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We study the propagator of a colored scalar particle in the background of a non-Abelian gauge field
using the worldline formalism. It is obtained by considering the open worldline of a scalar particle with
extra degrees of freedom needed to take into account the color charge of the particle, which we choose to be
in the fundamental representation of the gauge group. Specializing the external gauge field to be given by a
sum of plane waves, i.e. a sum of external gluons, we produce a master formula for the scalar propagator
with an arbitrary number of gluons directly attached to the scalar line, akin to similar formulas derived in
the literature for the case of the scalar particle performing a loop. Our worldline description produces at the
same time the situation in which the particle has a color charge given by an arbitrarily chosen symmetric or
antisymmetric tensor product of the fundamental.
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I. INTRODUCTION

The worldline representation of effective actions has
seen a great deal of activity in the past twenty years, starting
with the work of Strassler [1], who rederived the Bern-
Kosower master formulas [2,3] directly from point particle
path integrals; see Ref. [4] for a review. Since then, many
extensions and applications of the worldline formalism
have been considered: multiloop computations [5], non-
perturbative worldline methods [6–8], the numerical world-
line approach to the Casimir effect [9], the worldline
formalism in curved spacetime [10–12], photon-graviton
mixing at one loop [13], higher-spin field theory [14–16],
the world-graph approach to QCD [17], as well as the heat
kernel expansion [18–20] and applications to noncommu-
tative QFT [21,22], Standard Model physics [23] and its
grand-unified extensions [24], just to name a few.
Unlike effective actions, the worldline representation of

dressed propagators is still a relatively unexplored land,
though aworldline representation for the dressed propagator
of a scalar field coupled to electromagnetism (scalar QED)
was proposed long ago by Feynman [25]. It consists of a
worldline path integral where the coordinate paths have the
topology of a line, and come with Dirichlet boundary
conditions. The problem has then been reconsidered in
Ref. [26] along the lines of [1–3]. More recently, the dressed

propagator in a scalar field theory has been studied with
worldline methods to address the summation of ladder and
crossed-ladder diagrams and analyze the emergence of
bound states [27]. A full worldline description of dressed
QFT propagators would be quite welcome in gauge theories
as well. It may allow one to address several different issues,
providing a systematic way of computing scattering ampli-
tudes that could be beneficial both at the perturbative and
nonperturbative levels. At the perturbative level it may
improve on the efficiency of perturbative calculations and
give perhaps a better understanding of color/kinematics
dualities [28]. At the nonperturbative level it might be
useful to address the emergence of bound states, or to
study, for instance, the covariance of the Green’s functions
under a change in the gauge parameter that gives rise to the
the so-called Landau-Khalatnikov-Fradkin transformations
[29,30]. Indeed the worldline formalism has been used
recently to extend these transformations, originally derived
for the scalar propagator, to an arbitrary n-point function in
scalar QED [31]. The search of computational methods for
tree-level amplitudes in gauge theories has been quite an
active subject in the past decade. In particular, in scalar
QCD, techniques based on recursive relations have been
successfully found; see e.g. Refs. [32–35].
Here we consider the worldline approach to the propa-

gator for a scalar field coupled to an external non-Abelian
gauge field. Similarly to previous worldline treatments of
non-Abelian effective actions [36,37], we obtain the path
ordering—needed for the gauge covariance of the worldline
path integral—through the quantization of suitable
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auxiliary variables [38–40]. Their usefulness resides in the
fact that they allow us to get rid of the explicit path-ordering
prescription. Computationally it is a great advantage,
analogous to the replacement of the path-ordered spin
factors, present in Feynman’s original proposal for describ-
ing a spin-1=2 particle [25], with a Grassmann path integral
over fermionic coordinates [41]. However, the auxiliary
variables thus introduced must be constrained in order to
produce an irreducible representation (irrep) of the gauge
group. One possibility is to couple them to a worldline U(1)
gauge field, which allows for a Chern-Simons term whose
coupling constant is chosen to project onto the desired
irrep. This is the method already seen at work in the
worldline description of p-forms [12,42], later extended to
the treatment of color charges. Furthermore, it allows us to
use commuting auxiliary variables which, in absence
of the Chern-Simons term, would generate an infinite-
dimensional color space.
Below we show how to employ commuting auxiliary

variables with a Chern-Simons term to study the propagator
of a scalar particle in the background of a non-Abelian
gauge field by representing it as a suitable worldline path
integral. The non-Abelian charge (i.e. color) of the scalar
particle can be arbitrary, though for simplicity we choose it
to be in the fundamental representation. The propagator
dressed by the external gauge field is (background) gauge
covariant. One may then specialize the external gauge field
to be given by a sum of plane waves (external gluons) and
perform the path integral. This produces a master formula
generating the propagator with an arbitrary number of
gluons directly attached to it. At fixed number n of gluons,
we call the latter “partial n-gluon scalar propagator”:
indeed it consists of the scalar propagator with n gluons
directly attached to it, while the gluon self-interactions are
excluded. As such it is a gauge dependent object. However
this dressed propagator is valid off-shell, and it can be used
as a building block for higher-loop amplitudes. For
example, being valid off-shell, one could use it to construct
ladder diagrams with gluon rungs and study the emergence
of bound states, as was done in Ref. [27] for the purely
scalar case. This would still be a gauge-dependent ladder,
but in the bound-state studies maintaining gauge invariance
remains a difficult open problem. One may also try to use it
on-shell and study tree-level amplitudes, but then the
addition of the reducible diagrams with three- and four-
gluon vertices will be essential to achieve gauge invariance.
We do not wish to discuss this final issue here, though one
may hope that a kind of “tree replacement rules”—such as
those used in similar one-loop master formulas to generate
the missing one-particle-reducible terms (see for example
Ref. [4])—might work here as well. Alternatively, one may
combine the present treatment of color charges with the
world-graph approach of Ref. [17], which is able to
generate particle reducible graphs. We leave this to future
analysis.

The main point for us in the present paper is to use and
exemplify a novel representation of the color degree of
freedom. The partial n-gluon scalar propagator is the most
natural starting point for testing its usefulness in QCD
applications.
A final comment on the Chern-Simons coupling: fine-

tuning such coupling allows us to give the scalar particle a
color charge corresponding to any arbitrarily chosen
symmetric tensor product of the fundamental representa-
tion, rather than to the fundamental itself. Replacing the
commuting variables with anticommuting ones would also
give a similar construction, but with the non-Abelian
charge sitting in an arbitrarily chosen antisymmetric tensor
product of the fundamental representation, including the
fundamental itself. The choice is again made by selecting
an appropriate Chern-Simons coupling.

II. TREE-LEVEL AMPLITUDES IN SCALAR QED

As a warm-up exercise, and in order to fix our notation,
we review the computation of tree-level amplitudes in
scalar QED from a point particle (worldline) path integral
on the line, i.e. with Dirichlet boundary conditions.
It is well known, since the seminal work of Feynman

[25], that the propagator for a massive charged scalar field
coupled to electromagnetism can be obtained from a
worldline path integral

hϕðxÞϕ̄ðx0ÞiA ¼
Z

xð1Þ¼x

xð0Þ¼x0

DxDe
Vol Gauge

e−S½x;e;A�; ð2:1Þ

where the particle action in Euclidean signature, is given by
(space-time indices are left implicit where not required)

S½x; e;A� ¼
Z

1

0

dτ
�
1

2e
_x2 þm2e

2
− iq_x · AðxÞ

�
; ð2:2Þ

with e being the einbein, i.e. the gauge field for the one-
dimensional diffeomorphisms. After the gauge fixing
e ¼ 2T, the path integral over e reduces to a numerical
integral over inequivalent constant gauge configurations
labeled by the proper time T, i.e.

hϕðxÞϕ̄ðx0ÞiA¼
Z

∞

0

dTe−Tm
2

Z
xð1Þ¼x

xð0Þ¼x0
Dxe−

R
1

0
dτð 1

4T _x
2−iq_x·AðxÞÞ:

ð2:3Þ

In particular, treating the external electromagnetic potential
as a perturbation, the expression (2.3) can be shown to
contain the sum of an infinite number of tree-level
Feynman diagrams with an incoming scalar particle in
x0, an outgoing scalar particle in x, and an arbitrary number
of photons. Specifically, in order to extract the amplitude
with n photons, one first writes the potential as a sum of the
n photons with polarizations εl, and momenta kl,

AHMADINIAZ, BASTIANELLI, and CORRADINI PHYSICAL REVIEW D 93, 025035 (2016)

025035-2



AμðxðτÞÞ ¼
Xn
l¼1

εμ;leikl·xðτÞ; ð2:4Þ

and expands the exponential involving the potential, then
extracts the amplitude as the term in (2.3) that is multilinear
in all the different polarizations εl’s. The amplitude, thus,
reads

Aðx0; x; ε1; k1;…εn; knÞ

¼ ðiqÞn
Z

∞

0

dTe−Tm
2
Yn
l¼1

Z
1

0

dτl

×
Z

xð1Þ¼x

xð0Þ¼x0
Dxe−

1
4T

R
1

0
dτ _x2e

P
l
ðikl·xlþεl·_xlÞjm:l:; ð2:5Þ

where the _x · ε terms have been reexponentiated and
xl ≔ xðτlÞ, and where “m.l.” stands for multilinear. We
may now perform the path integral by splitting the generic
path xðτÞ into the background, xbgðτÞ ¼ x0 þ ðx − x0Þτ,
satisfying the boundary conditions, and quantum fluctua-
tions yðτÞwith vanishing boundary conditions. We, thus, get

Aðx0;x;ε1;k1;…εn;knÞ

¼ðiqÞn
Z

∞

0

dT

ð4πTÞD2 e
−Tm2− 1

4Tðx−x0Þ2
Yn
l¼1

Z
1

0

dτl

×e
P

l
½ikl·ðx0þτlðx−x0ÞÞþεl·ðx−x0Þ�he

P
l
ðikl·ylþεl·_ylÞijm:l:; ð2:6Þ

where the expectation value h� � �i is taken with respect to

the free Gaussian path integral
R yð1Þ¼0

yð0Þ¼0
Dye−

1
4T

R
1

0
dτ _y2 .

Expression (2.6) is, thus, the expectation value of the
product of photon vertex operators

VA½ε; k� ¼ eik·x
0þε·ðx−x0Þ

Z
1

0

dτe½ik·ðτðx−x0ÞþyÞþε·_y�: ð2:7Þ

From the free path integral one may obtain the worldline
propagator

hyμðτÞyμ0 ðτ0Þi ¼ −2Tδμμ0Δðτ; τ0Þ ð2:8Þ

Δðτ; τ0Þ ¼ ττ0 þ 1

2
jτ − τ0j − 1

2
ðτ þ τ0Þ; ð2:9Þ

and Eq. (2.6) can, thus, be written as

Aðx0; x; ε1; k1;…εn; knÞ

¼ ðiqÞn
Z

∞

0

dT

ð4πTÞD2 e
−Tm2− 1

4Tðx−x0Þ2
Yn
l¼1

Z
1

0

dτl

× exp

�Xn
l¼1

½ikl · ðx0 þ τlðx − x0ÞÞ þ εl · ðx − x0Þ�

þ T
X
l;l0

ðkl · kl0Δll0 − i2εl · kl0 •Δll0 − εl · εl0 •Δ•
ll0 Þ

�
jm:l:;

ð2:10Þ

where Δll0 ≔ Δðτl; τl0 Þ, whereas left and right bullets indi-
cate derivatives with respect to τl and τl0 respectively.
Therefore,

•Δll0 ¼ τl0 − θðτl0 − τlÞ ð2:11Þ
•Δ•

ll0 ¼ 1 − δðτl − τl0 Þ; ð2:12Þ

where θðxÞ is the Heaviside function. Notice that—although
products of delta functions appear in the full expansion of the
exponential in the expression (2.10)—the multilinear part of
the expansion, that yields the amplitude, does not involve
singular, or ill-defined, terms.
In order to get the amplitude fully in momentum space,

one may Fourier transform the expression (2.10) and get

Aðp0; p; ε1; k1;…εn; knÞ ¼
Z

dDx
Z

dDx0eiðp·xþp0·x0ÞAðx0; x; ε1; k1;…εn; knÞ

¼
Z

dDxþ

Z
dDx−eiðpþp0Þ·xþþi

2
ðp−p0Þ·x−A

�
xþ −

x−
2
; xþ þ x−

2
; ε1; k1;…εn; kn

�
; ð2:13Þ

with x− ≔ x − x0 and xþ ≔ xþx0
2
. The integral over the “center of mass” xþ yields the energy-momentum conservation delta

function ð2πÞDδðDÞðpþ p0 þP
klÞ, whereas the integral over the “distance” x− is Gaussian. Hence, after some simple

manipulations, the amplitude reduces to

eAðp0; p; ε1; k1;…εn; knÞ ¼ ðiqÞn
Z

∞

0

dTe−Tðm2þp2Þ Yn
l¼1

Z
1

0

dτl

× exp

�
Tðp − p0Þ ·

Xn
l¼1

ð−klτl þ iεlÞ þ T
X
l;l0

½kl · kl0Δl−l0 − 2iεl · kl0 _Δl−l0 þ εl · εl0 Δ̈l−l0 �
�
jm:l:;

ð2:14Þ
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with Δl−l0 ≔ 1
2
jτl − τl0 j, i.e. the translation-invariant linear

part of the worldline propagator (2.9), a fact that was
already noted in Ref. [26]. For simplicity, and for later
convenience, in Eq. (2.14) the overall energy-momentum
conservation delta function has been stripped off, and the
resulting amplitude has been indicated with eA.
Equation (2.14) is the Bern-Kosower-type formula for

the tree-level amplitude with n photons and two scalars,
originally worked out in Ref. [26] (see also Ref. [31]). Note
that this amplitude is amputated on the external photon
lines, and may be called the n-photon scalar propagator. It
gives the sum of all the QFT Feynman diagrams depicted in
Fig. 1, which involve linear vertices and seagull vertices,
and where the external photon momenta appear in all
possible orderings. This is an advantage of the worldline
formalism, that it combines all orderings into a single
expression and that, for scalar QFT, generates the seagull
vertices within the linear worldline vertex operator. It is easy
to check that, for n ¼ 2, it reproduces the sum of the three
Feynman diagrams responsible for the scalar QEDCompton
scattering.Notice that the integrand inEq. (2.14) ismade of a
worldline translation-invariant double sum, and a simple
sum that is not translation-invariant. However it becomes
translational invariant on the shell of the scalar lines: indeed,
imposing the translation δτl ¼ λ on such sum, and using
momentum conservation, it gives λðp − p0Þ ·Plkl ¼
λðp02 − p2Þ, which vanishes on-shell.

III. DRESSED SCALAR PROPAGATOR IN A
NON-ABELIAN BACKGROUND

A straightforward way to generalize the previous results
to the case of the coupling of a scalar field to a non-Abelian
gauge field WμðxÞ ¼ Wa

μðxÞTa, with Ta belonging to the

Lie algebra g of a gauge group G, is to use a path-ordering
prescription to guarantee the gauge covariance of the path
integral. Let us, thus, take a colored scalar field with an
index in an irreducible representation of a gauge group,
which for definiteness we assume to be G ¼ SUðNÞ. The
scalar field propagator in the presence of the non-Abelian
gauge field can, thus, be written as

hϕαðxÞϕ̄α0 ðx0ÞiW ¼
Z

xð1Þ¼x

xð0Þ¼x0

DxDe
Vol Gauge

ðPe−S½x;e;W�Þαα0 ;

ð3:1Þ

where the particle action in Euclidean signature is given by

S½x; e;W� ¼
Z

1

0

dτ

�
1

2e
_x2 þm2e

2
− ig_x ·WðxÞ

�
; ð3:2Þ

and with P denoting the path ordering. Although this
expression contains implicitly the multigluon scalar propa-
gator, it may be convenient to investigate an alternative
approach that implements the path ordering using some
auxiliary variables. For the case of one-loop gluon ampli-
tudes, generated by a scalar field or by a Dirac field, this
procedure was proposed in Ref. [40] and more recently
reconsidered in Refs. [36,37]. The main advantages of such
a procedure are that it is (i) an automatic implementation of
path ordering, through the quantization of the auxiliary
fields, that allows us to simplify the perturbative calculation
and (ii) a simple way to extend our formulas to the case of a
scalar field in a generic (anti)symmetric tensor product
representation of the gauge group.

FIG. 1. Diagram structure for the n-photon amplitude.
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For definiteness, let Ta be in the fundamental represen-
tation, i.e. ðTaÞαα0 , α ¼ 1;…; N, then the totally (anti)
symmetric tensor ϕα1…αr transforms in an irreducible
(anti)symmetric product of r fundamental representations.
Let us, thus, consider the addition of complex auxiliary
variables, cα and c̄α, that sit in the fundamental and
antifundamental representations of the gauge group, respec-
tively, and that are coupled to the gauge field potentialZ

1

0

dτ½c̄α _cα − ig_xμWa
μc̄αðTaÞαβcβ� − c̄αcαð1Þ: ð3:3Þ

Note the boundary term that allows us to set initial conditions
on c and final conditions on c̄. The canonical quantization of
such fields gives rise to creation and annihilation operators ĉ
and ĉ† that generate a suitable Fock space. Using a coherent
state basis like the one summarized inAppendixA, it yields a
scalar wave function in the coordinate ū, the left eigenvalue
on coherent states of the creation operator c†, that in turn can
be expanded as a ū-graded sum of fields

ϕðx; ūÞ¼ϕðxÞþ ūαϕαðxÞþ
1

2!
ūα1 ūα2ϕα1α2ðxÞþ �� � ; ð3:4Þ

so that if the auxiliary variables are (anti)commuting, the
tensorsϕα1…αr sit in an (anti)-symmetrized tensor product of r
fundamental representations. In the following we will con-
centrate on the case of commuting auxiliary variables, as the
anticommuting counterpart is just a straightforward gener-
alization. Another necessary ingredient is, thus, a projector
that allows us to single out from Eq. (3.4) only an irreducible
tensorwith r indices. Thismay be achieved by adding aUð1Þ
worldline gauge field to the action, along with a Chern-
Simons term. The full locally symmetric action reads

Sl½x;c;c̄;e;a;W�¼
Z

1

0

dτ

�
1

2e
_x2þm2e

2
−ig_xμWa

μc̄αðTaÞαβcβ

þ c̄αð∂τþiaÞcα−isa

�
− c̄αcαð1Þ; ð3:5Þ

where aðτÞ is theUð1Þ gauge field and s is the Chern-Simons
coupling, to be fixed shortly. Due to the presence of the
auxiliary fields, the potential is no longer matrix-valued and
no explicit path-ordering is thus needed.The propagator reads

hϕðx; ūÞϕ̄ðx0; u0ÞiW ¼
Z

xð1Þ¼x;c̄ð1Þ¼ū

xð0Þ¼x0;cð0Þ¼u0

DxDc̄DcDeDa
Vol Gauge

× e−Sl½x;c;c̄;e;a;W�; ð3:6Þ
where u0α and uα represent the initial and final color states of
the scalar field. Thus, if the scalar field sits in the rank-r totally
symmetric representation, the above field operators are (apart
from numerical factors) given by

ϕðx; ūÞ ∼ ϕα1���αrðxÞūα1 � � � ūαr ;
ϕ̄ðx0; u0Þ ∼ ϕ̄α1���αrðx0Þu0α1 � � � u0αr : ð3:7Þ

Upon gauge-fixing, the einbein e can be set to a modulus
2T as above, whereas the Abelian gauge field can be set to a
constant angle modulus θ ∈ ½0; 2πÞ. The gauge-fixed path
integral thus reads

hϕðx; ūÞϕ̄ðx0;u0ÞiW ¼
Z

∞

0

dTe−Tm
2

Z
2π

0

dθ
2π

eisθ
Z

xð1Þ¼x

xð0Þ¼x0
Dx

×
Z

c̄ð1Þ¼ū

cð0Þ¼u0
Dc̄Dce−S½x;c;c̄;2T;θ;W�;

ð3:8Þ
with

S½x; c; c̄; 2T; θ;W� ¼
Z

1

0

dτ

�
1

4T
_x2 − ig_xμWa

μc̄αðTaÞαβcβ

þ c̄αð∂τ þ iθÞcα
�
− c̄αcαð1Þ; ð3:9Þ

where the constant part −Tm2 þ isθ was stripped off.
Classically the equation of motion for a corresponds to
the constraint c̄αcα − s ¼ 0. In the canonical quantization
approach, this turns into an operatorial constraint to be
imposed à la Dirac-Gupta-Bleuler on the wave function. As
shown inAppendixA,we choose to identify the path integral
expression c†αcα as the one representing the normal-ordered
Hamiltonian ĉ†αĉα. Therefore, the quantum constraint reads�

c̄α
∂
∂c̄α − s

�
ϕðx; c̄Þ ¼ 0; ð3:10Þ

and thus, in order to single out the tensor with r indices, we
identify s ¼ r, and set the path integral normalization to [see
Eq. (A24)]

Z
c̄ð1Þ¼ū

cð0Þ¼u0
Dc̄Dce−

R
1

0
dτc̄αð∂τþiθÞcαþc̄αcαð1Þ ¼ ee

−iθ ū·u0 ; ð3:11Þ

with ū · u0 ¼ ūαu0α. In the following, we find it convenient to
twist the auxiliary fields in order to absorb the θ term, i.e.
cðτÞ → cðτÞe−iθτ and c̄ðτÞ → c̄ðτÞeiθτ, so that the previous
expression gets replaced by

Z
c̄ð1Þ¼e−iθū

cð0Þ¼u0
Dc̄Dce−

R
1

0
dτc̄α _cαþc̄αcαð1Þ ¼ ee

−iθ ū·u0 ; ð3:12Þ

and (3.8) reduces to

hϕðx; ūÞϕ̄ðx0; u0ÞiW
¼

Z
∞

0

dTe−Tm
2

Z
2π

0

dθ
2π

eirθ
Z

xð1Þ¼x

xð0Þ¼x0
Dx

×
Z

c̄ð1Þ¼e−iθ ū

cð0Þ¼u0
Dc̄Dc

× e−
R

1

0
dτð 1

4T _x
2−ig_xμWa

μ c̄αðTaÞαβcβþc̄α _cαÞþc̄αcαð1Þ: ð3:13Þ
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Splitting as usual the fields into backgrounds and
fluctuations,

cαðτÞ ¼ u0α þ καðτÞ; καð0Þ ¼ 0 ð3:14Þ

c̄αðτÞ ¼ e−iθūα þ κ̄αðτÞ; κ̄αð1Þ ¼ 0; ð3:15Þ

the kinetic action for the fluctuations
R
1
0 dτκ̄

α _κα can be
inverted to give the propagator

hκαðτÞκ̄βðσÞi ¼ δβαθðτ − σÞ: ð3:16Þ

Equation (3.13) gives the final form of our worldline
representation for the scalar propagator dressed by a non-
Abelian gauge field. It is gauge covariant, and we discuss
the related Ward identities at the end of next section. For an
arbitrary external gauge field configuration one is not able
to perform the path integral exactly. On the other hand, one
may use it for a suitable perturbative expansion or to get
exact results for specific external field configurations.
As our main application, we specialize the external

gauge potential to be given by a sum of plane waves.
This allows for an exact path integral calculation, and
produces a master formula for the scalar propagator with an

arbitrary number n of external (amputated) gluons lines
directly attached to it, generating what we have called the
“partial n-gluon scalar propagator.” As already discussed,
the final result will not be gauge invariant, but it may be
used as a starting building block to get eventually gauge
invariant amplitudes. Also note that our master formula is
similar to the one-loop Bern-Kosower-type of master
formulas used in scalar QCD, that contain all one-particle
irreducible diagrams with a scalar loop and an arbitrary
number of external (amputated) gluon lines, the only
difference being that instead of a loop we have an open
line for the scalar particle.
Thus, in order to extract our partial n-gluon scalar

propagator from the gauge-fixed worldline path integral
(3.13), we write the potential as a sum of n gluons with
polarizations εl, momenta kl and colors al, i.e.

WμðxÞ ¼
Xn
l¼1

εμðklÞTaleikl·x; ð3:17Þ

and this allows us to read off the gluon vertex operator from
the interaction term, namely

VW ½ε; k; a� ≔ eik·x
0þε·ðx−x0Þ

Z
1

0

dτe½ik·ðτðx−x0ÞþyÞþε·_y�ðe−iθūα þ κ̄αÞðTaÞαβðuβ þ κβÞjlin:ε; ð3:18Þ

which differs from the photon vertex operator of Eq. (2.7) in the presence of the color factor, given by the color generator Ta

contracted with the auxiliary fields. The n-gluon two-scalar term reads

AWðp; u;p0; u0; ε1; k1; a1;…; εn; kn; anÞ

¼ ðigÞn
Z

dDxdDx0eiðp·xþp0·x0Þ ×
Z

∞

0

dT

ð4πTÞD2 e
−Tm2− 1

4Tðx−x0Þ2
Z

2π

0

dθ
2π

eirθþe−iθ ū·u0
Yn
l¼1

Z
1

0

dτl

× hVW ½k1; ε1; a1� � � �VW ½kn; εn; an�i; ð3:19Þ

where the average is computed with the propagators (2.9) and (3.16). Due to the fact that the color part of the gluon vertex
operator factors out, the integrand of the non-color part of the expression (3.19) is identical to its photon counterpart given in
Ref. (2.14). We, thus, obtain the following final result for the tree-level partial n-gluon scalar propagator

eAWðp;u;p0;u0;ε1;k1;a1;…;εn;kn;anÞ

¼ðigÞn
Z

∞

0

dTe−Tðm2þp2ÞYn
l¼1

Z
1

0

dτl×exp

�
Tðp−p0Þ ·

X
l

ð−klτlþ iεlÞþT
X
l;l0

½kl ·kl0Δl−l0 −2iεl ·kl0 _Δl−l0 þεl ·εl0 Δ̈l−l0 �
�
jm:l:

×
Z

2π

0

dθ
2π

eirθþe−iθ ū·u0 hðe−iθūα1 þ κ̄α1ðτ1ÞÞðTa1Þα1β1ðuβ1 þκβ1ðτ1ÞÞ������ðe−iθūαn þ κ̄αnðτnÞÞðTanÞαnβnðuβn þκβnðτnÞÞi;

ð3:20Þ

whose corresponding QFT Feynman diagrams have the same structure as those depicted in Fig. 1 for the n-photon
amplitude. Let us underline that, since no three- and four-gluon QCD vertices are involved in our worldline computation,
expression (3.20) only represents the gluon-irreducible part of the full n-gluon two-scalar amplitude, i.e. the part of the
amplitude made of Feynman diagrams that cannot be parted by cutting a gluon internal line.

AHMADINIAZ, BASTIANELLI, and CORRADINI PHYSICAL REVIEW D 93, 025035 (2016)

025035-6



Before studying some special case let us consider the θ
integrals present in the previous Bern-Kosower-type for-
mula. Let us define

Fðk; ū · u0Þ ≔
Z

2π

0

dθ
2π

eikθþe−iθ ū·u0 ; ð3:21Þ

with k ∈ Z. We can solve it by transforming it into a
clockwise contour integral over the unit circle: let us define
z ≔ e−iθ. Hence,

Fðk; ū · u0Þ ¼
I

dz
−2πiz

1

zk
eū·u

0z ¼
� 1

k! ðū · u0Þk; k ≥ 0

0; k < 0
:

ð3:22Þ

Notice that, although the function eū·u
0z presents an

essential singularity at z → ∞, it is a holomorphic function
in any bounded domain, and it can be written as a power
series. Thus, the contour integral over the unit circle picks
out the order k coefficient of such power series.
Let us now single out a few examples in order to further

clarify the results obtained.

A. Free scalar propagator

The free scalar propagator, for a field in a totally
symmetric rank-r representation, can obviously be obtained
from the above formalism by considering zero external
gluons (n ¼ 0). This will help us to fix an overall prefactor.
For n ¼ 0, Eq. (3.20) reduces to

eAWðp; u;−p; u0Þ ¼
1

p2 þm2
Fðr; ū · u0Þ

¼ ūα1 � � � ūαru0β1 � � �u0βr
r!

δβ1���βrα1���αr
p2 þm2

; ð3:23Þ

where δβ1���βrα1���αr ≔ δðβ1α1 � � � δβrÞαr is the identity in the totally
symmetric rank-r representation. Equation (3.23) corre-
sponds to the free propagator for the polarized scalar field,
and one may obtain the free propagator for the unpolarized

scalar field by stripping off the prefactor
ūα1 ���ūαr u0β1 ���u

0
βr

r! from
(3.23). In fact, note that

ūα1 � � � ūαru0β1 � � � u0βr
r!

δβ1���βrα1���αr ¼ Prhūju0i ¼ Preū·u
0
; ð3:24Þ

where Pr is the projector on the above irrep—basically it
picks up the order r term in the Taylor expansion of the
exponent. Furthermore, using the identity

1

r!

Z YN
α¼1

dūαuα
2πi

e−ū·uuα1 � � � uαr ūβ1 � � � ūβr

¼ 1

r!
∂r

∂v̄α1 � � � ∂v̄αr
∂r

∂vβ1 � � � ∂vβr
ev̄·vjv¼v̄¼0

¼ δβ1���βrα1���αr ; ð3:25Þ

one can easily prove the following composition rule for the
free propagator

Z
dDx0

Z YN
α¼1

dū0αu0α
2πi

e−ū
0·u0

× hx; ū
����� Pr

p̂2 þm2

����x0; u0ihx0; ū0
���� Pr

p̂2 þm2

����x00; u00i
¼ hx; ūj Pr

ðp̂2 þm2Þ2 jx
00; u00i: ð3:26Þ

In Eq. (3.25), we used the sources vα and v̄α to insert the
terms uα1 � � � uαr ūβ1 � � � ūβr into the Gaussian integral.

Of course the prefactor
ūα1 ���ūαr u0β1 ���u

0
βr

r! is universal; i.e. it
only depends on the two external scalar lines and not on the
gluon vertices. Therefore, the recipe to get the generic
n-gluon two-scalar term from Eq. (3.20) is to strip off such
color prefactors and truncate (i.e. multiply by the inverse
free propagators) the external scalar lines.

B. Partial n-gluon scalar propagator

For the simplest case of one gluon, expression (3.20)
reproduces the Feynman vertex linear in the gluon, whose
color part is given by the expression

Faðū; u0Þ ¼
I

dz
−2πiz

1

zr
eū·u

0z

× hðūαzþ κ̄αðτÞÞðTaÞαβðuβ þ κβðτÞÞi

¼
I

dz
−2πiz

1

zr−1
eū·u

0zūTa1u0

¼ 1

ðr − 1Þ! ðū · u0Þr−1ūTau0

¼ 1

r!
ūα1 � � � ūαrðTa

ðrÞÞβ1���βrα1…αru
0
β1
� � � u0βr ; ð3:27Þ

where

ðTa
ðrÞÞβ1���βrα1…αr ¼ rðTaÞðα1 ðβ1δ

β2
α2 � � � δβrÞαrÞ; □□□□□|fflfflfflfflfflffl{zfflfflfflfflfflffl}

r

ð3:28Þ

is a generator of SUðNÞ for the rank-r totally symmetric
representation. Above, we used the fact that hκβðτÞκ̄αðτÞi ¼
1
2
δαβ and that Ta is traceless. Thus, it reads
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eAWðp; u;p0; u0; ε; k; aÞ ¼ ig
Z

∞

0

dTe−Tðm2þp2Þ
Z

1

0

dτTe−Tðk2þ2p·kτÞiε · ðp − p0Þ 1
r!
ūα1 � � � ūαrðTa

ðrÞÞα1…αr
β1���βru0β1 � � � u0βr

¼ ig
iε · ðp − p0Þ

ðp2 þm2Þðp02 þm2Þ ðT
a
ðrÞÞβ1���βrα1…αr

ūα1 � � � ūαru0β1 � � � u0βr
r!

; ð3:29Þ

which—after truncating the external scalar lines and stripping off the factor ū���u0
r! —correctly reproduces the one-gluon two-

scalar vertex eA2s;1gðp; α;p0; β; ε; k; aÞ ¼ igiε · ðp − p0ÞðTa
ðrÞÞβ1…βr

α1…αr : ð3:30Þ

For the case of two external gluons the auxiliary field correlator involves two generators, and the color part reads

Fa1a2ðū; u0Þ ¼
I

dz
−2πiz

1

zr
eū·u

0zhðūα1zþ κ̄α1ðτ1ÞÞðTa1Þα1β1ðuβ1 þ κβ1ðτ1ÞÞðūα2zþ κ̄α2ðτ2ÞÞðTa2Þα2β2ðuβ2 þ κβ2ðτ2ÞÞi

¼
I

dz
−2πiz

eū·u
0z
�

1

zr−2
ūTa1u0ūTa2u0 þ 1

zr−1
ūTa1Ta2u0θðτ1 − τ2Þ

þ 1

zr−1
ūTa2Ta1u0θðτ2 − τ1Þ þ

1

z
trðTa1Ta2Þθðτ1 − τ2Þθðτ2 − τ1Þ

�
: ð3:31Þ

The last term obviously vanishes for all r’s, whereas the first one is nonzero when r ≥ 2. Furthermore, by introducing
1 ¼ θðτ1 − τ2Þ þ θðτ2 − τ1Þ in front of the first term, the latter reduces to

Fa1a2ðū; u0Þ ¼ 1

ðr − 1Þ! ½δr≥2ðr − 1Þðūu0Þr−2ūTa1u0ūTa2u0 þ ðūu0Þr−1ūTa1Ta2u0�θðτ1 − τ2Þ

þ 1

ðr − 1Þ! ½δr≥2ðr − 1Þðūu0Þr−2ūTa2u0ūTa1u0 þ ðūu0Þr−1ūTa2Ta1u0�θðτ2 − τ1Þ; ð3:32Þ

with an obvious notation for δr≥2. The expressions in the square brackets are just the products of the generators in the rank-r
totally symmetric representation, decomposed in terms of the fundamental representation, i.e.

Fa1a2ðū; u0Þ ¼ ūα1 � � � ūαru0β1 � � � u0βr
r!

½θðτ1 − τ2ÞðTa1
ðrÞT

a2
ðrÞÞβ1…βr

α1…αr þ θðτ2 − τ1ÞðTa2
ðrÞT

a1
ðrÞÞβ1…βr

α1…αr �; ð3:33Þ

which, once again stripping off the prefactor ū���u
0

r! , gives the correct color factors for the two-gluon term of the dressed scalar
propagator. Finally, one can insert the latter into the formula (3.20) and get the final result for the partial two-gluon scalar
propagator: the integrals over τ1, τ2 and T reproduce the correct form factors. In particular the term involving the expression
ε1 · ε2δðτ1 − τ2Þ corresponds to the Feynman diagram with the two-gluon “seagull” vertex.
The partial n-gluon scalar propagator term turns out to be a straightforward generalization of the previous expressions. In

particular, for an even number of gluons, the color factor displays the same features as the two-gluon one: One finds trace
terms that vanish as they multiply a full product of theta functions. All the other terms combine into time-ordered products
of color generators in the rank-r totally symmetric representation, i.e.

Fa1…anðu; u0Þ ¼ ūα1 � � � ūαru0β1 � � �u0βr
r!

X
σ∈Sn

θðτσð1Þ − τσð2ÞÞ � � � θðτσðn−1Þ − τσðnÞÞðTaσð1Þ
ðrÞ � � �TaσðnÞ

ðrÞ Þβ1…βr
α1…αr ; ð3:34Þ

where Sn is the group of permutations of n elements. The
same happens for an odd number of gluons.

C. Gauge-covariance of the dressed propagator
and Ward identities

Theworldline representation for the dressed propagator in
scalar QCD, Eq. (3.13), comes in handy to show the gauge
covariance of the propagator under finite transformations.

Upon a finite gauge transformation UðxÞ ¼ eigϵðxÞ, with
ϵðxÞ ¼ ϵaðxÞTa and ðTaÞαα0 in the fundamental represen-
tation, the gauge field transforms as

eWμðxÞ ¼ UðxÞ
�
i
g
∂μ þWμðxÞ

	
U†ðxÞ; ð3:35Þ

and the worldline Lagrangian in (3.13) is gauge invariant
provided the auxiliary fields transform as
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cðτÞ → UðxðτÞÞcðτÞ
c̄ðτÞ → c̄ðτÞU†ðxðτÞÞ: ð3:36Þ

In particular, using that u0 and ū are the boundary values for
cðτÞ and c̄ðτÞ, at τ ¼ 0 and τ ¼ 1 respectively, the previous
rule implies that

u0α → ðUðx0ÞÞ ~ααu0α ≕ v0~α

ūβ → ūβðU†ðxÞÞβ ~β ≕ v̄ ~β; ð3:37Þ
and

h ~ϕðx; v̄Þ ~̄ϕðx0; v0ÞieW ¼ hϕðx; ūÞϕ̄ðx0; u0ÞiW ð3:38Þ
for the polarized scalar propagator. Using the transformation
rules (3.37) and stripping off the color factors, we obtain

h ~ϕ ~α1��� ~αrðxÞ ~̄ϕ
~β1���~βrðx0ÞieW

¼ ðUðxÞÞ ~α1α1 � � � ðUðxÞÞ ~αrαrhϕα1���αrðxÞϕ̄β1���βrðx0ÞiW
× ðU†ðx0ÞÞβ1

~β1 � � � ðU†ðx0ÞÞβr
~βr ; ð3:39Þ

that is the correct transformation rule for the dressed
propagator of a scalar field in the rank-r totally symmetric
representation of SUðNÞ. At the infinitesimal level, the
previous expression yields a generating functional of Ward-
identities for the above amplitudes, namely

0 ¼ DμðWÞ δ

δWa
μðyÞ

hϕα1���αrðxÞϕ̄β1���βrðx0ÞiW

þ igδðDÞðy − xÞðTa
ðrÞÞ ~α1��� ~αrα1���αrhϕ ~α1��� ~αrðxÞϕ̄β1���βrðx0ÞiW

− igδðDÞðy − x0Þhϕα1���αrðxÞϕ̄~β1��� ~βrðx0ÞiWðTa
ðrÞÞβ1���βr~β1��� ~βr

:

ð3:40Þ
For example, at the leading order in the coupling constant g
the latter gives an identity between the one-gluon two-scalar
term and the free scalar propagator. For definiteness let us
consider r ¼ 1. In Fourier space, and using the truncated
amplitudes, the previous functional identity reduces to the
perturbative Ward identity

0 ¼ δðDÞðkþ pþ p0Þ½eA2s;1gðp; α;p0; β;−ik; k; aÞ
þ igðTaÞαβðp2 − p02Þ�; ð3:41Þ

that does indeed vanish. Notice that in (3.41) the replace-
ment ε → −ik implements the covariant derivative of the
first term of (3.40).

IV. CONCLUSIONS AND OUTLOOK

We presented a worldline model where a scalar relativ-
istic particle is coupled to a non-Abelian gauge field. The
quantization of the model yields the scalar propagator
dressed by the external gauge field. The path ordering—

needed for the gauge-covariance of the model—is realized
using (commuting) auxiliary fields that are coupled to the
gauge potential. The addition of a worldline Abelian gauge
field along with a Chern-Simons term allows us to describe
scalar particles that sit in an arbitrary rank-r symmetric
representation of the gauge group. We have specialized the
non-Abelian gauge field to be given by a sum of plane
waves, and obtained explicit expressions for the scalar
propagator dressed by an arbitrary number n of external
gluons directly attached to the scalar line, the partial n-gluon
scalar propagator. This is, in general, a gauge-dependent
object, as three- and four-gluonvertices are not included, but
it is valid off-shell and it could be used as a building block for
constructing amplitudes. The resulting expressions are
factorized into a color part and a kinematic part: their
integral representation, provided by the present worldline
model, may nicely combine with integration-by-parts tech-
niques, that were shown to simplify the calculation of QCD
form factors [43–45].
One future line of research for extending our work would

be to find a simple way of adding the gluon self-interactions
and obtain the complete tree-level amplitudes with 2 scalars
and n gluons. One option would be to investigate a kind of
“tree replacement rules” of the type used successfully in
similar Bern-Kosower formulas, where the scalar particle
performs a loop instead of a line.
Also, the present approach can be generalized straight-

forwardly to scalar QCD, with scalar particles in a rank-r
totally antisymmetric representation, by using anticommut-
ing auxiliary fields. Another quite welcome extension
would be the treatment of the quark propagator in QCD,
that may be obtained by coupling the external non-Abelian
field to a spinning particle, i.e. by using a particle with
worldline supersymmetry, where the quantization of the
spinorial coordinates describe the spin degrees of freedom.
An alternative approach, that needs path ordering, is the
inclusion of a matrix-valued (spin-factor) potential—see
e.g. Refs. [25,46,47].
A possible application of the n-gluon master formula

obtained above, would be the reconstruction, in any
covariant gauge, of the scalar-gluon vertex which is known
as the Ball-Chiu vertex [48]. In previous studies of form
factors for QED and QCD—see Refs. [31,43,45]—it was
shown that the worldline formalism simplifies such calcu-
lations, and the results can be expressed in a much more
compact way. Finally, it would be nice to extend the present
treatment by adding the coupling to external gravity, along
the lines of what has been done for the one-loop effective
actions in curved space [10–12].
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APPENDIX: COHERENT STATE PATH
INTEGRAL NORMALIZATION

Let us consider a Hilbert space spanned by a complete
set of harmonic oscillator states fjnig with n ¼ 0; 1;…;∞,
and let ĉ† and ĉ be a pair of creation and annihilation
operators acting on that Hilbert space and satisfying the
canonical commutation relation ½ĉ; ĉ†� ¼ 1. These opera-
tors generate the harmonic oscillators states fjnig in the
usual way. Let us now define the ket and bra coherent states
as right and left eigenstates of ĉ and ĉ†, respectively

ĉjui ¼ ujui; hūjĉ† ¼ hūjū; ðA1Þ
where u and ū are complex numbers. They can be
constructed out of the Fock vacuum as

jui ¼ euĉ
† j0i; hūj ¼ h0jeū ĉ; ðA2Þ

and they form an overcomplete basis of the Hilbert space.
Indeed their overlap reads

hūju0i ¼ eūu
0
: ðA3Þ

After this introduction to bosonic coherent states we prove
the following identity:

hūje−iθĉ†ĉju0i ¼ eūu
0e−iθ : ðA4Þ

A simple way of proving it is to consider the wave function
hūjψi, corresponding to a generic state jψi of the Hilbert
space. On this wave function the creation and annihilation
operators act as ĉ† → ū and ĉ → ∂

∂ū, so that the operator

e−iθĉ
†ĉ → e−iθū

∂∂ū is just seen to generate a finite scaling of
the ū coordinate, namely ū → e−iθū. Then (A4) follows
immediately. An alternative proof goes as follows. Let us
start from the “normal order” rule

ðĉ†ĉÞm ¼
Xm
k¼0

Sðm; kÞðĉ†ÞkðĉÞk; ðA5Þ

where Sðm; kÞ are the so-called “Stirling numbers of
second kind” that are defined by1

Sðm; kÞ ¼ 1

k!

Xk
l¼0

ð−Þl
�
k
l

�
ðk − lÞm; ðA6Þ

with Sðn; 0Þ ¼ δn;0 and Sðn; 1Þ ¼ 1. Now from the defi-
nition and properties of the coherent state and Eq. (A5), one
can write the left-hand side of Eq. (A4) as

hūje−iθĉ†ĉju0i ¼ hūj
X∞
n¼0

ð−iθÞn
n!

ða†aÞnju0i

¼ eūu
0 X∞
n¼0

ð−iθÞn
n!

Xn
k¼0

Sðn; kÞðūu0Þk

¼ eūu
0 X∞
n¼0

ð−iθÞn
n!

Tnðūu0Þ; ðA7Þ

where TnðxÞ are the so-called Touchard polynomials. Such
polynomials can be also obtained through the exponential
generating function

exðez−1Þ ¼
X∞
n¼0

TnðxÞ
zn

n!
: ðA8Þ

Therefore, the series in (A7) yields the right-hand side of
Eq. (A4), which is thus proved.
Expression (A4) can thus be used to fix the normaliza-

tion for the harmonic oscillator coherent state path integral.
A free coherent state path integral can be built up by
inserting spectral decompositions of the identity

1 ¼
Z

dc̄dc
2πi

e−c̄cjcihc̄j ðA9Þ

into the expression (A3) for the scalar product. One gets

hūju0i ¼ eūu
0

¼
Z Yn−1

k¼1

dc̄kdck
2πi

exp
�
c̄ncn−1 −

Xn−1
k¼1

c̄kðck − ck−1Þ
�
;

ðA10Þ

where we defined c0 ≔ u0 and c̄n ≔ ū. Furthermore, we
define a time parameter 0 ≤ τ ≤ 1 and identify cðτkÞ ≔ ck
and c̄ðτkÞ ≔ c̄k, with τk − τk−1 ¼ 1

n−1 ≕ ϵ. Thus, in the
large n limit, we may identify the latter as the free coherent
state path integral

hūju0i ¼ eūu
0 ¼

Z
c̄ð1Þ¼ū

cð0Þ¼u0
Dc̄Dce−Sf ½c;c̄�; ðA11Þ

with

Sf½c; c̄� ¼
Z

1

0

dτc̄ðτÞ_cðτÞ − c̄cð1Þ: ðA12Þ

1These numbers appear often in reordering problems, as for
example in the worldline two-loop computation of the Euler-
Heisenberg effective Lagrangian of scalar QED and spinor
QED [49].

AHMADINIAZ, BASTIANELLI, and CORRADINI PHYSICAL REVIEW D 93, 025035 (2016)

025035-10



We may, thus, split the paths into backgrounds, satisfying
the free equations of motion _̄c ¼ _c ¼ 0 with corresponding
boundary conditions, and quantum fluctuations

cðτÞ ¼ u0 þ κðτÞ; κð0Þ ¼ 0 ðA13Þ

c̄ðτÞ ¼ ūþ κ̄ðτÞ; κ̄ð1Þ ¼ 0: ðA14Þ

Hence,

hūju0i ¼ eūu
0 ¼ eūu

0
Z

κ̄ð1Þ¼0

κð0Þ¼0

Dκ̄Dκe−
R

1

0
dτκ̄ _κ; ðA15Þ

which in turn givesZ
κ̄ð1Þ¼0

κð0Þ¼0

Dκ̄Dκe−
R

1

0
dτκ̄ _κ ¼ 1: ðA16Þ

Let us now consider the path integral

Zðū; u0; θÞ ≔
Z

c̄ð1Þ¼ū

cð0Þ¼u0
Dc̄Dce−S½c;c̄;θ�; ðA17Þ

with

S½c; c̄� ¼
Z

1

0

dτc̄ðτÞð∂τ þ iθÞcðτÞ − c̄cð1Þ: ðA18Þ

We can solve the latter in a similar way as above, i.e. by
splitting the paths into backgrounds,

ð∂τ þ iθÞcðτÞ ¼ 0; cð0Þ ¼ u0 ⇒ CðτÞ ¼ u0e−iθτ

ðA19Þ

ð−∂τ þ iθÞc̄ðτÞ ¼ 0; c̄ð1Þ ¼ ū ⇒ C̄ðτÞ ¼ ūeiθðτ−1Þ;

ðA20Þ

and quantum fluctuations κðτÞ and κ̄ðτÞ with the same
boundary conditions as above. By setting

cðτÞ ¼ e−iθτðu0 þ κðτÞÞ ðA21Þ

c̄ðτÞ ¼ eiθτðe−iθūþ κ̄ðτÞÞ; ðA22Þ

one gets

Zðū; u0; θÞ ≔ ee
−iθ ūu0

Z
κ̄ð1Þ¼0̄

κð0Þ¼0

Dκ̄Dκe−
R

1

0
dτκ̄ _κ

¼ ee
−iθ ūu0 ; ðA23Þ

where we made use of (A16). In summary,

Z
c̄ð1Þ¼ū

cð0Þ¼u0
Dc̄Dce−

R
1

0
dτc̄ðτÞð∂τþiθÞcðτÞþc̄cð1Þ ¼ ee

−iθ ūu0 ; ðA24Þ

which we thus identify with (A4). Thus, by adding a
constant term to the action and considering α ¼ 1;…; N
independent pairs of oscillator operators, we finally get

Z
c̄ð1Þ¼ū

cð0Þ¼u0
Dc̄Dce−

R
1

0
dτc̄αðτÞð∂τþiθÞcαðτÞþc̄·cð1Þþiθr

¼ hūje−iθðĉ†·ĉ−rÞju0i ¼ ee
−iθ ū·u0þiθr; ðA25Þ

where N ≔ ĉ† · ĉ ¼ ĉ†αĉα is the total occupation number
operator for the system of N harmonic oscillators.
If, on the other hand, one were to identify

Z
c̄ð1Þ¼ū

cð0Þ¼u0
Dc̄Dce−

R
1

0
dτc̄αðτÞð∂τþiθÞcαðτÞþc̄·cð1Þ

¼ hūje−iθðĉ†·ĉÞs ju0i; ðA26Þ

with

ðĉ† · ĉÞs ≔
1

2
ðĉ† · ĉþ ĉ · ĉ†Þ ¼ ĉ† · ĉþ N

2
ðA27Þ

being the symmetrized product, one would then get

Z
c̄ð1Þ¼ū

cð0Þ¼u0
Dc̄Dce−

R
1

0
dτc̄αðτÞð∂τþiθÞcαðτÞþc̄·cð1Þ ¼ ee

−iθ ū·u0−iθN
2 ;

ðA28Þ

and

Z
c̄ð1Þ¼ū

cð0Þ¼u0
Dc̄Dce−

R
1

0
dτc̄αðτÞð∂τþiθÞcαðτÞþc̄·cð1Þþiθs

¼ hūje−iθððĉ†·ĉÞs−sÞju0i ¼ ee
−iθ ū·u0þiθðs−N

2
Þ: ðA29Þ

However, setting the eigenvalues of the occupation num-
bers to be equal,

ðĉ† · ĉÞs − s ¼ ĉ† · ĉ − r ⇒ s ¼ rþ N
2
; ðA30Þ

the right-hand sides of (A25) and (A29) coincide.
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