (o, %) of
interest.

The appropriate boundary condition in the IR depends
on whether the IR 4-momentum p (74) is timelike or
spacelike. If timelike, the choice of infalling boundary
conditions leads to calculating retarded Green’s functions.
This boundary condition is complex, leading to a non-
Hermitian matrix of Green’s functions. Solutions that
vanish at the boundary are quasinormal modes and are
associated with poles in Green’s functions at complex @
and corresponding excitations with finite lifetime. This
occurs inside the light cone in the @ — k plane.

If p is spacelike, the infalling boundary condition used to
compute retarded correlators can be analytically continued
to the regular solution (75). This is a real boundary

condition on the mode in the IR, which leads to a
Hermitian matrix of Green’s functions. Solutions that
vanish in the UV as well are normal modes, and are
associated with poles in Green’s functions at real w, and
excitations that are dispersionless.

Thus, the light-cone structure given by (74) divides the
® — k plane into a region inside the light cone where modes
decay, and a “stable wedge” outside the light cone with
dispersionless excitations. We see this in the next subsection,
where we focus on the normal modes and associated
dispersionless excitations. This can be contrasted with other
types of geometries: Reissner-Nordstrom solution and its
cousins with regular horizons have the light cone fill up the
entire kK — w plane, and hence have unstable modes except
potentially at @ = 0 itself, while the IR singular geometries
of [9,10] have a dispersionless region for |w| < A for a
constant A, independent of k; these are contrasted in Fig. 5.

C. Fermion normal modes

The matrix T(w, 7() contains all of the information
necessary for identifying the locations of any fermion
normal modes which may appear in the bulk. Any such
normal mode can be defined as a solution to the equations
of motion which decays in the far IR and whose source
falloff in the UV vanishes—in other words, a regular

solution to the bulk spinor equations at some (a)N,%N)

such that J = 0. Clearly any nontrivial solution with this
property implies a zero eigenvalue of T, and thus one
discovers that

det T(wy. ky) = 0. (80)

This expression provides a powerful method for locating
the fermion normal modes, and can be used to determine
their location to very high accuracy.

The result of applying the diagnostic tool (80) to the
fermionic perturbations of the massive boson domain wall
solution is shown in Fig. 6, and for the massive fermion
solution in Fig. 7. We plot the results for k£ > 0, but due to
(70) the spectrum is invariant under (k, ®) — (—k, —w). As
anticipated, the normal modes appear in bands that are
confined to the exterior of the “IR light cone”, inside the
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FIG. 6. The band structure of fermion normal modes in the
massive boson background. The shaded blue triangle is the stable
wedge where it is possible for normal modes to appear, and the
solid blue curves are the locations of fermion normal modes of the
bulk theory, as determined by solving (80). The intersection of
the dashed line with one band indicates the presence of a gapless
mode. This band appears to terminate where it reaches the top
boundary of the shaded region, but follows it closely along the
bottom edge as far as our numerics allow us to compute.

stable wedge. Our numerical search reveals two bands for
each domain wall solution within the kinematic regions
shown.” In both cases, one of the bands passes through
o = 0, suggesting that the dual field theory state possesses
gapless fermionic degrees of freedom. Because these
gapless fermionic modes appear at finite momentum, their
presence indicates that some fermions in the dual state of
the ABJM theory may organize into a Fermi surface. These
ungapped bands in both cases begin at the upper boundary
of the light cone, and asymptote along the lower edge of the
light cone as far as our numerics can follow. Both cases also
possess a gapped band, which appears to both begin and
end along the lower light-cone edge. In the massive fermion
case, the gapped and ungapped bands come close to each
other along this edge, but the gapped band appears to
terminate before they coincide.

Thus we see both states possess both gapless and gapped
excitations of ABJM collective fermionic degrees of

*While we do not completely exclude bands of normal modes
at higher momentum than what is shown in the figures, a rough
numerical search along the edges of the IR light cone revealed no
further interesting features for kvyy/u < 10.
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FIG. 7. The band structure of fermion normal modes in the
massive fermion background, determined by solving (80). Again,
there is a gapless mode at finite momentum. At higher momen-
tum the gapped band approaches the ungapped band, but appears
to meet the IR light cone before the two bands coincide. As in the
massive boson background, the ungapped band traces the bottom
edge of the stable region as far as our numerics can reliably
follow it.

freedom, which since they correspond to poles at real @
are perfectly nondissipative, at least at large N. We have set
the scales of both figures so that details can be seen, but it
should be remembered that the wedge outside the light cone
where such stable fermionic excitations can exist is much
smaller for the massive boson case than the massive
fermion case (compare the light cones in Fig. 3). Inside
the IR light cone no additional normal modes exist, but only
quasinormal modes at complex frequencies corresponding
to excitations that decay; we get a sense of such modes in
the next subsection.

As discussed in Sec. III, there is a correlation between
the strength of the symmetry-breaking source and the size
of the IR light cone. When the U(1) symmetry breaking is
turned off entirely and only the chemical potential remains,
the solution is AASRN and the IR light cone effectively fills
the w — k plane, leaving no space for stable modes; indeed,
as first demonstrated in [4] and shown for top-down ABJM
fermionic fluctuations in [7], this geometry supports
fermionic zero-energy modes at finite momentum, but
no stable (infinitely long lived) excitations at finite fre-
quency. As the symmetry breaking is turned on weakly in
the massive boson case, the light cone closes slightly and a
kinematic wedge appears where stable modes exist; the
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massive fermion case has symmetry breaking of the same
order as the chemical potential and a much larger sta-
ble wedge.

It is tempting to conclude that in turning on the symmetry-
breaking source, some sector of the gauge theory mediating
decays of the fermionic excitations has become gapped. That
the gap is defined by the boundaries of the IR light cone and
not by the size of the symmetry-breaking deformation alone
can be understood as a consequence of the emergent IR
conformal symmetry. Far in the IR, the only relevant
dimensionless scale is defined by the fluctuation, like

Tr(G*G)

— Wy

FIG. 8.

PHYSICAL REVIEW D 93, 026001 (2016)

AR = @/kvg. Dialing up the strength of the symmetry-
breaking source closes the IR light cone further. While the
symmetry-breaking source is not the same operator in the
massive boson and massive fermion geometries, being a
scalar bilinear with monopole operators in one case and a
fermionic bilinear with monopole operators in the other, we
may speculate that in these geometries it is the size of the
symmetry breaking rather than the details of its nature that
most strongly influences the IR dynamics. This can be
inferred from the fact that both sorts of deformations drive
the UV theory to the same IR fixed point.

Tr(P,G*G)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

k
— Wy

Plots of G'G for the massive boson background. Within the wedge marked by red edges, all excitations are stable.
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Geometries with “good” IR singularities were studied in
[9], and in those cases infinitely long lived fermionic
excitations also appeared, again sometimes connected to
a zero-energy mode at finite momentum. In that case the
stable region was not a wedge, but a band defined by
|| < A. Beyond the value A (which is proportional to the
chemical potential) the normal modes were found to move
off the real w axis and the fluctuations consequently
acquired a finite width. It is likely that something similar
happens in the present case as well.

The normal mode analysis does not, in and of itself,
provide any information about which ABJM fermions are
participating in these excitations. By virtue of our top-down

THG*G)

PHYSICAL REVIEW D 93, 026001 (2016)

holographic approach to this system, we can address this
question, and at the same time better understand the fate of
the normal modes beyond the boundary of the stable
region.

D. Spectral functions

The calculation of the normal modes (80) treats all four
fermions symmetrically. However, the fermions do not all
participate in each mode equally. A normal mode may be
thought of as a solution for which all the sources vanish;
however, the four expectation values may behave differ-
ently, as some may vanish in the normal mode and some

Tr(P,G*G)

0.0 0.2 0.4 0.6 0.8 1.0
k
— Wy

e

— Wy
u

Tr(PyG*G)

0.5

0.0

-0.5

0.0 0.2 0.4 0.6 0.8 1.0
k
— Wy

FIG. 9. Plots of G'G for the massive fermion background. Within the wedge marked by red edges, all excitations are stable.
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may not. Equivalently, one may imagine approaching a
normal mode in the @ — k plane while keeping a source
fixed, and some expectation values will then diverge.
Expectation values that are nonzero in a normal mode will
thus be associated to poles in the matrix of Green’s
functions. It is interesting to determine which fermionic
operators participate in which collective normal modes.

A natural way to explore this is to study the spectral
function matrix, proportional to the anti-Hermitian part of
the retarded matrix Green’s function i(G(w,k)—
G'(w, k)). This spectral function quantifies the fermionic
degrees of freedom at a given frequency and momentum
which overlap with the fermionic operators of the ABJM
theory. Unlike the normal mode bands found in the last
subsection, the spectral function will be nonzero outside the
stable wedge, and will provide a sense of the existence of
unstable modes in this region. However, inside the stable
wedge the spectral function itself is hard to examine. This is
because since all excitations there are perfectly stable, the
spectral function is zero except for delta function singu-
larities; our numerical solutions cannot pick up these peaks,
meaning the plots of these regions would be quite boring.
To remedy this problem, we recall that the Kramers-Kronig
relations require the real parts of Green’s function matrix to
possess 1/w-type poles when the imaginary parts have
delta functions. Hence we choose to study the quantity
G'G(w, k), which will bring together both the real and
imaginary parts of Green’s functions. We can then plot
tr G'G, which will be a basis independent quantity
capturing both excitations in the stable wedge outside
the IR light cone and finite-width excitations inside the
IR light cone.

Finally, we can define matrices that project onto the
subspaces of definite charge:

P, = diag{1,0,0,0}
Py = diag{0.0,1,1}

P_ = diag{0,1,0,0}
(81)

[c.f. Eq. (56)]. Then, tr P, G'G will measure the excita-
tions of y, alone, etc.

Oy,

1.0 1.0

0.8 0.8 Oy,
0.6 0.6

0.4 0.4

0.2 02

OXz OXU O)(o OXz
0.05 1 0.05
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In Figs. 8-9 various projections of tr G'G are plotted
for the massive boson and massive fermion back-
grounds, respectively. Our first observation is that the
spectral density inside the stable region is strong along
the curves of the normal modes, as we would expect.
This density continues outside the stable wedge, point-
ing to the presence of nearby unstable modes. Most of
the bands of density along the normal mode curves are
strong; the exception is the region of the gapped band in
the massive fermion background, which is weak enough
to show up in our plot as a series of distinct points. We
continue to plot k>0, but the spectrum is again
invariant under (w,k) - (—®,—k); thus the band in
the lower-left corner of the massive fermion plots is
the continuation of the band that exits the plot in the
upper left.

By projecting onto the charged and neutral subspaces,
we can identify which fermions participate in which
bands of spectral density and associated normal modes.
For both backgrounds, it is j, and j, that dominate both
the gapped and gapless bands of normal modes for k > 0.
x> (and y() participates only very slightly along these
same curves. We stress that this asymmetry is in part
arbitrary: the conjugation symmetry (70) tells us that y,
and y, will have similar strong excitations for
(w,k) > (—w,—k), or in the @ =2 components with
@ — —m. We note that for the massive boson background
the gapped band continues in the P_ projection out of the
stable wedge and into the light cone. The symmetry
described above also involves charged conjugation in the
charged subspaces, and this curve can be seen to finish in
a small tail just above the vertex of the light cone in the
P projection; this feature will be shown to be a remnant
of a stronger band when we consider modifying the
couplings in the next subsection.

It is interesting to quantify the relative participation of
different fermionic modes at a particular point on these
bands; we choose to look at the Fermi surface point
along the corresponding curve, at zero frequency (relative
to the chemical potential) but finite momentum k = k.
One can turn on a unit source at @ = 0 and k = k; for

FIG. 10. The squared amplitude |c;|> of each ABJM operator participating in the Fermi surface zero-energy mode in the AASRN
background with no scalar (left), and the massive boson (middle) and massive fermion (right) backgrounds. The normalized Fermi
momentum kpvyy /u in the three cases are 0.53 (AdSRN), 0.58 massive boson (MB), and 0.48 massive fermion (MF). Note that in all

cases the contributions from O,, and O, are insignificant.
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FIG. 11.

each of the four supergravity fermions and catalog the
response of the system to this source in the rows and
columns of the retarded Green’s function. Diagonalizing
Green’s function at @ = 0 and k = ky explicitly reveals
an eigenmode with diverging eigenvalue. Denoting this
eigenmode &, , one can then write

Skp = ZCI)(I (82)
T

where the y/ are the bulk supergravity fermions dual to
the ABJM operators we study. The amplitudes c¢; thus
quantify the amount in which various ABJM fermions
are involved in the fermionic zero-energy mode. This
decomposition is shown in Fig. 10 for the massive
boson and massive fermion backgrounds, quantifying
how the normal mode is primarily composed of jy, and
Jo; this is readily understandable as being a result of the
direct mixing of these modes due to the symmetry-
breaking Cooper pair coupling of the form ¢yyy,. We
see also that y, and y, barely participate at all. This
suggests that the Majorana self-coupling term |¢|*7ox0
does not have much effect on the collective mode at the
Fermi surface.

E. Modifying couplings

The previous results were obtained in the full dynamics
of gauged N = 8 supergravity. However, it is interesting to
ask how these results change as we modify the background
or the couplings. This can give us an idea of which
couplings are responsible for the effects we see. For
example, Fig. 10 suggests that the charged-neutral coupling
is much more important than the neutral-neutral coupling,
because the y,-7, mixing is strong and the y,-y, mixing is
weak, and we see that indeed this is true. It should be kept
in mind that modified couplings take us outside the top-
down approach, since we do not know any explicit
embedding in M theory for the modified fermion equations
that we study below. We comment on three modifications
of our system, as follows:

(1) We keep the Lagrangian the same (i.e. still use
N = 8 supergravity) but turn off the scalar field A
while keeping the chemical potential. The result is
the AdSRN black brane corresponding to ABJIM
theory at zero temperature, deformed only by

Plots of the modulus squared of Green’s function for massless probe fermions of various charges.

chemical potentials. In the terminology of [10], this
is the four-charge black hole.®
(2) We consider massless charged Dirac fermions with
no couplings to the scalar fields in the massive boson
domain wall background. This is analogous to the
approach of [19].

(3) Also in the massive boson domain wall background,
we modify the equations of motion (55)—(57) for
N =8 fermions in only one regard, namely by
omitting the off-diagonal Cooper pair and Majorana
couplings. These couplings are similar to the ones
considered in [20].

Results for the massive fermion background are similar.

The existence of the stable wedge is a property of domain
wall backgrounds with IR AdS regions. If we pass to the
AdSRN background, then the stable wedge is closed, and
all excitations away from @ = 0 are dissipative. At w = 0,
there is a Fermi surface for the charged fermion [7], and the
neutral fermion is at a special transition point between a
pole in its Green’s function and a zero as other chemical
potentials of the system are varied [10]. We include the
observation that j, is entirely responsible for this Fermi
surface singularity in the AASRN background in Fig. 10.

Turning the scalar back on leads to the backgrounds
studied in this paper and opens up a stable wedge. We
expect there to be stable modes in this wedge for generic
charged fermions. Indeed, in Fig. 11, we see similar lines of
poles for charged, massless fermions in our massive boson
background with elementary Dirac equations; only the
neutral case does not acquire a band of stable excitations.
Thus we conclude the existence of stable fermionic modes
is a generic property of the background once the IR AdS
region exists and the stable wedge appears.

The Dirac equations obeyed by our top-down fermions
are substantially more complicated than these, involving
additionally y,y, and yyo couplings, as well as Pauli terms
and a running of the gauge couplings with the scalar.
Faulkner et al. [20] also discussed how the turning on of a
Yukawa coupling caused bands of excitations that crossed
to repel each other, leading to a gap in the dynamics. In that
case, there was only a single charged fermion, and the

®Note that due to a triality rotation carried out in [10], the sum
of all four gauge fields there corresponds to our single gauge field
here.
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FIG. 12. Normal mode structure in the massive boson background with the off-diagonal couplings turned off (left), compared to the
full top-down result of Fig. 6 (right). With the off-diagonal couplings turned off there are three bands, associated to y, (orange), ¥
(yellow), and j, (red), intersecting in three places. Turning on the couplings between the different fermions induces repulsion between

the bands, as described in the text.

coupling had a Majorana character coupling the fermion to
its own conjugate as in (59). In general if the particle has a
pole at momentum k, the antiparticle will have this pole
at —k. However, one can see that the I's factor mixes the
a =1 and a = 2 components, which introduces an addi-
tional flip of the sign of k; for this reason the authors of [20]
preferred the I'5 interaction, which couples two modes with
poles at the same momentum and leads to eigenvalue
repulsion generating a gap. One may ask whether a similar
principle of repulsion between bands brought on by a
mutual coupling applies in our case.

In Fig. 12, we plot the normal mode structure for our
fermions in the massive boson background, with the off-
diagonal couplings in the mixing matrix (57) removed but
the diagonal terms preserved, and compare it to the full top-
down results previously shown in Fig. 6. In the left plot,
describing the decoupled case, there are three bands: the
gapless, yellow band stretching from top to bottom is
associated to y,, while the red band crossing this coming
from the lower edge of the stable wedge to the left is the
neutral fermion j,. Meanwhile there is a third band in
orange, associated to the oppositely charged y,, crossing
the y, band below the upper boundary of the wedge and the
Jo band close to the origin in @ — k space. This orange band
is also gapless, displaying a zero-energy mode around
kvyy/pu = 0.09. We note the resemblance between the y,
and ¥, bands shown there, and the free fermion ¢ = 2 and
g = —2 cases shown in Fig. 11.

By comparing the band structure with and without off-
diagonal couplings we can get an idea of how the couplings

modify the bands. The lower-right crossing of bands results
in both mixing and repulsion, as the crossed jy, and j,
bands transform into uncrossed bands involving a mixing
of both fermions. This repulsion, however, does not create a
gap; unlike the simpler case in [20] there is no reason for
the repulsed crossing to exist at @ = 0, since it involves the
coupling of two distinct fermions instead of a fermion to
itself. Meanwhile, the two crossings involving the orange
x> band lead to repulsion without mixing; the band of
normal modes associated to y, is pushed off beyond the
stable wedge, ending up as the small tail visible just above
the light-cone vertex in the P, projection of Fig. 8, while
the 7, band only acquires a tiny y, component. As the y,
band is pushed off in this way, its associated zero-energy
mode disappears, thus gapping y, (for £ > 0). In this case,
as in [20], it happens that the coupling has created a gap.

The tiny amount of mixing between the y,, y, sector and
the j,, 7o sector suggests that the Majorana y,-y, coupling
is relatively unimportant, and on the whole this proves to be
the case; turning it off alone removes the small contribution
of the P sector to the normal modes, but does not change
any of the overall structure. The y,-y, Cooper pair coupling
is the dominant interaction.

V. DISCUSSION

Perhaps the most powerful aspect of our approach is the
explicit holographic map between the supergravity modes
in our gravitational solutions and various operators in the
ABJIM theory. This top-down application of gauge/gravity
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duality opens the door to various interpretations of our
results in the context of zero-temperature states of a field
theory whose operator content is well understood.

In our setup, we have deformed the ABJM theory in two
ways which our analysis makes precise. The first is by the
addition of a chemical potential for the U(1), current,
placing charged ABJM matter at finite density and sourcing
a relevant deformation away from the UV fixed point. In
the standard presentation of ABJM theory, the scalars Y
and fermions y, are neutral under U(1),, which is carried
only by the monopole operators e?*. Accordingly, the
composite operators of (16) filling out the 8. carry
U(1), charge, and the natural interpretation of the states
we study is as zero-temperature phases of composite matter
at finite density.

In fact zero-temperature phases of such composite matter
have arisen in other finite-density investigations of 2 4 1-
dimensional field theories, beyond holography in the large-
N limit. This is perhaps most famously apparent in the
context of the fractional quantum-Hall effect [45], but
related phases have also appeared more recently in e.g.
[46-48]. Particle-vortex duality in three dimensions
exchanges objects charged under an ordinary symmetry
with those charged under a current associated to the
dualized gauge field of the form (36), conserved by virtue
of the Bianchi identity. Many theories which permit such a
duality are more amenable to calculation in terms of the
“magnetic” variables which generate J,, and thus these
variables can often provide a relatively simple description
of complicated phases of strongly coupled matter.

Our calculation of the spectral functions for composite
fermions can help better the understanding of the nature of
these putative phases. One of our main results is the
appearance of delta function singularities in the spectral
functions within a particular kinematic window controlled
by the properties of the IR fixed point. These finite
momentum singularities signal the presence of stable
excitations which overlap with the fermionic operators
written in (63)—(66). One plausible explanation of these
spectral features is that the finite density of composite
fermions (those transforming in the 8,) has arranged itself
into a Fermi surface at @ =0 and k = k., and the IR
excitations around this Fermi surface are weakly interacting
and thus long lived. In this picture, the low energy features
of these states are qualitatively similar to a Fermi liquid of
composite fermions.’

The other deformation we have dealt to the ABJM theory
is the addition of a source which explicitly breaks the global
U(1),. In the states that we focus on, this breaking results

"Such a picture differs from the “gaugino” Fermi surfaces
discussed in [7], as the Fermi surfaces in this case would be
constructed from gauge-invariant composite fields. Reconciling
this interpretation with the N3/2 scaling of the correlator and
Luttinger’s theorem remains an interesting and unresolved issue.
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in a nonvanishing expectation value for composite boson or
fermion bilinears. In a sense developed in some detail in
Sec. IVC, it is the breaking of the monopole number
density that permits stable excitations in the vicinity of the
Fermi surface. It is interesting that the fermionic response
indicates that the system remains gapless even though the
U(1), has broken.

We are now in the position to ask how our results compare
to other zero-temperature states of composite matter. One
particularly interesting example is A/ = 4 supersymmetric
QED, which is acted on by mirror symmetry and hence like
ABJM theory permits a description in terms of magnetic
(composite) variables. In [47] it was shown that the IR
physics of this theory with a uniform density of magnetic
impurities is described by phases in which an “emergent
Fermi surface” consisting of composite fermions organizes
into a Fermi liquid. Moreover, it was found that this theory
permits a phase in which composite bosons acquire an
expectation value, yet the Fermi surface persists.
Understanding to what extent our ABJM states match the
expectations for these novel phases would be interesting.

In [11], it was argued that the pattern of holographic
Fermi surfaces in symmetry-preserving backgrounds of
N = 4 super-Yang-Mills theory and of ABJM theory can
be predicted based on the form of the dual field theory
operators. In particular, the field theory scalars involved in
the dual operators may have expectation values, and if they
do, then the “boson rule” of [11] predicts the existence of a
Fermi surface. A slightly subtle point is that the scalar
expectation values do not break symmetries in the large-N
limit; instead, the eigenvalues of the scalar operators are
distributed over the transverse directions in a manner that
respects the unbroken R symmetries. The reasoning behind
the boson rule is that a scalar expectation value allows an
insertion of the operator dual to a supergravity fermion,
generically of the form Yy, to deposit all of its momentum
into the fermionic component y, while the scalar Y is
absorbed by the nonsymmetry-breaking condensate. The
results of [11] are clearest in cases where at least one of the
independent chemical potentials is absent in the black hole
background. That is because unequal chemical potentials
demand nonzero profiles for supergravity scalars whose
field theory duals are expectation values of operators
composed entirely from the field theory scalars whose
nonsymmetry-breaking condensates drive the reasoning
behind the boson rule. It is unobvious how to extend the
reasoning to the present case, where all four chemical
potentials are equal, because then the nonsymmetry-
breaking supergravity scalars are altogether absent. It
would be useful to examine supergravity constructions
in which one, two, or three of the chemical potentials are
turned off, in order to try to ascertain whether some version
of the boson rule can be applied even in the presence of a
symmetry-breaking scalar like 1. In the present case, it is
interesting and suggestive to note from Fig. 10 and
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Egs. (63)—(66) that the field theory operators which
contribute to the fermion zero-energy mode at positive k
are the ones whose bosonic components involve ¥ not Y.
For the massive boson domain wall, it would be in the spirit
of the boson rule to speculate that this is because the
deforming operator Qg involves Y# but not Y;. For the
massive fermion domain wall, where the deforming oper-
ator Op involves only w4 but not ™, it is not clear how an
argument in the style of the boson rule should go. We hope
to report further on field theory interpretation in
future work.
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