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We compute the form factors for the B → Klþl− semileptonic decay process in lattice QCD using
gauge-field ensembles with 2þ 1 flavors of sea quark, generated by the MILC Collaboration. The
ensembles span lattice spacings from 0.12 to 0.045 fm and have multiple sea-quark masses to help control
the chiral extrapolation. The asqtad improved staggered action is used for the light valence and sea quarks,
and the clover action with the Fermilab interpretation is used for the heavy b quark. We present results for
the form factors fþðq2Þ, f0ðq2Þ, and fTðq2Þ, where q2 is the momentum transfer, together with a
comprehensive examination of systematic errors. Lattice QCD determines the form factors for a limited
range of q2, and we use the model-independent z expansion to cover the whole kinematically allowed
range. We present our final form-factor results as coefficients of the z expansion and the correlations
between them, where the errors on the coefficients include statistical and all systematic uncertainties.
We use this complete description of the form factors to test QCD predictions of the form factors at high
and low q2.

DOI: 10.1103/PhysRevD.93.025026

I. INTRODUCTION

Flavor-changing neutral-current interactions (FCNC)
place important constraints on physics beyond the stan-
dard model. In the standard model, tree-level FCNC
contributions vanish by the Glashow-Iliopolous-Maiani
(GIM) mechanism. Even at the one-loop level, the GIM
mechanism suppresses these amplitudes, as do factors of

the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix.
Thus, new-physics effects may be substantially larger than
the small standard-model contribution and, hence, observ-
able. In this paper, we present an unquenched lattice-QCD
calculation of the amplitudes for the FCNC process
B → Klþl−. Within the standard model and beyond, three
form factors can arise, and we present results for all three.
This work is part of a larger program by the Fermilab
Lattice and MILC collaborations to calculate form factors
for exclusive semileptonic B decays needed to test the
standard model and search for new physics, all of which
use the same lattice actions and parameters. It builds upon
our previous work on charged-current semileptonic B
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decays, B → πlν [1,2] and B → Dð�Þlν [3–5], which are
used to determine the CKM matrix elements jVubj and
jVcbj [6]. It is also part of a suite of form factors needed to
search for new physics in rare semileptonic B-decay
processes such as B → πlþl− [7], B → Dτν [8] and Bs →
μþμ− [9].
Experimental research on rare B-meson decays is active

[10,11]. The BABAR, Belle, and CDF collaborations have
measured the differential branching ratio, the forward-
backward asymmetry and other observables for both B →
Klþl− and B → K�lþl− decays [12–16]. The LHCb
Collaboration has reported more precise results for theB0 →
K0lþl− and B� → K�lþl− decays [17–19]. The high-
intensity B factories will also have results in the future
[20]. Thus, it is timely to improve the precision of the
theoretical calculation of these processes. Recently, the
HPQCDCollaboration published the first three-flavor lattice
calculation of B → Klþl− [21], also analyzing the phenom-
enological implications [22]. Three-flavor results for the
modeswith vectormesons in the final state,B → K�lþl− and
Bs → ϕlþl−, have also been presented [23].
The theoretical description of the B → Kð�Þlþl− process

is based on the operator-product expansion, which leads to
a low-energy effective Hamiltonian [24–27]. Amplitudes
are expressed in terms of Wilson coefficients that encode
the high-scale physics and hadronic matrix elements that
capture the low-energy nonperturbative QCD contribu-
tions. Hadronic matrix elements of local operators can be
parametrized in terms of form factors. The uncertainties in
the form factors are an important source of error in the
theoretical predictions of the observables mentioned
above. In order to calculate the form factors, one requires
knowledge of nonperturbative QCD dynamics, and lattice
QCD is the tool of choice. We focus on B → Klþl−, rather
than B → K�lþl−, because the former is a “gold-plated”
decay with a stable hadron (under strong interactions) in
the final state. In the vector-meson case, the K� is
unstable, and the resonance would have to be distin-
guished from Kπ states.
The goal of this work is to improve our knowledge of the

B → Klþl− form factors. We use the three-flavor gauge-
field ensembles generated by the MILC Collaboration with
dynamical up, down, and strange quarks. We extrapolate
our lattice simulation data to the physical light-quark
masses and continuum using SU(2) chiral perturbation
theory formulated for the process B → Klþl−. Because the
strange-quark mass is integrated out of the SU(2) theory,
the use of SU(2) χPT, rather than SU(3), improves the
convergence of the chiral expansion, thereby reducing the
systematic uncertainty due to the chiral-continuum extrapo-
lation. On currently available lattices, we directly obtain the
form factors at large momentum transfer (low recoil),
q2 ≳ 17 GeV2. Following Ref. [1], we use the z expansion
to extend the lattice-QCD calculation to the full range of q2.
Compared with the work of the HPQCD Collaboration

[21,22], we use twice as many ensembles, covering a larger
range of lattice spacings and using lighter sea-quark
masses. In particular, the smallest lattice spacing and the
smallest light-quark mass in our ensemble set are smaller
by a factor of two compared to the set used by HPQCD. In
addition, we use the Sheikholeslami-Wohlert (SW) action
[28] with the Fermilab interpretation [29] for the b quark,
while the HPQCD Collaboration uses a nonrelativistic
QCD b quark [30]. As discussed below, details of the
chiral-continuum extrapolation and the z expansion also
differ.
This paper is organized as follows. In Sec. II, we define

the form factors for the B → Klþl− decay. We then
describe the lattice ensembles used in our simulations.
We also discuss the formalism for the light and heavy
quarks. In Sec. III, we present the numerical analysis. This
section has four parts. We first present results for the
simulated K and B-meson masses. Next, we determine the
lattice form factors from two-point and three-point corre-
lation functions. We then correct our form-factor data to
account for the slight difference between the simulated
b-quark mass and the physical b-quark mass. Last, we
extrapolate the lattice simulation results to the chiral and
continuum limits with SU(2) heavy meson rooted staggered
chiral perturbation theory (HMrSχPT). In Sec. IV, we
analyze the systematic errors in our calculation and give
a complete error budget for the range of momenta q2 ≳
17 GeV2 accessible in our numerical simulations. In
Sec. V, we extrapolate our form factors from low to high
recoil using the z expansion [31–34]. We present our final
results for fþðq2Þ, f0ðq2Þ, and fTðq2Þ, including statistical
and all systematic errors, as coefficients of the z expansion
and the correlations between them; this provides a complete
description of our form factors valid over the entire
kinematic range. In Sec. VI, we use these results to test
predictions for the form factor from heavy-quark symmetry
at high q2 and from QCD factorization at low q2. Finally,
we compare our form factors with other lattice-QCD and
light-cone-sum-rule results, and present an outlook for
future work, in Sec. VII.
Preliminary results have been reported in Refs. [35–37].

Here we present a full analysis that includes the
tensor-current form factor and complete systematic error
budgets.

II. LATTICE CALCULATION

In this section, we present the methods and ingredients
used in this work. We give the definitions of the form
factors for the B → Klþl− process and their relation to
physical observables in Sec. II A. We then describe the
lattice actions and parameters used for gluon and fermion
fields in our simulation in Sec. II B. Finally, we define the
lattice currents in Sec. II C.
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A. Matrix elements and form factors

An operator-product expansion analysis of the B →
Klþl− decay in the standard model shows that two currents,
a vector current Vμ ¼ s̄γμb and a tensor current T μν ¼
is̄σμνb, contribute to the b → s process at lowest order [10].
In general standard-model extensions, a scalar current S ¼
s̄b can also arise. The matrix elements of the vector, tensor,
and scalar current are characterized by three form factors
fþðq2Þ, f0ðq2Þ, and fTðq2Þ, which are defined via

hKjs̄γμbjBi ¼ fþðq2Þ
�
pμ þ kμ −

M2
B −M2

K

q2
qμ
�

þ f0ðq2Þ
M2

B −M2
K

q2
qμ; ð2:1Þ

hKjis̄σμνbjBi ¼ 2fTðq2Þ
MB þMK

ðpμkν − pνkμÞ; ð2:2Þ

hKjs̄bjBi ¼ M2
B −M2

K

mb −ms
f0ðq2Þ; ð2:3Þ

where p and k are the B-meson and kaon momenta,
respectively, and q ¼ p − k is the momentum carried off
by the leptons. The Ward identity relating the matrix
element of a vector current to that of the corresponding
scalar current ensures that f0 is the same in Eqs. (2.1)
and (2.3).
For the analysis that follows, it is convenient to write the

vector-current matrix element as

hKjs̄γμbjBi ¼
ffiffiffiffiffiffiffiffiffiffi
2MB

p
½vμf∥ðEKÞ þ kμ⊥f⊥ðEKÞ�; ð2:4Þ

where vμ ¼ pμ=MB is the four-velocity of the B meson,
kμ⊥ ¼ kμ − ðk · vÞvμ, and EK ¼ v · k is the kaon energy in
the B-meson rest frame. From energy-momentum conser-
vation, q2 ¼ M2

B þM2
K − 2MBEK . We obtain f∥ðEKÞ and

f⊥ðEKÞ from the temporal and spatial components of the
matrix element of the vector current:

f∥ðEKÞ ¼
hKjs̄γ0bjBiffiffiffiffiffiffiffiffiffiffi

2MB
p ; ð2:5Þ

f⊥ðEKÞ ¼
hKjs̄γibjBiffiffiffiffiffiffiffiffiffiffi

2MB
p

ki
: ð2:6Þ

Similarly, we obtain the tensor form factor fT from

fTðq2Þ ¼
MB þMKffiffiffiffiffiffiffiffiffiffi

2MB
p hKjs̄σ0ibjBiffiffiffiffiffiffiffiffiffiffi

2MB
p

ki
: ð2:7Þ

Finally, the vector and scalar form factors fþ and f0 can be
obtained from

fþðq2Þ ¼
1ffiffiffiffiffiffiffiffiffiffi
2MB

p ½f∥ðEKÞ þ ðMB − EKÞf⊥ðEKÞ�; ð2:8Þ

f0ðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffi
2MB

p
M2

B −M2
K
½ðMB − EKÞf∥ðEKÞ

þ ðE2
K −M2

KÞf⊥ðEKÞ�: ð2:9Þ

Equations (2.8)–(2.9) satisfy the kinematic constraint,
fþð0Þ ¼ f0ð0Þ, automatically. At low recoil, the form
factor f⊥ gives the dominant contribution to fþ.
Physical observables can be described in terms of the

form factors, if we neglect nonfactorizable contributions.
For example, the standard-model differential decay rate for
B → Klþl− is [24,38,39]

dΓ
dq2

¼ G2
Fα

2jVtbV�
tsj2

27π5
jkjβþ

�
2

3
jkj2β2þjCeff

10fþðq2Þj2

þm2
l ðM2

B −M2
KÞ2

q2M2
B

jCeff
10f0ðq2Þj2

þ jkj2
�
1 −

1

3
β2þ

�����Ceff
9 fþðq2Þ

þ 2Ceff
7

mb þms

MB þMK
fTðq2Þ

����2
	
; ð2:10Þ

where GF, α, and Vtq are the Fermi constant, the (QED)
fine structure constant, and CKM matrix elements, respec-
tively, jkj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
K −M2

K

p
is the kaon momentum in the

B-meson rest frame, and β2þ ¼ 1 − 4m2
l =q

2, with ml being
the lepton mass. The Ceff

i are effective Wilson coefficients
[25]; we follow the notation of Ref. [27] in Eq. (2.10).
When q2 corresponds to a charmonium resonance, further
contributions must be added to Eq. (2.10). Beyond the
standard model, the expression can become more compli-
cated, but fþðq2Þ, fTðq2Þ, and f0ðq2Þ still suffice.

B. Actions and parameters

Our calculations employ the Nf ¼ 2þ 1 flavor gauge
configurations generated by the MILC Collaboration
[40,41], which include the effects of dynamical u, d,
and s quarks. The one-loop improved Lüscher-Weisz action
is used for the gluon fields, which leads to lattice artifacts of
Oðαsa2Þ [42]. (The gluon-loop correction is included [43],
but not that of the quark loop [44].)
For light quarks (u, d and s), these configurations

employ the a2 tadpole-improved staggered action (asqtad)
[45–51], leading to discretization errors of Oðαsa2Þ and
Oða4Þ [52]. The sea quarks are simulated with the fourth
root of the staggered fermion determinant. Several theo-
retical and numerical analyses support the idea that this
procedure yields continuum QCD as the lattice spacing
a → 0 [52–65].
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Table I summarizes the properties of the ensembles used
in this work. We use the asqtad ensembles at four lattice
spacings: a ≈ 0.12 fm, a ≈ 0.09 fm, a ≈ 0.06 fm, and
a ≈ 0.045 fm. The volumes of the lattices are large enough
(MπL≳ 4) to suppress finite-volume effects. The strange
sea-quark mass is tuned to be close to its physical value.
The light-to-strange sea-quark mass ratios range from
am0

l=am
0
h ¼ 0.2 down to 0.05, to facilitate reliable chiral

extrapolations. On the a ≈ 0.12 fm and a ≈ 0.09 fm
ensembles, we use unitary data, with the light and strange
valence-quark masses set equal to the corresponding sea-
quark masses, with one exception. On the a ≈ 0.06 fm and
a ≈ 0.045 fm ensembles, however, we use valence
strange-quark masses that are closer to the physical value
and, thus, differ slightly from the strange-quark mass in
the sea.
On each configuration, we compute the correlation

functions starting at four different source locations to
increase the available statistics. We first translate the gauge
field by a different random four-vector on each configu-
ration and then fix the spatial source locations at x ¼ 0 and
the temporal source locations at t ¼ 0, Nt=4, Nt=2, and
3Nt=4. The correlation between the results from different
source locations is weak. The random translation of the
gauge field reduces autocorrelations between successive
configurations.
For the heavy b quark, we use the SW action [28] with

the Fermilab interpretation [29]. The lattice action and
currents are matched to the continuum QCD action via
HQET [82]. The heavy-quark action can be systematically
improved to arbitrarily high orders in 1=mb, or, equiv-
alently, a, by including higher-dimensional operators in
the lattice action [29,82,83] and currents [84–86]. In this
work, we remove the leading discretization errors in the

action by tuning the hopping parameter κ and clover
coefficient cSW. We fix the bare b-quark mass by tuning
the value of κb to reproduce the spin-averaged Bs meson
kinetic mass as in Ref. [4]. We use the tadpole-improved
tree-level value for cSW ¼ u−30 , where u0 is obtained from
the fourth root of the plaquette. We also remove the
leading discretization error in the vector and tensor
currents; see Sec. II C. The values of the parameters
for b quarks used in our simulations are listed in
Table II.
To extrapolate the form factors calculated on the lattice

to the continuum limit, we need a unified scale to compare
the results from different spacings and convert to physical
units. We do so with the scale r1 which is defined such
that r21Fðr1Þ ¼ 1.0 [87,88]. Here FðrÞ is the force between
static quarks at distance r. We first determine the relative
scale r1=a on each ensemble, and then interpolate r1=a
with a smooth function of the gauge coupling β; the
smoothed r1 values are independent of the light sea-quark
mass. (The explicit form of the smoothing function is
given in Ref. [4].) In this paper, we choose a mass-
independent scheme for r1=a, so that it is the same for all
sea masses with the same approximate lattice spacing. We
use the values of r1=a to convert all lattice quantities to r1
units. We can then combine results from different ensem-
bles and perform a chiral-continuum extrapolation. The
physical value r1 ¼ 0.3117ð22Þ fm [52,89] is determined
by requiring that the continuum limit of the pion decay
constant at the physical quark masses takes the PDG value
[6]. The RBC-UKQCD Collaboration also reported the
physical value r1 ¼ 0.323ð8Þð4Þ fm in Ref. [90]. This
result is consistent with the one we use, but less precise.
The values of r1=a used in this work are provided in
Table III.

TABLE I. Parameters of the QCD gauge-field ensembles and light valence-quark masses used in this work, lattice spacing a, lattice
size N3

s × Nt, sea-quark masses am0
l and am0

h, light-valence mass aml, daughter mass amh, the number of configurations and sources
denoted as Nconf × Nsrc, and the box size times the pion mass. On all ensembles but one, we use the same light valence- and sea-quark
mass. (The only exception is on the a ≈ 0.09 fm ensemble with m0

l ¼ 0.0465, where the light valence-quark mass is 0.0047 instead of
0.00465.) On the a ≈ 0.12 fm and a ≈ 0.09 fm ensembles we also use the same valence and sea strange-quark mass. On the a ≈ 0.06 fm
and a ≈ 0.045 fm ensembles, we use slightly different valence strange-quark masses than in the sea; the valence masses are tuned to be
closer to the physical value. The values ofMπL are taken from Refs. [4,52]. The gauge-field configurations can be downloaded using the
DOI links provided in Refs. [66–81].

≈a (fm) N3
s Nt am0

l am0
h aml amh Nconf Nsrc MπL

0.12 [66,67] 203 64 0.01 0.05 0.01 0.05 2259 4 4.5
0.12 [68] 203 64 0.007 0.05 0.007 0.05 2110 4 3.8
0.12 [69] 243 64 0.005 0.05 0.005 0.05 2099 4 3.8
0.09 [70–72] 283 96 0.0062 0.031 0.0062 0.031 1931 4 4.1
0.09 [73] 323 96 0.00465 0.031 0.0047 0.031 984 4 4.1
0.09 [74,75] 403 96 0.0031 0.031 0.0031 0.031 1015 4 4.2
0.09 [76] 643 94 0.00155 0.031 0.00155 0.031 791 4 4.8
0.06 [77,78] 483 144 0.0036 0.0180 0.0036 0.0188 673 4 4.5
0.06 [79,80] 643 144 0.0018 0.0180 0.0018 0.0188 827 4 4.3
0.045 [81] 643 192 0.0028 0.0140 0.0028 0.0130 801 4 4.6
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C. Definition of currents

We define the current operators on the lattice as in
Refs. [1,91]:

Vμ
ξðxÞ ¼ Ψ̄αðxÞγμαβΩβξðxÞχðxÞ; ð2:11Þ

Tμν
ξ ðxÞ ¼ Ψ̄αðxÞσμναβΩβξðxÞχðxÞ; ð2:12Þ

where the matrix Ω ¼ γx4=a4 γx1=a1 γx2=a2 γx3=a3 and χðxÞ is the
one-component staggered fermion field. The clover b-
quark field is rotated to remove discretization errors of
order a from the lattice current [29]:

Ψ ¼ ð1þ ad1γ · DlatÞψ ; ð2:13Þ

where ψ is the field in the Fermilab action (for the b quark),
Dlat is the symmetric, nearest-neighbor, covariant differ-
ence operator, and d1 is adjusted to remove discretization
errors. In practice, we set the rotation coefficient d1 to its
tadpole-improved tree-level value:

d1 ¼
1

u0

�
1

2þm0a
−

1

2ð1þm0aÞ
�
; ð2:14Þ

where m0a is the bare lattice b-quark mass. The index ξ in
Eqs. (2.11)–(2.12) corresponds to taste, and it is contracted
with another taste index in the heavy-light operators
coupling the B meson to the vacuum [91].
To calculate the form factors on the lattice, we have to

define currents with the correct continuum limit. As in
earlier work [1,82], we define

Vμ ≐ ZVμVμ; ð2:15Þ

T μν ≐ ZTμνTμν; ð2:16Þ

where fV; T g and fV; Tg are the continuum and lattice
current operators, respectively. We use a mostly nonper-
turbative renormalization procedure to obtain the Z factors
[92],

ZJ ¼ ρJ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZV4

bb
ZV4

ss

q
; ð2:17Þ

where ZV4
bb
and ZV4

ss
are computed nonperturbatively, and

the remaining factor ρJ is calculated at one-loop order in
mean-field improved lattice perturbation theory [84].
The light-light renormalization factor ZV4

ss
is calculated

nonperturbatively from the charge normalization condition
of a c̄s meson:

ZV4
ss

−1 ¼
Z

d3xhDsjV4
ssðxÞjDsi ð2:18Þ

as in Ref. [89], but with random color wall sources and
higher statistics, leading to the values listed in Table IV. The
result for ZV4

ss
is insensitive to the mass of the spectator

quark in the correlation function, so we use a heavy charm
quark to improve the statistical errors. The heavy-heavy
renormalization factor ZV4

bb
is computed analogously from

the charge normalization condition of the B meson using

TABLE II. Parameters used in the simulation of the heavy b
quark [4]. We list the clover coefficient cSW, input b-quark
hopping parameter κ0b, and rotation coefficient d1.

≈a (fm) am0
l cSW κ0b d1

0.12 0.01 1.531 0.0901 0.093340
0.12 0.007 1.530 0.0901 0.093320
0.12 0.005 1.530 0.0901 0.093320
0.09 0.0062 1.476 0.0979 0.096765
0.09 0.00465 1.477 0.0977 0.096708
0.09 0.0031 1.478 0.0976 0.096690
0.09 0.00155 1.4784 0.0976 0.096700
0.06 0.0036 1.4287 0.1052 0.096300
0.06 0.0018 1.4298 0.1052 0.096300
0.045 0.0028 1.3943 0.1143 0.08864

TABLE III. Relative scales r1=a used in this work, for
corresponding values of β [4,52]. The statistical and systematic
errors on r1=a are both 0.1%–0.3% [4]. We also list the Gold-
stone pion mass (Mπ) and root-mean-square (RMS) pion mass
(MRMS

π ) here.

≈a (fm) am0
l=am

0
h β r1=a

Mπ

(MeV)
MRMS

π

(MeV)

0.12 0.01=0.05 6.760 2.739 389 532
0.12 0.007=0.05 6.760 2.739 327 488
0.12 0.005=0.05 6.760 2.739 277 456
0.09 0.0062=0.031 7.090 3.789 354 413
0.09 0.00465=0.031 7.085 3.772 307 374
0.09 0.0031=0.031 7.080 3.755 249 329
0.09 0.00155=0.031 7.075 3.738 177 277
0.06 0.0036=0.018 7.470 5.353 316 340
0.06 0.0018=0.018 7.460 5.307 224 255
0.045 0.0028=0.014 7.810 7.208 324 331

TABLE IV. The flavor-conserving renormalization factors ZV4
ss

and ZV4
bb
used in this work. Errors shown are statistical.

≈a (fm) am0
l am0

h κ0b ZV4
ss

ZV4
bb

0.12 0.01 0.05 0.0901 1.741(3) 0.5065(57)
0.12 0.007 0.05 0.0901 1.741(3) 0.5119(75)
0.12 0.005 0.05 0.0901 1.741(3) 0.5026(71)
0.09 0.0062 0.031 0.0979 1.777(5) 0.4482(57)
0.09 0.00465 0.031 0.0977 1.776(5) 0.4694(100)
0.09 0.0031 0.031 0.0976 1.776(5) 0.4608(94)
0.09 0.00155 0.031 0.0976 1.776(5) 0.4491(116)
0.06 0.0036 0.018 0.1052 1.808(6) 0.4196(101)
0.06 0.0018 0.018 0.1052 1.807(7) 0.4100(103)
0.045 0.0028 0.014 0.1143 1.841(6) 0.3564(65)
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data generated for our B → Dlν analysis [93]. We compute
ZV4

bb
on the same jackknife samples as the form factors and

propagate the statistical error directly throughout the
remainder of the analysis. The values of ZV4

bb
are shown

in Table IV.
The remaining factor ρJ (here, J ¼ Vμ, Tμν) is close to

unity [84,94], because most of the radiative corrections,
particularly those from tadpole diagrams, cancel among the
Z factors in Eq. (2.17). We expand the factor ρJ perturba-
tively as

ρJ ¼ 1þ αsðq�Þρ½1�J þOðα2sÞ; ð2:19Þ

where αs is the QCD coupling [95,96]. Details of the one-
loop perturbative calculation will be given in a separate
publication [97]; the values used here are listed in Table V.
In practice, we evaluate the coupling in the V-scheme
[95,98] at the scale q� ¼ 2=a in mean-field improved
lattice perturbation theory. For ρV4 we find that the one-
loop corrections are less than 1%, while for ρVi they range
from 1.5% to 2.6%. The tensor current is scale dependent,
and we renormalize it at the scale μ ¼ mb (where according
to the Fermilab prescription m2 ¼ mb). We find that for ρT
the corrections range from 3% to 6%.
Because ρJ is computed separately from the correlation

functions, we used it to introduce a blinding procedure (as
in many B physics experiments) to reduce subjective bias.
Those of us carrying out the perturbative calculation [97]
multiplied ρJ by a constant prefactor. Only after we
finalized the choices made in our analysis, including tests
and estimates of systematic uncertainties, was the prefactor
revealed to the rest of the collaboration and removed from
the results reported here.

III. ANALYSIS

In this section, we present our form-factor analysis and
results. In Sec. III A,weobtain theB-meson and kaonmasses
and energies by fitting two-point correlation functions. In
Sec. III B, we extract the lattice form factors from ratios of

three-point over two-point correlation functions. In
Sec. III C, we slightly shift the full set of lattice form-factor
data from the simulated κ0b to the physical value. In Sec. III D,
we carry out the chiral-continuum extrapolation by fitting the
form factors to the expression derived in HMrSχPT.

A. B and K meson masses

We extract meson masses and energies from two-point
correlation functions defined at Euclidean time t:

C2ðt; kÞ ¼
X
x

hOPðx; tÞO†
Pð0; 0Þie−ik·x; ð3:1Þ

where the subscriptP denotes theK orB pseudoscalarmeson
in the interpolating operator. For the kaon we use a local
interpolating operator. For the B meson we use the wave
function for bottomonium given by the Richardson potential
model [99] as explained in Refs. [100–102]. We generate
correlators with kaon three-momenta k ¼ 2πð0; 0; 0Þ=L,
2πð1; 0; 0Þ=L, 2πð1; 1; 0Þ=L, and 2πð1; 1; 1Þ=L.
The meson masses and energies are extracted from the

large-t behavior of the two-point correlation functions. By
inserting a complete set of states, two-point correlation
functions can be decomposed into a sum of energy levels as

C2ðt; kÞ ¼
X
m

ð−1Þmðtþ1Þ jh0jOPjPðmÞij2
2EðmÞ

P

e−E
ðmÞ
P t: ð3:2Þ

The amplitudes of terms with odd m oscillate in time as
ð−1Þmðtþ1Þ and are due to opposite-parity-state contribu-
tions to staggered correlators. Figure 1 shows sample kaon

and B-meson scaled correlators ½C2ðtÞ − Cð0Þ
2 ðtÞ�=Cð0Þ

2 ðtÞ
on the a ≈ 0.12 fm ensemble with m0

l ¼ 0.1m0
h and

momentum k ¼ 0, where

Cð0Þ
2 ðtÞ ¼ jh0jOPjPð0Þij2

2Eð0Þ
P

e−E
ð0Þ
P t ð3:3Þ

is the ground-state contribution determined by our fit. The
opposite-parity-state contribution is insignificant for the

TABLE V. Matching factors ρV4 , ρV1 , and ρT calculated at one loop in tadpole-improved lattice perturbation theory. Here, ρT brings fT
to the MS scheme at μ ¼ m2, and m2 should be interpreted as the pole mass.

≈a (fm) am0
l am0

h amh κ0b ρV4 ρV1 ρTðμ ¼ m2Þ
0.12 0.010 0.050 0.050 0.0901 1.0071 0.9737 1.0334
0.12 0.007 0.050 0.050 0.0901 1.0071 0.9737 1.0333
0.12 0.005 0.050 0.050 0.0901 1.0072 0.9738 1.0333
0.09 0.0062 0.031 0.031 0.0979 0.9997 0.9759 1.0366
0.09 0.00465 0.031 0.031 0.0977 0.9998 0.9759 1.0364
0.09 0.0031 0.031 0.031 0.0976 0.9999 0.9758 1.0364
0.09 0.00155 0.031 0.031 0.0976 0.9999 0.9757 1.0364
0.06 0.0036 0.018 0.0188 0.1052 0.9956 0.9792 1.0432
0.06 0.0018 0.018 0.0188 0.1052 0.9956 0.9792 1.0433
0.045 0.0028 0.014 0.013 0.1143 0.9943 0.9843 1.0588
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zero-momentum kaon but is visible for the B meson. We
employ a simple strategy to fit the two-point correlators
because the statistical errors in the kaon and B-meson
energies contribute little to the errors in form factors, which
stem primarily from the three-point correlators. For the
kaon correlators, we perform two-state fits that include
the ground state and a same-parity excited state. For the
B-meson correlators, we perform three-state fits including
the ground state, its excited state, and the lowest-lying
opposite-parity state.
We use a single-elimination jackknife analysis to esti-

mate the statistical errors in this work. We first average the
correlation functions generated from the four sources at 0,
Nt=4, Nt=2, and 3Nt=4. We fit C2ðtÞ in an interval
t ∈ ½tmin; tmax�, taking correlation from time slice to time
slice into account. In general, we choose tmax so that the
fractional error in the correlator remains below 4%. We
choose tmin such that we obtain a good correlated p value.
We use the same interval ½tmin; tmax� for all kaon or B-meson
fits at a given lattice spacing, and use similar physical
distances for ½tmin; tmax� on the four lattice spacings. These
fit ranges are given in Table VI. We use a 2þ 1-state fit for
the B meson in this paper and find consistent results with
the 1þ 1-state, larger tmin fit of Ref. [2].
Figure 2 shows sample B-meson and kaon correlator fits

versus tmin for fixed tmax on the same a ≈ 0.12 fm ensemble

as in Fig. 1. The fit results and errors are stable versus tmin,
and show no evidence of residual excited-state
contamination.
For kaons with nonzero momentum, we can either

extract the energy from two-point correlation functions
with nonzero momentum or we can use the kaon mass from
the zero-momentum correlator and the continuum
dispersion relation, E2 ¼ M2 þ k2. Figure 3 shows a
comparison of the kaon energy calculated from the con-
tinuum dispersion relation and from directly fitting the
nonzero momentum two-point correlation functions on the
ensemble discussed above. We do not observe any sta-
tistically significant deviations from the continuum
dispersion relation. Further, while the statistical errors
grow with increasing momentum, the kaon energies are
consistent with a continuum dispersion relation within a
2% statistical accuracy even at our largest simulated lattice
kaon momentum. Therefore, we use the continuum
dispersion relation to obtain the kaon energies at nonzero
lattice momenta because this yields smaller statistical errors
than the direct fit.
The meson propagators from consecutive gauge-field

configurations are, in principle, correlated, so we look for
possible autocorrelations by studying the effect of the block
size on our fit results. We perform this test on every
ensemble. As illustrated in Fig. 4 for two of the ensembles,
the central values and errors are stable with increasing
block size, so we do not block the data or inflate the
statistical errors in our analysis.

B. Extracting form factors

We extract the lattice form factors f∥, f⊥, and fT from
the ratio of three-point to two-point correlation functions.
The three-point functions are defined as

FIG. 1. Scaled correlator ½C2ðtÞ − Cð0Þ
2 ðtÞ�=Cð0Þ

2 ðtÞ as a function of time t on the am0
l=am

0
h ¼ 0.005=0.05 a ≈ 0.12 fm ensemble at the

unitary point. The oscillating opposite-parity-state contribution is clearly visible in the B-meson correlator (left), but it is small in the
zero-momentum kaon correlator (right).

TABLE VI. Fit ranges ½tmin; tmax� used in the kaon and B-meson
mass and energy fits.

≈a (fm) Kaon B meson

0.12 [7,30] [3,15]
0.09 [10,35] [5,20]
0.06 [17,60] [7,30]
0.045 [20,90] [8,40]
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Cμ
3ðt; T; kÞ ¼

X
x;y

eik·yhOKð0; 0ÞVμðt; yÞO†
BðT; xÞi; ð3:4Þ

Cμν
3 ðt; T; kÞ ¼

X
x;y

eik·yhOKð0; 0ÞTμνðt; yÞO†
BðT; xÞi; ð3:5Þ

where the kaon source is at time slice 0 and the B-meson
sink is at time slice T. The source-sink separations T are
given in Table VII. Because we calculate the form factors in
the B-meson rest frame, only the kaon has nonzero
momentum k.
By inserting two complete sets of states, the three-point

correlation function Cμ
3 can be decomposed into sums over

energy levels as

Cμ
3ðt;T;kÞ¼

X
m;n

ð−1Þmðtþ1Þð−1ÞnðT−t−1ÞAμ
mne−E

ðmÞ
K te−M

ðnÞ
B ðT−tÞ;

ð3:6Þ

where

Aμ
mn ¼ h0jOKjKðmÞi

2EðmÞ
K

hKðmÞjVμjBðnÞi hB
ðnÞjOBj0i
2MðnÞ

B

: ð3:7Þ

The contributions from the first few terms dominate Cμ
3 at

times sufficiently far from both the source and sink. A
similar decomposition applies to Cμν

3 .
We use the averages introduced in Ref. [1] to suppress

the contribution from oscillating states in correlation
functions. We average the value of the two-point correlator
on successive time slices:

C̄2ðtÞ≡ e−M
ð0Þ
P t

4

�
C2ðtÞ
e−M

ð0Þ
P t

þ 2C2ðtþ 1Þ
e−M

ð0Þ
P ðtþ1Þ

þ C2ðtþ 2Þ
e−M

ð0Þ
P ðtþ2Þ

�

¼ Z2
P

2Mð0Þ
P

e−M
ð0Þ
P t þOðΔM2

PÞ; ð3:8Þ

where ZP ¼ h0jOPjPi is the ground-state amplitude of the
kaon or B meson, and ΔMP is the energy difference
between the ground and first oscillating state. For three-
point functions, we also average the value of the correlator
for two neighboring sink locations T and T þ 1:

FIG. 2. B-meson (upper) and kaon (lower) mass vs tmin on the
a ≈ 0.12 fm, m0

l ¼ 0.1m0
h ensemble for fixed tmax ¼ 15 and 30,

respectively. The left and right vertical axes show the fitted mass
and the p value (confidence level) of the fit, respectively. The filled
circles show the values of tmin selected for the analysis.

FIG. 3. E2
K=ðM2

K þ k2Þ vs kaon momentum in units of 2π=L on
the a ≈ 0.12 fm, m0

l ¼ 0.1m0
h ensemble. The continuum

dispersion relation is well respected through momentum
2πð1; 1; 1Þ=L. The dashed lines show a power-counting estimate
for the size of the momentum-dependent discretization error for
comparison.
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C̄μðνÞ
3 ðt; T; kÞ≡ 1

8
½e−Eð0Þ

K te−M
ð0Þ
B ðT−tÞ� ×

�
CμðνÞ
3 ðt; T; kÞ

e−E
ð0Þ
K te−M

ð0Þ
B ðT−tÞ

þ CμðνÞ
3 ðt; T þ 1; kÞ

e−E
ð0Þ
K ðtÞe−M

ð0Þ
B ðTþ1−tÞ

þ 2CμðνÞ
3 ðtþ 1; T; kÞ

e−E
ð0Þ
K ðtþ1Þe−M

ð0Þ
B ðT−t−1Þ

þ 2CμðνÞ
3 ðtþ 1; T þ 1; kÞ

e−E
ð0Þ
K ðtþ1Þe−M

ð0Þ
B ðT−tÞ

þ CμðνÞ
3 ðtþ 2; T; kÞ

e−E
ð0Þ
K ðtþ2Þe−M

ð0Þ
B ðT−t−2Þ

þ CμðνÞ
3 ðtþ 2; T þ 1; kÞ

e−E
ð0Þ
K ðtþ2Þe−M

ð0Þ
B ðT−t−1Þ

�
ð3:9Þ

¼ A00e−E
ð0Þ
K te−M

ð0Þ
B ðT−tÞ þ ð−1ÞTþ1A11e−E

ð1Þ
K te−M

ð1Þ
B ðT−tÞ

�
ΔMB

2

�
þOðΔE2

K;ΔEKΔMB;ΔM2
BÞ: ð3:10Þ

We then form the ratios

R̄μðνÞðt; T; kÞ≡ C̄μðνÞ
3 ðt; T; kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C̄K
2 ðt; kÞC̄B

2 ðT − tÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eð0Þ

K

e−E
ð0Þ
K te−M

ð0Þ
B ðT−tÞ

s
; ð3:11Þ

FIG. 4. MB (left column) and MK (right column) vs block size on the a ≈ 0.12 fm (top row) and a ≈ 0.06 fm (bottom row),
m0

l ¼ 0.1m0
h ensemble. The fit results are stable as the block size increases.
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where Eð0Þ
K andMð0Þ

B are obtained from fits to Eq. (3.2) with

Eð0Þ
K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mð0Þ

K þ k2
q

. From Eqs. (3.8) and (3.10), the ratio

R̄μðνÞ contains a t-independent term proportional to the
desired matrix element, and other higher-order terms from
the excited states.
We show an example of the ratio R̄μðνÞ on the

a ≈ 0.12 fm, m0
l ¼ 0.1m0

s ensemble in Fig. 5. There is a
short plateau region in the middle between 0 and T, with
kaon excited-state contributions visible on the left and B-
meson excited-state contributions visible on the right. The
B-meson excited-state contributions, however, are smaller
as indicated by the less dramatic falloff of the correlator on
the right-hand side. We therefore choose to fit the correlator
closer to the B-meson side including the contribution from
a single B-meson excited state, but sufficiently far from the
kaon that we can neglect kaon excited states. The fit
function is given by

R̄μðνÞðt; T; kÞ ¼ DμðνÞ
0 ½1 −D1e−ΔMBðT−tÞ� ð3:12Þ

whereDμðνÞ
0 ,D1, and ΔMB are fit parameters. Although the

second term in Eq. (3.12) models all excited states, we
expect ΔMB to be close to the mass difference of the first
excited state.
We employ a correlated, constrained fit [103,104] to

Eq. (3.12), with priors determined as follows. For the prior
on DμðνÞ

0 , we select a point from the middle of the plateau
region and use its central value with the error inflated
by a factor of two. For D1, we use a prior of central
value zero and width one. For ΔMB, we use the central

value and width of Mð1Þ
B −Mð0Þ

B obtained from the corre-
sponding two-point correlator fit. We minimize the aug-
mented χ2aug [104],

χ2aug ¼ χ2 þ
X
i

ðPðiÞ − ~PðiÞÞ2
σ2i

; ð3:13Þ

where PðiÞ is the ith fit parameter, and ~PðiÞ and σi are the
prior central value and width. We measure the goodness of
fit using the χ2aug=dof or p value, obtaining p from χ2aug and
the number of degrees of freedom equal to the sum of the
number of data points and prior constraints minus the
number of fit parameters. We choose the fit interval

FIG. 5. Form-factor ratio R̄μðνÞ fits on the a≈
0.12 fm,m0

l ¼ 0.1m0
h ensemble. From top to bottom, the three plots

show the ratios for the temporal vector, spatial vector, and tensor
currents. In the top plot, the data sets correspond to lattice kaon
momenta k ¼ 2πð0; 0; 0Þ=L, 2πð1; 0; 0Þ=L, 2πð1; 1; 0Þ=L and
2πð1; 1; 1Þ=L; nonzero momentum is required to extract the form
factorsinthebottomtwoplots,sothereareonlythreesetsofdataineach
of them. The gray horizontal bands show the fit results with statistical

errors forCμðνÞ
0 in Eq. (3.12). The black solid and dashed curves show

the fit result within and extended beyond the fit range, respectively.

TABLE VII. Pairs of source-sink separations T, T þ 1 and fit
ranges used in the R̄μðνÞ fits.

≈a (fm) T, T þ 1 ½tmin; tmax�
0.12 18, 19 [8, 12]
0.09 25, 26 [10, 16]
0.06 36, 37 [16, 24]
0.045 48, 49 [20, 32]
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FIG. 6. Fit results of R̄μðνÞ from different fit ranges on the
a ≈ 0.12 fm, m0

l ¼ 0.1m0
h ensemble with lattice kaon momentum

p ¼ 2π
L ð1; 1; 1Þ. From top to bottom, the three plots show the

ratios for the temporal vector, spatial vector, and tensor currents.
We vary the fit range by changing tmin and tmax. The blue data
point denotes the result from the fit range used in this paper.

FIG. 7. Form-factor ratio R̄μðνÞ fits on the a ≈ 0.12 fm,
m0

l=m
0
h ¼ 0.007=0.05 ensemble. From top to bottom, the three

plots show the ratios for the temporal vector f∥, spatial vector f⊥,
and tensor fT currents. The fit results for different pairs of source-
sink separations T, T þ 1 are shown as a function of EK . The
results from larger sink combinations are slightly displaced to the
right for clarity.
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½tmin; tmax� such that we obtain a good p value, using the
same fit range for all momenta on the same ensemble. We
select approximately the same physical fit ranges on the
ensembles with different lattice spacings. Figure 5 shows
sample fits of the three form-factor ratios on the
a ≈ 0.12 fm, m0

l ¼ 0.1m0
s ensemble. Figure 6 shows an

example of the stability of the fit result against the
variations of the fit range. We choose the preferred fit
range to be ½tmin; tmax� ¼ ½8; 12�, where we find a good p
value. The fit ranges and source-sink separations used on
other ensembles are given in Table VII.
To study the effects of residual excited-state contami-

nation, we generated three-point correlators on the
a ≈ 0.12 fm, m0

l ¼ 0.14m0
s ensemble with several source-

sink separations T ¼ 18, 19, 20, 21. We repeat the
correlator fits with three sink-location combinations
ðT; T þ 1Þ ¼ ð18; 19Þ, (19,20), and (20,21), and the results
are shown in Fig. 7 for four different momenta. We find no
statistically significant differences for all operators and
momenta except for f⊥ and fT at p ¼ 2πð1; 0; 0Þ=L. These
differences, however, are still sufficiently small that
increasing the error on all p ¼ 2πð1; 0; 0Þ=L points in
the chiral-continuum fit does not change the physical
form-factor results.
The fit parameters CμðνÞ

0 are proportional to the matrix
elements hK0jJjB0i. The lattice form factors are obtained as

flat∥ ðEKÞ ¼ D4
0ðkÞ; ð3:14Þ

flat⊥ ðEKÞ ¼
Di

0ðkÞ
ki

; ð3:15Þ

flatT ðEKÞ ¼
MB þMKffiffiffiffiffiffiffiffiffiffi

2MB
p D4i

0 ðkÞ
ki

: ð3:16Þ

The factor ðMB þMKÞ=
ffiffiffiffiffiffiffiffiffiffi
2MB

p
in fT in Eq. (3.16), which

stems from Eq. (2.7), is evaluated with the physical meson
masses to avoid introducingmq dependence not captured in
the χPT formula.

C. b-quark mass correction

The b-quark hopping parameter used in our simulations
κ0b differs slightly from the physical value κb because our
production runs started before a more precise tuning of the
b-quark hopping parameter κb was completed. For our
desired accuracy, we need to apply a correction. To this
end, we have carried out runs with multiple values of κ0b on
the a ≈ 0.12 fm ensemble withm0

l=m
0
h ¼ 0.2. In addition to

the production value of κ0b ¼ 0.0901, we repeated the run
with κ0b ¼ 0.0820 and 0.0860, allowing us to bracket the
physical value κb ¼ 0.0868. The form factors depend on
the b-quark kinetic mass m0

2. At the tree level

1

m0
2a

¼ 2

m0
0að2þm0

0aÞ
þ 1

1þm0
0a

; ð3:17Þ

where

m0
0a ¼ 1

2u0

�
1

κ0
−

1

κcrit

�
: ð3:18Þ

The values of u0 and κcrit are given in Table VIII. Following
Ref. [2], we expand the form factor in m−1

2 about m0
2:

fðm0
2; EKÞ ¼ fðm2; EKÞ

�
1 −

∂ ln f
∂ lnm2

�
m2

m0
2

− 1

��
; ð3:19Þ

where m2 denotes the physical b-quark kinetic mass. We
determine the slope, ∂ ln f

∂ lnm2
, in our companion work on the

semileptonic decay B → πlν [2]. Because the slope
depends mildly on the daughter-quark mass, and the
daughter-quark mass is tuned close to its physical value
in our calculation, we neglect the daughter-quark depend-
ence of the slope in this work. Finally, we quote ∂ ln f

∂ lnm2
of f∥,

f⊥, and fT at the simulated daughter-quark mass as 0.115
(9), 0.139(13), and 0.126(13) [2]. We find relative shifts
due to b-quark mass tuning of about 0.5%–1.5% on the
different ensembles.

TABLE VIII. The simulation κ0b and physical κb [4]. We also include κcrit and u0 from the plaquette in this table for convenience,
because they are used in the calculation of the b-quark kinetic mass.

≈a (fm) am0
l=am

0
h κ0b κb κcrit u0

0.12 0.01=0.05 0.0901 0.0868(9)(3) 0.14091 0.8677
0.12 0.007=0.05 0.0901 0.0868(9)(3) 0.14095 0.8678
0.12 0.005=0.05 0.0901 0.0868(9)(3) 0.14096 0.8678
0.09 0.0062=0.031 0.0979 0.0967(7)(3) 0.139119 0.8782
0.09 0.00465=0.031 0.0977 0.0966(7)(3) 0.139134 0.8781
0.09 0.0031=0.031 0.0976 0.0965(7)(3) 0.139173 0.8779
0.09 0.00155=0.031 0.0976 0.0964(7)(3) 0.139190 0.877805
0.06 0.0036=0.018 0.1052 0.1052(5)(2) 0.137632 0.88788
0.06 0.0018=0.018 0.1052 0.1050(5)(2) 0.137678 0.88764
0.045 0.0028=0.014 0.1143 0.1116(3)(2) 0.136640 0.89511
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D. Chiral-continuum extrapolations

The lattice form factors are computed numerically on
ensembles with degenerate up- and down-quark masses that
are heavier than the value in nature, as well as at nonzero
lattice spacing. To obtain physical results, we first compute
the form factors on several lattice spacings with varying
up-/down-quark masses and close-to-physical strange-
quark masses, and then extrapolate to the physical light-
quark mass and continuum (and interpolate to the physical
strange-quark mass) using HMrSχPT [105,106].
For the chiral-continuum extrapolation we use an

HMrSχPT formula valid to leading order (LO) in 1=mb
and next-to-leading order (NLO) in the light-quark masses,
kaon energy, and lattice spacing, supplemented by next-to-
next-to-leading order (NNLO) analytical terms. We have
tested both SU(3) HMrSχPT [106], which includes the
effects of dynamical pions, kaons, and ηmesons, and SU(2)
HMrSχPT, in which the mesons with strange quarks are
integrated out. In addition, we also consider hard-kaon
HMrSχPT, which applies to semileptonic decays with
energetic kaons. We find that NLO SU(3) HMrSχPT, even
supplemented with NNLO analytical terms, does not
provide a good description of the data for f∥ [35–37],
and the p value of the fit is 10−9. On the other hand, SU(2)

HMrSχPT describes the data well even at NLO. We
therefore choose SU(2) HMrSχPT to perform the chiral-
continuum extrapolations.
The kaon energies in our numerical simulations are much

larger than the rest mass of the physical kaon. Therefore
standard HMrSχPT, which is derived for the situation in
which the kaon momenta are soft, may not provide a good
description of our data throughout the available kinematic
range. We therefore also consider hard-kaon HMrSχPT,
which applies for semileptonic decays with energetic
kaons. Recently, Bijnens and Jemos derived the continuum
NLO hard-kaon (pion) HMχPT formulas for both B → K
and B → π processes [107,108]. We derive the correspond-
ing NLO staggered SU(2) and SU(3) hard-kaon (pion)
HMrSχPT formulas in the Appendix. It turns out that the
chiral logarithms in NLO hard-kaon SU(2) HMrSχPT are
identical to those in standard soft-kaon SU(2) HMrSχPT
for B → K decays. This is likely the reason that the
standard NLO SU(2) expressions describe our data even
at such large kaon energies. Reference [109] found that the
hard-pion theory can break down at three-loop level, but we
only work at one-loop level here.
The NLO SU(2) HMrSχPT formulas for B → K decays

take the form

r1=21 f∥ ¼
gπ½Cð0Þ

∥ ð1þ logsÞ þ Cð1Þ
∥ χl þ Cð2Þ

∥ χh þ Cð3Þ
∥ χE þ Cð4Þ

∥ χa2 þ Cð5Þ
∥ χ2E�

fπr1ðEK þ ΔB�
s0
Þr1

; ð3:20Þ

r−1=21 f⊥ ¼ gπ½Cð0Þ
⊥ ð1þ logsÞ þ Cð1Þ

⊥ χl þ Cð2Þ
⊥ χh þ Cð3Þ

⊥ χE þ Cð4Þ
⊥ χa2 þ Cð5Þ

∥ χ2E�
fπr1ðEK þ ΔB�

s
Þr1

; ð3:21Þ

where “logs” denotes nonanalytic functions of the light-
quark mass and lattice spacing; the explicit expressions are
given in Eqs. (A28) and (A33)–(A34). The dimensionless
expansion parameters χi in Eqs. (3.20)–(3.21) are

χl ¼
2μml

8π2f2π
; ð3:22Þ

χh ¼
2μmh

8π2f2π
; ð3:23Þ

χa2 ¼
a2Δ̄
8π2f2π

; ð3:24Þ

χE ¼
ffiffiffi
2

p
EK

4πfπ
; ð3:25Þ

where a2Δ̄ is the averaged taste-symmetry breaking param-
eter, a2Δ̄≡ 1

16

P
ξa

2Δξ and μ denotes the leading-order

QCD LEC; see Eqs. (A3)–(A14) for the definition. If
HMrSχPT gives a good description of the data, we expect
theCðiÞ, i > 0, to be of order unity. The SU(2) χPT formulas
do not contain mh explicitly; however, the low-energy
constants (LECs) depend on mh. Because the strange-quark
masses on different ensembles are slightly different from
each other, we include a term proportional to χh in the set of
analytic terms to account for the leading strange-quark mass
dependence of the LECs and enable an interpolation to the
physical strange-quark mass.
Equations (3.20)–(3.21) each contain a pole in EK. The

poles appear at negative energy −ΔB�
sð0Þ

with

ΔB�
sð0Þ

≡
M2

B�
sð0Þ

−M2
B −M2

K

2MB
≈MB�

sð0Þ
−MB: ð3:26Þ

The pole arises from low-lying states with flavor content
b̄s and quantum numbers that depend upon the form factor:
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for f⊥ and fT , the relevant B�
s meson has JP ¼ 1−, while

for f∥, the B�
s0 state has J

P ¼ 0þ. In the chiral-continuum
fits, we fix MB to its experimentally measured value
5.27958 GeV [6] (recall that we tuned the lattice b-quark
mass using the experimental Bs-meson mass). We also use
the experimentally measured value of the lowest-lying
vector meson MB�

s
¼ 5.4154 GeV [6], which is stable

apart from B�
s → Bsγ, for the pole position in the fits of

f⊥ and fT to Eq. (3.21). Although a scalar B�
s0 state has not

been observed in experiments, theoretical predictions
estimate its mass to be just below the B-K production
threshold [110,111]. Therefore, in the fit of f∥, we use the
prediction MB�

s0
¼ 5.711ð23Þ GeV from a recent three-

flavor lattice-QCD calculation [112] for the pole position
in Eq. (3.20).
Following the approach of Refs. [103,104], we constrain

the parameters of the chiral-continuum fit with Bayesian
priors and minimize the augmented χ2aug defined in
Eq. (3.13). The chiral logarithms in Eqs. (3.20)–(3.21)
depend upon the universal B-B�-π coupling gπ , which we
constrain with a Gaussian prior of central value 0.45 and
width 0.08. This prior is consistent with a direct lattice
calculation [113–115], yet conservative enough to accom-
modate other lattice results [116,117]. The chiral loga-
rithms also depend on the mass splittings between mesons
of different tastes and on the leading-order LEC μ. These
parameters depend only on the light-quark action, and we
fix them to the values determined in the MILC light-
pseudoscalar analysis [52]; see Table IX. In the f∥ chiral-
continuum extrapolation, we account for the uncertainty on
the scalar B�

s0 mass by taking a generous prior width of
three times the theoretical error reported in Ref. [112],
or �69 MeV.
We constrain the coefficients of the LO and NLO

analytic terms Cð0Þ − Cð5Þ using priors with central values
zero and widths two. To allow for higher-order contribu-
tions in the chiral expansion, we also include the complete
set of NNLO analytic terms. These are proportional to χ2l ,
χlχa2 , χlχE, χlχ

2
E, χa2χE, χa2χ

2
E, χ

3
E, χ

4
E, and χ2a2 . We use

prior central values of 0 with widths 1 for the coefficients

of the NNLO analytic terms. The systematic error from
truncating the chiral expansion will be discussed
in Sec. IV.
Staggered χPT incorporates taste-breaking discretiza-

tion effects from the light valence and sea quarks, but the
lattice data also contain generic light-quark and gluon
discretization effects as well as discretization effects from
the heavy quark. We account for generic light-quark and
gluon discretization errors by adding the term
zαsðaΛQCDÞ2 in the HMrSχPT formulas with coefficient
prior central value zero and width one. Similarly, to
account for heavy-quark discretization effects in both
the action and heavy-light currents, we add terms of order
a2 and αsa with coefficients constrained by heavy-quark
power counting [83]. At this order there are five functions
(fB, fY , f3, fE, fX) that depend upon the bare heavy-quark
mass; their explicit forms are given in Appendix A of
Ref. [1]. Dimensional analysis can be used to estimate the
heavy-quark error

errori ∝ fiðm0aÞðaΛÞdimOi−4; ð3:27Þ

where fi is related to the mismatch between coefficients of
the continuum operators in the action and currents and their
lattice counterparts, and Λ is a typical QCD scale for heavy-
light mesons which we take to be Λ ¼ 500 MeV. As in
Ref. [89], we add terms zi × errori to the HMrSχPT
formulas for f∥;⊥;T. The priors on the zi have central values
zero and widths equal to the square root of the number of
times each function appears. (See Appendix A of Ref. [1].)
Because the discretization errors are included via the con-
strained fit in the chiral-continuum extrapolations, our
results for the extrapolated form factors include the sys-
tematic uncertainties from light and heavy discretization
effects.
In summary, we use expressions derived in SU(2)

HMrSχPT for the central chiral-continuum extrapolations
of the form factors f∥, f⊥, and fT ; these are shown in
Fig. 8. The SU(2) theory describes our data well: the p
values of the fits are 0.91, 0.94, and 0.98 for f∥, f⊥, and
fT , respectively. Our fit results for gπ are 0.47(5), 0.46(4),

TABLE IX. Fixed parameters used in the chiral fit [4]. μ is the leading-order low-energy constant in QCD. r21a
2ΔΞ and r21a

2δV=A are
the taste splittings and hairpin parameters for asqtad staggered fermions.

a ≈ 0.12 fm a ≈ 0.09 fm a ≈ 0.06 fm a ≈ 0.045 fm Continuum

r1μ 6.831904 6.638563 6.486649 6.417427 6.015349

r21a
2ΔPð10−2Þ 0 0 0 0 0

r21a
2ΔAð10−2Þ 22.70460 7.469220 2.634800 1.040930 0

r21a
2ΔTð10−2Þ 36.61620 12.37760 4.297780 1.697920 0

r21a
2ΔVð10−2Þ 48.02591 15.93220 5.743780 2.269190 0

r21a
2ΔSð10−2Þ 60.08212 22.06520 7.038790 2.780810 0

r21a
2δV 0.00 0.00 0.00 0.00 0

r21a
2δA −0.28 −0.09 −0.03 −0.01 0
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and 0.47(3), respectively. At this stage, only the statistical,
gπ , chiral truncation, and discretization errors have been
included. In the next section, we estimate the size of the
remaining uncertainties before employing the z expansion
in Sec. V to extend our results over the full kinematic
range.

IV. FORM-FACTOR ERROR BUDGET

In this section, we estimate the systematic errors in the
form factors, discussing each source of uncertainty in a
separate subsection. We first discuss the error from the
chiral-continuum extrapolation, which also includes
heavy-quark, light-quark, and gluon discretization errors.
We then discuss the remaining systematic uncertainties
from the heavy-light current renormalization, lattice-scale

determination, light- and strange-quark mass determina-
tions, finite-volume effects, and b-quark mass determina-
tion, discussing each in a separate subsection. As discussed
previously, the systematic errors from gπ and heavy- and
light-quark discretization effects are included in the stat-
istical errors of the chiral-continuum extrapolation result
through the constrained fit. Finally, we visually summarize
the error budgets for the three form factors as a function of
q2 in Fig. 11.

A. Chiral-continuum extrapolation

We use NLO SU(2) HMrSχPT supplemented by all
possible NNLO analytic terms, as well as heavy-quark,
light-quark, and gluon discretization terms, in our preferred
chiral extrapolations of f⊥, f∥, and fT .

FIG. 8. Chiral-continuum extrapolations of f∥ (upper left), f⊥ (lower left), and fT (lower right) using NLO SU(2) HMrSχPT plus
NNLO analytical terms. The squares, circles, triangles, and diamonds denote the m0

l=m
0
h ¼ 0.2, 0.14, 0.1, and 0.05 data, respectively.

The colored fit lines correspond to the different lattice spacings as indicated in the legend. The cyan band shows the continuum
extrapolated curve with statistical error, which includes the systematic uncertainties due to gπ , and the heavy-quark, light-quark, and
gluon discretization errors. Fit lines should pass through the data points of the corresponding color.

B → Klþl− DECAY FORM FACTORS FROM … PHYSICAL REVIEW D 93, 025026 (2016)

025026-15



First, to estimate truncation effects, we compare fit
results using NLO HMrSχPT, our preferred fit function
with NNLO analytic terms, and the same fit function with
the addition of the complete set of next-to-next-to-next-to-
leading order (NNNLO) analytic terms in Fig. 9. We see
that the errors in the preferred fit with NNLO analytic terms
are already saturated, since they are the same as the errors in
the fit with NNNLO analytic terms. Hence, truncation
effects are included in the statistical fit errors from our
preferred fit.
In addition, we also consider two alternative fit Ansätze

for the chiral-continuum extrapolation. First, we consider
NLO SU(3) hard-pion HMrSχPT, which provides a
good description of our data, although the standard NLO
SU(3) expressions do not. We use the result from the SU(2)

HMrSχPT fit as our preferred fit, because the SU(2) theory
converges faster than the SU(3) theory as studied in
Ref. [118]. We compare the fit results from NLO hard-
kaon SU(3) HMrSχPT plus NNLO analytical terms and our
preferred fit, and find differences between the central values
of about 1%–2% for all form factors and q2. Second, we
consider the effect of the EK range of the lattice-QCD data
to the extrapolated continuum result by omitting the k ¼
2πð1; 1; 1Þ=L data from our fit. We find the differences are
below 1%–2%. Figure 10 summarizes the differences
between the form factors obtained from the alternative
chiral-continuum fits and the central results. Overall, the
shifts of the continuum form-factor central values are within
the quoted statistical errors of the preferred chiral fit that
includes truncation effects.

FIG. 9. Chiral-continuum extrapolations with NLO, NNLO, or NNNLO analytic terms for fþ (upper left), f0 (upper right), and fT
(lower panel). In each plot, the grey band shows the statistical error from the preferred NNLO SU(2) χPT. The red and blue lines show
the error from the fits with NLO and NNNLO analytic terms, respectively.
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B. Heavy-light current renormalization

To obtain the continuum form factors, we multiply the
lattice form factors by the renormalization constant given in
Eq. (2.17), using the values of ρJ, ZV4

bb
, and ZV4

ss
listed in

Tables IV–V. The statistical error on ZV4
ss

1=2 is about 0.2%.
By using the jackknife blocks of ZV4

bb
calculated on the

same ensembles, we incorporate the statistical error from
ZV4

bb

1=2 automatically in our fit results.
The ρJ are calculated at one-loop order in perturbation

theory. They are close to unity by design, since they are
defined as ratios of renormalization factors. Indeed their
one-loop corrections are small, as shown in Table V. We
estimate the error due to truncating the perturbative

expansion as 2ρ½1�J;maxα
2
s in order to avoid sensitivity due

to accidental cancellations. We obtain ρ½1�J;max as follows.
For the scale-independent vector currents (Vi and V4), we

simply look for the largest value of the one-loop coef-
ficients for both currents on all of the ensembles. We find
that the spatial vector current has a larger one-loop

coefficient with ρ½1�V;max ¼ 0.1. We evaluate αs at the a ≈
0.06 fm lattice spacing (the next to finest), which yields an
error of 1% for both components of the vector current. For
the scale-dependent tensor current, the perturbative cor-
rections include logarithmic contributions due to their
anomalous dimension, which are responsible for the
growth of ρT towards smaller lattice spacings seen in
Table V. In order to estimate the truncation error, we
remove the effect of the anomalous dimension by setting

μ ¼ 2=a. We find that ρ½1�T;max ¼ 0.2, which corresponds to
a truncation error of 2% on ρT . In summary, we assign a
perturbative truncation error of 1% on fþ; 0 and an error
of 2% on fT .

FIG. 10. Deviations of alternate chiral-continuum extrapolations from the central results for fþ (upper left), f0 (lower left), and fT
(lower right). In each plot, the black curve shows the statistical error from the preferred NNLO SU(2) χPT. The blue and pink lines show
the % difference from the central fit obtained by using SU(3) hard-kaon χPT and omitting k ¼ 2πð1; 1; 1Þ=L data, respectively.
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C. Scale uncertainty

We use r1 ¼ 0.3117ð22Þ fm in the continuum from
Ref. [89] to convert lattice quantities to physical units,
where the quoted error includes both statistics and sys-
tematics. We repeat our analysis varying r1 by plus and
minus one standard deviation from its central value and use
the larger change of each form factor as an estimate of the
systematic error due to the scale uncertainty. We find
differences of less than 1% for f∥, f⊥, and fT throughout
the simulated q2 region.

D. Light- and strange-quark mass uncertainties

After the chiral-continuum fit, we evaluate the form
factors at the physical quark masses r1m̂ ¼ 0.000965ð33Þ
and r1ms ¼ 0.0265ð8Þ determined from the analysis of the
light pseudoscalar meson spectrum [4,52]. We vary the
quark masses by plus and minus one standard deviation and
find the differences in all three form factors due to

changing ml and ms to be below 0.6% in the simulated
q2 region.

E. Finite-volume effects

The lattices used in this work have finite spatial volumes
withMπL≳ 4. We estimate the size of finite-volume effects
using HMrSχPT. In chiral perturbation theory, finite-
volume contributions change loop-momentum integrals
to sums which have been calculated in Refs. [106,119].
We employ continuum integrals in the preferred chiral-
continuum extrapolations. To estimate the size of finite-
volume effects, we evaluate the form factors with the LECs
we obtain from the preferred chiral fits, and compare the
results from the infinite-volume formulas and the finite-
volume formulas on all ensembles used in this work. We try
both SU(2) HMrSχPT and SU(3) hard-kaon HMrSχPT. We
find that in all cases finite-volume effects are below
0.001%. Therefore, we neglect finite-volume effects in
the total error budget.

FIG. 11. Statistical and systematic error contributions to fþ (upper left), f0 (lower left), and fT (lower right). The left vertical axis
label shows the squares of the errors added in quadrature, while the right vertical axis label shows the errors themselves. The filled,
stacked curves from bottom to top show the total error when we add each individual source of error in quadrature one by one.
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F. b-quark mass correction

We correct the form factors from the simulated κ0b to the
physical κb beforewe perform the chiral-continuum extrapo-
lation. Including these corrections accounts for the dominant
effect from b-quark mistuning, but small errors in the form
factors remain due to the uncertainties in the κb-correction
factors. The statistical errors in the slopes ∂ lnf

∂ lnm2
are at most

about 10% for f⊥;T at 2πð1; 1; 1Þ=L, while the sizes of the κb
shifts applied to the data points are about 1%–2%. We
therefore take the systematic error from the κb correction to
be 2% × 10% ¼ 0.2%, which is conservative enough to
accommodate the largest possible error in the shift.

G. Summary of the systematic error budget

Figure 11 visually summarizes the results for the statistical
and systematic errors. For all three form factors, the
combined chiral-continuum extrapolation error is the largest
source of systematic uncertainty. The total errors in the form
factors fþ, f0, and fT are below 5% for all q2 > 17 GeV2,
and are ∼3% near q2max. We quote numerical results for the
form factors including all systematic errors over the entire q2

range in the following section, after the q2-extrapolation to
the full kinematic range using the z expansion.

V. z EXPANSION OF FORM FACTORS

The form factors obtained from the chiral-continuum fit
are reliable for high momentum transfer, q2 ≳ 17 GeV2. We
only simulated kaons with momenta up to 2πð1; 1; 1Þ=L,
because, at higher momenta, the two- and three-point
correlators become noisier and are subject to larger discre-
tization errors. Further, theHMrSχPT formalismused to take
the continuum limit does not apply when EK is too large. In
particular, for EK ≳ 1.2 GeV the expansion parameter
χE ≳ 1, so the terms analytic in χnE increase with higher
powers ofn. Because of these limitations, away to extend the
form factors to high kaon energy, or, equivalently, q2 ¼ 0, is
needed. In this paper, we follow Ref. [31] and map q2 to a
new variable z such that jzj ≤ 1. Constraints from unitarity,
analyticity, and heavy-quark physics ensure that the expan-
sion of the form factors in terms of z converges. Thus we can
use the z expansion to obtain a model-independent para-
metrization of our form factors valid over the entire kinematic
range. This technique is now standard for analyzingB → πlν
decays [6,120,121].
We first define the new variable z via the conformal

mapping [31]

zðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ; ð5:1Þ

where t� ¼ ðMB �MKÞ2 and t0 is a free parameter that can
be chosen tominimize jzj for the semileptonic-decay region.
In this work, we use t0 ¼ ðMB þMKÞð

ffiffiffiffiffiffiffi
MB

p
−

ffiffiffiffiffiffiffiffi
MK

p Þ2

[33], which maps the physical semileptonic-decay region
0 ≤ q2 ≤ 22.8 GeV2 to jzj < 0.15. The small range of jzj
helps control the truncation error in the z expansion.
Using the new variable z, we expand the form factors

as [33]

fþðq2Þ ¼
1

Pþðq2Þ
XK−1
m¼0

bþm

�
zm − ð−1Þm−K m

K
zK

�
; ð5:2Þ

f0ðq2Þ ¼
1

P0ðq2Þ
XK−1
m¼0

b0mzm; ð5:3Þ

fTðq2Þ ¼
1

PTðq2Þ
XK−1
m¼0

bTm

�
zm − ð−1Þm−K m

K
zK

�
: ð5:4Þ

The function Pþ;0;Tðq2Þ ¼ 1 − q2=M2 accounts for poles
below and near the B-K production threshold. For the z fits
of fþ and fT , we fix the location of the vector B�

s pole to the
measured value MB�

s
¼ 5.4154 GeV [6]. For the f0 fit, we

fix the location of the scalar B�
s0 pole to the lattice-QCD

prediction MBs0
¼ 5.711 GeV from Ref. [112]. We find

that varying its location by three times the quoted theo-
retical error (�69 MeV) does not change the extrapolated
form factor.
The expression for fþ in Eq. (5.2) was derived by

Bourrely, Caprini and Lellouch in Ref. [33], and is
commonly called the BCL parametrization. In the BCL
expression for fþ in Eq. (5.2), the coefficient of the term
proportional to zK is related to that of the lower-order terms.
This constraint is due to the conservation of momentum and
the analyticity of the form factors [33]. There is no
analogous constraint for f0. We use the same expression
for fT as for fþ because they are proportional to each other
at leading order in the heavy-quark expansion. These
expressions were also used to analyze the lattice form
factors for B → Klþl− in Refs. [21,22].
Unitarity constrains the coefficients of the z expansion

such that

TABLE X. Lowest-order coefficients Bmn for B → Klþl−
decay using MB ¼ 5.27958 GeV, MK ¼ 0.497614 GeV, and
t0 ¼ ðMB þMKÞð

ffiffiffiffiffiffiffi
MB

p
−

ffiffiffiffiffiffiffiffi
MK

p Þ2. The outer function used in
the calculation is from Ref. [32] with χfþ ¼ 5.025 × 10−4 and
χf0 ¼ 1.4575 × 10−2. Although these χis are derived for the B →
πlν process, the calculation in Ref. [34] shows the difference
between χis of the B → Klþl− and B → πlν process is less than
10%. Therefore, we quote the inputs from Ref. [32] to obtain
these Bmn. All Bmn not listed here can be obtained from the
relations BmðmþnÞ ¼ B0n and Bmn ¼ Bnm.

B00 B01 B02 B03 B04 B05

fþ;T 0.0161 −0.0003 −0.0104 0.0002 0.0022 0.0002
f0 0.0921 0.0132 −0.0483 −0.0168 −0.0001 0.0024
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X∞
m;n¼0

Bmnbmbn ≲ 1; ð5:5Þ

where the values of Bmn are calculated using the Taylor
expansion of the function discussed in Ref. [33] and given
in Table X. We employ the same coefficients Bmn for fT
and fþ. The outer function ϕ defined in Ref. [122] is used
in the derivation of the Bmn. Although the ϕ of f0 in
Ref. [122] was derived without a scalar pole, its form is not
altered by the presence of the pole, because jzj always
equals 1 on the unit circle. In Ref. [122], Becher and Hill
showed that, in the limit of large b-quark mass, the sizes of
the z coefficients for fþ are even smaller than the expect-
ation from (5.5). Heavy-quark effective theory provides an
estimate of the sum [122]:

X
Bmnbmbn ¼

1

π

Z
∞

tþ

dt
t − t0

× Im

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0
tþ − t

r �
jϕiðtÞfiðtÞj2; ð5:6Þ

where i ¼ þ, 0, or T, and the ϕ is an outer function. To
calculate the integral in Eq. (5.6), we need to know the form
factors in the range ½tþ;∞�. For fþ, we assume that f⊥
gives the dominant contribution and has only the single B�

s
pole. Taking the limit MB → ∞ gives the following simple
form for fþðq2Þ:

fþðq2Þ ≈
MBffiffiffiffiffiffiffiffiffiffi
2MB

p f⊥ðEKÞ ≈
MBffiffiffiffiffiffiffiffiffiffi
2MB

p Cð0Þ
⊥ gπ

fπðEK þ ΔB�
s
Þ : ð5:7Þ

FIG. 12. Separate z-expansion fits of fþ, f0 (left) and fT (right) without (upper) and with (lower) HQ constraints on the sum of
coefficients for fþ and fT . The synthetic data points are generated at large q2 (small z) in the region of simulated lattice momenta. The
kinematic condition fþðq2 ¼ 0Þ ¼ f0ðq2 ¼ 0Þ is satisfied better when the HQ constraint is applied to fþ. (Recall that the factor
Pþ;0 ¼ 1 at q2 ¼ 0.)
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We then use our determination of Cð0Þ
⊥ from our preferred

chiral-continuum fit to obtain the estimate

X
Bmnbmbn ≈ 0.012: ð5:8Þ

This result means that Eq. (5.5) is only a loose bound for
fþ. In addition, it is consistent with a power-counting
estimate [122], which anticipates

P
Bmnbmbn to be of

order ðΛ=mbÞ3. The analogous calculation for fT gives a
similar result. The analysis below will show that the heavy
quarks (HQ) constraint on fþ (and fT), Eq. (5.7), together
with the kinematic constraint, f0ð0Þ ¼ fþð0Þ, suffices to
keep the z fit under control.
We assume a log-normal distribution on

P
Bmnbmbn to

ensure that
P

Bmnbmbn is always positive. The contribu-
tion from this prior to the augmented χ2 is

χ2Bmnbmbn
¼ ½lnðPBmnbmbnÞ − μ�2

σ2
; ð5:9Þ

where μ is the central value and σ is the width of the prior.
For fþ and fT , we choose μ and σ in Eq. (5.9) as lnð0.02Þ
and lnð0.07

0.02Þ. This choice is conservative enough to accom-
modate the uncertainties in the estimates.
We first generate from the continuum, physical quark-

mass limit of the chiral extrapolation a few synthetic data
points in the energy range of the simulated lattice data
(q2 ≳ 16.8 GeV2). With the lattice spacing set to zero and
the quark masses fixed to their physical values in
Eqs. (3.20)–(3.21), the physical form factors depend upon
at most six independent functions of the kaon energy EK.
These are proportional to 1=ðEK þ ΔB�

s
Þ, E0

K , EK, E2
K , E

3
K ,

and E4
K . To the degree that the coefficients in front of these

functions are correlated, the number of independent modes
may be even fewer than six. If we generate too many
synthetic data points, the covariance matrix will be sin-
gular. We therefore generate four synthetic data points
each for fþ, f0, and fT at q2 ¼ ð22.86; 21.13; 19.17;
17.09Þ GeV2. These cover the simulated lattice-momentum
range and are approximately evenly spaced in q2. We also
fit with synthetic data from a smaller and larger range and
find consistent results.
The full covariance matrix of the synthetic data points

includes both the statistical and systematic error:

Cfull
mn ¼ Cstat

mn þ Csyst
mn ; ð5:10Þ

where m, n denote the four q2 values. The systematic error
contribution is calculated as

Csyst
mn ¼

X
i

σimσ
i
n ð5:11Þ

FIG. 13. Histogram of the sum of coefficients Bmnbmbn for fþ
and fT from fits with and without the HQ constraint. Use of the
HQ constraint moves the distribution of Bmnbmbn to smaller
values.

FIG. 14. Histogram of the sum of coefficients
P

Bmnbmbn for
f0 from an independent fit and from a combined fit with fþ that
imposes the kinematic constraint at q2 ¼ 0.
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where the index i runs over the sources of systematic error
discussed in Sec. IV. Because we assume that the system-
atic errors are 100% correlated between q2 values, all
nontrivial correlations between points are due to statistical
fluctuations of the chiral-continuum fit results.

We first fit fþ, f0, and fT simultaneously in a combined
fit using K ¼ 3 (three free parameters) in Eqs. (5.2)–(5.4)
without any constraints on the coefficients. Table XI
presents the results of these fits. We plot the fit results
in Fig. 12. Although we do not impose the kinematic
condition fþðq2 ¼ 0Þ ¼ f0ðq2 ¼ 0Þ, it is approximately
satisfied with separate fits. Adding HQ constraints on the
fþ and fT fit makes the results even more consistent with
the kinematic condition (see Fig. 12), and reduces the
errors on fþ, fT at low q2. We then fit fþ, f0, and fT
simultaneously with the kinematic constraint, still includ-
ing the HQ constraints on fþ and fT , which further
decreases the extrapolation error in the form factors at
low q2. We implement the kinematic constraint by setting a
prior of fþ − f0 at q2 ¼ 0 with central value zero and
width of 0.00001.
We show the

P
Bmnbmbn bootstrap distribution of fþ

and fT from two fits with and without the HQ constraint in
Fig. 13. Adding the HQ constraint moves the distribution ofP

Bmnbmbn to smaller values. We also compare theP
Bmnbmbn distribution of f0 from two fits in Fig. 14.

One is a fit with f0 only; the other is a combined fþ and f0
fit with the kinematic constraint. Adding the kinematic
constraint decreases

P
Bmnbmbn from the separate f0 fit.

Again, the result shows that the unitary constraint on theP
Bmnbmbn of f0 is a loose bound.
We also check the truncation error by repeating the fit

with K ¼ 4. Because in K ¼ 3 fits, the coefficients bi2 are
not well determined by data, and the results are zero within
error, we add a prior of 0(2) on bi4 coefficients as in
Ref. [21] to control the fluctuations of the higher-order
terms. All of the coefficients b from fits with K ¼ 3 and 4
are summarized in Table XI. The results from different K
are consistent with each other. The coefficients bi;3 are zero
within error and have little impact on the central value of
the final result. We therefore conclude that the z truncation
error is well controlled.

TABLE XII. The coefficients bi from the z-expansion fit (the first line) and their correlation matrix. The upper index þ, 0, and T
denote the form factors fþ;0;T . They are from the z-expansion fit formulas defined in Eqs. (5.2)–(5.4). We use t0 ¼ ðMB þMKÞð

ffiffiffiffiffiffiffi
MB

p
−ffiffiffiffiffiffiffiffi

MK
p Þ2 [33], MB�

s
¼ 5.4154 GeV in fþ;T , MB�

s0
¼ 5.711 GeV in f0, MB ¼ 5.27958 GeV and MK ¼ 0.497614 GeV [6].

bþ0 bþ1 bþ2 b00 b01 b02 bT0 bT1 bT2

Mean 0.466 −0.885 −0.213 0.292 0.281 0.150 0.460 −1.089 −1.114
Error 0.014 0.128 0.548 0.010 0.125 0.441 0.019 0.236 0.971

bþ0 1 0.450 0.190 0.857 0.598 0.531 0.752 0.229 0.117
bþ1 1 0.677 0.708 0.958 0.927 0.227 0.443 0.287
bþ2 1 0.595 0.770 0.819 −0.023 0.070 0.196
b00 1 0.830 0.766 0.582 0.237 0.192
b01 1 0.973 0.324 0.372 0.272
b02 1 0.268 0.332 0.269
bT0 1 0.590 0.515
bT1 1 0.897
bT2 1

TABLE XI. Results of z-expansion fits of the B → K form
factors fþ (top panel), f0 (middle panel), and fT (lower panel)
using the formulas defined in Eqs. (5.2)–(5.4) with t0 ¼ ðMB þ
MKÞð

ffiffiffiffiffiffiffi
MB

p
−

ffiffiffiffiffiffiffiffi
MK

p Þ2 [33], MB�
s
¼ 5.4154 GeV in fþ;T , MB�

s0
¼

5.711 GeV in f0, MB ¼ 5.27958 GeV, and MK ¼
0.497614 GeV [6].

Unconstrained Constrained

HQ HQþ kinematic

K ¼ 3 K ¼ 3 K ¼ 3 K ¼ 4

bþ0 0.437(22) 0.451(20) 0.466(14) 0.466(15)
bþ1 −1.41ð33Þ −1.15ð27Þ −0.89ð13Þ −0.89ð16Þ
bþ2 −2.5ð1.4Þ −1.4ð1.1Þ −0.21ð55Þ −0.19ð61Þ
bþ3 � � � � � � � � � 0.3(1.1)P

Bmnbmbn 0.16 0.07 0.02 0.03
fþð0Þ 0.18(10) 0.256(80) 0.335(36) 0.336(44)

b00 0.285(11) 0.286(11) 0.292(10) 0.292(11)
b01 0.19(14) 0.20(13) 0.28(12) 0.28(13)
b02 −0.17ð49Þ −0.15ð48Þ 0.15(44) 0.18(68)
b03 � � � � � � � � � 0.2(1.7)P

Bmnbmbn 0.02 0.02 0.02 0.02
f0ð0Þ 0.309(39) 0.311(38) 0.335(36) 0.336(44)

bT0 0.440(25) 0.453(23) 0.460(19) 0.459(20)
bT1 −1.47ð37Þ −1.17ð30Þ −1.09ð24Þ −1.11ð24Þ
bT2 −2.7ð1.6Þ −1.4ð1.2Þ −1.11ð97Þ −1.15ð95Þ
bT3 � � � � � � � � � −0.2ð1.1ÞP

Bmnbmbn 0.18 0.07 0.05 0.05
fTð0Þ 0.17(11) 0.254(87) 0.279(67) 0.276(68)

p value 0.57 0.39 0.34 0.97
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We record our final, preferred results from K ¼ 3 z fits
including both the heavy-quark and kinematic constraints in
the third column of Table XI, and we give the corresponding
correlationmatrix inTableXII. Togetherwith the polemasses
(also in Table XI) and Eqs. (5.2)–(5.4), this information
allows the reader to reconstruct our form-factor results
throughout the full kinematic range. Our final form-factor
results as a function of z and q2 are plotted in Figs. 15–16.

VI. TESTS OF QCD PREDICTIONS FOR
FORM-FACTOR RATIOS

Because lattice-QCD calculations of the B → K semi-
leptonic form factors have until recently been unavailable,
theoretical calculations of B → Klþl− observables some-
times use expectations from heavy-quark symmetries to

relate them to others that can be constrained from experi-
ment or computed with QCD models (see, e.g., Ref. [123]).
Heavy-quark symmetry is also commonly used in phe-
nomenological calculations of the related decays
B → πlþl−, B → K�lþl−, and B → K�γ [39,123–129].
Here we use our lattice-QCD form factors to directly test
these heavy-quark symmetry relations in B → K decay at
both high and low q2.

A. Low-recoil predictions from
heavy-quark symmetry

In the soft-kaon (EK ≪ MB) and chiral limits, the
vector and scalar form factors can be related using
heavy-quark effective theory and chiral perturbation theory
[130,131]:

FIG. 15. fþ, f0, and fT z-expansion fits. The synthetic data points are generated at large q2 (small z) from LECs of the HMrSχPT fit
result. The kinematic constraint fþðq2 ¼ 0Þ ¼ f0ðq2 ¼ 0Þ is applied exactly in the combined fþ and f0 z-expansion fit. The vertical
dashed lines correspond to q2 ¼ 0. We use three coefficients [K ¼ 3 in Eqs. (5.2)–(5.4)] for fþ, f0, and fT .

FIG. 16. fþ, f0, and fT vs q2 based on the z expansion. The kinematic constraint fþðq2 ¼ 0Þ ¼ f0ðq2 ¼ 0Þ is applied exactly in the
fit. We use three coefficients [K ¼ 3 in Eqs. (5.2)–(5.4)] for fþ, f0, and fT .
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lim
q2→M2

B

f0
fþ

¼
�
fBs

fB�
s

�
1 − q2=M2

B�
s

gπ
þOðΛ2=m2

bÞ; ð6:1Þ

where the decay-constant ratio accounts for heavy-quark
corrections of Oð1=mbÞ. Heavy-quark spin symmetry
relates the vector and tensor form factors in the soft-kaon
limit as [123,132]:

lim
q2→M2

B

fT
fþ

ðq2;μÞ¼ κðμÞMBðMBþMKÞ
q2

þOðΛ=mbÞ; ð6:2Þ

where the scale-dependent coefficient κðμÞ incorporates
corrections of Oðα2sÞ to the leading Isgur-Wise relation
[133] and is given in Eq. (2.5) of Ref. [123]. We can
estimate the size of higher-order corrections in the heavy-
quark expansion from power counting. Taking Λ ¼
500 MeV and mb ¼ 4.2 GeV gives Λ=mb ∼ 12% and
ðΛ=mbÞ2 ∼ 1%. Equations (6.1)–(6.2) also receive correc-
tions from the kaon recoil energy that are of OðEK=mbÞ.
For q2max ≥ q2 ≥ 14 GeV2, this ratio varies from
12% ≤ EK=mb ≤ 40%, so such corrections are expected
to be significant even at low kaon recoil.
Figure 17, left, compares the quantity ðf0=fþÞ × ð1 −

q2=M2
B�
s
Þ−1 obtained from our lattice form factors with the

theoretical prediction Eq. (6.1). For the theoretical estimate,
we take fB�

s
=fBs

¼ 0.953ð23Þ from the recent four-flavor
lattice-QCDdetermination inRef. [134] and gπ ¼ 0.45ð8Þ as
in our chiral-continuum fit. Thewidth of the theoretical band

is from the uncertainty on gπ , and does not include any other
errors. Figure 17, right, compares the quantity ðfT=fþÞ ×
ðq2Þ=ðMBðMB þMKÞÞ obtained from our lattice form
factors with the theoretical prediction Eq. (6.2) using mb ¼
4.18 GeV and αs

ð4Þ
MS

ðmbÞ ¼ 0.2268, such that κðmbÞ ≈ 0.88
[123,124]. We do not show any errors on the theoretical
prediction.
The observed lattice form-factor ratios f0=fþ and

fT=fþ at q2max are lower than the theoretical expectations
by 38% and 15%, respectively; by q2 ¼ 14.5 GeV2 the
differences grow to 51% and 46%, respectively. Although
the observed disagreement with the theoretical expect-
ation for the tensor form-factor ratio is large, it is within
the size expected (from simple power counting) for
higher-order corrections due to the kaon recoil energy.
The scalar form-factor ratio, however, differs from the
theoretical expectation by a much larger amount. In
Fig. 25 of Ref. [2] we compare the quantity ðf0=fþÞ ×
ð1 − q2=M2

B�
s
Þ−1 for the related decay B → πlν with the

heavy-quark prediction in the soft-pion limit. The
observed agreement near q2max is better, which suggests
that the discrepancy is indeed due to the light pseudo-
scalar-meson recoil energy, which is larger for B → K
than for B → π. Thus our lattice form-factor results
suggest that one should be cautious in using heavy-quark
relations derived in the soft-pion/kaon limit for phenom-
enological predictions, especially for decays with K or K�
final-state mesons.

FIG. 17. Comparison of lattice form-factor ratios with theoretical predictions from heavy-quark symmetry at low recoil. Left:
ðf0=fþÞ=ð1 − q2=M2

B�
s
Þ−1 versus q2 from lattice QCD (red curve with error band) and heavy-quark symmetry plus χPT [130] (gray

horizontal band). The width of the theoretical band includes the uncertainty on gπ ¼ 0.45ð8Þ but no other theory errors. Right:
ðfT=fþÞ × ðq2Þ=ðMBðMB þMKÞÞ versus q2 from lattice QCD (red curve with error band) and the improved Isgur-Wise relation [123]
(black horizontal line).
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B. Large-recoil predictions from QCD factorization

In the large-recoil limit (EK ≫ MK), heavy-quark sym-
metry relates the vector, scalar, and tensor form factors to a
single universal form factor [135]:

lim
EK≫MK

f0
fþ

¼ 2EK

MB
þOðΛ=mbÞ; ð6:3Þ

lim
EK≫MK

fT
fþ

¼ MB þMK

MB
þOðΛ=mbÞ: ð6:4Þ

The OðαsÞ corrections to these leading large-recoil expres-
sions were derived using QCD factorization (QCDF) in
Ref. [136], and the resulting expressions are given in
Eqs. (62)–(63) of that work. Higher-order corrections in
the heavy-quark expansion are expected to be about
Λ=mb ∼ 12%, while Oðα2sÞ corrections to the QCDF
predictions from Ref. [136] are expected to be about 5%.
Figure 18 compares the lattice-form-factor ratios

with the theoretical large-recoil predictions from
Ref. [136]. For the OðαsÞ corrections, we take the decay
constants fB ¼ 190.5ð4.2Þ MeV from FLAG [121] and
fK ¼ 156.2ð7Þ MeV from the PDG [6]. We take the first
inverse moment of the B-meson distribution amplitude
λ−1B ð2.2 GeVÞ ¼ ½0.51ð12Þ GeV�−1 from LCSR [137],
where the quoted theory error covers the spread of other
determinations from QCD/light-cone sum rules and the
operator-product expansion [138–140]. We take the first
and second moments of the kaon distribution amplitude

aK1 ð2 GeVÞ ¼ 0.061ð4Þ and aK2 ð2 GeVÞ ¼ 0.18ð7Þ from a
recent three-flavor lattice-QCD calculation [141]. We use
our own determination of fþðq2 ¼ 0Þ ¼ 0.335ð36Þ. We

take αs
ð4Þ
MS

ðmbÞ ¼ 0.2268 as described above and

αs
ð4Þ
MS

ð2.2 GeVÞ ¼ 0.279 [142]. The left panel of Fig. 18
shows the quantity ðf0=fþÞ × ðMBÞ=ð2EKÞ, while the
right panel shows ðfT=fþÞ × ðMBÞ=ðMB þMKÞ. The
widths of the theoretical bands in Fig. 18 are from
the uncertainty on λ−1B and fþðq2 ¼ 0Þ, and do not include
any other errors.
For ðf0=fþÞ ×MB=ð2EKÞ, the lattice-QCD result differs

from the theoretical predictions by at most 1%, which is
well within the expected size of heavy-quark corrections.
For ðfT=fþÞ × ðMBÞ=ðMB þMKÞ, the lattice-QCD result
is marginally consistent with the theoretical expectation of
Ref. [136]. A more recent NNLO calculation within soft-
collinear effective theory updates the large-recoil predic-
tions to include Oðα2sÞ corrections [143]. The new q2 ¼ 0
result for fT=fþMB=ðMB þMKÞ ¼ 0.817 is in better
agreement with the ratio obtained from lattice QCD.
Overall, the uncertainty on the lattice-QCD tensor form-
factor ratio at low q2 is too large to draw any quantitative
conclusions. (The vector and tensor form factors are not
strongly correlated at low q2.) Thus, while the scalar form-
factor ratio suggests that the large-recoil predictions may be
reliable, some caution is nevertheless warranted in their use
for phenomenology given the limited number of tests they
have undergone.

FIG. 18. Comparison of lattice form-factor ratios with theoretical predictions from heavy-quark symmetry at large recoil. Left:
ðf0=fþÞ ×MB=ð2EKÞ versus q2 from lattice QCD (red curve with error band) and theoretical prediction with OðαsÞ corrections [136]
(gray curve with error band). Right: ðfT=fþÞ × ðMBÞ=ðMB þMKÞ versus q2 from lattice QCD (red curve with error band) and
theoretical prediction with OðαsÞ corrections [136] (gray curve with error band).
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VII. SUMMARY AND OUTLOOK

As discussed in Sec. V, Table XII presents our final
results for the form factors fþðq2Þ, f0ðq2Þ, and fTðq2Þ for
the semileptonic process B → Klþl−. These entries, which
consist of the coefficients of the BCL z expansion,
Eqs. (5.2)–(5.4), together with the correlations among them,
can be used to reconstruct our form factors with errors for all
values of 0 ≤ q2 ≤ q2max. This information can also be used
to compute form-factor ratios and (differential) rates with
squares of linear combinations of the form factors.
Figure 19 shows a comparison of our results with others

in the literature. At q2 ¼ 0, our result is consistent with a
light-cone-sum-rule result from Khodjamirian et al. [144].
For all q2, our results are consistent with the only other
unquenched lattice-QCD calculation from the HPQCD
Collaboration [21]. Our form factors are somewhat more
precise than HPQCD’s, especially at high q2, because we
used more ensembles with finer lattice spacings and lighter
quark masses. The total errors, including both statistical and
systematic errors, are less than 4% at high q2, and at low q2

about 10% for fþ and 30% for fT.
More generally, our results can be used to compute any

B → Kll observable, including asymmetries and decay
rates, for all possible dilepton final states (l ¼ l, τ, ν),
and even lepton-flavor-violating modes [145]. We present a
thorough analysis of observables for B → K semileptonic
decays in a companion publication [146], where we also
present ratios of observables for B → Kll to B → πll decay
processes. The three form factors fþ, f0, and fT suffice to
parametrize the factorizable hadronic contributions to B →
K semileptonic decays in any extension of the standard
model. Other hadronic uncertainties, such as violations of
quark-hadron duality due to intermediate charmonium
resonances, must, of course, also be reliably estimated to
obtain complete standard-model and new-physics predic-
tions for B → K processes. If deviations from the standard

model are observed in any B → Kll decay channel,
accurate results for the form factors will be essential to
disentangling the underlying physics.
The main sources of uncertainty in our form factors are

from the chiral-continuum extrapolation and extrapolation to
low q2. We plan to reduce these uncertainties with newer
gauge-field ensembles that are being generated by the MILC
Collaboration [147,148]. These ensembles use the highly
improved staggered quark (HISQ) action for the light,
strange, and charm quarks. This action is designed to have
smaller discretization effects which will help reduce the size
of the continuum extrapolation errors [149]. In addition, the
HISQ ensembles include ensembles with physical pion
masses, which will eliminate the need for the chiral extrapo-
lation and the associated errors. Indeed, these ensembles have
already been used to improve the precision for kaon [150] and
charmed-meson [151] physics. In particular, we found with
D- andDs-meson decay constants [151] that an analysis with
physical and unphysical quark masses provides better stat-
istical precision with no penalty in systematic errors.
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APPENDIX: B → Kll FORM FACTORS
IN SU(2) SχPT

We use expressions derived in HMrSχPT [106] as the
low-energy effective theory of QCD in which the degrees of
freedom are pions and kaons for our chiral-continuum
extrapolations. SU(3) HMrSχPT [106,152,153] was
applied to B → πlν semileptonic decays [1]. More recently,
SU(2) HMχPT [118,154,155] was also considered as an
alternative effective theory in studies of heavy meson
physics. We derive the SU(2) HMrSχPT formulas for form
factors calculated with staggered quarks in this appendix.
These formulas can be used for B → πlν, B → Klþl− and
D-meson semileptonic decays. Our results are consistent
with earlier studies of HMχPT for continuum QCD and
Wilson quarks [155] after taking the continuum limit of the
HMrSχPT expressions. The differences in the detailed
expressions can be absorbed into redefinitions of the scale
or LECs.

1. f ∥ and f⊥ in SU(3) HMrSχPT

The SU(3) HMrSχPT expression of f∥ is the same as in
Eq. (3.20). We only list the expression of the log terms for
unitary points (ml;h ¼ m0

l;h ¼ ml;s) here.
For the B → π process, the chiral logs in SU(3)

HMrSχPT are given by [106]:

logsB→π
∥;SUð3Þ ¼

1

ð4πfÞ2
�
1

16

X
Ξ

�
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2
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�
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4

�
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3
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2
I1ðmj;VÞ−2I2ðmj;V;EÞ

��
þ½V→A�

	
: ðA1Þ

For the B → K process, the chiral logs in SU(3) HMrSχPT are given by

logsB→K
∥;SUð3Þ ¼

1

ð4πfÞ2
�
1

16

X
Ξ

�
2−3g2π

2
I1ðmK;ΞÞ−3g2πI1ðmπ;ΞÞþ

1

2
I1ðmS;ΞÞþ2I2ðmK;Ξ;EÞþI2ðmS;Ξ;EÞ

�
−
1

2
I1ðmS;IÞ

þ3g2π
4

I1ðmπ;IÞþ
8−3g2π
12

I1ðmη;IÞþI2ðmη;I;EÞ−I2ðmS;I;EÞ

þa2δ0V

�
I1ðmη0;VÞ−I1ðmη;VÞþI2ðmη0;V ;EÞ−I2ðmη;V ;EÞ

m2
η0;V−m2

η;V
−

X
j∈fS;η;η0g

R½3;1�
j ðfmS;V;mη;V ;mη0;Vg;fmπ;VgÞ

×

�
1

2
I1ðmj;VÞþI2ðmj;V;EÞ

�
þ3g2π

2

X
j∈fπ;η;η0g

R½3;1�
j ðfmπ;V ;mη;V ;mη0;Vg;fmS;VgÞI1ðmj;VÞ

�
þ½V→A�

	
: ðA2Þ

The masses and integrals that appear in Eqs. (A1)–(A2) are as follows. The flavor off-diagonal meson masses are
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m2
π;Ξ ¼ μðml þmlÞ þ a2ΔΞ; ðA3Þ

m2
K;Ξ ¼ μðml þmsÞ þ a2ΔΞ; ðA4Þ

m2
S;Ξ ¼ μðms þmsÞ þ a2ΔΞ; ðA5Þ

whereml andms are sea-quark masses and the taste label Ξ
has values P, V, T, A and I. The masses of flavor-neutral
mesons in the taste vector channel are [156]

m2
π0;V ¼ m2

U;V ¼ m2
D;V ¼ μðml þmlÞ þ a2ΔV; ðA6Þ

m2
S;V ¼ μðms þmsÞ þ a2ΔV; ðA7Þ

m2
η;V ¼ 1

2

�
m2

UV
þm2

SV
þ 3

4
a2δ0V − Z

�
; ðA8Þ

m2
η0;V ¼ 1

2

�
m2

U;V þm2
S;V þ 3

4
a2δ0V þ Z

�
; ðA9Þ

Z≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

S;V −m2
U;VÞ2 −

a2δ0V
2

ðm2
S;V −m2

U;VÞ þ
9ða2δ0VÞ2

16

r
:

ðA10Þ

The taste-axial case just requires substituting A for V. For
the taste-singlet case, we have

m2
π0;I ¼ m2

U;I ¼ m2
D;I ¼ μðml þmlÞ þ a2ΔI; ðA11Þ

m2
S;I ¼ μðmh þmhÞ þ a2ΔI; ðA12Þ

m2
η;I ¼

m2
U;I

3
þ 2m2

S;I

3
; ðA13Þ

m2
η0;I ¼ m2

0: ðA14Þ

The momentum integrals I1 and I2 that appear in the
chiral log terms are defined as

I1ðmÞ ¼ m2 ln

�
m2

Λ2

�
; ðA15Þ

I2ðm;ΔÞ ¼ −2Δ2 ln

�
m2

Λ2

�
− 4Δ2F

�
m
Δ

�
þ 2Δ2; ðA16Þ

FðxÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p

tanh−1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þ 0 ≤ x ≤ 1;

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
tan−1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
Þ x ≥ 1;

ðA17Þ

where Λ is the renormalization scale.
Similarly, f⊥ on the unitary points in NLO SU(3)

HMrSχPT is given by [106]

f⊥¼Cð0Þ

f

�
1

EþΔ�
BþD

�
þ Cð0Þ

fðEþΔB� þDÞ
×ðlogsþCð1ÞχlþCð2ÞχsþCð3ÞχEþCð4Þχ2EþCð5Þχa2Þ;

ðA18Þ

where ΔB�
s
¼ MB�

s
−MB. [The SU(3) expression has one

extra chiral log term D comparing with the SU(2) expres-
sion we used in our analysis.] There are two chiral log
related terms parametrized by D and logs in Eq. (A18). For
the B → π process, the SU(3) expressions are [106]

DB→π
SUð3Þ ¼ −

3g2πE
ð4πfÞ2

�
1

16

X
Ξ

½2Jsub1 ðmπ;Ξ; EÞ þ Jsub1 ðmK;Ξ; EÞ� −
1

2
Jsub1 ðmπ;I; EÞ þ

1

6
Jsub1 ðmη;I ; EÞ

þ
X

j∈fπ;η;η0g
½ð−a2δ0VÞR½3;1�

j ðfmπ;V ; mη;V ; mη0;Vg; fmS;VgÞJsub1 ðmj;V; EÞ� þ ½V → A�
	
; ðA19Þ

and

logsB→π⊥;SUð3Þ ¼
1

ð4πfÞ2
�
1

16

X
Ξ

�
−
1þ3g2π

2
½2I1ðmπ;ΞÞþI1ðmK;ΞÞ�

�
−
1

2
g2πJsub1 ðmπ;I ;EÞþ

1

6
g2πJsub1 ðmη;I ;EÞ

þ1þ3g2π
12

½3I1ðmπ;IÞ−I1ðmη;IÞ�

þ
X

j∈fπ;η;η0g

�
a2δ0VR

½3;1�
j ðfmπ;V ;mη;V ;mη0;Vg;fmS;VgÞ

�
g2πJsub1 ðmj;V;EÞþ

1þ3g2π
2

I1ðmj;VÞ
��

þ½V→A�
	
: ðA20Þ

For the B → K process, the SU(3) expressions are
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DB→K
SUð3Þ ¼ −

3g2πðEÞ
ð4πfÞ2

�
1

16

X
Ξ

½2Jsub1 ðmK;Ξ; EÞ þ Jsub1 ðmS;Ξ; EÞ� þ
2

3
Jsub1 ðmη;I; EÞ − Jsub1 ðmS;I; EÞ

þ
X

j∈fS;η;η0g
½ð−a2δ0VÞR½3;1�

j ðfmS;V; mη;V ; mη0;Vg; fmπ;VgÞJsub1 ðmj;V; EÞ� þ ½V → A�
	
; ðA21Þ

and

logsB→K⊥;SUð3Þ ¼
1

ð4πfÞ2
�
1

16

X
Ξ

�
−
2þ 3g2π

2
I1ðmK;ΞÞ −

1

2
I1ðmS;ΞÞ − 3g2πI1ðmπ;ΞÞ

�

−
1

3
g2πJsub1 ðmη;I ; EÞ þ

3g2π
4

I1ðmπ;IÞ −
4þ 3g2π

12
I1ðmη;IÞ þ

1

2
I1ðmS;IÞ

þ a2δ0V

�
g2π

m2
η0;V −m2

η;V
ðJsub1 ðmη;V ; EÞ − Jsub1 ðmη0;V ; EÞÞ

þ 3g2π
2

X
j∈fπ;η;η0g

R½3;1�
j ðfmπ;V ; mη;V ; mη0;Vg; fmS;VgÞI1ðmj;VÞ

þ 1

2

X
j∈fS;η;η0g

R½3;1�
j ðfmS;V; mη;V ; mη0;Vg; fmπ;VgÞI1ðmj;VÞ

�
þ ½V → A�

	
: ðA22Þ

The definition of the meson mass terms and I1 are the same as for the f∥ case. The f⊥ expression has an extra function J1
that is defined as

J1ðm;ΔÞ ¼
�
−m2 þ 2

3
Δ2

�
ln

�
m2

Λ2

�
þ 4

3
ðΔ2 −m2ÞF

�
m
Δ

�
−
10

9
Δ2 þ 4

3
m2; ðA23Þ

Jsub1 ðm;ΔÞ≡ J1ðm;ΔÞ − 2πm3

3Δ
: ðA24Þ

2. f ∥ and f⊥ in SU(2) HMrSχPT

We derive the SU(2) formula for f∥ and f⊥ based on the
SU(3) expression. We also use the same expression for fT
as for f⊥ as discussed in Sec. III D. To obtain the SU(2)
limit of an SU(3) expression, we treat the strange-quark
mass as infinitely heavy. The SU(2) form does not contain
ms explicitly, but all LECs depend implicitly on ms.
Because our lattice data have slightly different ms on
different ensembles, we keep the analytic term which is
proportional toms. Next, we consider all terms in the SU(3)
chiral log expression. If a term is proportional to ms or
lnms in the large ms limit, it is absorbed into the
redefinition of other LECs. If a term is proportional to
1=ms or 1= lnms in the large ms limit, it does not appear in
the SU(2) expression. We now derive the form of the chiral
log terms in the SU(2) limit.
For the chiral log terms in f∥, because we take ms to

infinity, all ms related terms, such as mK;Ξ, mS;Ξ, mη;I and
mη0;V=A=I, go to infinity. They are absorbed into LECs. Only

mη;V=A is finite and goes like
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

U þ δ0V=A
2

q
. We now consider

all contributing chiral log terms.
(i) I1ðmÞ goes like m2 lnm2, so only I1ðMπÞ survives.
(ii) I2ðm;EÞ diverges as 2πmE when m → ∞, so only

I2ðMπ; EÞ survives.

(iii) The ratio

I1ðmη0;VÞ − I1ðmη;VÞ þ I2ðmη0;V ; EÞ − I2ðmη;V ; EÞ
m2

η0;V −m2
η;V

diverges as 2 lnms at large ms, so it is removed.
(iv) We find that

lim
ms→∞

a2δ0V=AR
½3;1�
j ðfmS;V;mη;V ; mη0;Vg; fmπ;VgÞ

¼

8>><
>>:

4; j ¼ S

−
a4δ02V=A
2m4

S
¼ 0; j ¼ η

−4; j ¼ η0:

; ðA25Þ

When this term multiplies I1 or I2, it is divergent as
ms → ∞ for j ¼ S or j ¼ η0. For j ¼ η, the I1 and I2
are finite, but the total contribution is zero as
ms → ∞. So these terms are removed.

(v) We find that

lim
ms→∞

a2δ0V=AR
½3;1�
j ðfmπ;V ; mη;V ; mη0;Vg; fmS;VgÞ

¼

8>><
>>:

2; j ¼ π

−2; j ¼ η

−
a4δ02V=A
4m4

S
¼ 0; j ¼ η0;

; ðA26Þ
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so only j ¼ π and j ¼ η terms contribute in the SU(2) theory.
In summary, for the B → π process, the chiral log in SU(2) HMrSχPT is given by

logsB→π
∥;SUð2Þ ¼

1

ð4πfÞ2
�
1

16

X
Ξ

½ð1 − 3g2πÞI1ðmπ;ΞÞ þ 2I2ðmπ;Ξ; EÞ� þ
1þ 3g2π

4
I1ðmπ;IÞ

þ 2

�
3ðg2π − 1Þ

2
I1ðmπ;VÞ − 2I2ðmπ;V ; EÞ

�
− 2

�
3ðg2π − 1Þ

2
I1ðmη;VÞ − 2I2ðmη;V ; EÞ

�
þ ½V → A�

	
: ðA27Þ

For the B → K process, the chiral log in SU(2) HMrSχPT is given by

logsB→K
∥;SUð2Þ ¼

1

ð4πfÞ2
�
1

16

X
Ξ

½−3g2πI1ðmπ;ΞÞ� þ
3g2π
4

I1ðmπ;IÞ þ
3g2π
2

½2I1ðmπ;VÞ − 2I1ðmη;VÞ� þ ½V → A�
	
: ðA28Þ

We then derive the expression for the f⊥ chiral log terms in SU(2) HMrSχPT. We use the same treatment of analytic
terms as was done for f∥. To calculate the SU(2) chiral log terms, we consider the large ms limit of J1:

lim
m→∞

J1ðm;EÞ → −m2 lnm2 → −∞; ðA29Þ

lim
ms→∞

Jsub1 ðmη;V ; EÞ − Jsub1 ðmη0;V ; EÞ
m2

η0;V −m2
η;V

→ 2 lnms → ∞: ðA30Þ

So all J1 related terms are absorbed into the redefinition of LECs and disappear.
Via a procedure similar to that for f∥, we obtain the SU(2) chiral log terms in f⊥ for the B → π channel:

DB→π
SUð2Þ ¼ −

3g2πE
ð4πfÞ2

�
1

16

X
Ξ

½2Jsub1 ðmπ;Ξ; EÞ� −
1

2
Jsub1 ðmπ;I ; EÞ

− ½2Jsub1 ðmπ;V ; EÞ − 2Jsub1 ðmη;V ; EÞ� þ ½V → A�;
	

ðA31Þ

logsB→π⊥;SUð2Þ ¼
1

ð4πfÞ2
�
1

16

X
Ξ

�
−
1þ 3g2π

2
½2I1ðmπ;ΞÞ�

�
−
1

2
g2πJsub1 ðmπ;I ; EÞ

þ 1þ 3g2π
12

½3I1ðmπ;IÞ� þ
�
2

�
g2πJsub1 ðmπ;V ; EÞ þ

1þ 3g2π
2

I1ðmπ;VÞ
�

− 2

�
g2πJsub1 ðmη;V ; EÞ þ

1þ 3g2π
2

I1ðmη;VÞ
��

þ ½V → A�
	
: ðA32Þ

Similarly, the SU(2) chiral log terms in B → K are

DB→K
SUð2Þ ¼ 0; ðA33Þ

logsB→K⊥;SUð2Þ ¼
1

ð4πfÞ2
�
1

16

X
Ξ

½−3g2πI1ðmπ;ΞÞ� þ
3g2π
4

I1ðmπ;IÞ þ
3g2π
2

½2I1ðmπ;VÞ − 2I1ðmη;VÞ� þ ½V → A�
	
: ðA34Þ

Equations (A31)–(A32) and (A34) are written with a structure similar to their SU(3) counterparts, which makes it easier to
implement a unified computer code for the various choices of χPT studied in this paper.

3. Form factors in hard-pion/kaon ChPT

The hard-kaon (pion) continuum HMχPT for B → K and B → π semileptonic decays was derived in Refs. [107,108].
The pion or kaon with large E is integrated out from the theory and its effects are absorbed into the LECs. We derive the
hard-kaon (pion) limit of the HMrSχPT in this section. We first study the asymptotic behavior of the integrals which contain
Eπ or EK. We find that
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I2ðm;EÞ → A0E2 lnðE2Þ þ A1E2 þ A2 lnE −m2 ln

�
m2

Λ2

�
; ðA35Þ

Jsub1 ðm;EÞ → B0E2 lnðE2Þ þ B1E2 þ B2 lnEþ B3; ðA36Þ
in the large E limit, where the coefficients Ai and Bi are either constants or analytic functions of m. The divergent terms in
the large E limit decouple from the expression. The analytic terms in m are absorbed into the redefinition of the LECs. So
the rules to derive the hard-kaon (pion) HMrSχPT are the following:

(i) Replace the term I2ðm;EÞ by −I1ðmÞ.
(ii) Remove the Jsub1 ðm;EÞ term.

To compare our results with Refs. [107,108], we set all taste splitting parameters, hairpin parameters and lattice spacings to
zero. We then can reproduce the continuum hard-kaon (pion) HMχPT results.

logsB→π⊥;SUð3Þ ¼ −
�
3

4
þ 9

4
g2π

�
I1ðmπÞ
ð4πfÞ2 −

�
1

2
þ 3

2
g2π

�
I1ðmKÞ
ð4πfÞ2 −

�
1

12
þ 1

4
g2π

�
I1ðmηÞ
ð4πfÞ2 ; ðA37Þ

logsB→K⊥;SUð3Þ ¼ −
�
9

4
g2π

�
I1ðmπÞ
ð4πfÞ2 −

�
1þ 3

2
g2π

�
I1ðmKÞ
ð4πfÞ2 −

�
1

3
þ 1

4
g2π

�
I1ðmηÞ
ð4πfÞ2 ; ðA38Þ

D ¼ 0: ðA39Þ

Our derivation shows that logsB→π⊥SUð3Þ ¼ logsB→π
∥SUð3Þ and logsB→K⊥SUð3Þ ¼ logsB→K

∥SUð3Þ in the continuum, which is also found in
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