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We investigate the topological properties of the SUð3Þ pure gauge theory by performing numerical
simulations at imaginary values of the θ parameter. By monitoring the dependence of various cumulants of
the topological charge distribution on the imaginary part of θ and exploiting analytic continuation, we
determine the free energy density up to the sixth order in θ, fðθ; TÞ ¼ fð0; TÞ þ 1

2
χðTÞθ2ð1þ

b2ðTÞθ2 þ b4ðTÞθ4 þOðθ6ÞÞ. That permits us to achieve determinations with improved accuracy, in
particular for the higher-order terms, with control over the continuum and the infinite-volume
extrapolations. We obtain b2 ¼ −0.0216ð15Þ and jb4j ≲ 4 × 10−4.

DOI: 10.1103/PhysRevD.93.025028

I. INTRODUCTION

The nontrivial consequences related to the possible
presence of a topological parameter θ are among the most
interesting properties of non-Abelian gauge theories. That
enters the Euclidean Yang-Mills Lagrangian as follows:

Lθ ¼
1

4
Fa
μνðxÞFa

μνðxÞ − iθ
g2

64π2
ϵμνρσFa

μνðxÞFa
ρσðxÞ; ð1Þ

where

qðxÞ ¼ g2

64π2
ϵμνρσFa

μνðxÞFa
ρσðxÞ ð2Þ

is the topological charge density; θ is a superselected
parameter, characterizing the vacuum as well as the other
physical states of the theory. The topological charge density
is odd under CP symmetry, and hence a nonzero θ value
would break such symmetry explicitly.
Experimental upper bounds on θ are quite stringent

(jθj≲ 10−10); nevertheless, the dependence of quantum
chromodynamics (QCD) and of SUðNÞ gauge theories on θ
enters various aspects of hadron phenomenology, a para-
digmatic example being the solution of the UAð1Þ problem
[1–3]. By CP symmetry at θ ¼ 0, the free energy density
f of the theory is an even function of θ which can be
parametrized as follows:

fðθ; TÞ ¼ fð0; TÞ þ 1

2
χðTÞθ2sðθ; TÞ ð3Þ

where χðTÞ is the topological susceptibility, while sðθ; TÞ is
a dimensionless even function of θ, normalized as
sð0; TÞ ¼ 1, which, assuming analyticity around θ ¼ 0,
can be expanded as

sðθ; TÞ ¼ 1þ b2ðTÞθ2 þ b4ðTÞθ4 þ � � � : ð4Þ

The dependence on θ, being related to the topological
properties of the theory, is inherently nonperturbative.
Therefore analytic predictions are restricted to particular
regimes or effective approximation schemes [4–10].
For instance, at asymptotically high temperatures the
dilute instanton gas approximation is expected to hold,
which predicts fðθ; TÞ − fð0; TÞ≃ χðTÞð1 − cos θÞ, while
regarding the low-temperature phase and the θ dependence
of the ground-state energy, large-N arguments [11,12]
predict the various nonlinear terms in θ2 to be suppressed
by increasing powers of 1=N, in particular b2n ∝ 1=N2n

(see e.g. Ref. [13] for a general review of the subject).
Lattice QCD represents a valid nonperturbative

approach, which is based on first principles only; however
the complex nature of the Euclidean action in Eq. (1)
hinders direct Monte Carlo simulations at nonzero θ. Some
possible, partial solutions to this problem are similar to the
ones adopted for QCD at finite baryon chemical potential
μB, where the fermion determinant becomes complex. In
particular, assuming analyticity around θ ¼ 0, one can
either obtain the free energy density in terms of its
Taylor expansion coefficients computed at θ ¼ 0 (see
Refs. [14–16] for analogous strategies at μB ≠ 0), or
perform numerical simulations at imaginary values of θ
[17–22] (or μB [23–28]) and then exploit analytic
continuation.
The first strategy has been traditionally adopted for the

study of θ dependence. The topological susceptibility χðTÞ
and the coefficients b2n are proportional to the coefficients
of the Taylor expansion in θ and can be directly computed
in terms of the cumulants of the probability distribution at
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θ ¼ 0 of the global topological charge Q. For instance the
first few terms are given by

χ ¼ hQ2iθ¼0

V
ð5Þ

where V is the four-dimensional volume,

b2 ¼ −
hQ4iθ¼0 − 3hQ2i2θ¼0

12hQ2iθ¼0

; ð6Þ

and

b4 ¼
½hQ6i − 15hQ2ihQ4i þ 30hQ2i3�θ¼0

360hQ2iθ¼0

: ð7Þ

As we will discuss in more detail in the following, a
drawback of this approach is that the coefficients of the
nonquadratic terms, b2n, are determined as corrections to a
purely Gaussian behavior for the probability distribution of
the topological charge at θ ¼ 0. By the central limit
theorem, such corrections are less and less visible as the
total four-dimensional volume increases, so that a signifi-
cant increase in statistics is needed, in order to keep a
constant statistical error, as one tries to increase V in order
to keep finite-size effects under control.
This problem can be avoided with the approach based on

analytic continuation from an imaginary θ. In this case, one
typically determines a derivative of the free energy as a
function of θ ¼ −iθI: for instance one has

hQiθI
V

¼ χθIð1 − 2b2θ2I Þ þOðθ5I Þ ð8Þ

and b2 is obtained as a deviation from linearity of the
response of the system to the external source θI , which is
determined with no loss in accuracy as the system size is
increased. A drawback in this case is represented by a finite
renormalization appearing when the external source θI is
added to the discretized theory; nevertheless, the method of
analytic continuation turns out to be the most suitable to a
high-precision study of the coefficients b2n, which must
keep both finite-size and discretization errors under control.
In this study we investigate the θ dependence of SUð3Þ

pure gauge theory using the analytic continuation
approach. We will explore variants of the original strategy
presented in Ref. [21], in particular we will perform a
simultaneous fit to various derivatives of the free energy
density as a function of θI , in analogy with a similar
approach explored in lattice QCD at imaginary chemical
potential [28]. That will permit us to maximize the
information obtained from our numerical simulations
and, at the same time, to determine the finite renormaliza-
tion constant as a parameter of the global fit. That will result
in an increased precision, which will give us the

opportunity to determine a continuum extrapolated value
of b2 with an uncertainty at the level of a few percent.

II. NUMERICAL METHOD

The free energy density of Yang-Mills theory in the
presence of a θ term is given by

e−Vfðθ;TÞ ¼
Z

½dA�e−ðSEYM½A�−iθQ½A�Þ; ð9Þ

where SEYM is the standard euclidean action of Yang-Mills
theory, Q ¼ R

qðxÞdx is the topological charge and peri-
odic boundary conditions are assumed. As discussed in the
Introduction it is not possible to use directly this form in a
Monte Carlo simulation, since the action is not real for
θ ≠ 0. To overcome this problem we will study the theory
for imaginary values of θ, where standard importance
sampling methods can be applied, using the analytic
continuation of Eqs. (3) and (4) to extract the values of
the coefficients.
In practice, one defines θ≡ −iθI , where θI is a real

parameter, and studies the θI dependence of

~fðθI; TÞ≡ fð−iθI; TÞ − fð0; TÞ

¼ −
1

2
χθ2I ð1 − b2θ2I þ b4θ4I þ � � �Þ: ð10Þ

From Eq. (9) it follows that the derivatives of ~f can be
written as

∂k ~fðθIÞ
∂θkI ¼ −

1

V
hQkic;θI ; ð11Þ

where hQkic;θI are the cumulants of the topological charge
distribution at fixed θI. Since for θI ≠ 0 the CP symmetry
is explicitly broken, also the odd cumulants are generically
nonvanishing. Using Eq. (11) together with the expansion
in Eq. (10) we obtain an infinite chain of equations relating
the cumulants of the topological charge to the coefficients χ
and b2n. The first few of these equations are the following:

hQic;θI
V

¼ χθIð1 − 2b2θ2I þ 3b4θ4I þ � � �Þ;
hQ2ic;θI

V
¼ χð1 − 6b2θ2I þ 15b4θ4I þ � � �Þ;

hQ3ic;θI
V

¼ χð−12b2θI þ 60b4θ3I þ � � �Þ;
hQ4ic;θI

V
¼ χð−12b2 þ 180b4θ2I þ � � �Þ: ð12Þ

The general idea of the analytic continuation method is to
perform Monte Carlo simulations at several values of θI , to
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compute some of the cumulants hQkic;θI for each θI and to
extract the coefficients χ, b2n making use Eq. (12).
It is clear that in this procedure one can adopt different

strategies. Each of the relations in Eq. (12) is itself
sufficient to extract all the parameters, at least from a
given order on: for example χ can be estimated by looking
at the leading linear dependence of hQic;θI on θI or by
looking at the small θI value of hQ2ic;θI . While all these
methods are equally valid from the theoretical point of
view, they are not equivalent in computational efficiency,
since at fixed statistics lower cumulants are determined
with better accuracy (see Sec. III A for a detailed discussion
on this point). On the other hand the computation of higher
cumulants does not require new simulations or even new
measurements, so that if we use also higher momenta we
increase the information available at no additional cost.
What appears to be the optimal strategy is to extract χ and
b2n from a combined fit of all the relations in Eq. (12).
Since higher momenta get more and more noisy, it is
natural to expect that, at some point, adding to the global fit
still higher cumulants will not result in an increased
precision; however it is not a priori clear when this will
happen and in the following analysis we will use up to the
fourth cumulant. Obviously, in order to correctly assess the
statistical uncertainties of the extracted parameters, corre-
lations among the cumulants have to be taken into account.

A. Lattice implementation and topological charge
definition

Various methods exist to determine the topological
content of lattice configurations, either based on fermionic
or gluonic definitions, which have proven to provide
consistent results as the continuum limit is approached
(see Ref. [13] for a review). Gluonic definitions are
typically affected by renormalizations related to fluctua-
tions at the ultraviolet cutoff scale, which can be cured
by a proper smoothing of gauge configurations. Cooling
[29–33] is a standard procedure adopted to do that; recently
the gradient flow [34,35] has been introduced, which has
been shown to provide results equivalent to cooling, at least
regarding topology [36–39].
However, for the purpose of inserting a θ term in the

action, the use of a fermionic or of a smoothed gluonic
definition of Q is impractical. The lattice partition function
in the presence of an imaginary θ term reads

ZLðT; θLÞ ¼
Z

½dU�e−SL½U�þθLQL½U�; ð13Þ

where U stands for the gauge link variables, UμðnÞ, SL is
the lattice pure gauge action and QL ¼ P

xqLðxÞ is the
discretized topological charge. Standard efficient algo-
rithms like the heat-bath algorithm, which are available
for pure gauge theories, are applicable in this case only if a
particularly simple discretization of the topological charge

density qLðxÞ is chosen, while other choices would lead to a
significant computational overhead. In our case, we choose
the standardWilson plaquette action for SL and the simplest
discretization of qðxÞ with definite parity [40,41]:

qLðxÞ ¼
−1
29π2

X�4

μνρσ¼�1

~ϵμνρσTrðΠμνðxÞΠρσðxÞÞ; ð14Þ

where Πμν is the plaquette operator, ~ϵμνρσ ¼ ϵμνρσ for
positive directions, while ~ϵμνρσ ¼ −~ϵð−μÞνρσ and antisym-
metry fix its value in the generic case. With this choice,
gauge links still appear linearly in the Boltzmann weight,
so that standard heat-bath and over-relaxation algorithms
can be implemented, with a computational cost that is about
a factor 2.5 higher than at θL ¼ 0.
A drawback of this choice is that qLðxÞ takes a finite

multiplicative renormalization with respect to the con-
tinuum density qðxÞ [42–45]

qLðxÞ ∼a→0a4ZðaÞqðxÞ; ð15Þ

where a is the lattice spacing and lima→0ZðaÞ ¼ 1. Hence,
the lattice parameter θL is related to the imaginary part of θ
by θI ¼ ZθL: in order to know θI, one has to determine the
value Z.
As for the operator used to determine the cumulants of

the topological charge distribution, in order to avoid the
appearance of further renormalization constants, we adopt a
smoothed definition which is denoted simply as Q in the
following. In particular, we adopt the topological charge
density in Eq. (14), measured after 15 cooling steps.
Actually, in this case two possible prescriptions can be
taken. One can simply define Q ¼ Qsmooth

L : in this case, at
finite lattice spacing, Q does not take exactly integer
values, although its distribution is characterized by sharp
peaks located at approximately integer values. As an
alternative, one can define Q as follows [46]:

Q ¼ roundðαQsmooth
L Þ; ð16Þ

where roundðxÞ denotes the integer closest to x and the
rescaling factor α is determined in such a way to minimize

hðαQsmooth
L − round½αQsmooth

L �Þ2i; ð17Þ

so that the sharp peaks in the distribution of αQsmooth
L will

be located exactly onto integer values. The two definitions
are expected to coincide as the continuum limit is
approached. In the following we will refer to the latter
as the rounded topological charge and to the former as the
nonrounded one. The two definitions have been used
alternately in various previous studies in the literature. In
this study we consider both of them and show that, while
results at finite lattice spacing differ, continuum extrapo-
lated results coincide, as expected.
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In order to make use of Eq. (12) to obtain the free energy
parameters from the θ dependence of the cumulants of Q,
one needs to know the values of θI used for each numerical
simulation. That in turn requires a determination of the
renormalization constant Z. Various methods exist to do
that, for instance by using the relation [21]

Z≡ hQQLiθ¼0

hQ2iθ¼0

ð18Þ

or other similar approaches, like heating techniques [45].
However, a drawback of this approach is that the statistical
uncertainty on Z propagates to θI , so that a nontrivial fit
with errors on both dependent and independent variables is
required. For that reason in this study we investigate and
adopt a different approach.
We rewrite a lattice version of Eq. (12) in which the

lattice parameter θL appears explicitly:

hQi
V

¼ χZθLð1 − 2b2Z2θ2L þ 3b4Z4θ4L þ � � �Þ;
hQ2ic
V

¼ χð1 − 6b2Z2θ2L þ 15b4Z4θ4L þ � � �Þ;
hQ3ic
V

¼ χð−12b2ZθL þ 60b4Z3θ3L þ � � �Þ;
hQ4ic
V

¼ χð−12b2 þ 180b4Z2θ2L þ � � �Þ: ð19Þ

Our proposal is to extract the renormalization constant from
the fitting procedure itself, treating θL as the independent
variable and Z as a fit parameter. Notice however that, in
order to do that, at least two cumulants must be fitted
simultaneously, otherwise Z remains entangled as an
arbitrary multiplicative renormalization of the other fit
parameters. On the other hand, fitting the dependence of
more cumulants at the same time coincides with our
proposed strategy to extract the best possible information
from our Monte Carlo simulations. As we will show in the
next section, the payoff of this strategy is not negligible.

III. NUMERICAL RESULTS

We have performed simulations at four different lattice
spacings on hypercubical lattices; the values of the bare
parameters adopted are reported in Tables I and II; for the
statistics adopted and the final results see Tables III and IV
respectively. TheMonte Carlo updates were performed using
a mixture of standard heat-bath [49,50] and over-relaxation
[51] algorithms, implemented à laCabibbo-Marinari [52], in
the ratio of 1 to 5. The topological charge was measured
every ten updates and from 5 to 25 cooling steps were used:
data that will be presented in the following refer to the case
of 15 cooling steps and we checked that results are stable,
well within errors, if a different choice is made.
Unless otherwise explicitly stated, we present data which

refer to the case of a common fit to the first four cumulants

of the topological charge; see Eq. (19). An example of such
a fit is reported in Fig. 1. Since cumulants of different order
are computed on the same samples of gauge configurations,
in order to take into account the possible correlations
among them we have used a bootstrap procedure, and
checked that a correlated fit exploiting the full covariance
matrix leads to consistent results.
In the following we are going to illustrate our estimation

of the various possible systematic uncertainties that may
affect our results. First, we will analyze those related to
analytic continuation itself, by considering the stability of
our fits as either the fit range or the number of fitted terms in
Eq. (19) (i.e. the truncation of the Taylor series) is changed;
then we will turn to the analysis of the infinite-volume and
continuum limit extrapolations. That will permit us to
provide final estimates of the free energy coefficients
entering Eqs. (3) and (4), with a reliable determination

TABLE I. Physical scale determination at the bare couplings
used in this work, from Ref. [47]. r0 is the Sommer parameter
[48] and in the last column the lattice spacing is obtained by using
r0 ≃ 0.5 fm.

β r0=a a [fm]

5.95 4.898(12) 0.1021(25)
6.07 6.033(17) 0.08288(23)
6.20 7.380(26) 0.06775(24)
6.40 9.74(5) 0.05133(26)

TABLE II. Bare couplings, lattice sizes and fit ranges adopted.

β Nt × N3
s θL

5.95 164 0,2,4,6,8
6.07 224 0,2,4,6,8,10
6.20 164, 184, 204, 224 0,2,4,6,8,10,12
6.40 304 0,2,4,6,8,10,12,14
6.173 10 × 403 0,2,4,6,8,10,12

TABLE III. Statistics used for the various lattices: the first
number of the third column is the statistics for the θ ¼ 0 run,
while the second is the typical statistics of the θ ≠ 0 runs. The
estimated autocorrelation time of the topological charge is
reported in the last column.

β Nt × N3
s # measures τðQÞ

5.96 164 240 K, 130 K 3.47(8)
6.07 224 110 K, 70 K 4.8(2)
6.20 164 170 K, 60 K 18(1)
6.20 184 100 K, 70 K 17(1)
6.20 204 100 K, 90 K 17(1)
6.20 224 110 K, 80 K 16(1)
6.40 304 200 K, 120 K 214(30)
6.173 10 × 403 50 K, 20 K 27(3)
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of both statistical and systematic uncertainties. In the last
part of our analysis we will try to understand which aspects
of our strategy lead to a more significant improvement with
respect to other methods used in past literature.
In Fig. 2 we report an example of how the fitted

coefficients and the quality of the fit change as a function
of the range of imaginary values of θ included in the fit, in
particular of the maximum value θmax

L . The final range from
which we extract our determination is chosen so as to have
a reasonable value of the χ2=d:o:f. test and stability, within
errors, of the fitted parameters as the range is reduced
further: this is important to ensure the reliability of analytic
continuation, since the expressions in Eq. (19) are expected
to hold, in principle, in a limited range around θL ¼ 0. A
full account of the ranges used in the various cases is
reported in Table II.
We notice that θmax

L grows as one approaches the
continuum limit. That can be interpreted by observing

that, since growing values of θL induce growing values of
the net nonzero topological charge density, one may expect
saturation effects to be present for large enough values of
θL. Such effects are expected to appear earlier on lattices
with less resolution, i.e. with larger values of the lattice
spacing.
A source of systematic error that is generically present

in the analytic continuation approach is the one related to
the choice of the fitting function, in particular to the
truncation of the series to be fitted. In the present work,
the estimated value of b4 turns out to be compatible with
zero for all the data sets, so it appears reasonable to fix the
value of b4 to zero and fit just Z, χ and b2. To check that
this does not introduce any significant systematic error we
verified that fits with fixed b4 ¼ 0 describe the data well
and give results compatible with the ones obtained by
fitting also b4.
In order to investigate finite-size effects, we have

explored different lattice sizes Ns for one case, in particular
β ¼ 6.2 corresponding to a lattice spacing a ∼ 0.068 fm. In
Fig. 3 we report the corresponding results obtained both
from analytic continuation and from a direct measurement
of the cumulants at θ ¼ 0. We notice that errors on b2 and
b4 obtained from analytic continuation scale much better as
the volume is increased (the underlying reason is discussed
in Sec. III A), so that in this case one can investigate finite-
size effects with much more reliability than with a tradi-
tional approach based on θ ¼ 0 simulations only. One
could try to estimate the infinite-volume limit by explicitly
fitting the volume dependence of the results, which is
expected to decay exponentially with Ns; however it is
clearly visible from the figure that finite-size effects are
negligible within errors for lattices with Ns ≥ 18, i.e. for
Nsa > 1.2 fm. Lattices explored at the other values of the
lattice spacing have been chosen accordingly, i.e. they
correspond to linear sizes which are well above this
threshold (1.5 fm at least).

TABLE IV. Results of the combined fit to Z, χ and b2 using up
to the fourth cumulant of the topological charge. A vanishing b4
was assumed in the fit.

rounded QL
β Z a4χ b2

5.95 0.12398(31) 1.0744ð29Þ × 10−4 −0.02457ð84Þ
6.07 0.15062(62) 4.601ð22Þ × 10−5 −0.02285ð90Þ
6.20 0.1778(13) 1.956ð17Þ × 10−5 −0.02258ð86Þ
6.40 0.2083(29) 5.94ð10Þ × 10−6 −0.02347ð98Þ

nonrounded QL
β Z a4χ b2

5.95 0.13838(36) 8.711ð23Þ × 10−5 −0.01761ð68Þ
6.07 0.16300(73) 3.940ð19Þ × 10−5 −0.01898ð73Þ
6.20 0.1900(14) 1.728ð15Þ × 10−5 −0.01887ð71Þ
6.40 0.2185(28) 5.449ð88Þ × 10−6 −0.02069ð89Þ

0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12
θL

-1e-05

-5e-06

0

5e-06

1e-05

1.5e-05

2e-05

2.5e-05

3e-05

3.5e-05

〈Q〉c/V
〈Q2〉c/V
〈Q3〉c/V
〈Q4〉c/V

FIG. 1. An example of the global fit procedure: data refer to the
304 lattice at coupling β ¼ 6.40, while continuous lines are the
result of a combined fit of the first four cumulants.

4 6 8 10 12 14 16
1

1.2

1.4

1.6

1.8

2

ch
i2 /d

.o
.f

4 6 8 10 12 14 16

4.55e-05

4.6e-05

4.65e-05

χ

4 6 8 10 12 14 16

θL
max

-0.03

-0.025

-0.02

-0.015

b 2

FIG. 2. An example of the variation of the fit quality and
parameters with the fit range. Data refer to the 224 lattice at
coupling β ¼ 6.07.
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Let us now go to a discussion of the continuum limit. In
order to have better control of the systematics of the
continuum extrapolation, we used two different definitions
of the topological charge: the rounded and the nonrounded
one (see Sec. II A). Since the two definitions are expected
to coincide in the continuum limit and they were measured
on the same set of gauge configurations, the differences
obtained for the continuum extrapolated values in the two
cases can be used as an estimate of the residual systematic
uncertainties on the final results. In Fig. 4 we report results
obtained for the topological susceptibility as a function of
ða=r0Þ2, where r0 is the Sommer scale parameter [48]. In
both cases (rounded and nonrounded) finite cutoff effects
can be reasonably fitted by a quadratic function of a if the
three finest lattices are considered. Our final estimate is

r0χ1=4 ¼ 0.4708ð42Þð58Þ ð20Þ

where the first error is the statistical one and the second is
the systematic one; this value is compatible with previous
determinations [46,53–58] and has a similar error. The
conversion to physical units can be performed e.g. using
r0FK ¼ 0.293ð7Þ (from Ref. [59]) and the experimental
value Fk ∼ 110 MeV, thus obtaining χ1=4 ¼ 176.8ð2.7Þ
ð4.2Þ. The first error originates from the uncertainty in
r0χ1=4 (the systematic and statistical components were
summed in quadrature), while the second error is related
to the scale setting and it is the dominant one.
A similar analysis for b2 is reported in Fig. 5. In this case

our final result is

b2 ¼ −0.0216ð10Þð11Þ; ð21Þ

where again the numbers in parentheses are, from left to
right, the statistical and the systematic error. This number is
compatible with previous results in the literature
[21,46,58,60,61], as can be appreciated from Fig. 6 where
we report a summary of all existing determinations;
however a sizable error reduction has been achieved in
the present study.
Finally, as we have already emphasized, we do not find

any evidence of a nonvanishing b4 coefficient, so the best
we can do is to set an upper bound to its absolute value. In
Fig. 7 we show the results obtained by using a combined fit
for the first four cumulants, with Z, χ, b2 and b4 as fit
parameters. All data are compatible with zero and a
reasonable upper bound appears to be

jb4j≲ 4 × 10−4: ð22Þ

A. Comparison with the efficiency of other approaches

As we have already emphasized, Fig. 3 shows that, at
least for the higher-order cumulants, the gain in statistical
accuracy obtained by analytic continuation with respect to a

0 0.01 0.02 0.03 0.04 0.05

(a/r0)
2

0.46

0.47

0.48

0.49

0.5

0.51

r 0
χ1/

4

rounded
non-rounded

FIG. 4. Continuum limit for χ, with and without adopting a
rounding to the closest integer for the topological charge
measured after cooling.

0.17

0.175

0.18
Z

from θ=0
b4 fitted
b4=0

1.9e-05

2e-05

χ

-0.04

-0.02

0

b 2

15 16 17 18 19 20 21 22 23

Ns

-0.01

0

0.01

b 4

FIG. 3. Dependence of Z, χ, b2 and b4 on the lattice size for
β ¼ 6.2. For each lattice size and each observable three estimates
are reported: the one coming just from the θ ¼ 0 simulations (i.e.
the traditional Taylor expansion determination), the one obtained
by fitting the b4 value and the one obtained by fixing b4 ¼ 0.
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FIG. 5. Continuum limit for b2, with and without adopting a
rounding to the closest integer for the topological charge
measured after cooling.
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direct determination at θ ¼ 0 becomes overwhelming as the
lattice volume grows. We are now going to understand why.
The cumulants of the topological charge distribution,

hQkic, are proportional to the coefficients of the Taylor
expansion of the free energy as a function of θ. Since the
free energy is an extensive quantity, the cumulants are
extensive as well, and therefore hQkic scales proportionally
to the four-dimensional volume V, and the ratios of
cumulants, i.e. the coefficients b2, b4, … entering the free
energy density, are volume independent. On the other hand,
in the large-volume limit the probability distribution of the
topological charge is dominated by Gaussian fluctuations
with variance χV, and hence the typical fluctuation has size
δQ ∼

ffiffiffiffiffiffi
χV

p
. Since at θ ¼ 0 the distribution of Q is centered

around zero, one has that the terms that sum up to hQkic
(i.e. hQki; hQ2ihQk−2i;…hQ2ik=2) grow like ðχVÞk=2.
Therefore the cumulant itself, which is of order χV, comes

out from the precise cancellation of higher-order terms, so
that the signal-to-noise ratio is expected to scale like

ðχVÞ=ðχVÞk=2 ¼ ðχVÞð2−kÞ=2:

This is consistent with the fact that the cumulants measure
the deviations from a purely Gaussian distribution, and
such deviations, because of the central limit theorem,
become less and less visible as the infinite-volume limit
is approached.
We conclude that the error expected in the standard

determination of b2n through the cumulants at θ ¼ 0 is of
the order of ðχVÞn= ffiffiffiffi

N
p

, whereN is the size of the statistical
sample, i.e. the number of independent gauge configura-
tions. This is a particularly severe case of a lack of self-
averaging [62]; for instance in the case of b2 one has to
increase the number of measurements proportionally to V2,
in order to keep a fixed statistical accuracy as the volume is
increased. Notice that this problem is not marginal. Indeed,
the important parameter entering this scaling is the combi-
nation χV: since χ1=4 ∼ 180 MeV ∼ ð1.1 fmÞ−1, we expect
a strong degradation in the signal-to-noise ratio as one
approaches lattices which exceed one fermi in size, which
is consistent with our observations; unfortunately, this is
also at a threshold where finite-size effects are still
important.
On the contrary, when using the analytic continuation

approach, this problem disappears. Indeed, in this case the
information about each free energy coefficient is contained
also in the θ dependence of the lowest-order cumulants,
including hQic;θI , whose signal-to-noise ratio scales with
volume as V1=2. The improvement is related to the fact that
one is probing the system with an explicit nonzero external
source, and is similar to that obtained when switching from
the measurement of fluctuations to the measurement of the
magnetization as a function of the external field in the
determinations of the magnetic susceptibility of a material.
Therefore, one expects that the final statistical accuracy

at a fixed number of measurements, improves when
increasing the volume, rather than degrades, like for
standard self-averaging quantities. Actually, in the particu-
lar case of the analytic continuation in θ, there is a slight
complication related to the renormalization constant Z.
This can be computed as in Eq. (18), but in this case we
need also hQ2i, whose precision scales like V0 with
volume. The global fit method is not qualitatively better
in this respect: since Z appears as a rescaling of θ it cannot
be determined just by using the first cumulant; its value is
fixed by the comparison of at least hQic;θI and hQ2ic;θI and
the precision of the second scales as V0. We thus see that
the best we can obtain with the analytic continuation
approach is a scaling of the precision of b2n with volume
like V0; this is suboptimal with respect to the naive
expectation V1=2, but still a tremendous improvement
with respect to the Taylor expansion method. On the other
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FIG. 6. Comparison of various determinations of b2 present in
the literature. From left to right: Refs. [21,46,58,60,61] and this
work. The error reported for the present determination is a
combination (in quadrature) of the statistical and systematic
uncertainties. Notice that in Refs. [61] and [58] results were given
in terms of R ¼ −12b2 and have been converted to match with
the definition of the expansion coefficients used in this study.
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hand, the precisions of Z and χ scale in both approaches
as V0.
All these scalings, and the improvement gained by

analytic continuation, can be nicely seen in Fig. 3. Three
determinations of Z, χ and b2 are shown: the first one is
obtained by using the Taylor expansion method, i.e. using
just the θ ¼ 0 sets, the second one uses the analytic
continuation approach, including in the global fit up to
the fourth cumulant of the topological charge and fitting Z,
χ, b2 and b4, while the last one follows the same strategy as
the second one but b4 is fixed to zero in the fit. The
determination of b4 obviously used only the first two
methods. Actually, a reasonable comparison between
different methods should proceed along the following
lines: compare the errors obtained by different approaches
when using the same machine time. For the comparison to
be fair we thus have to rescale the statistics of the θ ¼ 0
determination by about a factor of 10, i.e. the errors of the
corresponding determination by about a factor of 3. We
thus see that no gain is obtained by using the analytic
continuation approach to determine Z and χ, while it is
extremely beneficial for b2 and b4, as theoretically
expected.
A last point that remains to be investigated is the

effectiveness, within the analytic continuation approach,
of the global fit to all the cumulants with respect to the
traditional procedure of using just hQic, with Z fixed using
Eq. (18). Such a comparison is performed in Fig. 8, in
which also intermediate cases are shown: a global fit of all
the parameters using different numbers of cumulants or a
global fit of all the parameters but Z [which was fixed by
Eq. (18)], using different numbers of cumulants. As can be

seen the inclusion in the fit of cumulants of order higher
than the second does not improve appreciably the precision
of the result; the error reduction attainable by fitting also Z
instead of fixing it before the fit is not huge, but still
significant. Indeed, by using all the cumulants of the
topological charge and fitting Z we reduced the errors
by about a factor of 2 with respect to the traditional
procedure of using just hQiθI with Z fixed by Eq. (18).

B. Some considerations about the
finite-temperature case

A strategy allowing one to measure b2n on arbitrary large
volumes represents a substantial improvement, that permits
one to gain statistical accuracy and reduces the possible
systematics related to finite-size effects. There are however
cases in which this possibility is not just an “improvement,”
but it enables the study of otherwise intractable problems.
This is the case of b2 at finite temperature for T < Tc. Once
the lattice spacing is fixed and the temperature is fixed (i.e.
β and Nt are fixed), to ensure that we are studying a finite-
temperature system we have to impose the constraint Ns ≫
Nt (typically Ns ≳ 4Nt is used) and this fixes a lower value
for the acceptable four-volumes to be used. What typically
happens is that this minimum value of V is large enough to
make a measure of b2 using the Taylor expansion method
extremely difficult.
In order to verify that the analytic continuation approach

works equally well also at finite temperature, we performed
a simulation at β ¼ 6.173 on a 10 × 404 lattice. Such a
point was previously investigated in Ref. [63] using the
Taylor expansion method. The result from Ref. [63],
together with our new determinations and the T ¼ 0 result
are reported in Fig. 9. The old determination of Ref. [63]
was based on a statistics of about 800 K measures: our
present determination obtained via analytic continuation
reaches a precision which is more than 1 order of
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FIG. 8. Comparison between different fitting procedures in the
analytic continuation approach. Data refer to the 304 lattice at
bare coupling β ¼ 6.40. Empty symbols are the result of a global
fit procedure (in which also Z is determined) using up to the 4th,
3rd or 2nd cumulant. Full symbols are obtained using a global fit
[with Z fixed by Eq. (18)] and using up to the 4th, 3rd, 2nd or 1st
cumulant.
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FIG. 9. b2 value at T ≃ 0.95Tc on a 10 × 403 lattice (bare
coupling β ¼ 6.173) with a comparison of the determination in
Ref. [63], obtained using the Taylor expansion method, and a new
estimate obtained by using the analytic continuation method. The
horizontal lines denote the T ¼ 0 result.
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magnitude larger, with about half the computational effort
(in particular, a machine-time equivalent to around 350 K
measures taken at θ ¼ 0).
Different considerations should be made for temper-

atures above the critical temperature Tc. Indeed, in all the
recent studies of b2 at finite temperature [63–66] (in which
the Taylor expansion method was always used) it was noted
that the determination of b2 in the low-temperature phase is
very difficult, while it gets abruptly easier above deconfine-
ment. The reason for this fact is simple: we have seen that
the relevant parameter for the degradation of the statistical
accuracy in the determination of the cumulants at θ ¼ 0 is
χV. Since at the deconfinement transition the topological
susceptibility steeply decreases [53,65–71], a precise
determination of b2 by the standard Taylor expansion
approach becomes much easier, in the deconfined phase,
even on moderately large volumes.

IV. CONCLUSIONS

In this study we have exploited numerical simulations
performed at imaginary values of θ and analytic continu-
ation in order to determine the dependence of the free
energy density of the SUð3Þ pure gauge theory on the
topological parameter θ. As an improvement with respect to
previous applications of the same strategy [21], we have
considered a global fit to the θ dependence of various free
energy derivatives, i.e. various cumulants of the topological
charge distribution. That has permitted us to reach an

increased precision, obtaining the following estimates for
the continuum extrapolated values: r0χ1=4 ¼ 0.4708
ð42Þð58Þ, b2 ¼ −0.0216ð10Þð11Þ and jb4j≲ 4 × 10−4.
The strategy based on analytic continuation turns out to

be particularly well suited for the determination of the
higher-order terms, for which the traditional Taylor expan-
sion method, based on the determination of cumulants of
the topological charge distribution at θ ¼ 0, faces a severe
problem when approaching large volumes, where correc-
tions to Gaussian-like fluctuations become hardly measur-
able. Indeed, we have shown that the statistical error
attained in the determination of b2n through the cumulants
at θ ¼ 0 scales with the four-dimensional volume V, for a
fixed number of measurements, like ðχVÞn, where χ is the
topological susceptibility. As we have shown, this property
of analytic continuation turns out to be essential for the
determination of the θ dependence right below the decon-
finement temperature Tc, and hence this strategy could be
adopted for a future improved determination of the change
of θ dependence taking place at deconfinement [63].

ACKNOWLEDGMENTS

We thank Francesco Negro and Ettore Vicari for useful
discussions. Numerical simulations have been performed
on the CSN4 cluster of the Scientific Computing Center at
INFN-PISA and on the Galileo machine at CINECA (under
INFN project NPQCD). Work partially supported by the
INFN SUMA Project.

[1] G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976).
[2] E. Witten, Nucl. Phys. B156, 269 (1979).
[3] G. Veneziano, Nucl. Phys. B159, 213 (1979).
[4] D. J. Gross, R. D. Pisarski, and L. G. Yaffe, Rev. Mod. Phys.

53, 43 (1981).
[5] T. Schaefer and E. V. Shuryak, Rev. Mod. Phys. 70, 323

(1998).
[6] A. R. Zhitnitsky, Nucl. Phys. A813, 279 (2008).
[7] M. Unsal, Phys. Rev. D 86, 105012 (2012).
[8] E. Poppitz, T. Schaefer, and M. Unsal, J. High Energy Phys.

03 (2013) 087.
[9] M.M. Anber, Phys. Rev. D 88, 085003 (2013).

[10] F. Bigazzi, A. L. Cotrone, and R. Sisca, J. High Energy
Phys. 08 (2015) 090.

[11] E. Witten, Phys. Rev. Lett. 81, 2862 (1998).
[12] E. Witten, Ann. Phys. (N.Y.) 128, 363 (1980).
[13] E. Vicari and H. Panagopoulos, Phys. Rep. 470, 93

(2009).
[14] C. R. Allton, S. Ejiri, S. J. Hands, O. Kaczmarek, F. Karsch,

E. Laermann, C. Schmidt, and L. Scorzato, Phys. Rev. D 66,
074507 (2002).

[15] R. V. Gavai and S. Gupta, Phys. Rev. D 68, 034506
(2003).

[16] C. R. Allton, M. Doring, S. Ejiri, S. J. Hands, O. Kacz-
marek, F. Karsch, E. Laermann, and K. Redlich, Phys. Rev.
D 71, 054508 (2005).

[17] V. Azcoiti, G. Di Carlo, A. Galante, and V. Laliena, Phys.
Rev. Lett. 89, 141601 (2002).

[18] B. Alles and A. Papa, Phys. Rev. D 77, 056008 (2008).
[19] B. Alles, M. Giordano, and A. Papa, Phys. Rev. B 90,

184421 (2014).
[20] S. Aoki, R. Horsley, T. Izubuchi, Y. Nakamura, D. Pleiter, P.

E. L. Rakow, G. Schierholz, and J. Zanotti, ar-
Xiv:0808.1428.

[21] H. Panagopoulos and E. Vicari, J. High Energy Phys. 11
(2011) 119.

[22] M. D’Elia and F. Negro, Phys. Rev. Lett. 109, 072001
(2012); Phys. Rev. D 88, 034503 (2013).

[23] M. G. Alford, A. Kapustin, and F. Wilczek, Phys. Rev. D 59,
054502 (1999).

[24] A. Hart, M. Laine, and O. Philipsen, Phys. Lett. B 505, 141
(2001).

[25] P. de Forcrand and O. Philipsen, Nucl. Phys. B642, 290
(2002).

[26] M. D’Elia and M.-P. Lombardo, Phys. Rev. D 67, 014505
(2003).

θ DEPENDENCE IN SUð3Þ YANG-MILLS … PHYSICAL REVIEW D 93, 025028 (2016)

025028-9

http://dx.doi.org/10.1103/PhysRevLett.37.8
http://dx.doi.org/10.1016/0550-3213(79)90031-2
http://dx.doi.org/10.1016/0550-3213(79)90332-8
http://dx.doi.org/10.1103/RevModPhys.53.43
http://dx.doi.org/10.1103/RevModPhys.53.43
http://dx.doi.org/10.1103/RevModPhys.70.323
http://dx.doi.org/10.1103/RevModPhys.70.323
http://dx.doi.org/10.1016/j.nuclphysa.2008.09.011
http://dx.doi.org/10.1103/PhysRevD.86.105012
http://dx.doi.org/10.1007/JHEP03(2013)087
http://dx.doi.org/10.1007/JHEP03(2013)087
http://dx.doi.org/10.1103/PhysRevD.88.085003
http://dx.doi.org/10.1007/JHEP08(2015)090
http://dx.doi.org/10.1007/JHEP08(2015)090
http://dx.doi.org/10.1103/PhysRevLett.81.2862
http://dx.doi.org/10.1016/0003-4916(80)90325-5
http://dx.doi.org/10.1016/j.physrep.2008.10.001
http://dx.doi.org/10.1016/j.physrep.2008.10.001
http://dx.doi.org/10.1103/PhysRevD.66.074507
http://dx.doi.org/10.1103/PhysRevD.66.074507
http://dx.doi.org/10.1103/PhysRevD.68.034506
http://dx.doi.org/10.1103/PhysRevD.68.034506
http://dx.doi.org/10.1103/PhysRevD.71.054508
http://dx.doi.org/10.1103/PhysRevD.71.054508
http://dx.doi.org/10.1103/PhysRevLett.89.141601
http://dx.doi.org/10.1103/PhysRevLett.89.141601
http://dx.doi.org/10.1103/PhysRevD.77.056008
http://dx.doi.org/10.1103/PhysRevB.90.184421
http://dx.doi.org/10.1103/PhysRevB.90.184421
http://arXiv.org/abs/0808.1428
http://arXiv.org/abs/0808.1428
http://dx.doi.org/10.1007/JHEP11(2011)119
http://dx.doi.org/10.1007/JHEP11(2011)119
http://dx.doi.org/10.1103/PhysRevLett.109.072001
http://dx.doi.org/10.1103/PhysRevLett.109.072001
http://dx.doi.org/10.1103/PhysRevD.88.034503
http://dx.doi.org/10.1103/PhysRevD.59.054502
http://dx.doi.org/10.1103/PhysRevD.59.054502
http://dx.doi.org/10.1016/S0370-2693(01)00355-0
http://dx.doi.org/10.1016/S0370-2693(01)00355-0
http://dx.doi.org/10.1016/S0550-3213(02)00626-0
http://dx.doi.org/10.1016/S0550-3213(02)00626-0
http://dx.doi.org/10.1103/PhysRevD.67.014505
http://dx.doi.org/10.1103/PhysRevD.67.014505


[27] M. D’Elia and F. Sanfilippo, Phys. Rev. D 80, 014502
(2009).

[28] T. Takaishi, P. de Forcrand, and A. Nakamura, Proc. Sci.,
LAT2009 (2009) 198 [arXiv:1002.0890].

[29] B. Berg, Phys. Lett. 104B, 475 (1981).
[30] Y. Iwasaki and T. Yoshie, Phys. Lett. 131B, 159 (1983).
[31] S. Itoh, Y. Iwasaki, and T. Yoshie, Phys. Lett. 147B, 141

(1984).
[32] M. Teper, Phys. Lett. 162B, 357 (1985).
[33] E.-M. Ilgenfritz, M. L. laursen, M. Müller-Preuβker, G.

Schierholz, and H. Schiller, Nucl. Phys. B268, 693 (1986).
[34] M. Luscher, Commun. Math. Phys. 293, 899 (2010).
[35] M. Luscher, J. High Energy Phys. 08 (2010) 071.
[36] C. Bonati and M. D’Elia, Phys. Rev. D 89, 105005

(2014).
[37] K. Cichy, A. Dromard, E. Garcia-Ramos, K. Ottnad, C.

Urbach, M. Wagner, U. Wenger, and F. Zimmermann, Proc.
Sci., LATTICE2014 (2014) 075 [arXiv:1411.1205].

[38] Y. Namekawa, Proc. Sci., LATTICE2014 (2014) 344
[arXiv:1501.06295].

[39] C. Alexandrou, A. Athenodorou, and K. Jansen, Phys. Rev.
D 92, 125014 (2015)].

[40] P. Di Vecchia, K. Fabricius, G. C. Rossi, and G. Veneziano,
Nucl. Phys. B192, 392 (1981).

[41] P. Di Vecchia, K. Fabricius, G. C. Rossi, and G. Veneziano,
Phys. Lett. 108B, 323 (1982).

[42] M. Teper, Phys. Lett. B 232, 227 (1989).
[43] M. Campostrini, A. Di Giacomo, H. Panagopoulos, and E.

Vicari, Nucl. Phys. B329, 683 (1990).
[44] A. Di Giacomo, H. Panagopoulos, and E. Vicari, Nucl.

Phys. B338, 294 (1990).
[45] A. Di Giacomo and E. Vicari, Phys. Lett. B 275 (1992) 429.
[46] L. Del Debbio, H. Panagopoulos, and E. Vicari, J. High

Energy Phys. 08 (2002) 044.
[47] M. Guagnelli, R. Sommer, and H. Wittig (ALPHA Col-

laboration), Nucl. Phys. B535, 389 (1998).
[48] R. Sommer, Nucl. Phys. B411, 839 (1994).
[49] M. Creutz, Phys. Rev. D 21, 2308 (1980).
[50] A. D. Kennedy and B. J. Pendleton, Phys. Lett. 156B, 393

(1985).
[51] M. Creutz, Phys. Rev. D 36, 515 (1987).

[52] N. Cabibbo and E. Marinari, Phys. Lett. 119B, 387
(1982).

[53] B. Alles, M. D’Elia, and A. Di Giacomo, Nucl. Phys. B494,
281 (1997); B679, 397(E) (2004).

[54] L. Del Debbio, L. Giusti, and C. Pica, Phys. Rev. Lett. 94,
032003 (2005).

[55] S. Durr, Z. Fodor, C. Hoelbling, and T. Kurth, J. High
Energy Phys. 04 (2007) 055.

[56] M. Luscher and F. Palombi, J. High Energy Phys. 09 (2010)
110.

[57] K. Cichy, E. Garcia-Ramos, K. Jansen, K. Ottnad, and C.
Urbach (ETM Collaboration), J. High Energy Phys. 09
(2015) 020.

[58] M. Cé, C. Consonni, G. P. Engel, and L. Giusti, Phys. Rev.
D 92, 074502 (2015).

[59] J. Garden, J. Heitger, R. Sommer, and H. Wittig (ALPHA
and UKQCD Collaborations), Nucl. Phys. B571, 237
(2000).

[60] M. D’Elia, Nucl. Phys. B661, 139 (2003).
[61] L. Giusti, S. Petrarca, and B. Taglienti, Phys. Rev. D 76,

094510 (2007).
[62] A. Milchev, K. Binder, and D.W. Heermann, Z. Phys. B 63,

521 (1986).
[63] C. Bonati, M. D’Elia, H. Panagopoulos, and E. Vicari, Phys.

Rev. Lett. 110, 252003 (2013).
[64] C. Bonati, J. High Energy Phys. 03 (2015) 006.
[65] S. Borsanyi, M. Dierigl, Z. Fodor, S. D. Katz, S. W. Mages,

D. Nogradi, J. Redondo, A. Ringwald, and K. K. Szabo,
Phys. Lett. B 752, 175 (2016).

[66] G. Y. Xiong, J. B. Zhang, Y. Chen, C. Liu, Y. B. Liu, and J.
P. Ma, Phys. Lett. B 752, 34 (2016).

[67] C. Gattringer, R. Hoffmann, and S. Schaefer, Phys. Lett. B
535, 358 (2002).

[68] B. Lucini, M. Teper, and U. Wenger, Nucl. Phys. B715, 461
(2005).

[69] L. Del Debbio, H. Panagopoulos, and E. Vicari, J. High
Energy Phys. 09 (2004) 028.

[70] E. Berkowitz, M. I. Buchoff, and E. Rinaldi, Phys. Rev. D
92, 034507 (2015).

[71] R. Kitano and N. Yamada, J. High Energy Phys. 10 (2015)
136.

BONATI, D’ELIA, and SCAPELLATO PHYSICAL REVIEW D 93, 025028 (2016)

025028-10

http://dx.doi.org/10.1103/PhysRevD.80.014502
http://dx.doi.org/10.1103/PhysRevD.80.014502
http://arXiv.org/abs/1002.0890
http://dx.doi.org/10.1016/0370-2693(81)90518-9
http://dx.doi.org/10.1016/0370-2693(83)91111-5
http://dx.doi.org/10.1016/0370-2693(84)90609-9
http://dx.doi.org/10.1016/0370-2693(84)90609-9
http://dx.doi.org/10.1016/0370-2693(85)90939-6
http://dx.doi.org/10.1016/0550-3213(86)90265-8
http://dx.doi.org/10.1007/s00220-009-0953-7
http://dx.doi.org/10.1007/JHEP08(2010)071
http://dx.doi.org/10.1103/PhysRevD.89.105005
http://dx.doi.org/10.1103/PhysRevD.89.105005
http://arXiv.org/abs/1411.1205
http://arXiv.org/abs/1501.06295
http://dx.doi.org/10.1103/PhysRevD.92.125014
http://dx.doi.org/10.1103/PhysRevD.92.125014
http://dx.doi.org/10.1016/0550-3213(81)90432-6
http://dx.doi.org/10.1016/0370-2693(82)91203-5
http://dx.doi.org/10.1016/0370-2693(89)91692-4
http://dx.doi.org/10.1016/0550-3213(90)90077-Q
http://dx.doi.org/10.1016/0550-3213(90)90634-P
http://dx.doi.org/10.1016/0550-3213(90)90634-P
http://dx.doi.org/10.1016/0370-2693(92)91613-E
http://dx.doi.org/10.1088/1126-6708/2002/08/044
http://dx.doi.org/10.1088/1126-6708/2002/08/044
http://dx.doi.org/10.1016/S0550-3213(98)00599-9
http://dx.doi.org/10.1016/0550-3213(94)90473-1
http://dx.doi.org/10.1103/PhysRevD.21.2308
http://dx.doi.org/10.1016/0370-2693(85)91632-6
http://dx.doi.org/10.1016/0370-2693(85)91632-6
http://dx.doi.org/10.1103/PhysRevD.36.515
http://dx.doi.org/10.1016/0370-2693(82)90696-7
http://dx.doi.org/10.1016/0370-2693(82)90696-7
http://dx.doi.org/10.1016/S0550-3213(97)00205-8
http://dx.doi.org/10.1016/S0550-3213(97)00205-8
http://dx.doi.org/10.1016/j.nuclphysb.2003.11.018
http://dx.doi.org/10.1103/PhysRevLett.94.032003
http://dx.doi.org/10.1103/PhysRevLett.94.032003
http://dx.doi.org/10.1088/1126-6708/2007/04/055
http://dx.doi.org/10.1088/1126-6708/2007/04/055
http://dx.doi.org/10.1007/JHEP09(2010)110
http://dx.doi.org/10.1007/JHEP09(2010)110
http://dx.doi.org/10.1007/JHEP09(2015)020
http://dx.doi.org/10.1007/JHEP09(2015)020
http://dx.doi.org/10.1103/PhysRevD.92.074502
http://dx.doi.org/10.1103/PhysRevD.92.074502
http://dx.doi.org/10.1016/S0550-3213(99)00714-2
http://dx.doi.org/10.1016/S0550-3213(99)00714-2
http://dx.doi.org/10.1016/S0550-3213(03)00311-0
http://dx.doi.org/10.1103/PhysRevD.76.094510
http://dx.doi.org/10.1103/PhysRevD.76.094510
http://dx.doi.org/10.1007/BF01726202
http://dx.doi.org/10.1007/BF01726202
http://dx.doi.org/10.1103/PhysRevLett.110.252003
http://dx.doi.org/10.1103/PhysRevLett.110.252003
http://dx.doi.org/10.1007/JHEP03(2015)006
http://dx.doi.org/10.1016/j.physletb.2015.11.020
http://dx.doi.org/10.1016/j.physletb.2015.10.085
http://dx.doi.org/10.1016/S0370-2693(02)01757-4
http://dx.doi.org/10.1016/S0370-2693(02)01757-4
http://dx.doi.org/10.1016/j.nuclphysb.2005.02.037
http://dx.doi.org/10.1016/j.nuclphysb.2005.02.037
http://dx.doi.org/10.1088/1126-6708/2004/09/028
http://dx.doi.org/10.1088/1126-6708/2004/09/028
http://dx.doi.org/10.1103/PhysRevD.92.034507
http://dx.doi.org/10.1103/PhysRevD.92.034507
http://dx.doi.org/10.1007/JHEP10(2015)136
http://dx.doi.org/10.1007/JHEP10(2015)136

