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We develop the perturbation theory of double field theory around arbitrary solutions of its field
equations. The exact gauge transformations are written in a manifestly background covariant way and
contain at most quadratic terms in the field fluctuations. We expand the generalized curvature scalar to
cubic order in fluctuations and thereby determine the cubic action in a manifestly background covariant
form. As a first application we specialize this theory to group manifold backgrounds, such as SUð2Þ≃ S3

with H-flux. In the full string theory this corresponds to a Wess-Zumino-Witten background CFT. Starting
from closed string field theory, the cubic action around such backgrounds has been computed before by
Blumenhagen, Hassler, and Lüst. We establish precise agreement with the cubic action derived from double
field theory. This result confirms that double field theory is applicable to arbitrary curved background
solutions, disproving assertions in the literature to the contrary.
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I. INTRODUCTION

Double field theory is the proper framework that makes
manifest the global Oðd; dÞ symmetry of the low-energy
effective actions of closed string theory implied by T-duality
[1–6], including α0 corrections [7–9]; see [10–12] for
reviews. The original construction by Hull and Zwiebach
started from closed string field theory on a flat toroidal
backgroundwith constantmetricGij andKalb-Ramond field
Bij and determined the cubic action [3]. By construction, this
actiondepends on thebackground, but it canbeverified that it
is actually background independent in the sense that any
constant shift of the background can +be absorbed into a shift
of the fluctuation, up to field redefinitions [5]. This property
is shared with the full closed string field theory [13]. A
unique manifestly background independent action can then
be constructed, which is valid to all orders in fields and for
arbitrary curved background solutions [5].
In this paper we develop the perturbation theory of

double field theory (DFT) around arbitrary solutions of the
field equations. We determine the exact gauge transforma-
tions of the fluctuation fields, and we expand the gener-
alized curvature scalar to cubic order in fields, thereby
determining the cubic action valid for arbitrary background
solutions. (The quadratic action was determined recently in
[14].) Employing the geometry of DFT, these results can be
written in a manifestly background covariant form, using
covariant derivatives and curvature tensors. This compu-
tation could be done in any formulation of DFT, but
it is greatly simplified by using the framelike geometry
developed by Siegel in [1] (and related in [15] to the

explicit actions of [5,6]). In particular, the field variables
emerging from the frame field can be identified with those
emerging from closed string field theory around flat space
to all orders in perturbation theory, as was proved in [16].
Here we extend the results of [16] by taking the background
to be arbitrary.
There are various potential applications for the perturba-

tive formulation of DFT developed here, ranging from
quantum loop computations by the background field method
to cosmological perturbation theory for string cosmology. As
a first application we specialize to backgrounds given by
group manifolds with H-flux in order to clarify the cubic
theory determined before by Blumenhagen, Hassler, and
Lüst in [17]. Their computation started from the Wess-
Zumino-Witten (WZW) model based on a Lie group G,
which is taken to be the background CFT about which a
closed string field theory action can be evaluated [18]. The
resulting cubic action takes the same structural form as the
original cubic action by Hull and Zwiebach, however, with
all basic structures being deformed due to the nonflat
geometry of the group manifold G.
More specifically, the following new features emerge:

(i) the “strong constraint” or “section constraint” originating
from the level-matching constraint is seemingly deformed,
involving derivatives of the background metric; (ii) the
gauge transformations and the gauge algebra are deformed
by the structure constants of G; and (iii) the action receives a
“potential” term quadratic in the structure constants. As the
basic structures are thus deformed relative to the original
cubic theory on which the background-independent DFTof
[5] was based, the results of [17] could be (and have been)
misinterpreted as implying that a more general, extended
DFT is needed in order to be applicable to certain nonflat
backgrounds. We will show here that no such extension is
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needed: the cubic action obtained from the original back-
ground independent DFT by expanding about the appro-
priate group manifold background reproduces precisely the
cubic action following from string field theory for WZW
backgrounds.1We thereby confirm, in particular, the validity
of the cubic couplings determined in [17].
The above conclusion reaffirms the applicability of DFT

to arbitrary curved background solutions. This is as to be
expected, because the groupmanifold backgrounds encoded
inWZWmodels are fully geometric: they are described by a
conventionalmetric andB-field. Thus, to leading order in α0,
the corresponding space-time action is governed by the
usual low-energy action for a metric, B-field and dilaton,
which in turn is completely captured by DFT [5]. Moreover,
not only is it possible to describe nonflat backgrounds in
DFT (and the closely related “exceptional field theory”
[20]), it also simplifies significantly their Kaluza-Klein
embedding into the higher-dimensional theory [21],
employing the notion of generalized Scherk-Schwarz com-
pactifications [22–24]. This in fact made it possible recently
to resolve longstanding open problems about the consis-
tency of certain Kaluza-Klein truncations [21,25–28].
In the remainder of the Introduction we summarize some

of our key technical results, in general and applied to WZW
backgrounds:

(i) We recall that the full background independent DFT
is subject to the strong constraint that for any fields
or gauge parameters X, Y

ηMN∂M∂NX ≡ ∂M∂MX ¼ 0;

∂MX∂MY ¼ 0; ηMN ¼
�
0 1

1 0

�
; ð1:1Þ

where ηMN is the OðD;DÞ invariant metric, and
M;N ¼ 1;…; 2D are OðD;DÞ indices. Upon ex-
panding around a background generalized frame
ĒA

M, where A ¼ ða; āÞ is a doubled “Lorentz”
index, the “flattened” derivatives DA ≡ ĒA

M∂M
emerge. Since the differential operator ∂M∂M is
second-order and the background Ē in general
coordinate dependent, the strong constraint gener-
ally does not take the same form in terms of the DA.
However, we show that for a large class of back-
grounds including the WZW backgrounds the extra
contributions with derivatives of Ē cancel, so that the
constraint reads

DADA ¼ DaDa þDāDā ¼ 0: ð1:2Þ
This agrees with the form of the strong constraint in
[17]. More generally, we clarify the nature of the

coordinates for WZW backgrounds. In contrast to
the cubic theory on toroidal backgrounds [3], there is
no physical doubling of coordinates because there
are no winding modes and, accordingly, the proper
identification of the physical theory requires solving
the strong constraint (1.2).

(ii) The generalized diffeomorphism symmetry of the
frame field,

δξEA
M ¼ L̂ξEA

M ≡ ξN∂NEA
M

þ ð∂MξN − ∂Nξ
MÞEA

N; ð1:3Þ
defined in terms of the generalized Lie derivative L̂ξ,
gives rise to gauge transformations of the fluctuation
fields, which are given by hab̄ upon employing a
particular gauge fixing of the local frame trans-
formations. The gauge transformations of hab̄ then
take the form

δhab̄ ¼ ∇̄aξb̄ − ∇̄b̄ξa þ ξC∇̄Chab̄

þ ð∇̄aξ
c − ∇̄cξaÞhcb̄ þ ð∇̄b̄ξ

c̄ − ∇̄c̄ξb̄Þhac̄
þ had̄ð∇̄cξd̄ − ∇̄d̄ξcÞhcb̄; ð1:4Þ

where ∇̄ are the background covariant derivatives
and ξA ≡ ĒA

MξM the flattened gauge parameter.
These gauge transformations are exact, with no
higher order terms beyond quadratic order in h.
We will show that for the frame field of WZW
backgrounds, which we construct explicitly in terms
of the left- and right-invariant Maurer-Cartan forms
of G, the only nonvanishing (generalized) connec-
tion components are given by

ω̄ab
c ¼ 1

3
fabc; ω̄ā b̄

c̄ ¼ −
1

3
fā b̄

c̄; ð1:5Þ

in terms of the structure constants f. Back in (1.4)
the gauge transformations then read

δhab̄ ¼ δ0hab̄ þ ξcfcadhdb̄ − ξc̄fc̄ b̄
d̄had̄; ð1:6Þ

where δ0hab̄ denotes the f-independent terms. These
transformations, and the corresponding gauge alge-
bra, agree precisely with those found in [17], with
the deformation in terms of f originating from the
background covariant derivatives.2

1We have been informed by the authors of [19] that this result
is also implicit in (and compatible with) the computation of their
Sec. V that relates an extended action to the conventional DFT
action.

2A common misconception about DFT is that the appearance
of partial derivatives in the generalized Lie derivative (1.3)
implies that the theory is only consistent on flat space and that
for curved backgrounds the partial derivatives should be replaced
by suitably covariantized derivatives. This is not the case.
Covariant derivatives emerge automatically upon expanding
the properly background independent theory about curved back-
grounds.
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(iii) We expand the DFT action written in terms of the
dilaton density e−2d ¼ e−2ϕ

ffiffiffi
g

p
and the generalized

curvature scalar R,

SDFT ¼
Z

d2DXe−2dðRðE; dÞ þ λÞ; ð1:7Þ

around an arbitrary background. The cosmological
constant λ ¼ − 2

3α0 ðD − 26Þ is nonzero in order for
the group manifolds to be proper string back-
grounds. The resulting action reads schematically

SDFT ¼
Z

d2DXe−2d̄ðL0 þ 4ð1 − 2d0ÞR̄c
abchac̄hbc̄

− 4R̄abc̄dhab̄hbc̄hdb̄ þOð4ÞÞ; ð1:8Þ

where d̄ is the background dilaton and d0 the dilaton
fluctuation, and we have only displayed terms
involving explicitly the background Riemann tensor
R̄.3 The remaining terms denoted by L0 are written
in terms of the background covariant derivatives ∇̄.
Again, specializing to WZW backgrounds and
inserting (1.5), the action reproduces precisely the
cubic action in [17].

Summarizing, the original formulation of DFT is suffi-
cient in order to describe the perturbation theory around
arbitrary curved backgrounds in a manifestly background
covariant way. In particular, the cubic theory following
from string field theory on WZW backgrounds as deter-
mined in [17] is perfectly consistent with the original DFT.
Rather than revealing the limitations of DFT away from
nontoroidal backgrounds and showing where it needs to be
extended, the string field theory computation confirms the
applicability of DFT to curved backgrounds. One may
wonder whether we can learn something from these results
about genuinely nongeometric backgrounds. It is known
from investigations of generalized Scherk-Schwarz com-
pactifications that in general this requires relaxing the
strong constraint [22,23,29].4 While there are proposals
of how to incorporate more general coordinate dependen-
cies into DFT [31,32], we still do not have a proper
understanding of the geometric and physical significance
of such truly extended spaces. Let us also note that
Ref. [17] constructs cubic actions away from the geometric
WZW backgrounds, in which a different doubling of

coordinates is employed. We will comment on this in
Sec. IV. A more general proposal, put forward for instance
in [19,33,34], is to describe the background by a conven-
tional but doubled geometry, while the physical fields are
governed by a generalized geometry. We will discuss this
and the general issue of background independence in
Sec. V and point out that such proposals are problematic
in view of the physical requirement of background inde-
pendence (be it manifest or not). The rest of this paper is
organized as follows. In Sec. II we briefly review the
geometry of DFT and use this to derive the gauge trans-
formations of the fluctuations. In Sec. III we expand the
curvature scalar around an arbitrary background and
compute the cubic action. These results are applied in
Sec. IV to WZW backgrounds. We close with some general
remarks in Sec. V, while we summarize some explicit
formulas for the cubic couplings in Appendix A and some
results for the simplest WZW background (S3 with H-flux)
in Appendix B.

II. DFT SYMMETRIES AROUND A BACKGROUND

A. Generalities of DFT

We begin by giving a brief review of DFT and the
framelike geometry that will be used in the following
subsections to expand the theory around an arbitrary
background solution. We refer to [1,15] for more details
on the frame formulation. The fundamental fields are given
by the dilaton density e−2d and the frame field EA

M, which
are subject to the gauge transformations

δEA
M ¼ L̂ξEA

M þ ΛA
BEB

M

≡ ξN∂NEA
M þ ð∂MξN − ∂Nξ

MÞEA
N þ ΛA

BEB
M;

δðe−2dÞ ¼ ∂MðξMe−2dÞ: ð2:1Þ

Here ξM ¼ ð~ξi; ξiÞ is the generalized diffeomorphism
parameter with respect to which we introduced the gener-
alized Lie derivative L̂ξ whose action on general OðD;DÞ
tensors is defined analogously. Moreover, A ¼ ða; āÞ is the
flat index for the generalized local “Lorentz” group
GLðDÞ ×GLðDÞ, for which the independent gauge param-
eters are Λa

b and Λā
b̄. The frame field is subject to the

GLðDÞ ×GLðDÞ invariant constraint that the tangent space
metric obtained by “flattening” the OðD;DÞ metric ηMN is
block-diagonal,

GAB ≡ EA
MEB

NηMN ¼
�
Gab 0

0 Gā b̄

�
: ð2:2Þ

This metric is used to raise and lower flat indices. The
gauge algebra is given by the “C-bracket,” i.e.,
½δξ1 ; δξ2 � ¼ δξ12 , where

3We note that the background covariant Riemann tensor as
well as the covariant derivatives generally require undetermined
connection components which, however, drop out in the full
action and gauge transformations.

4In a related context, recently the cubic action for closed string
theory compactified on a circle at the self-dual radius, with
enhanced gauge group G ¼ SUð2Þ × SUð2Þ, was computed
through scattering amplitudes in [30] and shown to be obtainable
through a generalized Scherk-Schwarz compactification of DFT,
without any need to deform the structure of the parent theory.
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ξM12 ≡ ½ξ2; ξ1�MC ≡ ξN2 ∂Nξ
M
1 − ξN1 ∂Nξ

M
2 −

1

2
ξ2N∂MξN1

þ 1

2
ξ1N∂MξN2 : ð2:3Þ

We record for later use that the C-bracket coincides with the
antisymmetrization of the generalized Lie derivative, i.e.,

½V;W�C ¼ 1

2
ðL̂VW − L̂WVÞ; ð2:4Þ

for arbitrary generalized vectors V, W. Next, we introduce
connections ω and covariant derivatives∇ for theGLðDÞ ×
GLðDÞ gauge symmetry. Writing EA ¼ EA

M∂M for the
flattened partial derivatives, we define

∇AVB ¼ EAVB þ ωAB
CVC;

∇AVB ¼ EAVB − ωAC
BVC: ð2:5Þ

One can impose covariant constraints in order to (partially)
express the connections in terms of the frame field and the
dilaton [1,15]. There are undetermined connection compo-
nents, but they will drop out of the DFT action. Without
repeating the details of this analysis, in the following we
simply summarize the form of the determined connection
components and invariant curvatures. These are most
efficiently written in terms of

FABC ≡ ðL̂EA
EB

MÞECM; ð2:6Þ

which are related to the generalized “coefficients of
anholonomy” ΩAB

C defined by

½EA; EB�MC ≡ΩAB
CEC

M; ð2:7Þ

via the partial derivative of the tangent space metric,

ΩABC ¼ FABC −
1

2
ECGAB: ð2:8Þ

Note that by the constraint (2.2) on G we have the special
cases

Ωab̄
c̄ ¼ F ab̄

c̄; Ωāb
c ¼ F āb

c: ð2:9Þ

Using the antisymmetry of Ω in its first two indices we can
also derive

F cab̄ ¼ −F cb̄a ¼ −Ωcb̄a ¼ Ωb̄ca ¼ F b̄ca; ð2:10Þ

and

F bac ¼ −F abc þ EcGab;

F bca ¼ F abc þ EbGca − EcGba: ð2:11Þ

By repeated use of these relations one can then prove

F abc ¼ F ½abc� þ
1

2
ðEaGbc − EbGca þ EcGabÞ: ð2:12Þ

We can finally collect the determined spin connections
ωABC, written in terms of F and the tangent space metric.
They are given by

ωab̄
c̄ ¼ −F ab̄

c̄; ωāb
c ¼ −F āb

c:

3ω½abc� ¼ −F ½abc�; 3ω½ā b̄ c̄� ¼ −F ½ā b̄ c̄�;

ωaðbcÞ ¼ −
1

2
DaGbc; ωāðb̄ c̄Þ ¼ −

1

2
DāGb̄ c̄;

ωba
b ¼ −F a; ωb̄ ā

b̄ ¼ −F ā; ð2:13Þ

where we introduced the shorthand notation

FA ≡ ∂MEA
M − 2EAd: ð2:14Þ

The covariant derivatives built with these connections,
together with the undermined projections, transform fully
covariantly under local frame transformations. They also
transform covariantly under generalized diffeomorphisms
acting on fields with only flat indices.5

We close this subsection by discussing the generalized
Riemann tensor, from which a generalized Ricci tensor
and a generalized Ricci scalar are constructed by taking
appropriate contractions and projections. The gauge invari-
ant generalized Riemann tensor can be defined as

RABCD ¼ 1

2
ðRABCD þ RCDAB − ωEABω

E
CDÞ; ð2:15Þ

where

RABCD ¼ EAωBCD − EBωACD þ ωAC
EωBED

− ωBC
EωAED − ΩAB

EωECD: ð2:16Þ

From this we define

R≡ 2Rab
ab ¼ −2Rā b̄

ā b̄;

Rab̄ ¼ 2Rc̄ab̄
c̄ ¼ 2Rcb̄a

c; ð2:17Þ

where we refer to [1,15] for a proof of the equivalence of
both definitions for R. Again, without repeating the details
of this construction, we give an explicit expression in terms
of the above coefficients of anholonomy as

5Upon introducing Christoffel-type connections one may also
define derivatives that are covariant acting on arbitrary tensors;
see Sec. 5.3 of [15] and [35,36] for explicit expressions.
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R ¼ −4
�
EaF a þ 1

2
F 2

a þ
1

2
EaEbGab −

1

4
Ω2

abc̄

−
1

12
F 2

½abc� þ
1

8
EaGbcEbGac

�
; ð2:18Þ

Rab̄ ¼ Eb̄F a − EcF b̄a
c þ F cb̄

d̄F d̄a
c − F b̄a

cF c: ð2:19Þ

These expressions are not symmetric in unbarred and
barred indices, but by using identities implied by the
strong constraint, some of which we will discuss below,
it can be brought to a fully democratic form. The DFT
action finally reads

SDFT ¼
Z

d2DXe−2dðRþ λÞ; ð2:20Þ

where λ is an arbitrary (cosmological) constant. Since R is
a scalar and e−2d a density, the gauge invariance is manifest.
The field equations for the dilaton and the frame field are
given by R ¼ −λ and Rab̄ ¼ 0, respectively.

B. Background expansion

We now investigate DFT expanded around an arbitrary
background solution. As in [1,16] we expand the frame
field so that the fluctuations carry flat indices, writing

EA
M ¼ ĒA

M − hABĒB
M; ð2:21Þ

where ĒA
M is a general X-dependent background solution

of the DFT field equations. We can take this expansion to
be exact. The dilaton is expanded around the background
value d̄ as

d ¼ d̄þ d0; ð2:22Þ

where d0 is the fluctuation. In the following, when it is clear
from the context whether we consider the full field or the
fluctuation, we will drop the prime on d. Moreover, we use
the background tangent space metric ḠAB ≡ ĒA

MĒBM to
raise and lower flat indices, and we introduce the notation

DA ≡ ĒA
M∂M: ð2:23Þ

In addition, all expressions introduced in the previous
subsection for the various geometric quantities have a
background counterpart in this and the following sections,
generically indicated by a bar or straight letters. For
instance, for the FABC defined in (2.6) we write for the
background version

FABC ≡ ðL̂ĒA
ĒB

MÞĒCM; ð2:24Þ

which can be computed to be

FABC ¼ 3D½AĒB
MĒC�M þ 1

2
ðDAḠCB þDCḠAB −DBḠACÞ:

ð2:25Þ
It is straightforward to prove from the definition (2.24) that
the commutator of flattened derivatives is given by

½DA;DB� ¼ FAB
CDC: ð2:26Þ

We also define

FA ≡ ∂MĒA
M − 2DAd̄: ð2:27Þ

The explicit expressions (2.13) for the connections then
apply equally to the background connections, just with F
replaced by F, etc. We denote the corresponding back-
ground covariant derivatives by ∇̄ and the background
curvatures by R̄.
We close this subsection by stating and discussing

further identities satisfied by the background structures.
Specifically, we have the Bianchi-type identities6

DADA þ FADA ¼ 0; ð2:28Þ

D½AFBCD� −
3

4
F½ABEFCD�E ¼ 0; ð2:29Þ

2D½AFB� −DCFAB
C − FCFAB

C ¼ 0: ð2:30Þ

These can be verified by straightforward computations
using the strong constraint. As an illustration let us discuss
the first relation, which we will discuss further for WZW
models. To this end, we have to translate the standard
constraints,

∂M∂MX ¼ 0; ∂MX∂MY ¼ 0; ð2:31Þ

which hold for arbitrary X, Y, into flat indices. For the
second form we immediately get the flattened version

DAXDAY ¼ 0; ð2:32Þ

by expressing the derivatives in terms of flattened back-
ground derivatives. For the first form, however, one obtains
extra contributions,

∂M∂MX ¼ ĒAMDAðĒB
MDBXÞ

¼ ĒAMĒB
MDADBX þ ĒAMDAĒB

MDBX

¼ DADAX þDAḠABDBX −DAĒAMĒB
MDBX:

ð2:33Þ

6Here, these identities are given for the background objects,
but completely analogous relations hold for the full quantities in
the background independent theory.
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In the second line, the second term can be used to change
the differential operator into DADA. The last term is
nonvanishing in general. However, rewriting this term with
(2.27) in the form −DAĒA

M ¼ FM þ 2∂Md̄, the dilaton
dependent term drops out by the strong constraint, and we
obtain

∂M∂MX ¼ DADAX þ FMĒBMDBX: ð2:34Þ

This proves Eq. (2.28). For the special case FA ¼ 0 and
constant Ḡ, which we will see to be satisfied for WZW
backgrounds, we conclude

DADA ¼ DADA ¼ 0; ð2:35Þ

which coincides with the constraint used in [17].
Finally we turn to another, quadratic identity for the

FABC, that holds whenever the tangent space metric is
constant and FA ¼ 0. We compute from (2.25)

FABCFABC ¼ 3ðDAĒB
MĒCM þDCĒA

MĒBM

þDBĒC
MĒAMÞDAĒB

NĒCN

¼ −6∂NĒBM∂MĒB
N; ð2:36Þ

where we used the strong constraint. This is generally
nonzero, but it does vanish for the special case FA ¼ 0,
which implies ∂MĒA

M ¼ 2DAd̄. To prove this, we use the
latter condition and the constancy of the OðD;DÞ metric,

0 ¼ ∂M∂NðĒBMĒB
NÞ ¼ 2∂M∂NĒBMĒB

N þ ∂MĒBM∂NĒB
N

þ ∂NĒBM∂MĒB
N

¼ 4DBDBd̄þ 4DBd̄DBd̄þ ∂NĒBM∂MĒB
N

¼ ∂NĒBM∂MĒB
N; ð2:37Þ

using that the strong constraint implies DADA ¼ 0 under
the same assumptions. We thus conclude

FABCFABC ≡ FabcFabc þ Fā b̄ c̄Fā b̄ c̄ ¼ 0; ð2:38Þ

so that we can write more symmetrically

FabcFabc ¼
1

2
ðFabcFabc − Fā b̄ c̄Fā b̄ c̄Þ: ð2:39Þ

Note that the unusual sign is due to the indefinite signature
of the tangent space metric (2.2).

C. Gauge symmetries around arbitrary backgrounds

Our goal in the rest of this section is to determine the
symmetry variations acting on the fluctuations hAB and d0
and to write them in background covariant form. Let us first
note that taking the gauge parameters ξ̄M and Λ̄A

B to be of
zero order in the background expansion (as indicated by

bars), the gauge variations of (2.21) and (2.22) yield for the
background

δĒA
M ¼ L̂ξ̄ĒA

M þ Λ̄A
BĒB

M;

δd̄ ¼ ξ̄N∂Nd̄ −
1

2
∂N ξ̄

N: ð2:40Þ

In general this should not be interpreted as an additional
physical symmetry because the background is not allowed
to transform. If, however, there exist ξ̄M and Λ̄A

B so that the
above right-hand sides are zero, these are global sym-
metries (generalized Killing symmetries), acting nontri-
vially on the physical (fluctuation) fields. Let us compute
their symmetry variations, starting with the dilaton.
Shifting ξM → ξ̄M þ ξM, where the new ξM represents
the first-order part, we obtain from (2.1),

δξ̄d̄þ δξ̄d
0 þ δξd0 ¼ ðξ̄N þ ξNÞ∂Nðd̄þ d0Þ

−
1

2
∂Nðξ̄N þ ξNÞ; ð2:41Þ

taking the background dilaton d̄ to be invariant under the
first-order variations with respect to ξM. Expanding both
sides and using the second equation in (2.40) we read off

δξ̄d
0 ¼ ξ̄N∂Nd0;

δξd0 ¼ ξN∂Nd̄þ ξN∂Nd0 −
1

2
∂Nξ

N: ð2:42Þ

We infer from the first equation that under background
diffeomorphisms d0 actually transforms as a scalar. Next, let
us rewrite the first-order gauge transformations of d0 in
background covariant form. Flattening the indices with the
background frame field in the second equation above, we
obtain

δξd0 ¼ ξADAd̄þ ξADAd0 −
1

2
∂NðξAĒA

NÞ

¼ ξADAd0 −
1

2
ðDAξ

A þ FAξ
AÞ

¼ ξA∇̄Ad0 −
1

2
∇̄Aξ

A; ð2:43Þ

where we identified the trace parts of the background
connections; c.f. the last line in (2.13) and (2.14), and we
used that since d0 is a scalar under background diffeo-
morphisms, ∇̄Ad0 ¼ DAd0.
Next, we turn to the symmetry transformations of the

fluctuations hAB. First, one finds in complete analogy of the
above discussion that under background generalized diffeo-
morphisms and background frame transformations with
respect to Λ̄A

B,

δ̄hAB ¼ ξ̄N∂NhAB þ Λ̄A
ChCB þ Λ̄B

ChAC: ð2:44Þ
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Thus, hAB transforms as a scalar under background diffeo-
morphisms and as a 2-tensor under background frame
transformations, as indicated by its index structure. In the
following we focus on the nontrivial part of the gauge
symmetries, setting the background parameters to zero and
treating the gauge parameters ξM and ΛA

B to be of first
order. Again, in this computation the background is taken
to be invariant, δĒA

M ¼ 0.7 Inserting the expansion (2.21)
into the gauge transformations (2.1) we then obtain

−δhABĒB
M ¼ ξN∂NðĒA

M − hABĒB
MÞ

þ ð∂MξN − ∂Nξ
MÞðĒA

N − hABĒB
NÞ

þ ΛA
BðĒB

M − hBCĒC
MÞ: ð2:45Þ

Multiplying by the inverse background vielbein this reads

δhAB ¼ −ðL̂ξĒA
MÞĒBM þ ξN∂NhAB − hACðL̂ξĒBMÞĒC

M

− ΛAB þ ΛA
ChCB: ð2:46Þ

To simplify this we note with a quick computation, using
the generalized Lie derivative (2.1),

ðL̂ξĒA
MÞĒBM ¼ ðL̂ξCĒC

ĒA
MÞĒBM

¼ ξCðL̂ĒC
ĒA

MÞĒBM

−DAξ
CḠCB þDBξ

CḠCA: ð2:47Þ

Thus, in terms of (2.24) we have

ðL̂ξĒA
MÞĒBM ¼ −DAξ

CḠCB þDBξ
CḠCA þ ξCFCAB:

ð2:48Þ

Organizing the terms in (2.46) we obtain the gauge
transformations

δhAB ¼ DAξ
CḠCB −DBξ

CḠCA − ΛAB þ ΛA
ChCB

þ ξCDChAB þDBξ
ChAC −DCξDḠDBhAC

− ξCFCAB − ξDFDB
ChAC: ð2:49Þ

Note that in general the tangent space metric Ḡ is X
dependent and so cannot be moved inside partial
derivatives.
We next discuss an important simplification of the

perturbation theory that employs a convenient gauge fixing
of theGLðDÞ ×GLðDÞ symmetry. In order to motivate this
gauge condition, note that to lowest order the frame
transformations act as a Stückelberg symmetry on the
“diagonal” components,

δhab ¼ −Λab; δhā b̄ ¼ −Λā b̄; δhab̄ ¼ δhāb ¼ 0:

ð2:50Þ

Thus, we can choose a gauge for which

hab ¼ hā b̄ ¼ 0: ð2:51Þ

This condition has consequences from the constraint (2.2)
stating that the tangent space metric is block diagonal,

Gab̄ ¼ ðĒa
M − hac̄Ēc̄

MÞðĒb̄
N − hb̄

dĒd
NÞηMN

¼ −hb̄a − hab̄ ¼ 0: ð2:52Þ

From this we conclude that hab̄ ¼ −hb̄a describes the
independent physical fields encoded in the frame field.
This is as it should be, for it describes D2 degrees of
freedom, the sum of the metric and b-field fluctuations,
which are the only physical fields besides the dilaton.
The above gauge fixing requires compensating local

GLðDÞ ×GLðDÞ transformations, because a general dif-
feomorphism with parameter ξM does not preserve the
gauge condition. One quickly finds with (2.49) that the
needed gauge parameter takes the form

Λab ¼ Daξ
cḠcb −Dbξ

cḠca þDbξ
c̄hac̄

−Dc̄ξdḠdbhac̄ − ξCFCab − ξDFDb
c̄hac̄; ð2:53Þ

and similarly for the barred one. Inserting this gauge
parameter into (2.49), specialized to external indices ab̄,
one finds

δhab̄ ¼ Daξ
c̄Ḡc̄ b̄ −Db̄ξ

cḠca − ξCFCab̄ þ ξCDChab̄

þDb̄ξ
c̄hac̄ −Dc̄ξd̄Ḡd̄ b̄hac̄ þDaξ

chcb̄

−DcξdḠdahcb̄ − ξDFDb̄
c̄hac̄ − ξDFDa

chcb̄

þDcξc̄hac̄hcb̄ −Dc̄ξchac̄hcb̄ − ξDFD
cc̄hac̄hcb̄;

ð2:54Þ

where the terms are organized in increasing powers of h.
This is the final form of the gauge transformations for hab̄.
Note, in particular, that we obtain at most terms quadratic in
h to all orders in perturbation theory. This was established
for the expansion around flat space in [4], but now we see
that this is true also for the expansion around a general
background.
The above gauge transformations are the complete trans-

formations for arbitrary backgrounds, and it is illuminating
to rewrite them in a form that is manifestly covariant under
generalized diffeomorphism transformations of the back-
ground. We will show in the following that the above gauge
transformations can be written in terms of the background
covariant derivatives. To illustrate this, let us focus first on
the inhomogeneous, field-independent terms in the first line7Note, however, that in general L̂ξĒA

M ≠ 0.
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of (2.54). We find, using the antisymmetry relations (2.10)
and identifying the connection components (2.13),

Daξ
c̄Ḡc̄ b̄ −Db̄ξ

cḠca − ξcFcab̄ − ξc̄Fc̄ab̄

¼ ðDaξ
c̄ þ Fad̄

c̄ξd̄ÞḠc̄ b̄ − ðDb̄ξ
c þ Fb̄d

cξdÞḠca

¼ ∇̄aξ
c̄Ḡc̄ b̄ − ∇̄b̄ξ

cḠca

¼ ∇̄aξb̄ − ∇̄b̄ξa: ð2:55Þ

Here we used in the last step that the background tangent
spacemetric is covariantly constant and can hence bemoved
inside the covariant derivative to lower the index on the
gauge parameter.
Similarly, for the terms linear and quadratic in h one may

replace the flattened partial derivatives by covariant deriv-
atives, adding and subtracting the necessary connection
terms. Using identities such as (2.12) one can verify that the
connection terms precisely cancel against the explicit F
terms in (2.54). Importantly, undetermined connections are
needed, but one may verify that they drop out in the full
expression. The complete final gauge transformations then
take the form

δhab̄ ¼ ∇̄aξb̄ − ∇̄b̄ξa þ ξC∇̄Chab̄ þ ð∇̄aξ
c − ∇̄cξaÞhcb̄

þ ð∇̄b̄ξ
c̄ − ∇̄c̄ξb̄Þhac̄ þ had̄ð∇̄cξd̄ − ∇̄d̄ξcÞhcb̄:

ð2:56Þ

Comparing with the complete perturbative DFT gauge
transformations around flat space given in [4], we infer
that they take precisely the same form, except that the
partial derivatives are replaced by covariant derivatives.
Let us finally discuss the gauge algebra of these

perturbative gauge transformations. The gauge algebra is
changed compared to the background independent (2.3)
because the gauge parameters are redefined. This redefi-
nition is simply given by the flattening of the vector index,
which implies that the gauge algebra is redefined in the
same way,

ξA12 ≡ ξM12ĒM
A ¼ 1

2
ðL̂ξ2ξ

M
1 − L̂ξ1ξ

M
2 ÞĒM

A; ð2:57Þ

where we used the form (2.4) for the C-bracket. Expanding
the gauge parameters in the frame basis ĒA

M this becomes

ξA12 ¼
1

2
ðξB2 ĒB

N∂NðξC1 ĒC
MÞ

þ ð∂MðξB2 ĒBNÞ − ∂NðξB2 ĒB
MÞÞξC1 ĒC

N

− ð1↔2ÞÞĒM
A

¼ 1

2
ðξB2 ξC1FBC

A þ 2ξB2DBξ
A
1 − ξ2BDAξB1 − ð1↔2ÞÞ;

ð2:58Þ

where we used the definition (2.24). Rearranging terms, we
have thus shown

ξA12 ¼ ξB2DBξ
A
1 − ξB1DBξ

A
2 −

1

2
ξ2BDAξB1

þ 1

2
ξ1BDAξB2 þ F½BC�AξB2 ξ

C
1 : ð2:59Þ

We infer that the algebra of gauge symmetries expanded
around a background carries a “deformation” characterized
by the background “structure constants” FAB

C. This will
become important in Sec. IV when we analyze WZW
backgrounds.

III. BACKGROUND FIELD EXPANSION
OF THE ACTION

A. Expansion of generalized Ricci scalar

In this section we will expand the background indepen-
dent DFT (2.20) about an arbitrary background and find the
effective theory for the perturbations to cubic order. The
generalized Ricci scalar in the framelike formalism of DFT
was given in (2.18),

R ¼ −4
�
EaF a þ 1

2
F 2

a þ
1

2
EaEbGab −

1

4
Ω2

abc̄

−
1

12
Ω2

½abc� þ
1

8
EaGbcEbGac

�
: ð3:1Þ

Using the expansion ansatz introduced in the previous
section, we split the generalized frame and dilaton as

EA
M ¼ ΦA

BĒB
M; d ¼ d̄þ d0; ð3:2Þ

in background pieces ĒA
M and d̄ and fluctuations around

them, ΦA
B ¼ δA

B − hAB and d0. This in turn allows us to
decompose the following quantities that enter the action

FA ¼ F̂A þΦA
BFB;

ΩABC ¼ Ω̂ABC þΦA
DΦB

EΦC
F

�
FDEF −

1

2
DFḠDE

�
; ð3:3Þ

where the hats indicate that the objects depend only on
derivatives of the fluctuations,

F̂A ¼ DBΦA
B − 2ΦA

BDBd0; ð3:4Þ

Ω̂ABC ¼ 2Φ½AjDDDΦjB�EḠEFΦC
F þ ΦC

DDDΦ½AEΦB�FḠEF:

ð3:5Þ
In this section we will everywhere assume that the back-
ground metric ḠAB is constant, which can be viewed as a
gauge fixing condition for the background GLðDÞ ×
GLðDÞ frame transformations. This in turn implies with
(2.25) that
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FABC ¼ F½ABC�: ð3:6Þ

Note that these tensors (in the following sometimes referred
to as fluxes) are generally X dependent.
After using the described GLðDÞ ×GLðDÞ gauge fixing

(2.51) in which the fluctuations are constrained to satisfy
hab ¼ hā b̄ ¼ 0 and hab̄ ¼ −hb̄a, it is easy to see that the flat
metric GAB is exactly quadratic in fluctuations

Gab ¼ Ḡab þ hac̄hbc̄; ð3:7Þ

Gā b̄ ¼ Ḡā b̄ þ hcāhcb̄: ð3:8Þ

As before, we adopt the convention that flat indices of
the background and fluctuations are raised and lowered

with ḠAB. The inverse flat metric receives an infinite
expansion

Gab ¼ Ḡab − hac̄hbc̄ þOðh4Þ; ð3:9Þ

Gā b̄ ¼ Ḡā b̄ − hcāhcb̄ þOðh4Þ; ð3:10Þ

but to cubic order the terms quartic and higher are not
needed. The flat derivatives now take the form

Ea ¼ Da − hab̄Db̄; Eā ¼ Dā þ hbāDb; ð3:11Þ

which are exact. Moreover, we find

F a ¼ Fa − hab̄Fb̄ −Db̄ha
b̄ − 2Dad0 þ 2hab̄Db̄d

0; ð3:12Þ

Ωabc̄ ¼ Fabc̄ þ hdc̄Fabd − 2D½ahb�c̄ þ 2h½ajd̄Dd̄hjb�c̄ þDc̄h½aēhb�ē − hc̄dDdh½aēhb�ē

þ 2h½ad̄Fb�d̄ c̄ þ 2hdc̄h½aēFb�ēd þ had̄hbēFd̄ ē c̄ þ had̄hbēhfc̄Fd̄ ē f; ð3:13Þ

Ω½abc� ¼ Fabc − 3h½ad̄Fbc�d̄ þ 3D½ahbd̄hc�d̄ − 3h½ajd̄Dd̄hjbēhc�ē þ 3h½ad̄hbēFc�d̄ ē − had̄hbēhcf̄Fd̄ ē f̄: ð3:14Þ

Finally, plugging the decompositions (3.7)–(3.14) into the generalized Ricci scalar (3.1) one obtains the expansion in
fluctuations to cubic order. To present the result in a more readable form, we decompose it according to the powers of
perturbations,

R ¼ R0 þR1 þR2 þR3; ð3:15Þ

where the label indicates the power counting in perturbations hab̄ and d
0. We now drop the prime on the dilaton, d0 → d, as it

is clear from the context that it denotes a fluctuation. All in all, we find

R0 ¼ −4DaFa − 2FaFa þ
1

3
FabcFabc þ FabāFabā; ð3:16Þ

R1 ¼ 8DaDadþ 4DaDāhaā þ 8DadFa þ 4DaFāhaā þ 4DahaāFā þ 4DāFahaā

þ 4DāhaāFa − 4DahbāFabā þ 4FaFāhaā þ 4FabāFaā
b̄hbb̄; ð3:17Þ

R2 ¼ −8DadDad − 8DaDādhaā − 8DadDāhaā − 8DahaāDād − 8DāDadhaā þ 2DaDbhaāhbā þ 2DaDbhbāhaā

− 8DadFāhaā þ 2DahaāDbhbā þ 2DahbāDahbā − 4DāDb̄hab̄haā − 8DādFahaā − 2DāhaāDb̄hab̄ þ 4DaFbhaāhbā

þ 4DahaāFbhbā þ 4DahbāFbhaā − 4DāFb̄haāhab̄ − 4DāhaāFb̄hab̄ − 4Dāhab̄Fb̄haā − 2DahbāFab
chcā

− 4DahbāFaā
b̄hbb̄ þ 4DahbāFbā

b̄hab̄ − 2Dāhab̄Faā
bhbb̄ þ 4Dāhab̄Fab̄

bhbā þ 2FaFbhaāhbā − 2FāFb̄haāhab̄

− 2FabcFa
ā b̄hbāhcb̄ þ 2FabāFaā

chbb̄hcb̄ þ 2FabāFa
cb̄hbb̄hcā þ 2FabāFā

b̄ c̄hab̄hbc̄ þ 2Faā b̄Faā
c̄hbb̄hbc̄

þ 2Faā b̄Fā
bc̄hac̄hbb̄; ð3:18Þ
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R3 ¼ 16DadDādhaā − 8DaDbdhaāhbā − 8DadDbhaāhbā − 8DadDbhbāhaā

þ 8DāDb̄dhaāhab̄ þ 8DādDb̄haāhab̄ þ 8DādDb̄hab̄haā − 2DaDāhab̄hbāhbb̄

− 4DaDāhbāhab̄hbb̄ − 2DaDāhbb̄hab̄hbā − 8DadFbhaāhbā − 4DahaāDb̄hbb̄hbā

− 4DahbāDāhab̄hbb̄ − 4DahbāDb̄hbb̄haā − 4DahaāDb̄hbāhbb̄ − 4DahbāDb̄hbāhab̄

− 2DāDahab̄hbāhbb̄ − 2DāDahbb̄hab̄hbā þ 8DādFb̄haāhab̄ − 4DaFāhab̄hbāhbb̄

− 4DahaāFb̄hbāhbb̄ − 4DahbāFāhab̄hbb̄ − 4DahbāFb̄haāhbb̄ − 4DāFahab̄hbāhbb̄

− 4Dāhab̄Fahbāhbb̄ − 4DāhaāFbhab̄hbb̄ − 4Dāhab̄Fbhaāhbb̄ þ 2DahbāFab
b̄hcāhcb̄

− 2DahbāFa
cb̄hbb̄hcā þ 4DahbāFb

cb̄hab̄hcā − 4DahbāFaā
chbb̄hcb̄ þ 4DahbāFbā

chab̄hcb̄

− 4DahbāFā
b̄ c̄hab̄hbc̄ − 4Dāhab̄Fa

bchbāhcb̄ − 4Dāhab̄Fab̄
c̄hbāhbc̄ − 4Dāhab̄Fb̄

bc̄hac̄hbā

þ 2Dāhab̄Faā
c̄hbb̄hbc̄ þ 2Dāhab̄Fā

bc̄hac̄hbb̄ − 4FaFāhab̄hbāhbb̄ þ 4FabcFa
dāhbāhcb̄hdb̄

þ 4

3
FabcFā b̄ c̄haāhbb̄hcc̄ − 4FabāFaā

b̄hbc̄hcb̄hcc̄ þ 4FabāFa
b̄ c̄hbb̄h

c
āhcc̄

− 4FabāFā
cb̄hab̄hb

c̄hcc̄ þ 4FabāFcb̄ c̄hab̄hbc̄hcā þ 4Faā b̄Fā
c̄ d̄hac̄hbb̄hbd̄: ð3:19Þ

It is a long but straightforward computation8 to verify, as a consistency check, that the expanded Ricci scalar indeed
transforms as a scalar with respect to the gauge transformations of the fluctuations (2.43) and (2.54),

δR ¼ ξADAR ð3:20Þ

to cubic order, provided the strong constraint holds and making repeated use of the relations (2.28)–(2.30).
We now want to rewrite the background expanded Ricci scalar in a background covariant form. To this end, we have to

use the full background Riemann tensor

R̄ABCD ¼ 1

2
ðR̄ABCD þ R̄CDAB − ω̄EABω̄

E
CDÞ; ð3:21Þ

with

R̄ABCD ¼ DAω̄BCD −DBω̄ACD þ ¯ωAC
Eω̄BED − ω̄BC

Eω̄AED − FAB
Eω̄ECD: ð3:22Þ

The procedure is straightforward: we simply replace flat partial derivativesDA by background covariant derivatives ∇̄A plus
the compensating background generalized spin connection terms. After this, most terms with spin connections cancel
among each other, and the rest combines into nonvanishing components of the background generalized Riemann tensor
(3.21). We note that this requires using projections/contractions of the generalized Riemann tensor that contain
undetermined connection components, but as for the gauge transformations, they drop out of the full action. After some
algebra we find for (3.16)–(3.19)

R0 ¼ −2R̄ab
ba; ð3:23Þ

R1 ¼ 8∇̄a∇̄adþ 4∇̄a∇̄āhaā þ 8R̄abā
ahbā; ð3:24Þ

R2 ¼ −8∇̄ad∇̄ad − 8∇̄ahaā∇̄ād − 8∇̄āhaā∇̄ad − 8haā∇̄a∇̄ād − 8haā∇̄ā∇̄adþ2∇̄ahaā∇̄bhbā þ 2∇̄ahbā∇̄ahbā

þ4haā∇̄b∇̄ahbā − 2∇̄āhaā∇̄b̄hab̄ − 4haā∇̄ā∇̄b̄hab̄ þ 4haāhbāR̄cab
c þ 4haāhbb̄R̄

abā b̄; ð3:25Þ

8We have benefited from CADABRA [37] in this and other computations in this paper.
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R3 ¼ 16haā∇̄ad∇̄ād − 8haā∇̄bhbā∇̄ad − 8haā∇̄ahbā∇̄bd − 8haāhbā∇̄a∇̄bd

þ 8haā∇̄b̄hab̄∇̄ādþ 8haā∇̄āhab̄∇̄b̄dþ 8haāhab̄∇̄ā∇̄b̄d

− 4haā∇̄ahbā∇̄b̄hbb̄ − 4haā∇̄ahbb̄∇̄āhbb̄ − 4haā∇̄bhbā∇̄b̄hab̄ − 4haā∇̄bhbb̄∇̄āhab̄

− 4haā∇̄bhab̄∇̄b̄hb
ā − 4haāhbā∇̄a∇̄b̄hbb̄ − 2haāhbb̄∇̄a∇̄b̄hbā − 2haāhab̄∇̄b∇̄āhbb̄

− 2haāhbb̄∇̄b̄∇̄ahbā − 2haāhab̄∇̄ā∇̄bhbb̄ − 4haāhbb̄hcāR̄
abb̄c − 4haāhbb̄hbāR̄

cab̄
c: ð3:26Þ

Notice thatR0 is proportional to the background generalized Ricci scalar, and R̄cab̄
c is the background generalized Ricci

tensor. The last term inR2 turns out to vanish due to algebraic Bianchi identities satisfied by the Riemann tensor [35,38], so
we will neglect if from now on.

B. Expansion of the DFT action

Having at hand the background field expansion of the generalized Ricci scalar in a background covariant form, we are
now ready to compute the action to cubic order. We first write it in the following form

S ¼
Z

dXe−2d̄ðLþ e−2dλÞ; ð3:27Þ

where

L ¼ R0 þR1 − 2dR0 þR2 − 2dR1 þ 2d2R0 þR3 − 2dR2 þ 2d2R1 −
4

3
d3R0; ð3:28Þ

decomposed as a sum of Ld0;h0 where ðd0; h0Þ represent the powers of d and hab̄ respectively. For this computation it is
instrumental to recall that

e−2d̄∇̄aVa ¼ t:d:; e−2d̄∇̄āVā ¼ t:d:; ð3:29Þ

where “t.d.” stands for “total derivative,” so any term of this form can be dropped. With this in mind, we find

L0;0 ¼ −2R̄ab
ba; ð3:30Þ

L1;0 ¼ 4dR̄ab
ba; ð3:31Þ

L0;1 ¼ 8R̄abā
ahbā; ð3:32Þ

L2;0 ¼ −8d∇̄a∇̄ad − 4d2R̄ab
ba; ð3:33Þ

L1;1 ¼ −8d∇̄a∇̄āhaā − 16dR̄abā
ahbā; ð3:34Þ

L0;2 ¼ −2∇̄ahaā∇̄bhbā − 2hbā∇̄a∇̄ahbā þ 2∇̄āhaā∇̄b̄h
ab̄ − 8haā∇̄½a∇̄b�hbā þ 4haāhbāR̄cab

c; ð3:35Þ

L3;0 ¼ 8d2∇̄a∇̄adþ 8

3
d3R̄ab

ba; ð3:36Þ

L2;1 ¼ 16d∇̄ā∇̄adhaā þ 16d2R̄abā
ahbā; ð3:37Þ

L1;2 ¼ −4d½∇̄ahaā∇̄bhbā þ ∇̄ahbā∇̄ahbā − ∇̄āhaā∇̄b̄hab̄þ2haāð∇̄b∇̄ahbā − ∇̄ā∇̄b̄hab̄Þ þ 2haāhbāR̄cab
c�; ð3:38Þ

L0;3¼−4haāð∇̄ahbb̄∇̄āhbb̄−∇̄ahbb̄∇̄b̄hbā−∇̄bhab̄∇̄āhbb̄þhbā∇̄½a∇̄b̄�hbb̄Þ−4haāhbb̄hcāR̄
abb̄c−4haāhbb̄hbāR̄

cab̄
c: ð3:39Þ

Recall that using the background field equations
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R̄þ λ ¼ −2R̄ab
ba þ λ ¼ 0; R̄ab̄ ¼ 2R̄cab̄

c ¼ 0; ð3:40Þ

some terms in the action vanish, and one arrives at the background covariant cubic action

S¼
Z

dXe−2d̄½−2∇̄ahaā∇̄bhbā − 2∇̄a∇̄ahbāhbā þ 2∇̄āhaā∇̄b̄h
ab̄ − 8∇̄½a∇̄b�hbāhaā þ 4R̄abc

ahbāhcā

− 8d∇̄a∇̄āhaā − 8d∇̄a∇̄ad− 4hab̄ð∇̄ahbā∇̄b̄hbā − ∇̄ahbā∇̄āhbb̄ − ∇̄bhaā∇̄b̄hbā þ ∇̄½a∇̄ā�hbāhbb̄Þ
− 4R̄abāchab̄hbāhcb̄ − 8dR̄abc

ahbāhcā − 4d½∇̄ahaā∇̄bhbāþ∇̄ahbā∇̄ahbā − ∇̄āhaā∇̄b̄hab̄ þ 2hab̄ð∇̄b∇̄ahbb̄ − ∇̄b̄∇̄āhaāÞ�
þ 16d∇̄ā∇̄adhaā þ 8d2∇̄a∇̄ad�: ð3:41Þ

This is the final form of the complete, background
covariant cubic action, which may be specialized to an
arbitrary background solution.9 For applications it may be
more convenient to have a form in which the action is
written out explicitly, separating background connections
in covariant derivatives and curvatures. We give such
expressions, and equivalent ones in which barred and
unbarred indices are on the same footing, in Appendix A.

IV. WZW BACKGROUNDS

A. Generalities on group manifolds

We start by briefly reviewing the relevant aspects of
group manifolds G. Let the Lie group G with Lie algebra g
have generators ta, a ¼ 1;…; n ¼ dim g, with Lie bracket
and Cartan-Killing form

½ta; tb� ¼ fabctc; κab ¼ hta; tbi≡ −facdfbdc: ð4:1Þ

The quadratic form is invariant under the adjoint action of
g ∈ G on g defined by

gtag−1 ≡ tbgba; ð4:2Þ

where gab is the group representative of g in the adjoint
representation. Invariance means that for any X, Y ∈ g we
have

hgXg−1; gYg−1i ¼ hX; Yi: ð4:3Þ

We introduce a group-valued function γðxÞ ∈ G, depending
on the coordinates xi, i ¼ 1;…; n, of the group manifold.
This can be used to define a g-valued right-invariant
Maurer-Cartan form and the corresponding metric on G by

∂iγγ
−1 ≡ eiata;

gij ≡ h∂iγγ
−1; ∂jγγ

−1i ¼ eiaejbκab: ð4:4Þ

Thus, the Maurer-Cartan form eia can be viewed as a
vielbein for the metric gij on G, and can be expressed as

eia ¼ h∂iγγ
−1; tai: ð4:5Þ

Under the following group action by rigid gL, gR ∈ G

γ → gLγgR; ∂iγγ
−1 → gLð∂iγγ

−1Þg−1L ; ð4:6Þ

we see that eia is right invariant, while it transforms under
gL (in the adjoint representation) as indicated by the index
a. Since the Cartan-Killing metric κab is G invariant, it
follows that gij is invariant under GL × GR, the isometry
group of G. Similarly, we can define left-invariant Maurer-
Cartan forms by

γ−1∂iγ ≡ ēiātā;

gij ≡ hγ−1∂iγ; γ−1∂jγi ¼ ēiāējb̄κā b̄; ð4:7Þ
and thus

ēiā ¼ hγ−1∂iγ; tāi; ð4:8Þ
where we introduced a notation of barred indices in order to
indicate that it transforms under (4.6) in the adjoint
representation of GR, while it is invariant under GL.

10

The GL × GR invariant metric gij is the same as that
defined in terms of eia, which follows from the fact that
both “vielbeine” agree up to a G-transformation given by γ
itself,

eia ¼ ðγ−1Þāaēiā; ēiā ¼ γa
āeia; ð4:9Þ

where γa
b̄ is the representative of γ in the adjoint repre-

sentation according to (4.2). These relations are easily
verified: starting from the right-hand side of the first
equation we compute

9We have verified that the quadratic part of the action agrees,
up to an overall normalization, with that given in [14] upon
identifying δPAB → −hab̄ − hbā.

10We emphasize that at this stage there is no difference
between unbarred and barred indices. Both refer to the same
Lie algebra g. However, this notation will be convenient
momentarily in the doubled formalism.
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ðγ−1Þāaēiā ¼ ðγ−1Þāahγ−1∂iγ; tāi ¼ hγ−1∂iγ; γ−1taγi
¼ h∂iγγ

−1; tai ¼ eia; ð4:10Þ

where we used the adjoint action (4.2) and the invariance
property (4.3). The analogous computation proves the
second equation above. Further useful relations follow
from (4.4) by taking γ to be a matrix in the adjoint
representation,

ð∂iγγ
−1Þbc ¼ ∂iγb

d̄ðγ−1Þd̄c ¼ eiaðtaÞbc ¼ −eiafabc;
ð4:11Þ

from which we conclude Daγb
c̄ ¼ −fabcγcc̄ with the

flattened derivative Da ≡ eai∂i. The analogous computa-
tion can be performed for (4.7), and one finds in total

Daγb
c̄ ¼−fabcγcc̄; Dāðγ−1Þb̄c ¼ fāb̄

c̄ðγ−1Þc̄c: ð4:12Þ

In the following we need identities for the derivatives of
the Maurer-Cartan forms. We compute from (4.5)

∂ieja − ∂jeia ¼ 2h−∂ ½jγγ−1∂i�γγ−1; tai
¼ h½∂iγγ

−1; ∂jγγ
−1�; tai

¼ heibejcfbcdtd; tai
¼ eibejcfbca: ð4:13Þ

Comparing with the standard torsion constraint that deter-
mines the Levi-Civita spin connection we infer that the
latter is determined to be (in flattened indices)
ωL
abc ¼ 1

2
fabc. Another useful relation is obtained by

contracting the above equation with eaj,

eajð∂ieja − ∂jeiaÞ ¼ 0; ð4:14Þ

using the unimodularity condition fbaa ¼ 0, which holds
for any Lie algebra with nondegenerate Cartan-Killing
metric, as assumed here. The analogous computation for
the left-invariant form shows

∂iējā − ∂jēiā ¼ −ēib̄ējc̄fb̄ c̄ā: ð4:15Þ

We note that this differs from the result (4.13) for the right-
invariant form by a global sign. Consequently, the spin
connection has the opposite sign, so that we have shown in
total that the connection components associated to the
right- and left-invariant forms are, respectively,

ωL
abc ¼

1

2
fabc; ω̄L

ā b̄ c̄
¼ −

1

2
fā b̄ c̄; ð4:16Þ

where we indicated by the superscript L that these are the
conventional Levi-Civita spin connections, as opposed to
the generalized connections of DFT.

B. Frame field for WZW background

We are now ready to define the generalized (background)
frame field of DFT for WZW backgrounds, which has also
been given in [19].11 It can naturally be expressed in terms
of the left- and right-invariant Maurer-Cartan forms,

ĒA
M ¼

�
eia þ Bijeaj eai

−ēiā þ Bijēāj ēāi

�
; ð4:17Þ

where the flat indices are raised and lowered with the
Cartan-Killing metric κ. Moreover, Bij is a two-form whose
field strength H ¼ dB in flat indices is given by12

Habc ¼ −fabc; Hā b̄ c̄ ¼ −fā b̄ c̄: ð4:18Þ
Such a two-form is locally guaranteed to exist up to gauge
transformations, because the Bianchi identity is satisfied:

4∂ ½iHjkl� ¼ −12ð∂ ½iejaÞekbel�cfabc
¼ −6e½idejeekbel�cfdeafabc ¼ 0; ð4:19Þ

using (4.13) and the Jacobi identity. By a straightforward
computation one may confirm that the above frame field
leads to the background tangent space metric

ḠAB ¼
�
2κab 0

0 −2κā b̄

�
; ð4:20Þ

thus satisfying the constraint (2.2). Due to the relative
factors of �2 in here one has to be careful when translating
index contractions with Ḡ to index contractions with the
Killing metric. Moreover, it is evident that we have
effectively fixed a gauge for the GLðDÞ ×GLðDÞ sym-
metry, which is reduced to a global GL × GR, and for which
the flat background metric is constant.13

Let us now determine the background FABC defined in
(2.24). Owing to the relative sign in (4.16) and using (4.18)
one finds by direct computation

Fābc ¼ 0; Fab̄ c̄ ¼ 0: ð4:21Þ

In order to prove this one has to make repeated use of the
relations (4.9) between eia and ēiā and the invariance of the
structure constants under the action of γaā. On the other
hand, for the diagonal components, the spin connection and
H contributions combine,

11See also [39] for earlier results on WZWmodels and doubled
geometries.

12Both forms are equivalent. This follows from (4.9) since the
conversion of barred to unbarred indices is governed by the G-
valued matrix γa

ā, under which the structure constants are
invariant.

13While the metric ḠAB is even invariant under local GL × GR
transformations, the perturbative action is only invariant under
the global subgroup.

PERTURBATIVE DOUBLE FIELD THEORY ON GENERAL … PHYSICAL REVIEW D 93, 025032 (2016)

025032-13



Fabc ¼ −2fabc; Fā b̄ c̄ ¼ −2fā b̄ c̄: ð4:22Þ

We recall that one has to carefully consider the index
positions in order to compare quantities. Here, for instance,
on the FABC on the left-hand sides indices are raised and
lowered with the background tangent space metric (4.20),
while on the structure constant the adjoint indices are raised
and lowered with the Killing metric. Thus, taking into
account the relative factors of �2 in (4.20), we infer

Fab
c ¼ −fabc; Fā b̄

c̄ ¼ fā b̄
c̄: ð4:23Þ

In this form we can compare with Eq. (2.63) of [17] and
confirm in particular the relative sign difference. These
components determine the (traceless parts of the) back-
ground connections according to (2.13) in terms of the
structure constants.
Next we determine the trace part of the background

connections by computing FA in (2.27). We have to use that
the background is independent of ~x and that the scalar
dilaton ϕ vanishes in the background, implying e−2d̄ ¼ ffiffiffi

g
p

.
We then compute

Fi ≡ eiaFa ¼ eia∂jeaj − 2∂id̄ ¼ eia∂jeaj þ eaj∂ieja

¼ eajð∂ieja − ∂jeiaÞ ¼ 0; ð4:24Þ

where we used (4.14) in the last step. This implies Fa ¼ 0.
An analogous computation shows Fā ¼ 0, so that we have
proven in total

FA ¼ 0⇔ĒM
AFA ¼ −DAĒA

M − 2∂Md̄ ¼ 0; ð4:25Þ

where we recorded an equivalent form of this statement,
which is sometimes more useful. Thus, the trace part of the
background spin connection vanishes, ω̄A ¼ 0.
We now can read off from (2.18) the background

generalized Ricci tensor and curvature scalar in order to
confirm that the WZW background solves the field equa-
tions. With (4.22) we infer

R̄ ¼ 1

3
FabcFabc ¼

1

3
4
1

8
fabcfabc ¼

1

6
dim g;

R̄ab̄ ¼ 0; ð4:26Þ

where we recalled in the first line the relative factors of � 1
2

originating from (4.20) that yield an additional 1
23

when
converting a contraction with Ḡab to a contraction with κab

as employed in the last step. We conclude that the DFT field
equations are satisfied provided we choose the cosmologi-
cal parameter to be λ ¼ − 1

6
dim g, which corresponds to

string theory in a noncritical dimension.14

We conclude this subsection by writing the strong
constraint for the WZW backgrounds. Since by (4.25)
we have FA ¼ 0, it follows from (2.28) that

DADA ¼ DaDa þDāDā ¼ 0 ð4:27Þ
holds in general, acting on arbitrary fields and their
products. This constraint takes the same form as that given
in [17], again confirming the consistency of the string field
theory and the DFT computation.

C. Gauge algebra

We now discuss the perturbative gauge structure for the
WZW case. The gauge transformations can be read off from
(2.56), using that by (2.13) and (4.21) the only nonvanishing
(totally antisymmetric) background connections are

ω̄ab
c ¼ −

1

3
Fab

c; ω̄ā b̄
c̄ ¼ −

1

3
Fā b̄

c̄: ð4:28Þ

Alternatively, onemay use (2.54) directly in order to arrive at
the same result, which reads

δhab̄ ¼ Daξb̄ −Db̄ξa þ ξCDChab̄ þ ðDaξ
c −DcξaÞhcb̄

þ ðDb̄ξ
c̄ −Dc̄ξb̄Þhac̄ þ had̄ðDcξd̄ −Dd̄ξcÞhcb̄

− ξcFca
dhdb̄ − ξc̄Fc̄ b̄

d̄had̄: ð4:29Þ

The terms in the first three lines take the same form as the
gauge transformations on flat space, except that the DA
depend on the now x-dependent background, while on flat
space they depend on the constant background. The terms in
the fourth line encode the deformation due to the structure
constantsF. Note that theF enter the terms linear inh but not
thequadratic terms.For the cubic theoryonly the terms linear
in h are relevant. Finally, the gauge transformations (2.43) of
the dilaton fluctuation reduce to

δξd0 ¼ ξADAd0 −
1

2
DAξ

A; ð4:30Þ

where we used FA ¼ 0.
The above gauge transformations close according to the

algebra (2.59), which in the present case reduces to

ξa12 ¼ 2ξB½2DBξ
a
1� − ξ½2BDaξB

1� þ Fa
bcξ

b
2ξ

c
1;

ξā12 ¼ 2ξB½2DBξ
ā
1� − ξ½2BDāξB

1� þ Fā
b̄ c̄ξ

b̄
2ξ

c̄
1: ð4:31Þ

Closure modulo the constraint (2.35) and the Jacobi iden-
tities, F½abdFc�de ¼ 0, etc., may be verified directly, for
which one has to use the commutators implied by (2.26),

½Da;Db� ¼ Fab
cDc; ½Dā;Db̄� ¼ Fā b̄

c̄Dc̄;

½Da;Db̄� ¼ 0: ð4:32Þ
14Here we have suppressed possible noncompact dimensions.

For the inclusion of a Minkowski space factor and the corre-
sponding analysis of the critical dimension see Appendix B.

OLAF HOHM and DIEGO MARQUES PHYSICAL REVIEW D 93, 025032 (2016)

025032-14



The gauge algebra takes the same form as the original C-
bracket written in flattened indices, except for the “defor-
mation” by the structure constantsFa

bc andFā
b̄ c̄. Of course,

it should be emphasized that this is not a real deformation as
the above algebra originates from the C-bracket by simply
flattening the indiceswith the background frame field,which
is also implicit in the derivatives DA.

D. Cubic action for WZW backgrounds

We can finally give the cubic action around a WZW
background by specializing the cubic action given in Sec. III
to the background frame (4.17), for which we recall that the
only nonvanishing flux components are Fabc and Fā b̄ c̄.
Using this simplification and the explicit expressions (A2)
and (A3) in Appendix A, leads to the following action:

S ¼
Z

dXe−2d̄
�
−2hab̄□hab̄ þ 2DāhbāDc̄hbc̄ − 2DchcāDdhdā − 8dDaDb̄hab̄ − 8d□d

− 4hab̄ðDahcd̄D
b̄hcd̄ −Dahcd̄D

d̄hcb̄ −Dchad̄Db̄hcd̄Þ

− 4dðDbhbāDdhdā −DāhbāDc̄hbc̄ þ
1

2
DchdāDchdā −

1

2
Dc̄hdāDc̄hdā

þ2hab̄ðDaDchcb̄ −Db̄Dc̄hac̄ÞÞ þ 16hab̄dD
aDb̄dþ 8d2□d

þ 4hab̄ðFac
dDēhdb̄hcē þ Fb̄ c̄

d̄D
ehad̄hec̄Þ þ

4

3
FaceFb̄ d̄ f̄hab̄hcd̄hef̄

�
; ð4:33Þ

where we defined the box as

□ ¼ DaDa ¼ −DāDā: ð4:34Þ

This action is by construction invariant under gauge
transformations modulo the strong constraint, which by
the results of the previous section can be written in the form
(2.35), DADA ¼ 0.
Let us now compare this action with that determined by

Blumenhagen et al. in [17]. Comparing with Eq. (3.75) in
that reference one may confirm by inspection that they
agree precisely under the following identifications:

hab̄ → −ϵab̄; Ḡab → 2κab;

Ḡā b̄ → −2κā b̄ e−2d̄ →
ffiffiffiffiffiffiffi
jHj

p
; ð4:35Þ

where H is a (doubled) background metric introduced in
[17] that is used to define the background volume element,
a role that in DFT is played by the background dilaton
density. In order to establish the above dictionary, in which
one changes the metric that is used to contract indices from
ḠAB to κab, we have to specify which index positions are the
basic ones, from which all others are obtained by raising
and lowering. These are

hab̄; Fab
c; Da: ð4:36Þ

Solving the strong constraint by setting ~∂i ¼ 0, we infer
with the background frame (4.17) that the flattened
derivatives reduce to

Da ¼ eai∂i; Dā ¼ ēāi∂i: ð4:37Þ

These agree with the derivative operators emerging natu-
rally from string field theory on WZW backgrounds, in
which they correspond to the left- and right-invariant
conserved currents of the worldsheet CFT [17]. Let us
emphasize that on group manifolds such as S3 ≃ SUð2Þ
there are generally no winding modes and hence there is no
doubling of coordinates in the string field.15 Therefore, in
DFT one has to solve the strong constraint in order to
compare with the string field theory action.
In order to compare in more detail the above results with

those in [17] let us recall that the gauge invariance of the
cubic action relies on the two relations

½DA;DB� ¼ FAB
CDC; DADA ¼ 0: ð4:38Þ

In the conventional DFT, the first relation holds for the
FABC as defined in (2.24) modulo the strong constraint, i.e.,
modulo the second relation. Once the strong constraint is
solved so that the derivatives read as in (4.37) the second
relation becomes an identity16 and hence the first relation
holds without the need to invoke a constraint. In Ref. [17]
the results are presented in a different guise: two indepen-
dent partial derivatives ∂i and ∂ ī are introduced, corre-
sponding to a doubled set of coordinates ðxi; x̄īÞ, and the
flattened derivatives are defined as

15This is in contrast to toroidal backgrounds, where the
background is constant but the string field depends on doubled
coordinates. We thank Barton Zwiebach for discussions on this
point.

16More explicitly, the left- and right-invariant Maurer-Cartan
forms satisfy the identity eia∂ieaj − ēiā∂iēāj ¼ 0. In order to
verify this, one may use (4.9) to reduce the left-hand side to
Daγa

ā, which vanishes as a consequence of (4.12).
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Da ¼ eai∂i; Dā ¼ ēāī∂ ī: ð4:39Þ

Provided eai is assumed to depend only on x and ēāī to
depend only on x̄,17 the first of the relations (4.38) holds
identically for Fab

c and Fā b̄
c̄ given in (4.23), without the

need to invoke a constraint. (Indeed, this can then be
viewed as the anholonomy relation for a frame basis of the
conventional manifold G ×G; we will return to this
observation in the next section.) However, in contrast to
(4.37), the derivatives (4.39) do not satisfy the second
relation in (4.38), which therefore has to be interpreted as a
constraint on the derivatives, analogous to, but different
from, the strong constraint in conventional DFT. A solution
of this constraint is of course given by x ¼ x̄, in which case
it coincides with the solution ~∂i ¼ 0 of the usual strong
constraint. It is not clear to us whether the constraint,
interpreted in this way, allows for other solutions. We
refrain from commenting further on this possibility but
rather make some remarks on more general proposals in the
next section.

V. COMMENTS ON NONGEOMETRY AND
BACKGROUND INDEPENDENCE

We now use the opportunity and ask the question
whether the perturbative results discussed above can teach
us something about backgrounds that are genuinely non-
geometric. Such backgrounds can be motivated by con-
sidering gauged supergravity in lower dimensions, whose
gauge couplings are encoded in structure constants or
embedding tensors closely related to the background
“fluxes” FABC and FA discussed above, subject to certain
group-theoretical constraints. It turns out these constraints
allow for structure constants that cannot be obtained from a
generalized frame that is geometric in the sense of
satisfying the strong constraint. For instance, the constraint
(2.38), FABCFABC ¼ 0, following from the strong con-
straint for FA ¼ 0, need not be satisfied in gauged super-
gravity [29]. Turning on ~x dependence, however, the more
general fluxes can be obtained in certain cases (although a
complete classification seems to be lacking), but this
requires relaxing the strong constraint. Although it is
now relatively well understood why the resulting gauged
supergravities obtained in this way, namely through gen-
eralized Scherk-Schwarz compactification, are consistent
despite violating the otherwise essential strong constraint
[32], we still do not have a proper understanding of the
physical nature of these genuinely extended spaces before
compactification.

In the following we will make some general comments
on this problem within the perturbative framework, which
allows one to sharpen some of the issues. Suppose we
simply pick structure constants FABC of the more general
type by hand, forgetting for the moment that they cannot be
obtained from a generalized frame, can we then write a
consistent cubic theory (i.e. one that is gauge invariant)?
The trouble with this idea is that the background not only
enters the FABC but also the background flattened deriv-
atives DA ¼ ĒA

M∂M, and gauge invariance requires that
they satisfy ½DA;DB� ¼ FAB

CDC. This relation, with the
FABC defined in (2.24), only holds modulo the strong
constraint, and thus relaxing the strong constraint is
incompatible with gauge invariance.18

The proposal put forward in [19,34] is to overcome this
problem by changing the definition of the background
frame field and the associated background fluxes.
Specifically, the background is assumed to be governed
by a conventional frame field, which we denote here by
EA

M, and the FAB
C are defined to be the conventional

coefficients of anholonomy,

DA ¼ EA
M∂M; FAB

C ≡ 2D½AEB�MECM: ð5:1Þ

The flattened derivatives thus defined then satisfy
½DA;DB� ¼ FAB

CDC without the need to assume any
constraints. In fact, in this form one is simply dealing
with standard geometry, but on a 2D-dimensional space. In
particular, this definition of FAB

C is covariant under
conventional diffeomorphisms on the 2D-dimensional
manifold, not the generalized diffeomorphisms of DFT.
Consequently, in the proposal of [19,34] there are two types
of invariances: background transformations given by stan-
dard diffeomorphisms and gauge transformations of the
fluctuations governed by generalized diffeomorphisms.
While it seems unnatural to have a formulation in which

the background is described by a conventional geometry
but the fluctuations are described by a generalized geom-
etry, the more serious issue is whether such a theory can
have the physical property of background independence.
More precisely, even for a theory for which one does not
have a manifestly background independent formulation one
may ask whether the theory is background independent in
the sense that any shift of the background can be absorbed
into a shift of the fluctuations, up to possible field

17Since for background group manifolds eai and ēā ī depend on
just one set of coordinates, the coordinates of the group manifold,
this doubling amounts to deviating fromWZW backgrounds. It is
not clear to us in which sense one is then dealing with a consistent
string background CFT.

18It would be interesting to investigate under which conditions
one could achieve gauge invariance without ½DA;DB� ¼ FAB

CDC
being satisfied in general. For instance, in the context of Kaluza-
Klein compactification one could take the background to depend
on doubled internal coordinates but the fluctuations only on
external coordinates, in which case the relation would hold on
fluctuations, which for constant FABC is sufficient for gauge
invariance. As we are here interested in genuinely nongeometric
theories before compactification, we will not discuss this pos-
sibility any further.
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redefinitions. For instance, although we do not yet have a
manifestly background independent formulation of string
theory, it has been verified for bosonic string theory (for
which a second-quantized string field theory is available so
that such questions can be meaningfully addressed) that it is
background independent with respect to certain marginal
deformations [13].
In order to make this point more transparent, let us

discuss how the property of background independence is
realized in the original DFTwritten in the perturbative form
developed in this paper. Here background independence is
of course guaranteed in that the split into background and
fluctuations is completely arbitrary. We may freely shift the
background if we compensate this operation by an opposite
shift of the fluctuation. More precisely, under shifts given
by the variations

δΔĒA
M ¼ ΔA

BĒB
M;

δΔhAB ¼ ΔA
B − hACΔC

B; ð5:2Þ

the expansion ansatz EA
M ¼ ĒA

M − hABĒB
M is exactly

invariant. The background metric shifts as δḠAB ¼ 2ΔðABÞ,
so that the constraint Ḡab̄ ¼ 0 requires Δab̄ ¼ −Δb̄a.
Moreover, the fluctuation hAB with one index lowered
shifts as

δΔhAB ¼ ΔAB þ hACΔBC: ð5:3Þ

Since we determined the perturbation theory in terms of hab̄
by employing a gauge fixing condition, we have to take
into account compensating GLðDÞ ×GLðDÞ transforma-
tions, in exactly the same way as for the generalized
diffeomorphisms. The combined action of the background
shifts (5.3) and the frame transformations on, say, hab reads

δhab ¼ Δab þ hac̄Δbc̄ − Λab ¼ 0 ⇒ Λab

¼ Δab þ hac̄Δbc̄; ð5:4Þ

which determines Λab so as to preserve the gauge condition
hab ¼ 0. A similar compensating transformation follows
from hā b̄ ¼ 0. We can now determine from (5.3) the full
background shifts on the physical hab̄,

δhab̄ ¼ Δab̄ þ hac̄Δb̄ c̄ þ Λa
chcb̄; ð5:5Þ

upon inserting the compensating frame transformation
(5.4),

δΔhab̄ ¼ Δab̄ þ hac̄Δb̄ c̄ þ Δa
chcb̄ þ hac̄Δcc̄hcb̄: ð5:6Þ

As for the gauge transformations, this is exact with no
higher terms than quadratic in h. We thus conclude that
arbitrary shifts of the background can be absorbed by the

fluctuations, and vice versa, proving the full background
independence of this formalism.
In order to further illustrate background independence,

we now rederive and extend from these general variations
the results obtained in [5] for the class of flat toroidal
backgrounds. In this case the background frame field is
most conveniently parametrized as

ĒA
M ¼

�
Ēai Ēa

i

Ēāi Ēā
i

�
¼

�
−Eai δa

i

Eiā δā
i

�
; ð5:7Þ

in terms of

Eij ¼ Gij þ Bij; ð5:8Þ

where G and B are the constant background metric and
B-field. The tangent space metric then reads

ḠAB ¼
�−2Gab 0

0 2Gā b̄

�
: ð5:9Þ

In the above form we have fixed completely the
background GLðDÞ ×GLðDÞ transformations by rotating
Ēa

i and Ēā
i into Kronecker deltas. Note that this allows us

to identify flat indices a, b and ā, b̄ with curved indices
i, j, as used for the remaining entries Eij of the frame.
Due to the above background gauge fixing we have to
add further compensating gauge transformations, this time
of the background GLðDÞ ×GLðDÞ transformations
with parameter Λ̄. Specifically, we need to preserve
Ēa

i ¼ δa
i,

δĒa
i ¼ Δa

bĒb
i þ Δa

b̄Ēb̄
i þ Λ̄a

bĒb
i ¼ 0; ð5:10Þ

and similarly for Ēā
i ¼ δā

i. This yields in total

Λ̄a
b ¼ −Δa

b − Δa
b̄δb̄

b;

Λ̄ā
b̄ ¼ −Δā

b̄ − Δā
bδb

b̄; ð5:11Þ

where we used a somewhat redundant notation with δbb̄ and
δb̄

b in order to keep track of the index structure on Δ. We
can then compute the background shifts of the nontrivial
components of (5.7),

δĒai ¼ −δEia ¼ −Δa
bEbi þ Δa

b̄Eib̄ − Λ̄a
bEbi

¼ Δa
b̄ðEib̄ þ Eb̄iÞ ¼ 2Δa

b̄Gib̄: ð5:12Þ

Recalling that the indices on Δ are raised and lowered with
(5.9) and setting χab̄ ≡ Δab̄ we obtain

δEij ¼ −χij: ð5:13Þ

The analogous computation for Ēāi yields the same result.
Similarly, we can compute the shift of hab̄ by adding to
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(5.6) background frame transformations (2.44) with param-
eters (5.11),

δΔhab̄ ¼ Δab̄ þ hac̄Δb̄ c̄ þ Δa
chcb̄ þ hac̄Δcc̄hcb̄

þ Λ̄a
chcb̄ þ Λ̄b̄

c̄hac̄

¼ Δab̄ − Δa
c̄δc̄

chcb̄ þ Δc
b̄δc

c̄hac̄

þ hac̄Δcc̄hcb̄; ð5:14Þ

where we used Δb̄c ¼ −Δcb̄. In order to compare this with
the analysis of background independence in [5] we use the
result from [16] that the string field theory variable eij
around flat space with generalized frame (5.7) coincides
with hab̄ to all orders, upon identifying indices by means of
the trivial vielbeins δia and δi

ā. Converting then the above
equation into curved indices we read off

δeij ¼ χij −
1

2
χi

kekj −
1

2
χkjeik −

1

4
eilχklekj; ð5:15Þ

where we took into account the relative factors of � 1
2

originating from (5.9) when converting contractions with Ḡ
to contractions with G. Together with (5.13) and to linear
order in fields this agrees precisely with the result implied
by Eq. (2.7) in [5].19 The quadratic or higher contributions
were not determined in [5], but here we obtained the exact
result, which shows that there are no terms higher than
quadratic in fields needed.20

Let us emphasize that in the above analysis of back-
ground independence we have to take the background shifts
χij to be constant in order to stay within the class of
constant backgrounds (5.7). This is necessary because the
original cubic action of [3] is only valid for flat back-
grounds. Of course, in the full background independent
DFTwe can perform arbitrary shifts, but this would switch
on, for instance, connection terms that have been set to zero
for flat backgrounds. Is there a similar property of
(restricted) background independence for the cubic action
on WZW backgrounds? This case is more restrictive
because the employed metric and 3-form H are uniquely
determined once the Lie algebra fabc has been fixed. Thus,
in contrast to toroidal backgrounds on which one can put
arbitrary constant metrics and B-fields, for the WZW
backgrounds there is no simple property of background
independence visible for the cubic action. Again, in the full
background independent DFT we can perform arbitrary
shifts away from the WZW backgrounds, but this would

generally switch on curvature and connection terms (for
instance ωab̄ c̄) that were set to zero before.
After this digression into the background independence

property of particular backgrounds, let us return to the
general discussion. A background frame ĒA

M a priori
carries ð2DÞ2 ¼ 4D2 components, but in order to determine
the number of physical (i.e. gauge inequivalent) back-
ground shifts we have to take into account the (background)
local frame transformations. These are given by
GLðDÞ ×GLðDÞ, which eliminates D2 þD2 degrees of
freedom. In addition, we have the constraint
Ḡab̄ ¼ Ēa

MĒb̄M ¼ 0, which eliminates other D2 compo-
nents, leaving D2 physical degrees of freedom, which can
be shifted arbitrarily by the Δab̄. This matches precisely the
components of hab̄, as needed for background independ-
ence. In contrast, taking the background to be given by a
conventional frame field EA

M there is no constraint corre-
sponding to Ḡab̄ ¼ 0 and hence we have more background
shifts than can be absorbed into a shift of the physical
fluctuation hab̄. Could we pose an additional constraint on
EA

M so that background and fluctuations carry the same
number of components? This is not possible because the
metric ηMN was needed in order to define the constraint,
but in standard geometry there is no diffeomorphism
invariant metric available. The reason that the constraint
ηMNĒa

MĒb̄
N ¼ 0 can be consistently imposed in DFT is

precisely that the geometry is governed by generalized
diffeomorphisms, under which ηMN is invariant.
Summarizing, background independence for a general class
of backgrounds can be realized if both the background and
the fluctuations are governed by the same geometries but is
problematic if the background and fluctuations are gov-
erned by different geometries.
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APPENDIX A: FURTHER RELATIONS FOR
CUBIC ACTION ON GENERAL BACKGROUNDS

In this appendix we collect a few explicit expressions for
the cubic action that may be more convenient for appli-
cations. Moreover, below we derive equivalent expressions
using the strong constraint, which have the advantage that
unbarred and barred indices are treated on the same footing.
First, separating the action into quadratic and cubic parts,

19This corrects a typo in Eqs. (2.8) and (2.15) of [5].
20As a consistency check one may verify that the full back-

ground independent variable [5],

E ≡ Eþ ð1 − 1

2
eG−1Þ−1e ð5:16Þ

satisfies δE ¼ 0 under (5.13) and (5.15).
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S ¼
Z

dXe−2d̄ðL2 þ L3Þ; ðA1Þ

we determine from (3.41) for the quadratic part

L2 ¼ −8DaDadd − 8DaDāhaād − 2DaDahbāhbā þ 4DaDbhaāhbā − 4DaDbhbāhaā − 2DahaāDbhbā þ 2DāhaāDb̄hab̄

− 8DadFad − 8DahaāFād − 8DāhaāFad − 4DahaāFbhbā − 2DahbāFahbā þ 8DahbāFabādþ 4DāhaāFb̄hab̄

− 4DahbāFab
chcā − 4DahaāFā

bb̄hbb̄ − 4DahbāFaā
b̄hbb̄ − 4DāhaāFa

bb̄hbb̄ − 8DaFādhaā þ 8DaFa
bādhbā

þ 8DaFbā b̄haāhbb̄ − 8FaFādhaā − 2FaFbhaāhbā þ 8FaFa
bādhbā þ 2FāFb̄haāhab̄ þ 4FaFbā b̄haāhbb̄

− 4FāFabb̄haāhbb̄ − 4FabcFa
ā b̄hbāhcb̄ þ 2FabāFaā

chbb̄hcb̄ þ 2FabāFa
cb̄hbāhcb̄ þ 2Faā b̄Faā

c̄hbb̄hbc̄

− 2Faā b̄Fā
bc̄hab̄hbc̄ þ 4Faā b̄Fā

bc̄hac̄hbb̄; ðA2Þ

and for the cubic part

L3 ¼ 8DaDadd2 þ 8DadFad2 þ 16DāDaddhaā − 8DaDbhaādhbā − 4DahaāDbhbād

− 4DahbāDahbādþ 8DāDb̄hab̄dhaā þ 4DāhaāDb̄hab̄dþ 4DaDāhbb̄hab̄hbā

− 8DaFbdhaāhbā þ 16DadFa
bādhbā þ 4DahbāDb̄haāhbb̄ þ 4DahbāDāhbb̄hab̄

− 4DahbāDb̄hbāhab̄ − 8DahaāFbdhbā − 8DahbāFbdhaā − 4DāDahbb̄hab̄hbā

þ 8DāFb̄dhaāhab̄ þ 8DāhaāFb̄dhab̄ þ 8Dāhab̄Fb̄dhaā − 2DaFāhab̄hbāhbb̄

− 8DaFbā b̄dhaāhbb̄ þ 8DahbāFab
cdhcā þ 8DahbāFaā

b̄dhbb̄ − 8DahbāFbā
b̄dhab̄

− 8DāFabb̄dhaāhbb̄ − 8Dāhab̄Fab̄
bdhbā − 4FaFbdhaāhbā þ 4FāFb̄dhaāhab̄

− 8DahbāFa
cb̄hbb̄hcā þ 4DahbāFbā

chab̄hcb̄ þ 4DahbāFb
cb̄hab̄hcā − 4DahbāFā

b̄ c̄hab̄hbc̄

þ 2DāFā
ab̄hac̄hbb̄hbc̄ − 4Dāhab̄Fa

bchbāhcb̄ − 4Dāhab̄Fab̄
c̄hbāhbc̄ − 4Dāhab̄Fb̄

bc̄hac̄hbā

þ 2FāFā
ab̄hac̄hbb̄hbc̄ þ 8FabcFa

ā b̄dhbāhcb̄ − 4FabāFaā
cdhbb̄hcb̄ − 4FabāFa

cb̄dhbāhcb̄

− 4Faā b̄Faā
c̄dhbb̄hbc̄ þ 4Faā b̄Fā

bc̄dhab̄hbc̄ − 8Faā b̄Fā
bc̄dhac̄hbb̄ þ 4FabcFa

dāhbāhcb̄hdb̄

þ 4

3
FabcFā b̄ c̄haāhbb̄hcc̄ − 2FabāFaā

b̄hbc̄hcb̄hcc̄ þ 4FabāFa
b̄ c̄hbb̄h

c
āhcc̄

− 4FabāFā
cb̄hab̄hb

c̄hcc̄ þ 4FabāFcb̄ c̄hab̄hbc̄hcā þ 4Faā b̄Fā
c̄ d̄hac̄hbb̄hbd̄: ðA3Þ

Next, we would like to express the covariant background expanded generalized Ricci scalar and action in a barred-
unbarred democratic form. Note that we have started from the background independent framelike generalized Ricci scalar
(3.1) that is not democratic in barred and unbarred flat indices. However, recalling that the following combination vanishes
due to the strong constraint (see for example page 17 of [1])

Z ¼ −4
�
EAFA þ 1

2
F 2

A þ 1

2
EAEBGAB −

1

12
Ω2

½ABC� þ
1

8
EAGBCEBGAC

�
¼ 0; ðA4Þ

one can bring the original action to a fully democratic form as follows:

R ¼ R −
1

2
Z ¼ −2ðEaF a − EāF āÞ − ðF 2

a − F 2
āÞ − ðEaEbGab − EāEb̄G

ā b̄Þ

−
1

4
ðEaGbcEbGac − EāGb̄ c̄Eb̄Gā c̄Þ þ

1

2
ðΩ2

abc̄ −Ω2
ā b̄ c

Þ þ 1

6
ðΩ2

½abc� −Ω2
½ā b̄ c̄�Þ; ðA5Þ

where we used the following identities:
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Ωabc̄ ¼ Ω½abc̄�; ðA6Þ

Ωā b̄ c ¼ Ω½ā b̄ c�; ðA7Þ

Ω2
½ABC� ¼ Ω2

½abc� þ Ω2
½ā b̄ c̄� þ 3Ω2

½abc̄� þ 3Ω2
½ā b̄ c�: ðA8Þ

Then, by background expanding Z we can democratize order by order the generalized Ricci scalar. The background
covariant expansion of Z (which, as we mentioned above, vanishes due to the strong constraint) is given by

Z0 ¼ −2R̄ab
ba − 2R̄ā b̄

b̄ ā; ðA9Þ

Z1 ¼ 8∇̄a∇̄adþ 8∇̄ā∇̄ādþ 4∇̄a∇̄āhaā − 4∇̄ā∇̄ahaā þ 8R̄abā
ahbā − 8R̄ā b̄ a

āhab̄; ðA10Þ

Z2 ¼ −8∇̄ad∇̄ad − 8∇̄ād∇̄ādþ 2∇̄ahbā∇̄ahbā þ 2∇̄āhab̄∇̄āhab̄

− 4haā∇̄a∇̄bhbā þ 4haā∇̄b∇̄ahbā − 4haā∇̄ā∇̄b̄hab̄ þ 4haā∇̄b̄∇̄āhab̄

þ 4haāhbāR̄cab
c þ 8haāhbb̄R̄

abā b̄ þ 4haāhab̄R̄
c̄ ā b̄

c̄; ðA11Þ

Z3 ¼ −2haāhbā∇̄a∇̄b̄hbb̄ − 2haāhab̄∇̄b∇̄āhbb̄ þ 2haāhbā∇̄b̄∇̄ahbb̄ þ 2haāhab̄∇̄ā∇̄bhbb̄

− 4haāhbb̄hcāR̄
abb̄c − 4haāhbb̄hbāR̄

cab̄
c þ 4haāhbb̄hbāR̄

c̄ b̄ a
c̄ þ 4haāhbb̄hbc̄R̄

b̄ ā ac̄: ðA12Þ

With this we can now write the background expansion of the generalized Ricci scalar in a democratic form

R0 ¼ −R̄ab
ba þ R̄ā b̄

b̄ ā; ðA13Þ

R1 ¼ 4∇̄a∇̄ad − 4∇̄ā∇̄ādþ 2∇̄a∇̄āhaā þ 2∇̄ā∇̄ahaā þ 4R̄abā
ahbā þ 4R̄ā b̄ a

āhab̄; ðA14Þ

R2 ¼ −4∇̄ad∇̄adþ 4∇̄ād∇̄ād − 8∇̄ad∇̄āhaā − 8∇̄ād∇̄ahaā þ 2∇̄a∇̄bhaāhbā − 2∇̄ā∇̄b̄haāhab̄ þ 2∇̄a∇̄bhbāhaā

− 2∇̄ā∇̄b̄hab̄haā − 8∇̄a∇̄ādhaā − 8∇̄ā∇̄adhaā þ 2∇̄ahaā∇̄bhbā − 2∇̄āhaā∇̄b̄hab̄

− ∇̄āhab̄∇̄āhab̄ þ ∇̄ahbā∇̄ahbā þ 2R̄abc
ahbāhcā − 2R̄ā b̄ c̄

āhab̄hac̄; ðA15Þ

R3 ¼ −8∇̄ad∇̄bhaāhbā þ 8∇̄ād∇̄b̄haāhab̄ − 8∇̄ad∇̄bhbāhaā þ 8∇̄ād∇̄b̄hab̄haā

þ 16∇̄ad∇̄ādhaā − 8∇̄a∇̄bdhaāhbā þ 8∇̄ā∇̄b̄dhaāhab̄

− ∇̄a∇̄āhab̄hbāhbb̄ − ∇̄ā∇̄ahbāhab̄hbb̄ − 3∇̄a∇̄āhbāhab̄hbb̄ − 3∇̄ā∇̄ahab̄hbāhbb̄

− 2∇̄a∇̄āhbb̄hab̄hbā − 2∇̄ā∇̄ahbb̄hab̄hbā − 4∇̄ahaā∇̄b̄hbb̄hbā

− 4∇̄ahaā∇̄b̄hbāhbb̄ − 4∇̄ahbā∇̄b̄hbb̄haā − 4∇̄ahbā∇̄āhab̄hbb̄ − 4∇̄ahbā∇̄b̄hbāhab̄

− 2R̄abā
ahbb̄hcāhcb̄ − 2R̄ā b̄ a

āhac̄hbb̄hbc̄ − 2R̄abāchab̄hbāhcb̄ − 2R̄ā b̄ ac̄hab̄h
b
āhbc̄: ðA16Þ

With this information, we can then follow the procedure of the previous section in order to compute the democratic form
of the cubic action, after simplifying it with the assumption that the background satisfies its equations of motion, and
performing integration by parts. The final result is given by

S ¼
Z

dXe−2d̄ðL2 þ L3Þ;

with
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L2 ¼ −∇̄a∇̄ahbāhbā þ ∇̄ā∇̄āhab̄hab̄ − 2∇̄ahaā∇̄bhbā þ 2∇̄āhaā∇̄b̄h
ab̄

− 4∇̄½b∇̄a�haāhbā þ 4∇̄½b̄∇̄ā�haāhab̄ þ 2R̄abc
ahbāhcā − 2R̄ā b̄ c̄

āhab̄hac̄

− 4dð∇̄a∇̄āhaā þ ∇̄ā∇̄ahaāÞ − 4dð∇̄a∇̄ad − ∇̄ā∇̄ādÞ; ðA17Þ

L3 ¼ −4hab̄

�
∇̄ahbā∇̄b̄hbā − ∇̄ahbā∇̄āhbb̄ − ∇̄b̄hbā∇̄bhaā þ 1

2
ð∇̄½a∇̄ā�hbāhbb̄ − ∇̄½b∇̄b̄�hbāhaāÞ

�

− 2R̄abāchbāhab̄hcb̄ − 2R̄ā b̄ ac̄hab̄h
b
āhbc̄

− 4d

�
∇̄ahaā∇̄bhbā − ∇̄āhaā∇̄b̄h

ab̄ þ 1

2
ð∇̄ahbā∇̄ahbā − ∇̄āhab̄∇̄āhab̄Þ

þ 2hab̄ð∇̄ða∇̄bÞhbb̄ − ∇̄ðā∇̄b̄ÞhaāÞ þ R̄abc
ahbāhcā − R̄ā b̄ c̄

āhab̄hac̄

�

þ 8dhaāð∇̄a∇̄ādþ ∇̄ā∇̄adÞ þ 4d2ð∇̄a∇̄ad − ∇̄ā∇̄ādÞ: ðA18Þ

APPENDIX B: WZW S3 BACKGROUND WITH H-FLUX

For the sake of concreteness, in this appendix we give the details for the simplest WZW model based on G ¼ SUð2Þ,
corresponding to a background given by S3 with H-flux. First, we introduce the Pauli matrices

σ1 ¼
�
0 1

1 0

�
; σ2 ¼

�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�
; ðB1Þ

which define the Lie algebra generators as

ta ¼ tā ¼
1

2
ðσ1; σ2; σ3Þ: ðB2Þ

Moreover, given two elements X, Y ∈ g, the explicit representation for the quadratic Cartan-Killing form reads

hX; Yi ¼ −4TrðXYÞ: ðB3Þ

We can now compute the structure constants (with lowered indices)

fabc ¼ h½ta; tb�; tci ¼ −2iϵabc; ðB4Þ

fā b̄ c̄ ¼ h½tā; tb̄�; tc̄i ¼ −2iϵā b̄ c̄; ðB5Þ

where ϵ123 ¼ ϵ1̄ 2̄ 3̄ ¼ 1. We recall that at this stage there is no difference between unbarred and barred indices, and so the
second equation above strictly speaking is redundant. Similarly, the Killing metric reads

κab ¼ hta; tbi ¼ −2diagð1; 1; 1Þ; ðB6Þ

with the identical form for κā b̄. Note that κab ¼ −facdfbdc.
We next introduce coordinates on the group manifold of SUð2Þ. To this end we use that a general group element γ can be

parametrized as

γ ¼ y01þ iy1σ1 þ iy2σ2 þ iy3σ3; ðB7Þ

provided

y20 þ y21 þ y22 þ y23 ¼ 1: ðB8Þ
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Indeed, one may quickly verify with fσi; σjg ¼ 2δij that
then γγ† ¼ 1. We can view ðy0; yiÞ as coordinates for R4,
which are constrained by this relation to describe S3. For
completeness we mention that these constrained coordi-
nates are related to the so-called Hopf coordinates
ðη1; η2; η3Þ, where η1 ∈ ð0; π

2
Þ and η2, η3 ∈ ð0; 2πÞ, by

the relations

y0 ¼ cos η2 cos η1; y1 ¼ sin η2 cos η1;

y2 ¼ cos η3 sin η1; y3 ¼ sin η3 sin η1: ðB9Þ

We can now determine the left- and right-invariant
Maurer-Cartan forms (i.e. the vielbeine), assuming that
the group element is given by (B7). A direct computa-
tion gives

eia ¼ h∂iγγ
−1; tai ¼ 2i

0
B@

0 cos η−23 − sin η−23
cos2η1 cos η1 sin η1 sin η−23 cos η1 sin η1 cos η−23
−sin2η1 cos η1 sin η1 sin η−23 cos η1 sin η1 cos η−23

1
CA; ðB10Þ

ēiā ¼ hγ−1∂iγ; tāi ¼ 2i

0
B@

0 cos ηþ23 sin ηþ23
cos2η1 cos η1 sin η1 sin η

þ
23 − cos η1 sin η1 cos η

þ
23

sin2η1 − cos η1 sin η1 sin η
þ
23 cos η1 sin η1 cos η

þ
23

1
CA ðB11Þ

where η�23 ¼ η2 � η3. The representative of γ in the adjoint
representation is according to (4.2) given by

γa
ā ¼ hta; γtāγ−1i: ðB12Þ

It is then straightforward to verify explicitly that ēiā ¼
eibγbā and that γ is an element of SOð3Þ, i.e., κab ¼
γa

āκā b̄γb
b̄ and det γ ¼ 1.

Let us next turn to the two-form Bij, which should be
defined so that its field strength is given by [cf. (4.18)]

Hijk¼−eiaejbekcfabc→H123¼−16cosη1 sinη1: ðB13Þ

This determines Bij up to gauge transformations. A
convenient choice is

B23 ¼ 8cos2η1: ðB14Þ

We have now all the data in order to define the back-
ground generalized frame

ĒA
M ¼

�
eia þ Bijeaj eai

−ēiā þ Bijēāj ēāi

�
: ðB15Þ

A direct computation yields the background flat metric

ḠAB ¼ ĒA
MĒBM ¼

�
2κab 0

0 −2κā b̄

�
; ðB16Þ

in agreement with (4.20). Moreover, the fluxes (2.24) are
computed to be

FABC ¼ ðL̂ĒA
ĒB

MÞĒCM ¼

8>>><
>>>:

Fabc ¼ 4iϵabc
Fabc̄ ¼ 0

Fab̄ c̄ ¼ 0

Fā b̄ c̄ ¼ 4iϵā b̄ c̄

: ðB17Þ

This confirms the result of the general analysis (4.22),

Fabc ¼ −2fabc; Fā b̄ c̄ ¼ −2fā b̄ c̄: ðB18Þ

In addition, taking into account the vanishing background
value for the dilaton, ϕ ¼ 0, one can also compute the trace
part of the connections/fluxes,

FA ¼ ∂MĒA
M − 2DAd̄ ¼ 0; ðB19Þ

in agreement with (4.25). Finally, one may also verify that
the background DFT equations are satisfied, as it should be
in view of the general results in Sec. IV.
We close this appendix with a brief discussion of the

conventional presentation of WZW backgrounds and in
particular with the standard conventions for the S3 with H-
flux. First, in order to treat a sphere of general radius, we
introduce a dimensionful parameter ρ and perform a
rescaling of the frame and the two-form,

eia →
ρffiffiffi
8

p eia; ēāi →
ρffiffiffi
8

p ēiā; Bij →
ρ2

8
Bij: ðB20Þ

From the point of view of the WZW model the new
parameter ρ is related to α0 and the level k of the Kac-
Moody algebra through ρ ¼ ffiffiffiffiffiffiffi

α0k
p

. The field theory limit
corresponds to the large ρ limit, which in turn implies large
k. After the rescaling the solution takes the form
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gij ¼ ρ2diagð1; cos2η1; sin2η1Þ;
B23 ¼ ρ2cos2η1; ϕ ¼ 0: ðB21Þ

The Ricci tensor is given by Rij ¼ 2diagð1; cos2η1; sin2η1Þ
so the Ricci scalar gives R ¼ 6

ρ2
. In addition, one finds that

H2 ¼ 24
ρ2
, and therefore

Rþ 4ð∂ϕÞ2 − 1

12
H2 ¼ 4

ρ2
: ðB22Þ

This implies that (B21) is not a solution to the equations of
motion of supergravity. In supergravity one way to solve
this problem is to give the dilaton a linear dependence on
time (which dimension we so far suppressed), ϕ ¼ − t

ρ [40].
Then, taking the time component of the metric as gtt ¼ −1
one gets 4ð∂ϕÞ2 ¼ − 4

ρ2
which cancels the anomalous

contribution (B22). Here we intend to avoid this dilaton
behavior, as it is not required by the WZWworldsheet CFT.
From the DFT perspective, after the rescaling, the

background EOMs take the form

R̄þ λ ¼ 4

ρ2
þ λ ¼ 0; R̄ab̄ ¼ 0; ðB23Þ

which is easily computed recalling that ḠAB remains
unchanged after the rescaling (B16), that FA ¼ 0, and that

the fluxes are now given by Fabc ¼ i 8
ffiffi
2

p
ρ ϵabc and

Fā b̄ c̄ ¼ i 8
ffiffi
2

p
ρ ϵā b̄ c̄. We then find complete agreement for

a vanishing cosmological constant with the above compu-
tation in standard geometry. Thus, in order to obtain a
consistent CFT background we have to include a

cosmological constant, corresponding to string theory in
a noncritical dimension. Indeed, following [41], one can
identify λ ¼ − 2

3α0 ðD − 26Þ,

R̄þ λ ¼ 4

ρ2
−
2ðD − 26Þ

3α0
¼ 0: ðB24Þ

Here D ¼ dþ n encodes the sum of d flat Minkowski
directions plus the dimension of the group, n ¼ dimðGÞ.
Here, the gauge group is G ¼ SUð2Þ, so n ¼ 3. Generally,
coupling flat space to a WZW model with gauge group
SUðNÞ, the flat critical dimension is given by [42]

d − 26 ¼ −
ðN2 − 1Þk
N þ k

¼ −ðN2 − 1Þ þ NðN2 − 1Þ
k

þOðk−2Þ; ðB25Þ

where we performed a 1
k expansion. When N ¼ 2, this

becomes to leading order

d − 26 ¼ −3þ 6

k
; ðB26Þ

which is in agreement with limk→∞d ¼ 23. Then, on the
background

R̄þ λ ¼ 4

kα0
−
2ð3þ d − 26Þ

3α0

¼ 4

kα0
−
2ð3 − 3þ 6

kÞ
3α0

¼ 0; ðB27Þ

and the apparent anomaly cancels exactly.
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