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Canonical realization of Bondi-Metzner-Sachs symmetry:
Quadratic Casimir

Joaquim Gomis"" and Giorgio Longhiz’T
lDeparwlment d’Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos,
Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
2Diparz‘imento di Fisica, Universita’ di Firenze, Via Giovanni Sansone 1,
50019 Sesto Fiorentino (FI), Italy
(Received 12 August 2015; published 27 January 2016)

We study the canonical realization of Bondi-Metzner-Sacks symmetry for a massive scalar field
introduced by Longhi and Materassi [J. Math. Phys. 40, 480 (1999)]. We construct an invariant scalar
product for the generalized momenta. As a consequence we introduce a quadratic Casimir with the

supertranslations.
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I. MOTIVATION AND RESULTS

Recently there has been a renewed interest in the Bondi-
Metzner-Sacks (BMS) group [1]. The BMS invariance of
the gravitational scattering [2], the relation among soft
graviton theorems [3] and BMS supertranslations [4] have
been shown. The relation among supertranslations, gravi-
tational memory and soft gravitons theorems has been also
studied [5]. There is also the proposal that the BMS group
could be useful to understand holography in asymptotically
flat space-times [6-9]. Related to these developments has
been the study of asymptotic symmetries in quantum field
theories; in the case of QED, see [10] for the massless case
and [11,12] for the massive case. A recent overview on the
whole subject is given by Strominger [13] at Strings 2015.
Lately Hawking put forward the idea that supertranslations
could solve the information paradox problem of black
holes [14].

In this work we study the canonical realization of the
BMS symmetry for a free massive real scalar field in four
dimensions introduced in [15]. The Poincaré generators P*,
M are written in terms of the Fourier modes a(ié), a* (%) of
the plane wave expansion of the Klein-Gordon field. The
momentum mass-shell condition g*> — m? = 0 defines a 3D
spacelike hyperboloid H} [16]. It is useful to introduce a
differential operator in this space D = —m?A + 3, where A
is the Laplace-Beltrami operator on H..

It happens that the four-dimensional momenta k* are
zero modes of D; this suggests to look for the zero modes of
this operator in general. These are given by an infinite set of
function w;,, defined on H}, unique up to rescalings,
1=0,1,2,...m| <. The explicit expression of this func-
tions was given in [15]; see also the next section. The
functions w, ,,, can be considered as a generalization of four
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momenta. This allows us to define the supertranslations for
massive scalar field P, in terms of w;,, and the Fourier

-

modes a(k), a* (%) see the next section.

The transformation of the scalar field under space-time
translations is obtained from the scalar nature of the field
under Poincaré transformations. This is not the case for
supertranslations. The supertranslations act on the field and
their conjugated momenta as a nonlocal linear canonical
transformation. All together P;,,, M,, give the infinite
vector representation of the BMS group. Note that the
appearance of the BMS symmetry introduced for the scalar
field [15] is not an asymptotic gauge symmetry as in [1]; it
is a nonlocal symmetry of the free Klein-Gordon equation
of motion.

We will construct a BMS invariant scalar product for the
generalized momenta wy,, or for a rescaling of them. We
write this product in terms of an infinite-dimensional matrix
nt"lm that generalizes the Minkowski metric 7 for the
scalar product of 4D momenta k,. In a suitable basis of
these zero modes 5/ = §"!§"™ ™ The convergence of
this scalar product has also been studied.' The scalar
product is the key ingredient for the definition of a
configuration space (see, for example [17]), and therefore
give meaning to coordinates x'" conjugated to wy,,.

Using this infinite-dimensional metric we will
construct a quadratic Casimir with the supertranslations
“p¥ = ptmlm' pr Py . Physically this Casimir allows us
to define the BMS mass-shell constraint.

Our analysis of the scalar product and the Casimir
“P2” will be useful to study BMS symmetries and it could
be useful to the study of the scattering S matrix, since
the in-and-out states are free fields, and also to study
particles and strings with BMS symmetries. The canonical
realization of BMS considered in [15] and here could be

'Details and proof of the results will be presented elsewhere.
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extended to other fields with nonvanishing spin and to
massless fields.

II. CANONICAL REALIZATION
OF BMS SYMMETRY

We consider a free real scalar field ®(z, x) of mass m in
four dimensions. The Fourier expansion is given by

O(1,x) = /R2 dk[ (k) ~ilxk) 4 ¢4 (]_é)ei(xk)] (1)

where (-) is the usual Minkowski Lorentz invariant product

and dk = d3]f, Q(k) = 21)20(k) = 222\ K + m?
and k; = —k'.

The realization of the Poincaré group in terms of Fourier
modes of the scalar field ®(z, X) is given by

P, = / 3 dick,a* (k)a(k), (2)
0= —j ~a*qa)qiaq
M Aﬂk(ﬂ(@&ij G)

MU = — A dka (k) <k’%—k’ %) k) (4

as one checks the algebra by using the Poisson brack-
ets {a(k),a*(k)} = —iQ(k)8 (k — k).

The mass-shell condition for ®(z,X) is given by
g> —m?> = 0; it defines the 3D spacelike hyperboloid,
H%, in the space of momenta, with coordinates k. The
relation  with the embedding momenta ¢, is

go = \/K +m?, g; = k;. The induced metric on H} is

given by
ds> =h = (;k-k» - 5“> dk;dk ;. (5)
(%) J =9 J
In polar coordinates ds*> = —m ( 2ds 2)s

where r = % and ds§2 is the metric of the sphere.

This expression, apart dimensions, is used in [11] to give
a foliation of the Minkowski space-time.

The 3D spacelike hyperboloid H} has constant negative
curvature R = —in [16]. It is a Euclidean Anti-de Sitter

space AdS; that can be written as the coset igg}; The
coordinates are a global parametrization of the Euclidean
AdS; space. The Laplace-Beltrami operator on H} is

given by
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Itis an elliptic operator and has the property Ak, = % ky.
We introduce the operator D,

D = -m?A+3; (7)

the four momenta are zero modes of D, Dk* = 0.

For a massive free Klein-Gordon in 2 4 1 dimensions the
corresponding operator is D = —m?A, + 2, where A, is
the Laplace-Beltrami in H}.

The massless case can be studied taking the massless
limit of the operator D, i.e.,

D,y = —2k.A — (k.A)? + 3. (8)

Since we want to find a generalization of four
momenta to construct the supertranslations this property
suggests that we study all zero modes of Df(k) = 0.
Introducing spherical coordinates, these are given by the
functions [15]

Wim(K) = w,(r)Y (R, 9)

w(r)=rF((1-1)/2,(1+3)/2;1+3/2;-r%), (10)

where F is the hypergeometric function, ,Fy, Y, ,, are the
spherical harmonics and r = |mﬁ The set {w,,,} is not the

only set of solutions of the equation Df(lz) = 0. For
given values of {l,m} there are two independent
solutions of the equation. The first is {w;,}, which
has a good behavior for r — 0; the second set of
solutions is singular in r = 0. This is the reason for
the choice {w;,,}.

The functions w;,, span an infinite-dimensional nonuni-
tary representation of the Lorentz group. This representa-
tion has the following properties:

(1) it is the only representation [15] with an invariant

subspace of dimension four;

(ii) for! =0, 1wy, is the four-vector k* in the spherical

basis
Wo,0 = V1-r? Yoo— Y()o’ (11)
=rY —EY ; 12
Wim =T ;= 1,m> ( )
m

(iii) the functions wy,,(r, 0, ¢) have an asymptotic behav-
ior like k#, for all values of [ =0,1,2,....
The presence of the zero modes Wl,m(ié) enables us to
define the supertranslations in terms of Fourier modes
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Pin = [ B ®a®.  (13)

In Ref. [15] it is proven that these integrals are well defined
and that M*, P, ,, verify the BMS algebra.

III. BMS INVARIANT SCALAR PRODUCT AND
QUADRATIC CASIMIR

Since we have an infinite set of function w;,, which
generalizes the four momenta k,,, it is natural to ask if there
exists a scalar product, invariant under BMS, which
generalizes the usual Minkowski metric.

The strategy to construct this scalar product will be to
require the Hermiticity of Lorenz generators acting on the
set wy,, or a rescaling of them. We first consider the boost
K3 = My;. We look for a new basis of zero modes {k;, }
where the Hermiticity is studied using the diagonal scalar
product for [ > 1,

l’mlmk (k) (14)

= kil

I>1
with

r]l’,m’;/.m _ 51’.l5rn’,m

(15)

For [ = 0, 1 we will use the ordinary Minkowski metric.
The functions {k;,,} will be obtained by a rescaling of

{Wl,m}’

kl,m:N(l)ﬁwl.mv _L(l—"_a

The factor M(l) is introduced in order to have
simple behavior for [/ — oo since we have |w;,|<

2L /T T 2 M(1).

The factor N(/) is unknown and can be determined by
imposing the Hermiticity of K5. We have

N(l) N(I)
Kk, = ———a; ,k ————b; .k
i = NI+ 1)al,m I+1m +N(l— 1) 7tm*=t.m
= Al,nlkl+l,n1 + Bl,mkl—l,m’ (17)
where dl’m = —l(l— I)Cl_H‘m, bl,m = l(l + 2)Cl,m and Cl,m =

(I=m)(l4+m)
Q=) @2I+1)

The generator K5 will be self-adjoint if

Bl,m = Al—l,m’ (18)

which implies
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[i(1+2)Cm]

If we define E(l) =
relation

[N(I)]?, we get the recurrence

(=1

EU+D =153

E(D). (19)

This recurrence equation is meaningful only for / > 2. The
solution is given by

4!

D =asa=n

E2), [1>2,

where E(2) has an arbitrary value.
The action of K3 on {k;,, }, apart from a phase factor, is

Kk = Apmkicrm + Bimki—i ms (21)
where
= =i/ (=) +3)Cri1m,
=iV =-2)1+2)C. (22)
Note that
Al,m = BlJrl,m’ Al,m = BZ,m =0 (23)

The action of the other generators can be obtained from
K, =i[Ks,L,], K, = —i[K3, L], and the standard action

of Ly and L,
L3Y ), = mY . (24)
LY, = \/1 (m £ ])Yl mE1- (25)
We obtain
K ikp = £(D5 ki met + Epkizimen)s (26)

where A and B are defined in Eq. (22) while D and &£ are

\/l m:l: I)Almil
—\/1+ (I4+2)=m(m=+ DA, (27)
and
= VIl + 1) —=m(m £ 1)B) 1
—/(I=1)(1) = m(m £ 1)B,,,,. (28)

The Hermiticity of the Lorentz generators implies the
invariance of the scalar product under Lorentz
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transformations. It is also invariant under supertranslations,
since these form an Abelian algebra.

If we define the supertranslations using the set of zero
modes {k;,,},

P, = / dick, ,, (K)a* (k)a (k). (29)
R3
The BMS algebra becomes

(M, Py ,,] = €k P (Li)y
[Mo’j’Pl,m] = _Pl’,m'(Kj)

m'slme
U'.m';l,m> (30)
where the matrices ||L;|| and || K| are defined in Egs. (22)
and (24)—(26). This representation gives the vector repre-
sentation of the BMS group. Let us observe that the
supertranslations act as a canonical, but nonlocal, trans-
formation of the scalar field and its momentum; see [15].

The invariant scalar product allows us to define a
quadratic Casimir for the supertranslations
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“«p2» _ nl’m;l/'M/szPl’.m’ ) (31)

One can check [“P?”, BMS] = 0 using (30).
Therefore the BMS mass-shell condition is given by

NP Py = M. (32)

This condition will be useful to construct models for
particles and strings with BMS symmetries.
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