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Relying on an effective-string approach in which glueballs—bound states of pure Yang-Mills
theory—are modeled by closed strings, we give arguments suggesting that anyonic glueballs, i.e. glueballs
with arbitrary spin, may exist in (2þ 1)-dimensional Yang-Mills theory. We then focus on the large-Nc

limit of SUðNcÞ Yang-Mills theory and show that our model leads to a mass spectrum in good agreement
with lattice data in the scalar sector, while it predicts the masses and spins of anyonic glueball states.
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I. INTRODUCTION

The appearance of quantum states with arbitrary spin,
called anyons, is a fascinating feature of quantum mechan-
ics in 2þ 1 dimensions [1] that has been explored in a
considerable amount of works: The interested reader may
find useful references in Refs. [2–4]. Actually, in 2þ 1
dimensions, the spin s of a given state may be arbitrary
because the Lorentz group SOð2; 1Þ, as a group manifold,
contains a noncontractible circle S1 whose covering R
covers it infinitely many times. In the case of an Euclidean
spacetime, the “Lorentz” group SOð3Þ is a compact,
connected (albeit nonsimply) manifold that admits at most
two-valued unitary representations.
It is known in field theory that coupling a matter field to a

three-dimensional vector gauge field with a Chern-Simons
term leads to the appearance of states with fractional
statistics [5]. The equivalent result is obtained within an
Oð3Þ σ model with a Hopf term [6]. Note that a Chern-
Simons term is not a necessary condition to produce anyons
in field theory, as illustrated by the following examples:

(i) Composite quantum states with arbitrary spin or
arbitrary exchange statistics can be built from the
genuine Abelian Higgs model without a Chern-
Simons term [7,8].

(ii) Within an Abelian gauge theory with a matter field
denoted by Ψ and g2, a constant with the dimension
of mass, one defines the shifted connection Aθ

μ ¼
Aμ þ θ

g2 Fμ, where Fμ ¼ ϵμνρFνρ=2. The operator

ΨðxÞPfexpði R y
x dz

μAθ
μÞgΨ̄ðyÞ then propagates an

anyon with nontrivial statistics related to the arbi-
trary real number θ [9].

(iii) The spectrum of closed Nambu-Goto strings in
2þ 1 dimensions necessarily contains fractional
spin fields after light-cone quantization [10].

More generally, it has to be stressed that the existence of
fractional-spin fields in (2þ 1)-dimensional Minkowski
spacetime arises from pure group theoretical arguments that
are actually independent of the particular form of the
action under consideration [11,12]. These arguments will
be summarized in Sec. II, while the case of closed Nambu-
Goto strings, particularly important for our present work,
will be discussed in Sec. III.
The purpose of the present paper is to investigate

whether anyonic states exist or not in pure (2þ 1)-
dimensional Yang-Mills theory. Such a problem has, to
our knowledge, never been studied so far. If anyonic
glueballs can be built, the next question is “What are their
masses and spins?” This problem can be addressed by
resorting to a closed-string effective model of glueballs.
The idea that Yang-Mills theory should be equivalent to
some closed-string theory at large Nc actually originates
from ’t Hooft and Veneziano’s work on the large-Nc limit
of QCD [13,14]. It has indeed been known since then that
any amplitude in large-Nc Yang-Mills theory can be
expressed as a sum over terms containing planar diagrams
forming Riemann surfaces with various genus numbers,
just as it is the case in closed-string theory.
From an effective model point of view, it is therefore

tempting to assume that glueball dynamics has some
stringy nonperturbative origin. The celebrated Isgur and
Paton’s flux tube model [15] is a first example of how,
starting from a lattice-QCD-inspired approach, one is led to
the conclusion that glueballs—or at least some of them—
may be described by closed strings. Closed effective strings
are often referred to as closed flux tubes, since they are seen
as particular configurations of the chromoelectric field
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whose dynamics is expected to be that of a closed string.
Interestingly, lattice computations regarding Yang-Mills
theory have given some support to this picture. The
interested reader may find in Refs. [16,17] a discussion
of the agreement between a string model of glueballs and
the lattice data of Ref. [18].
The effective model we use, inspired in particular by that

of Ref. [17], is presented in Sec. IV, and numerical results
are obtained in Sec. V. Concluding comments are given
in Sec. VII.

II. RELATIVISTIC ANYONS

Since the seminal works of Wigner and Bargmann
[19,20], it has been known that the elementary particles
in Minkowski spacetime of dimension D are associated
with the unitary irreducible representations (UIRs) of the
spacetime isometry group ISOðD − 1; 1Þ, the latter group
being the semidirect product of the Lorentz group SOðD −
1; 1Þ with the translation group TD. In 2þ 1 dimensions,
the Poincaré group therefore is ISOð2; 1Þ ≅ SOð2; 1Þ⋉T3.
In this section we first show how to build the UIRs of
the (2þ 1)-dimensional Lorentz group SOð2; 1Þ; then we
extend the discussion to the Poincaré group ISOð2; 1Þ.

A. The case of SOð2;1Þ
Let Lab ¼ −Lba be the generators of SOð2; 1Þ. Then

soð2; 1Þ, the Lorentz algebra in 2þ 1 dimensions, is
presented by

½Ja; Jb� ¼ −iεabcJc; ð1Þ
where Ja ¼ 1

2
εabcLbc and ε012 ¼ 1. Using the Minkowski

metric in Cartesian coordinates η ¼ diagð−þþÞ and bold
fonts for 3-vectors, the scalar product of U and V reads
U · V ≡UaηabVb, and the Casimir operator of SOð2; 1Þ is
taken to be

C2½soð2; 1Þ� ≔ −J2 ¼ 1

2
LabLab: ð2Þ

We use the notation ~u; ~v… for 2-vectors in the planes at
fixed values of the Minkowskian coordinate x0.
An oscillator-based method for the classification of the

UIRs of SOð2; 1Þ was given in Ref. [11], which we closely
follow, since it has the advantage of building up the UIRs of
SOð3Þ in complete analogy, thereby unifying the treatments
of the various real forms of soð3;CÞ. It is of importance for
us in view of drawing the reader’s attention to the
differences between both groups, the latter being actually
at the basis of lattice QCD because of the Wick rotation
leading to a Euclidean rather than hyperbolic spacetime.
Defining, as usual, the ladder operators

J� ¼ 1ffiffiffi
2

p ð−iJ2 � J1Þ ð3Þ

yields

½Jþ; J−� ¼
�
L12 for soð2; 1Þ
−L12 for soð3Þ ð4Þ

and

½L12; J�� ¼ �J� ð5Þ

for both soð2; 1Þ and soð3Þ. The authors of Ref. [11]
considered the complex algebra soð3;CÞ, thereby taking
one and the same set of commutation relations for both
soð2; 1Þ and soð3Þ (with ½Jþ; J−� ¼ L12) and distinguished
the groups SOð2; 1Þ and SOð3Þ by different reality con-
ditions on the corresponding parameters of infinitesimal
transformations. In turn, these conditions and the require-
ment of unitarity of irreducible representations for SOð2; 1Þ
or SOð3Þ give different reality conditions on the generators
of the two groups. Effectively, this amounts to allowing real
linear combinations of the noncompact generators
fL01; L02g for SOð2; 1Þ and only purely imaginary linear
combinations of them in the case of SOð3Þ, thereby
Euclideanizing SOð2; 1Þ to SOð3Þ, or stated equivalently,
making fL01; L02g compact. One must have ðJþÞ† ¼ J−

for the rotation group SOð3Þ and ðJþÞ† ¼ −J− for the
three-dimensional Lorentz group SOð2; 1Þ. To summarize,
in a unitary representation,

L†
12 ¼ L12; ðJþÞ† ¼ −J− for SOð2; 1Þ;

L†
12 ¼ L12; ðJþÞ† ¼ J− for SOð3Þ: ð6Þ

Let ξ ¼ ðξαÞα¼1;2 be a commuting real spinor of SOð2; 1Þ
and consider the linear vector space spanned by normalized
vectors of the form

jΦ; mi ¼ N mξ
a
1ξ

b
2 ¼ N mðξ1ξ2ÞΦðξ1=ξ2ÞE0þm;

where Φ ¼ 1

2
ðaþ bÞ; E0 þm ¼ 1

2
ða − bÞ;

ða; bÞ ∈ C2; m ∈ Z: ð7Þ

The integer m unambiguously labels the vectors once Φ
and E0 are specified. The inner product is defined by
hΦ; mjΦ; m0i ¼ δm;m0 . In this representation the generators
J� and J0 are realized by the operators

J0 ¼ 1

2

�
ξ1

∂
∂ξ1 − ξ2

∂
∂ξ2

�
;

Jþ ¼ 1ffiffiffi
2

p ξ1
∂
∂ξ2 ;

J− ¼ 1ffiffiffi
2

p ξ2
∂
∂ξ1 : ð8Þ

These act on the basis vectors as
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8>><
>>:

J0jΦ; mi ¼ ðE0 þmÞjΦ; mi;
JþjΦ; mi ¼ 1ffiffi

2
p ðΦ − E0 −mÞðN m=N mþ1ÞjΦ; mþ 1i;

J−jΦ; mi ¼ 1ffiffi
2

p ðΦþ E0 þmÞðN m=N m−1ÞjΦ; m − 1i:
ð9Þ

One sees that (E0 þm) is the eigenvalue of the generator of
spatial rotations J0, while a quick calculation shows that
ΦðΦþ 1Þ is the eigenvalue of the quadratic Casimir

C2 ¼ 2J−Jþ þ J0ðJ0 þ 1Þ ¼ 2JþJ− þ J0ðJ0 − 1Þ: ð10Þ

Imposing the unitarity condition (6) for the SOð3Þ group
leads to

IðE0Þ ¼ 0; ð11Þ
����N mþ1

N m

����
2

¼ Φ� − E0 −m
mþ E0 þ Φþ 1

: ð12Þ

These recursion relations can be solved only if the values of
m are bounded both from above and from below. This
corresponds to the well-known result that the UIRs of
SOð3Þ are finite dimensional. The spectrum of the operator
J0 is then

1

2
ða − bÞ ¼ −Φ;−Φþ 1;…;Φ; ð13Þ

showing that Φ ¼ s is the spin of the corresponding SOð3Þ
irreducible representation, and RE0 ¼ 0.
For the noncompact group SOð2; 1Þ, one derives from

the unitarity condition (6) that

IðE0Þ ¼ 0; ð14Þ
����N mþ1

N m

����
2

¼ mþ E0 þ 1
2
− ðΦ� þ 1

2
Þ

mþ E0 þ 1
2
þ ðΦþ 1

2
Þ : ð15Þ

Keeping the notation of Ref. [11], this gives the following
UIRs:

DðC2; E0Þ∶ C2 < jE0jðjE0j − 1Þ and m ∈ Z;

DþðΦÞ∶ Φ < 0 and m ∈ N0;

D−ðΦÞ∶ Φ < 0 and −m ∈ N0;

DðΦÞ∶ Φ ¼ 0 and m ¼ 0: ð16Þ

The UIRs DðC2; E0Þ, whose spectra for J0 are neither
bounded from above nor from below, contain the principal
and complementary (or supplementary) UIRs of SOð2; 1Þ.
As explained in the next section, we shall focus on the other
possible UIRs. The representations D�ðΦÞ are called the
discrete series, while the representation Dð0Þ is the trivial,

one-dimensional representation. For the discrete series
DþðΦÞ [D−ðΦÞ], the spectrum of J0 is countably infinite,
bounded from below (above). Cases of particular interest
for our purpose will be denoted by

Dþ
s ≔ Dþð−sÞ∶ J0 ¼ sþm;

D−
s ≔ D−ð−sÞ∶ J0 ¼ −s −m;

m ∈ N; s > 0: ð17Þ
The spin of the discrete series Dþ

s representation is s (with
s > 0), that can be an integer or even an arbitrary (albeit
positive), real number.
Representations of SOð2; 1Þ bounded from above and

below like for SOð3Þ exist but are nonunitary [11]. The
only UIR that SOð3Þ and SOð2; 1Þ share is the trivial one
DðΦ ¼ 0Þ, which corresponds to scalar fields. Finally, it is
worth mentioning that the statistical phase exp ð2iπsÞ can
still be associated with a state of arbitrary spin s by virtue of
the spin-statistics theorem [4,21].

B. The case of ISOð2;1Þ
Let Pa be the translation generators of T3. Then

isoð2; 1Þ, the Poincaré algebra in 2þ 1 dimensions, is
presented by

½Ja; Jb� ¼ −iεabcJc; ½Ja; Pb� ¼ −iεabcPc;

½Pa; Pb� ¼ 0; ð18Þ

and the two Casimir operators of ISOð2; 1Þ read, for
massive representations,

M2 ¼ −P2; s ¼ −
P · J
M

: ð19Þ

They respectively give, on irreducible representations, the
squared mass and the spin of a state. It has been shown in
Ref. [22] that states jΨi belonging to the complementary
series DðC2; E0Þ are such that P2jΨi ¼ 0, P · JjΨi ¼ 0,
J2jΨi ¼ 0. Such states are not relevant in view of studying
glueballs, since we are looking for massive representations
with nonzero spin that will contain anyons. As also shown
in Ref. [22], such “physical” states belong rather to the
discrete series Dþ

s or D−
s . Let us denote by jM2; ~p; s; J0i

these states, the two series being distinguished by the signs
of the eigenvalues of P0 and J0: positive (negative) for Dþ

s

(D−
s ). Therefore, the two series D�

s can be seen as PT
conjugated to each other, with P and T denoting the parity

and time conjugation, respectively. In the rest frame, ~p ¼ ~0,
and s reduces to J0 (−J0) for states in the Dþ

s (D−
s )

representation. We note

jM2; s;�si ∈ D�
s ; ð20Þ

such states will play a particular role in the rest of this
work.
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In 2þ 1 dimensions, the action of parity P is to revert
one spatial direction; we define it to act as X ¼
ðx0; x1; x2Þ → PXP−1 ¼ ðx0; x1;−x2Þ. As a consequence,

½P;P2� ¼ 0;

�
P;

−P · J
M

�
¼ 0: ð21Þ

Eigenstates of both (19) and the parity can be built; they
represent anyons, and in the rest frame they read

jM2; s;ηPi¼
1ffiffiffi
2

p ðjM2; s; si þ ηPjM2; s;−siÞ ∈Dþ
s ⊕D−

s ;

ð22Þ

where ηP is the eigenvalue of the parity. This prescription is
valid when s ≠ 0. For states belonging to Dð0Þ, eigenstates
of the parity can still be obtained by application of the
projector 1

2
ð1þ ηPPÞ, but both values of ηP cannot

necessarily be reached, as we will see in Sec. IV by explicit
computation.

III. ANYONS FROM CLOSED STRINGS

As shown in Ref. [10], fractional spin does appear in the
spectrum of closed (2þ 1)-dimensional Nambu-Goto
strings in the light-cone gauge. More precisely, the authors
of Ref. [10] have performed the light-cone quantization of
the following Hamiltonian version of the Nambu-Goto
action:

S½X;P; l; u�

¼
Z

dτ
Z

dϕ
2π

�
_X · P −

l
2
½P2 þ ð2πσX0Þ2� − uX0 · P

�
;

ð23Þ

where σ is the string tension and where the string
coordinates X are a function of τ and ϕ ∈ ½0; 2π�. This
last action is equivalent to the standard Nambu-Goto action
provided l, the Lagrange multiplier accounting for the S1

diffeomorphism invariance, is nowhere vanishing. The
other Lagrange multiplier, u, stands for the τ reparamet-
rization invariance. The reader can find in Ref. [23] a
detailed and rigorous presentation of the Hamiltonian
quantization of the Polyakov action for the (super)string,
where the Hamiltonian action (23) appears upon fixing the
constraint related to Weyl invariance of the classical
Polyakov string.
A first observation made in Ref. [10] is that the mass

spectrum of the theory reads

M2 ¼ 4πσðN þ N̄ − aÞ; ð24Þ

with the usual number operators N and N̄. The constraint

N ¼ N̄; ð25Þ

equating the number of left- and right-movers, as a
consequence of the S1 diffeomorphism invariance, must
be added to Eq. (24). The constant a is actually not
constrained by the theory. Indeed, it is well known that
a light-cone quantization in a D-dimensional spacetime
would have led to the critical value a ¼ ðD − 2Þ=12
necessary to restore the Lorentz invariance at quantum
level. However, the authors of Ref. [10] have fixed D ¼ 3
a priori, which has a strong impact: The problematic
commutators are de facto absent, and Poincaré invariance
is satisfied at the quantum level without having to fix a
unless the theory is supersymmetric, a case that we are not
dealing with here.
The spectrum can be built by requiring the string states to

be simultaneously eigenstates of M2 and s, given by (19).
This last operator is cubic in the a’s and couples the
different states with the same N. The eigenvalues of the
operator s finally give the spins of the closed string states
with a given mass. Inspection of these eigenvalues shows
that there necessarily are fractional spin fields in the
spectrum of the first-quantized closed string in 3D. This
is the key result of Ref. [10]. More precisely, the first levels
of the closed-string spectrum contain states with the
following spins:

(i) Only s ¼ 0 for N ¼ 0 and N ¼ 1.
(ii) Two s ¼ 0 states and two s ¼ 3ffiffiffiffiffiffi

4−a
p states for N ¼ 2.

(iii) Three s ¼ 0 states, four s ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

179

12
ffiffiffiffiffiffi
6−a

p
q

states and two

s ¼
ffiffiffiffiffiffiffiffiffiffiffi
179

3
ffiffiffiffiffiffi
6−a

p
q

states for N ¼ 3.

States with s ≠ 0 actually appear in doublets of opposite
helicities, standing for the two discrete series D�

s . We recall
that both discrete series are characterized by the same
eigenvalue of the operator on the right-hand side of the
second equation of (19), but differ by the sign of J0.
The interested reader will find the explicit expression of all
the above states in terms of the string oscillators in Ref. [10].
There is actually an infinite but countable set of closed-

string states, some of which have fractional spin, since there
is no value of a leading to only integer or half-integer spins.
In view of what we recalled in Sec. II, this result is natural:
Imposing Poincaré invariance to the first-quantized closed
string in 3D should logically lead to states belonging to
anyonic representations. Note, however, that the noncritical
nature of the bosonic string in 2þ 1 dimensions comes in
the light-cone quantization prescription. BRST quantiza-
tion, on the other hand, forbids low-dimensional, critical
Polyakov strings; see Ref. [23].

IV. THE MODEL

A. Glueballs and closed strings

Beyond the pioneering work [14], the relevance of
relating Yang-Mills theory at large Nc to a closed-string
theory has been studied also in Ref. [24], where the
following picture is developed. On the one hand, at large
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Nc, Yang-Mills dynamics can be reformulated in terms of a
reduced model, typically a quenched Eguchi-Kawai model
[25]. On the other hand, an appropriate limit Nc → ∞ of
SUðNcÞ [24,26] is isomorphic to the algebra of area-
preserving diffeomorphisms. Both results allow us to
reformulate the quenched Eguchi-Kawai action as a
Nambu-Goto action. However, SUð∞Þ Yang-Mills is not
fully equivalent to a Nambu-Goto string, since the inte-
gration measure of its partition function is not that of a
Nambu-Goto string [24]. Other approaches clearly show
that a closed Nambu-Goto string can only be a leading-
order approximation of Yang-Mills theory even at large Nc,
see e.g. Ref. [27] and references therein.
Another point of view is that of Ref. [28], in which Yang-

Mills theory in 2þ 1 dimensions is reduced to a (1þ 1)-
dimensional Yang-Mills theory with scalar adjoint matter.
The spectrum of the latter theory is shown to contain bound
states (glueballs) that can be interpreted as closed strings.
Nevertheless, as observed in Ref. [24], the Nambu-Goto
string alone cannot provide an effective description of
Yang-Mills theory. A better-known reason is the standard
result that Poincaré invariance is fulfilled at the quantum
level for D ¼ 26 only. This issue was solved in Ref. [29],
where it was shown that adding a term

δLPS ∝
ð∂α∂βXμ∂βXμÞ2

ð∂γXμÞ2
ð26Þ

to the Polyakov Lagrangian restores Poincaré invariance for
any spacetime dimension D. The Polchinski-Strominger
term [29] has been computed in conformal gauge and
recovered in static gauge [30]. Note that such an extra term
is not needed in the case we focus on, since, within the
light-cone gauge quantization scheme used in Ref. [10],
Poincaré invariance is already satisfied at the quantum level
for the 3D Nambu-Goto action.
Another reason to go beyond the Nambu-Goto string

may then be to reach a more accurate description of the
dynamics of the effective QCD string. For example, as seen
from a semiclassical expansion around a closed folded
string, the Polchinski-Strominger term produces correc-
tions to the well-known mass formula M2 ∝ J, J being the
string angular momentum. The corrections appear as
powers of J smaller than 1 and have been computed in
Ref. [31]. More generally, the analysis performed in
Ref. [32] of the terms allowed by classical Lorentz
invariance reveals that the first nontrivial correction to
the Nambu-Goto Lagrangian in 2þ 1 dimensions is a term
involving the induced world-sheet metric h and the scalar
curvature R constructed from it:

δL ∝
ffiffiffiffiffiffi
−h

p
R2: ð27Þ

However, in the present exploratory work, we are mainly
interested in a qualitative description of the glueball

spectrum, so it is worth asking whether adding such a
term brings relevant information or not. It appears from
Ref. [33] that, when expanding the energy of an effective
closed string in terms of its classical length L, the energy
formula is universal up to 1=L5 terms in 2þ 1 dimensions,
and deviations from universality only appear at order 1=L7.
According to lattice computations [34], the mass of the
lowest-lying glueball at large Nc is given by M=

ffiffiffi
σ

p
∼ 4,

which provides the estimate
ffiffiffi
σ

p
L ∼ 4, a length range such

that 1=ð ffiffiffi
σ

p
LÞ7 corrections to the standard Nambu-Goto

energy formula are negligible [35].
We aim at building an effective model in which the

nonperturbative dynamics of (2þ 1)-dimensional YM
theory is that of a closed bosonic string. From what we
have just been arguing, it is thus sufficient to adopt, in a first
approach, the quantization scheme of Ref. [10] that will
allow us to reach this goal.

B. Glueball states

In order to match string states and glueball states
according to standard terminology, one has to associate
sPC quantum numbers to a given string state. On top of the
reversal of any spatial momentum, the parity operator P for
closed strings is defined by

P ¼ ð−1ÞNþN̄ : ð28Þ

It anticommutes with the helicity operator [10]. As a
consequence, for any given eigenvalue of N (equivalently
M2), states with nonzero spin form parity doublets (22).
The s ¼ 0 cases must be treated separately; see below.
Charge conjugation C has to be introduced by hand by

recalling that, in 2þ 1 dimensions, a closed flux tube is
actually a loop of fundamental color flux that closes on
itself. Hence, it has an intrinsic orientation which is that of
the chromoelectric field [17]. So a given state in the closed-
string spectrum can either correspond to a flux tube with
clockwise (↻) orientation or to one with anticlockwise
orientation (↺). The action of the charge conjugation is to
revert this orientation, basically by turning fundamental
color charges into conjugated ones [17],

Cj↻;M2; s; si ¼ j↺;M2; s; si; ð29Þ

while parity also flips J0:

Pj↻;M2; s; si ¼ j↺;M2; s;−si: ð30Þ

Note that, in our framework, time reversal would just
flip J0.
In summary, starting from a closed-string state

j↻;M2; s; si found in Ref. [10], one can build a sηPηC
glueball with massM2 provided that the linear combination
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jM2; sηPηCi ¼ 1

2
ð1þ ηCCÞð1þ ηPPÞj↻;M2; s; si ð31Þ

is nonzero. At this stage, charge conjugation just adds an
additional Z2 degree of freedom to the spectrum.
The explicit form of the eigenstates of M2 and s is given

in Ref. [10] and will not be recalled here for the sake of
brevity. We have checked that, from these j↻;M2; s; si
states, one can form the following multiplets:

(i) f0þþ; 0−−g for N ¼ 0.
(ii) f0þþ�; 0−−�g for N ¼ 1.
(iii) f0þþ��; 0−þ; 0−−��; 0þ−; 3ffiffiffiffiffiffi

4−a
p ��g for N ¼ 2.

(iv) …
The * is used to distinguish excited states of a given sηPηC . It
is readily seen that, if glueball dynamics is that of a closed
string, the low-lying spectrum should be filled by (pseudo)
scalar states, while the first states with nonzero spin are
expected to arise at higher masses, corresponding to level 2
in our formalism. At this stage, the state with s ¼
3=

ffiffiffiffiffiffiffiffiffiffiffi
4 − a

p
can still be a boson with spin n ∈ N0, provided

that a ¼ 4 − 9=n2. However, n > 1 leads to a > 0, imply-
ing unphysical glueball states withM2 < 0 at level 0. Even
if the N ¼ 2 glueball with J ≠ 0 is not an anyon but a spin-
1 boson, then anyons necessarily appear at level 3, so they
cannot be avoided in the glueball spectrum.

V. GLUEBALL SPECTRUM

A. Numerical results

Glueball states obtained in the previous section follow
the simple mass formula (24). Hence, the glueball spectrum
is completely known from our model once the value of a is
fixed. As usually done in the field, this can be achieved by
comparing our results to the (2þ 1)-dimensional glueball
spectrum computed in pure gauge lattice QCD in
Refs. [18,34] and further analyzed in Refs. [16,36].
A clear feature of the lattice spectrum is the appearance

of Regge trajectories, i.e. a linear dependence between the
squared mass M2 and the spin s of a glueball, with a slope
compatible with the value 8πσ of a classical closed string
[16,36]. However, the spin “measured” on the lattice is
necessarily integer due to the Euclidean spacetime induced
by Wick’s rotation. That is why, as discussed in Sec. II,

comparisons between our model and lattice results should
be restricted to s ¼ 0 states: SOð2; 1Þ and SOð3Þ only share
theDð0Þ UIR. These states are listed in Table I. It is readily
seen that, as predicted by the closed-string picture, the
lightest states with C ¼ þ (C ¼ −) are 0þþ (0−−) ones,
while the first 0−þ (0þ−) glueball is much heavier.
As pointed out in Ref. [17], the lattice spectrum shows a

large splitting between C ¼ þ and C ¼ − states, which are
degenerate according to the mass formula (24). As argued
in Ref. [17], this is the stage at which it has to be
remembered that flux tubes may be more complex objects
than Nambu-Goto strings because of their intrinsic ori-
entation. Processes that induce a mixing between↻ and↺
states can be figured out: One can think of a ↻ flux tube
shrinking to a “ball-like” configuration where information
about the orientation is lost, then expanding into a ↺ flux
tube. The simplest way of implementing such a mixing is to
add a constant coupling of the form

�
M2 4πσb

4πσb M2

�
; ð32Þ

the above mass (squared) operator being expressed in the
fj↻i; j↺ig basis. The eigenstates are C ¼ þ states, with
mass M2

C¼þ ¼ 4πσðN þ N̄ − a − bÞ, and the C ¼ − states,
with massM2

C¼þ ¼ 4πσðN þ N̄ − aþ bÞ. The effect of the
mixing introduced is thus simply to shift the intercept of
C ¼ − states with respect to that of C ¼ þ states.
The model built here is obviously very simple and should

be regarded as valid only in a first approximation. Spin-
dependent corrections, in particular, should be present in a
more refined model. It is nevertheless interesting to notice
the good agreement between our mass formula and existing
lattice data once a and b are fitted; see Table I. A prediction
of the present model is that there should exist two
degenerate 1.22�− glueballs with a mass around 8.18 in
units of the string tension, as well as 1.22�− glueballs with
a mass around 9.26.
For completeness, we mention that an attempt to

compute the large-Nc glueball spectrum in 2þ 1 dimen-
sions by resorting to a formulation of lattice gauge theory in
the light-cone gauge has been made previously [37].

TABLE I. Glueball quantum numbers predicted by our flux tube model, with a ¼ −2.071 and b ¼ 0.746,
compared to the pure gauge lattice studies [18,34] in the large-Nc limit. Masses are given in units of the string
tension.

M=
ffiffiffi
σ

p
M=

ffiffiffi
σ

p

N sηPηC Model Lattice sηPηC Model Lattice

0 0þþ 4.081 4.108(20) [34] 0−− 5.950 5.953(71) [34]
1 0þþ� 6.464 6.211(46) [34] 0−−� 7.780 7.77(14) [34]
2 0þþ�� 8.180 8.35(20) [34] 0−−�� 9.256 8.96(65) [18]

0−þ 8.180 9.02(30) [34] 0þ− 9.256 9.47(116) [18]
1.22�þ 8.180 1.22�− 9.256
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Among other results, the ratios M0−−=M0þþ ¼ 1.35ð5Þ and
M0−−�=M0þþ ¼ 1.82ð6Þ are found, while our approach
leads to the similar values 1.46 and 1.90, respectively,
keeping the same values of a and b. Anyonic states were
not built in Ref. [37]; to our knowledge it is an open
question to know whether anyonic states can be built in
light-cone gauge lattice theory or not.

B. Comments on the mass spectrum

Although the present flux tube model is close to the one
proposed in Ref. [17], a fundamental difference occurs at the
level of the quantization of the closed string. Indeed, in
Ref. [17], a spectrum was found in agreement with lattice
data by using the Isgur-Paton closed flux-tube model [15].
This is not surprising, since the authors of Ref. [17] perform a
nonrelativistic, Schrödinger-like quantization of the fluctua-
tions of a closed circular string, and in such a scheme the spin
of a state is identified with s ¼ jN − N̄j, so it is necessarily
an integer and the constraint N ¼ N̄ is not present. Only
the constraint N þ N̄ ≠ 1 is imposed by the model [17].
Hence, the angular momentum appearing in the resulting
Hamiltonian is integer and matches existing lattice data.
WhenNc is finite, our main assumption—i.e. identifying

glueballs with closed flux tubes—may appear less sound. It
has to be noticed, however, that the quantum numbers and
mass hierarchy of the glueball states are identical whatever
Nc is [18,34]. The case Nc ¼ 2 is special, since the
fundamental representation is real. Then, no orientation
can be given to a flux tube, and only the C ¼ þ sector is
present. The universal structure of the glueball spectrum for
Nc > 2may suggest that the stringy picture developed here
is still relevant at finite Nc, and thus that anyonic glueballs
are a generic feature of SUðNcÞ Yang-Mills theory in 2þ 1
dimensions. Even the SUð2Þ lattice scalar mass spectrum
can be recovered by using b ¼ 0 (no C ¼ − sector) and
a ¼ −1.9 in our model. Note that the spectrum obtained in
the present section is expected to be the same in the large-
Nc limit of SUðNcÞ, SOðNcÞ and SpðNcÞ Yang-Mills
theories, that have been proven to be equivalent in the
strong coupling limit [38].

VI. RELATION WITH ’T HOOFT AND
WILSON LOOPS

It is now worth wondering how much the existence of
anyonic states in YM theory relies on our effective closed
string description. There exist other ways to build anyons.
One of the simplest ways, at the nonrelativistic level, is to
minimally couple a particle to a vortex-like vector potential:
The resulting vortex-plus-particle system constitutes an
anyon [2]. This coupling can be achieved in Yang-Mills
theory too. Let us start from the 3D ’t Hooft operator ϕð~xÞ
defined through the nonstandard commutation relation [39]

WðCtÞϕð~xÞ ¼ e
2πinð~x;CtÞ

Nc ϕð~xÞWðCtÞ; ð33Þ

where WðCtÞ ¼ TrP exp ig
H
Ct
A is a standard Wilson loop

withCt a closed spacelike curve. By “spacelike,” it is meant
that all the points of Ct have the same temporal coordinate
x0 ¼ t. Moreover, in the equation above, nð~x;CtÞ is the
number of times that the closed curve Ct winds around ~x in
a clockwise fashion minus the number of times it winds
around ~x anticlockwise. Note also that ½ϕð~xÞ;ϕð~yÞ� ¼ 0,
which reflects the locality of the operator ϕ [39]. Explicit
representations of ϕð~zÞ can be found in Refs. [9,40].
We now define the operator

GCt
ð~zÞ ¼ ϕð~zÞWðCtÞ; ð34Þ

where ~z may or may not be enclosed by Ct, a closed
spacelike curve fixed once for all. Since spacelike Wilson
loops commute at equal time [39], it is readily shown that
GCt

ð~zÞ may have a nontrivial statistical phase: It is indeed
such that, for two separated points ~z1 and ~z2,

GCt
ð~z1ÞGCt

ð~z2Þ¼ e
2πi
Nc
½nð~z2;CtÞ−nð~z1;CtÞ�GCt

ð~z2ÞGCt
ð~z1Þ: ð35Þ

The statistical phase will be nontrivial as soon as
nð~z2;CtÞ ≠ nð~z1;CtÞ. From the generalized spin statistics
theorem [21], it can be concluded that the operator GCt

ð~zÞ
creates a color-singlet state with spin s ¼ ðk=NcÞ þ n with
k; n ∈ N—that is, a value that can be nonzero and neither
integer nor half-integer.
Just as the correlator of spacelike Wilson loops contains

scalar glueballs [18], it can be expected that the correlator
h0jG†

Ct
ð~zÞGC0

ð~zÞj0i will propagate anyonic glueballs with
spin k=Nc. If that turned out to be true, this would show that
our main result is not fully dependent on the model used. In
the context of the Abelian Higgs model with a Chern-
Simons term, the propagation of anyonic states is described
in Ref. [4], where in particular it is shown that the physical
Hilbert space of one-anyon states is decomposed into
orthogonal sectors labeled by the vorticity q:

HðμÞ ¼ ⨁
q∈Z

HðμÞ
q ; ð36Þ

where μ=4π is the coefficient multiplying the Chern-
Simons term

R
A∧ dA in the action and where the vorticity

eigenvalue q labels the homotopy classes for the map
S1 → S1, expressing the asymptotic behavior of the com-
plex scalar field at spatial infinity. Note that the spin of a
state is then given by μq2=2 mod Z. The previous
considerations on anyon propagation can be made even
more rigorous on the lattice in 3D Euclidean space; see
Sec. VII of Ref. [4].

VII. SUMMARY AND OUTLOOK

In this note, we have developed a closed-string model of
glueballs in 2þ 1 dimensions based on the light-cone
quantization of the Nambu-Goto string performed in
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Ref. [10]. Since closed strings are actually used to model
the dynamics of Yang-Mills fields the orientation has been
added as an extra quantum number in order to account for
the fact that we are dealing with effective rather funda-
mental strings. This addition has two consequences: the
possibility of defining the charge-conjugation of a state,
and the addition of a mixing mechanism eventually split-
ting the masses of states with different eigenvalues under
charge conjugation. Our model has two free parameters
that, once fitted, allow us to satisfactorily reproduce the
masses of the eight zero-spin glueballs currently observed
in large-Nc lattice calculations. As a consequence of our
model, anyonic glueballs must be present with a mass and
spin that both depend on the intercept M2

4πσ jN¼N̄¼0
.

We believe that the existence of such states is not an
artifact of the closed-string picture proposed, but rather,
that it is a generic property of Yang-Mills theory in

2þ 1 dimensions. Hence, the existence of anyonic glue-
balls could be confirmed (or not) in the future by resorting
to lattice calculations, either in light-cone gauge or in the
more standard temporal gauge, provided that appropriate
correlators are built. As a starting point for future calcu-
lations, an inspiring explicit form for the t’ Hooft operator
can be found in Ref. [40], while similar results have been
proposed in the framework of the Abelian Higgs model
in Ref. [41].
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