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We construct the six-dimensional quantum chromodynamics (QCD) Lagrangian in a linear covariant
gauge and subsequently renormalize it at two loops in the modified minimal subtraction (MS) scheme. The
coupling constant corresponding to the gauge interaction is asymptotically free for all numbers of quark
fields, Nf. Analyzing the β functions yields a rich spectrum of fixed points. For instance, the conformal
window in the six-dimensional theory is atNf ¼ 16 for the SUð3Þ color group. The critical theory structure
is similar to that of an OðNÞ scalar theory in eight dimensions. Using the large-N expansion the latter is
shown to be in the same universality class as the Heisenberg ferromagnet. Similarly using the large-Nf

expansion, six-dimensional QCD is shown to be in the same class as the two-dimensional non-Abelian
Thirring model and four-dimensional QCD. Abelian gauge theories are also renormalized at high loops in
six and eight dimensions. It is shown that the gauge parameter only appears in the electron anomalous
dimension at one loop, similar to four dimensions.
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I. INTRODUCTION

In recent years there has been renewed interest in the
properties of higher-dimensional quantum field theories.
This has been in part due to the long established fact that
quantum chromodynamics (QCD) has a nontrivial fixed
point in strictly four spacetime dimensions for a range of
values of the number of quarks, Nf [1]. Known as the
conformal window the range is 9 ≤ Nf ≤ 16 for the SUð3Þ
color group. It is due to the two-loop β function having a
nontrivial fixed point when the sign of the one-loop and
two-loop terms are different [1]. Termed as the Banks-Zaks
fixed point the lower bound of the window is determined by
the two-loop β-function coefficient. However, it is not clear
whether this is the actual range of the window since the
value of the coupling constant at the lower end is beyond
the conventional range for perturbative reliability. Other
non-Abelian gauge theories, such as those with supersym-
metry, have a similar property. While the conformal
window of QCD was the first to be studied, the current
vision is that similar fixed points in gauge theories with
other group symmetry could give insight into the theory
believed to lie beyond the Standard Model. For instance,
operators which are not relevant at the Gaussian fixed point
could become relevant at a nontrivial fixed point and hence
drive the dynamics. Recent analyses and refinements of
fixed-point locations for various color groups and repre-
sentations can be found, for example, in Refs. [2–10]. One
key to this is the extension of our understanding of
conformal field theory in two spacetime dimensions to
dimensions greater than two. This is not a trivial task as the
conformal group in the former dimension is infinite dimen-
sional but finite beyond two spacetime dimensions. One
notable property of two dimensions was the c-theorem

[11], which carries information on the renormalization
group flow of a theory. There have been attempts to find
its d-dimensional generalization such as the a-theorem
[12]. The aim there is to find the function, similar to two
dimensions, which is positive in the renormalization group
flow from ultraviolet to infrared.
Parallel to this analysis, and in parts underlying it, is the

need to determine and study the explicit renormalization
group functions of field theories in dimensions greater than
four. There has been work in various directions recently. In
particular six-dimensional OðNÞ scalar ϕ3 theory has
received detailed attention [13–17]. These perturbative
studies are complementary to the modern application of
the conformal bootstrap program, originally developed in
Refs. [18–24] and extended in Refs. [25–28]. Indeed one
motivation in Refs. [29–31] was the connection of this
cubic scalar theory with higher-spin theories which natu-
rally emerge from AdS=CFTs. In Refs. [15,17] the con-
formal window was established in d ¼ 6 − 2ϵ dimensions,
extending the one-loop result of Ref. [32], and the spectrum
of fixed points determined to three loops. This was later
extended to four loops in Ref. [33]. The reason why the
window was studied away from the critical dimension of ϕ3

theory is that, in principle, it ought to be possible to connect
the fixed points in the higher-dimensional theory with
conformal field theories in lower dimensions including
two. The latter is important as conformal field theories have
been classified there. An example of this ambition was
given in Ref. [33]. There using summation approaches,
which are standard in condensed matter theory, various
critical exponents derived in the ϵ expansion of the six-
dimensional theory were summed to access the discrete
dimensions lower than six. Central to this was the knowl-
edge of the value of the corresponding critical exponent in
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the underlying two-dimensional conformal field theory.
Using this as a boundary condition for the four-loop Padé
approximant, estimates for the exponents were found to be
competitive with strong-coupling methods for models of
percolation, for instance.
This connection across the dimensions is not a novel

observation as it dates from the work of Wilson and Fisher
[34]. They observed that in d dimensions, where one can
regard d ¼ D − 2ϵ, with D integer and the critical dimen-
sion of a theory, different quantum field theories can have the
same critical exponents. This equivalence occurs at the
nontrivial d-dimensional fixed point of the respective β
functions which is now termed the Wilson-Fisher fixed
point. This property, known as universality, is a powerful
computational tool for analyzing quantum field theories.
The most common example is the relation between the two-
dimensionalOðNÞ nonlinear σ model and four-dimensional
OðNÞ ϕ4 theory [34]. Each is perturbatively renormalizable
in their critical dimensions but at the d-dimensionalWilson-
Fisher fixed point they are in the same universality class.
That they can be seen to be connected across the dimensions
is possible through the large-N expansion where 1=N plays
the role of a dimensionless coupling constant in d dimen-
sions. Thus the apparently perturbatively nonrenormalizable
nonlinear σ model is nonperturbatively renormalizable in
d dimensions in the large-N expansion. To see this equiv-
alence in depth is possible through the work of Vasiliev’s
group [35–37]. In Refs. [35–37] the critical exponents of the
basic fields and operators were determined to the third term
as functions of d. This is Oð1=N3Þ for the matter field
anomalous dimension and Oð1=N2Þ for what would be the
force or bound-state field. The exponents for the β-function
slopes of the respective models are known at Oð1=N2Þ in
Refs. [36,38]. When these critical exponents are expanded
using d ¼ D − 2ϵ relative to the respective underlying
theories, can one then appreciate the exact agreement with
the explicit perturbative renormalization group functions.
This includes, for instance, recent six-loop MS computa-
tions of the field wave-function anomalous dimension in
four-dimensional OðNÞ ϕ4 theory [39].
What has been established more recently is the extension

of this Wilson-Fisher fixed-point universality chain to six
dimensions in Refs. [17,33]. Thus one natural question,
which has been posed in several articles [15,17,40], con-
cerns whether there is a tower of such theories and if sowhat
is the algorithm to construct each in a specific spacetime
dimension. Part of this article addresses this since we
construct an eight-dimensional OðNÞ scalar field theory
whichwewill show is in the sameuniversality class as that of
OðNÞ scalar theories. It transpires that the process to build
the tower is straightforward. In essence it is in keeping with
thevision ofWilson that the universal theory is an infinite set
of (local) operators, obeying a symmetry such as OðNÞ,
which become relevant in the renormalization-group sense
in the critical dimension. Otherwise such operators are

irrelevant in other critical dimensions. These remarks have
to be qualified by noting that they correspond to massless
theories. If mass parameters are permitted then relevant
operators of theories with lower critical dimensions will be
part of the universal Lagrangian. We will briefly study the
massive extension of our eight-dimensional OðNÞ theory
too as it will transpire that this together with the massless
version have structural similarities with the second andmain
thread of this article. This is the application of the above
ideas to non-Abelian gauge theories with the intention of
determining connections of Lagrangians of spin-1 fields
across d dimensions.
In principle the construction of a similar tower of gauge

theories should be feasible based on what has been found in
the scalar theory case. Moreover, it should be relevant to
possible directions beyond the Standard Model. For in-
stance, for certain gauge groups, such as SUð3Þ × SUð2Þ×
Uð1Þ, there may be a flow to a nontrivial fixed point which
connects with a unified theory. Also understanding the low-
energy dynamics of Yang-Mills theories is currently a
major goal. While the canonical QCD Lagrangian more
than adequately describes high-energy quark and gluon
dynamics, it lacks many features in the infrared. One
notable problem is that quarks and gluons have funda-
mental massless propagators, which derive from the
Lagrangian, but these contradict the fact that these quanta
are confined and not observed in nature. In other words
operators which are ultraviolet irrelevant may become
infrared relevant and dominate the infrared dynamics to
the extent that the quark and gluon propagators cease
having their fundamental form. One such operator which
has received attention at various times is the purely gluonic
dimension-six operator fabcGa

μνGbμσGcν
σ where Ga

μν is the
gluon field strength and fabc are the color group structure
constants. Clearly this operator is perturbatively nonrenor-
malizable in four dimensions. However, based on the scalar
theory picture it is possible to consider it in a renormaliz-
able six-dimensional Lagrangian. If the fixed-point struc-
ture of the higher theory is such that the operator’s coupling
becomes relevant through the ϵ expansion in four dimen-
sions at a nontrivial point then it could be part of the
structure governing the infrared dynamics of gluons. While
we have highlighted this specific operator, we acknowledge
that there are likely to be many other operators with higher
dimensions. However, it is worth considering the simplest
extension of the Wilson vision for a universal gauge theory.
As an aside six-dimensional gauge theories have received
attention at various times [41–47]. For instance, in Ref. [41]
a version of six-dimensional QCD, similar to what we will
consider here, was studied at one loop but in the back-
ground field gauge. The motivation was in part to give
insight into supersymmetric extensions and to provide a
framework to connect with string dynamics. An approach
along similar grounds but motivated by a model-building
framework can be found in Ref. [42]. Partly related to these

J. A. GRACEY PHYSICAL REVIEW D 93, 025025 (2016)

025025-2



is a second area of attention which is the explicit exami-
nation of six-dimensional supersymmetric theories. While
we do not consider supersymmetry explicitly here the
Lagrangians of the supersymmetric gauge theories
[43,47] have similarities to our nonsupersymmetric one.
Therefore, our goal will be to construct the perturbatively

renormalizable six-dimensional non-Abelian gauge theory
and compute its renormalization-group functions to two
loops in the MS scheme.We have to proceed to this order as
it will be apparent that the one loop or leading order is
effectively trivial from the fixed-point structure point of
view. From the computational side a two-loop renormal-
ization provides a highly nontrivial check on the explicit
construction such as the issue of the gauge fixing in six
dimensions. Related to this is the check that the MS β
functions have to be independent of the linear covariant
gauge-fixing parameter. We will show this separately for
each of the three three-point vertices. Concerning the aim
of connecting with gluon infrared dynamics in four
dimensions, it will turn out that like the eight-dimensional
OðNÞ scalar theory the six-dimensional gluon propagator
will have a double-pole propagator. In four dimensions
such a propagator was believed for a while [48] to be the
form in the infrared which ensured a linearly rising
interquark potential and hence the confining force.
However, current Landau gauge lattice measurements
and Schwinger-Dyson studies of the gluon propagator in
four dimensions suggest otherwise in that the propagator
freezes to a finite nonzero value at zero momentum. See, for
instance, Refs. [49–59]. However, we will also provide
modified gluon and Faddeev-Popov ghost propagators
which closely resemble those developed and used in
four-dimensional models of the infrared. Our approach is
via corrections to scaling and is offered as a novel but
alternative insight into such models rather than a justifi-
cation. One further remark needs to be made in relation to
the earlier scalar theory discussion. It concerns the problem
of which theories lie in the tower of gauge theories. It
transpires that a similar chain has been known for some
time in the dimension range 2 < d < 4. In Ref. [60] it was
shown that the two-dimensional non-Abelian Thirring
model and four-dimensional QCD were connected in d
dimensions at their Wilson-Fisher fixed points. This was
accessed via the large-Nf expansion where it is the number
of quark flavors, Nf, which is the dimensionless parameter
and not the number of colors. Indeed this d-dimensional
equivalence was exploited in, for example, Refs. [61–63] in
order to determine various large-Nf critical exponents as
functions of d. While not computed to as high an order in
powers of 1=Nf as the scalar field theories, these d-
dimensional exponents will play a very useful role in
connecting to and establishing the six-dimensional gauge
theory as being part of the tower with the non-Abelian
Thirring model as its foundation stone. Once this con-
nection has been achieved we will be able to study the

questions of the existence of a conformal window and the
two-loop fixed-point structure. As a corollary and as a
stepping stone beyond six dimensions we will specialize to
six- and eight-dimensional Abelian gauge theories due to
recent interest in these theories [64,65]. This will be at three
and two loops respectively. Again we will establish the
connectivity in the tower of d-dimensional Abelian gauge
theories living at the Wilson-Fisher fixed point. The main
motivation for this is as a prelude to analyzing an eight-
dimensional non-Abelian extension. That is a more
involved exercise for a later article, since one has to
determine the set of independent non-Abelian operators
which build the perturbatively renormalizable Lagrangian.
Some work on eight-dimensional operators has been
provided in Ref. [66] but this analysis was not motivated
for constructing a Lagrangian. Rather it was for ascertain-
ing the basis for the operator product expansion and QCD
sum rules.
The article is organized as follows. The algorithm to

construct the candidate higher-dimensional scalar theories
as well as the notation we will use is discussed in Sec. II.
The eight-dimensional OðNÞ scalar theory is renormalized
in the subsequent section and the fixed-point structure
analyzed after showing that it is in the same universality
class as the Heisenberg ferromagnet. A corollary of that
computation is to consider the SpðNÞ version in Sec. IV.
The focus then changes to gauge theories and the con-
struction of the higher-dimensional gauge theories is
discussed in Sec. V. In order to make the Wilson-Fisher
fixed-point connection relevant results from the large-Nf
expansion are provided in Sec. VI. The analysis of the two-
loop renormalization group functions of six-dimensional
QCD is given in the following section. Subsequently, we
specialize to Abelian gauge theories in Sec. VIII before
providing a concluding viewpoint in Sec. IX. An appendix
records values for various eight-dimensional one- and two-
loop integrals.

II. BACKGROUND

We begin by discussing the construction of the higher-
dimensional OðNÞ scalar quantum field theories which lie
in the same universality class as the two-dimensional
nonlinear σ model and ϕ4 theory in four dimensions at
the Wilson-Fisher fixed point. These theories are equivalent
in 2 < d < 4 dimensions which can be seen within the
large-N expansion. In Ref. [17] the extension of the chain
to six dimensions was analyzed in full and moreover gives a
clue as to how to extend the sequence to eight and higher
dimensions. To appreciate this it is instructive to consider
the two lowest-dimensional Lagrangians which are

Lð2Þ
ϕ ¼ 1

2
∂μϕ

i∂μϕi þ 1

2
g1σϕiϕi −

1

2
σ ð2:1Þ

for the nonlinear σ model and
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Lð4Þ
ϕ ¼ 1

2
∂μϕ

i∂μϕi þ 1

2
g1σϕiϕi þ 1

2
σ2 ð2:2Þ

for the four-dimensional quartic theory. In Eq. (2.1) the
field σ plays the role of a Lagrange multiplier field as
ordinarily one would not have a linear term in a Lagrangian.
The multiplier is necessary in order to restrict the OðNÞ
scalar fields to lie on the N-sphere. Choosing a coordinate
system for the constraint that the length of ϕi is fixed to be
the coupling constant would produce the nonlinear version
of Eq. (2.1) which is

Lð2Þ
ϕ ¼ 1

2
gabðϕÞ∂μϕ

a∂μϕb: ð2:3Þ

Here 1 ≤ a ≤ ðN − 1Þ and gabðϕÞ is the metric of the
sphere in the chosen coordinate system. Equally we have
not expressed Eq. (2.2) in its canonical form as there the σ
field is regarded as an auxiliary field. Eliminating it
produces

Lð4Þ
ϕ ¼ 1

2
∂μϕ

i∂μϕi −
g21
8
ðϕiϕiÞ2 ð2:4Þ

where the quartic interaction is apparent. While both
Eqs. (2.3) and (2.4) are the usual formulations it is
Eqs. (2.1) and (2.2) which best indicate that they both
lie in the same universality class. This is because both have
a common interaction. The only differences are in the terms
involving σ. The key point is that the coupling constant g1
has different canonical dimensions in each Lagrangian and
this is as a result of these σ-dependent terms. They define
the dimension of each coupling which can be seen if one
rescales σ → σ=g1. Indeed that is the version used in the
critical point large-N method of Refs. [35–37]. In other
words the commonality of the σϕiϕi interaction is what
determines the universality.
This is evident in the extension of Refs. [15,17] to six

dimensions as that Lagrangian is

Lð6Þ
ϕ ¼ 1

2
∂μϕ

i∂μϕi þ 1

2
∂μσ∂μσ þ 1

2
g1σϕiϕi þ 1

6
g2σ3:

ð2:5Þ

The relation to Eqs. (2.1) and (2.2) is that it has the same
common interaction as before but the σ-dependent term
no longer contributes to the free Lagrangian. The reason
for this new interaction is primarily to ensure the six-
dimensional Lagrangian is perturbatively renormalizable.
One consequence is that there is a vector of β functions
and hence a rich fixed-point structure emerges [17].
However, it has been checked that the renormalization
group functions at three and four loops [17,33] can be
converted into critical exponents in the large-N expansion
which agree precisely with the exponents computed
directly in 1=N [35–38]. This is a nontrivial observation

since the cubic σ interaction with the additional coupling
constant plays a key role in ensuring consistency. For this
article we will term this and similar additional interactions
in other theories as the spectator interactions. This is
because the connecting interaction, σϕiϕi, is central to the
universality and the spectators are dimension dependent.
Moreover, when we extend the picture to gauge theories
this connecting interaction actually connects the quantum
of the underlying force with matter. One difference
Eq. (2.5) has with the other lower-dimensional theories
is that σ cannot be eliminated either as a Lagrange
multiplier or an auxiliary field. Once the connectivity
of Eqs. (2.1), (2.2) and (2.5) has been established it will be
apparent how one extends the tower of Lagrangians to
higher dimensions. There are several key ingredients. One
is the connecting σϕiϕi interaction and the second is that
the theory has to be perturbatively renormalizable in the
higher dimension. In addition the field ϕi has, of course,
to lie in the same symmetry group which is a minor
observation. Given this it is straightforward to write down
a candidate eight-dimensional Lagrangian for the equiv-
alence at the Wilson-Fisher fixed point which is

Lð8Þ
ϕ ¼ 1

2
∂μϕ

i∂μϕi þ 1

2
ð□σÞ2 þ 1

2
g1σϕiϕi

þ 1

6
g2σ2□σ þ 1

24
g23σ

4: ð2:6Þ

We have normalized the coupling constants in each
interaction so that the Feynman rule for each is effectively
unity. A similar pattern is present with the other three
theories in that the σ-dependent term is extended to a
quartic one as might be expected. However, contained
within the perturbative renormalizability criterion is the
understanding that one has a set of independent operators
with which to formulate the Lagrangian. This is the reason
for an interaction with a derivative coupling. On dimen-
sional grounds there are more possible interactions with
derivatives but only one is independent. They are all
related by integration by parts where total derivative
operators can be dropped from the Lagrangian as they
can be integrated out of the action. The other major
difference which first appears here is the presence of a
double pole σ propagator. This is due to the fact that the
canonical dimension of σ at the Wilson-Fisher fixed point
is always two which is why σ has a momentum-dependent
propagator in Eq. (2.5) but not in lower dimensions. It will
turn out that in the gauge theory context a similar higher-
order pole propagator will emerge but in a lower dimen-
sion. So Eq. (2.6) could be regarded as a simple laboratory
for testing ideas in higher-dimensional QCD in much the
same way that six-dimensional ϕ3 theory was once
regarded as a test bed for four-dimensional QCD
[67,68], partly due to both being asymptotically free.
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III. EIGHT-DIMENSIONAL OðNÞ
SCALAR THEORY

While we have formulated a candidate eight-dimensional
scalar theory according to certain criteria we still have to
test out whether the renormalization group functions of
Eq. (2.6) are consistent with the large-N critical exponents.
To do this at a credible and nontrivial level requires a two-
loop analysis. Therefore, we have constructed the anoma-
lous dimensions of the two fields and the β functions to the
requisite orders. Specifically we have determined the
anomalous dimensions of ϕi and σ at three loops and
the β functions of g1 and g2 at two loops. For the coupling
of the quartic term we have computed β3ðg1; g2; g3Þ at one
loop. The reason for the different loop orders stems partly
from computational constraints. For instance, the field
anomalous dimensions do not have any g3 dependence
at one loop, so that the two-loop term of β3ðg1; g2; g3Þ will
not have any effect on the checks with the large-N
exponents. However, we have evaluated the wave-function
renormalization at three loops so that we can in fact check
that the two-loop renormalization is consistent. This is
because the triple and double poles in ϵ in the three-loop
renormalization constants are determined by lower loop
information. Here ϵ is the regularizing parameter in dimen-
sional regularization which we use throughout. Hence it is
possible to check that the result is consistent with this
property of the renormalization group equation. One
technical limitation arises in the renormalization of the
vertices. In Ref. [33] we were able to exploit a property of
six dimensions which was that a propagator of the form
1=ðk2Þ2, where k is the momentum, does not introduce
spurious infrared infinities. Therefore, one could renorm-
alize the three-point vertices by nullifying one external
momentum. This simple infrared rearrangement meant that
the vertex renormalization devolved to a problem of
evaluating two-point Feynman graphs which is computa-
tionally much simpler than a full three-point function [33].
For Eq. (2.6) this nullification of the momentum on an
external leg of a three-point vertex cannot be used. The
main reason for this is that the σ propagator is itself now
1=ðk2Þ2. In eight dimensions this on its own does not
introduce any infrared problems. However, if an external
momentum is nullified then Feynman integrals will have
factors such as 1=ðk2Þ4 which will produce unwanted
infrared infinities which cannot be disentangled from the
desired ultraviolet one. Therefore, for the three-point vertex
renormalization we have chosen to evaluate the Feynman
integrals for the case when none of the external momenta
are nullified. Moreover, we will carry out the subtraction of
infinities in the MS scheme at the fully symmetric point
where the squared external momenta are all equal to ð− ~μ2Þ
where ~μ is the mass scale introduced to ensure the coupling
constants are dimensionless in d dimensions. One benefit
of considering the symmetric point is that it corresponds to
a nonexceptional momentum configuration. So there are no

infrared issues and the poles in ϵ which emerge are purely
ultraviolet. For the four-point vertex the same issues arise.
One cannot nullify an external momentum to reduce the
computation to a three-point one as then the momentum
configuration is exceptional. Therefore, we have chosen to
compute the one-loop four-point function at its fully
symmetric point to ensure the result is infrared safe.
Having outlined the general method of computing the

renormalization group functions we now discuss the more
practical technical aspects of the process. This approach
described here was also applied to the gauge theory
computations presented later. Our calculations were carried
out automatically using symbolic manipulation programs
written in the language FORM [69,70]. The initial part of
this is to generate all the Feynman diagrams electronically
with the QGRAF package [71]. Once this is achieved the
graphs are individually passed to an integration routine.
The final stage of the process is to sum all the graphs and
extract the renormalization constants. This latter part is
achieved automatically by using the algorithm of Ref. [72].
In essence one computes each graph as a function of the
bare parameters. These are the three coupling constants in
Eq. (2.6) and in the case of the gauge theories the gauge
parameter. The renormalized variables are introduced by
rescaling with the respective renormalization constants
corresponding to the constant of proportionality. This in
effect introduces the counterterms automatically and
bypasses the need to carry out subtractions on each
individual graph which would be tedious for a high-loop
analysis. The bulk of the work is in the integration routine
and for each of the three types of Green’s functions, two-,
three- and four-point, we have used the Laporta algorithm
[73]. This is an elegant technique which systematically
creates all the relations between scalar Feynman integrals
using integration by parts and then algebraically solves
them in terms of a base set of integrals. This set is known as
the master integrals and is ordinarily a relatively small set.
They are evaluated directly if, for example, they are nested
bubble graphs, or by nonintegration by parts methods. The
version of the Laporta algorithm we used was REDUZE

[74,75]. It creates a database of relations from which we
extract the required integrals for each Green’s function in
FORM notation and then include the relations as a FORM
module in the automatic computation. For Eq. (2.6)
REDUZE is particularly appropriate for the two- and
three-point functions since the higher pole σ propagator
requires a larger order of integration than is ordinarily the
case. The final stage is the substitution of the expressions
for the master integrals. As we are interested in the structure
of Eq. (2.6) we have to determine master integrals in eight
dimensions. This is more straightforward than may initially
seem which is due to the fact that the relevant masters are
already known in lower dimensions. One can connect with
these results via the Tarasov method [76,77], which allows
one to relate d-dimensional Feynman integrals with
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integrals in (dþ 2) dimensions. The latter have the same
topology as the lower-dimensional one but with powers of
the propagator which are larger than those of the original.
However, such integrals can be reduced to the correspond-
ing master in the higher dimension by application of
the Laporta algorithm. Therefore, one can readily con-
struct relations between masters in different dimensions
plus lower-level masters which are already available.
Therefore, if a lower-dimensional master is available it
can be used to immediately determine the value of the
corresponding master in two dimensions higher. This

process was used to deduce the four-loop masters for the
two-point functions in six dimensions in Ref. [33]. To aid
an interested reader we have presented all the relevant two-
loop eight-dimensional masters for the three-point function
at the fully symmetric point to various orders in ϵ, where
d ¼ 8 − 2ϵ, in the Appendix as well as the one-loop four-
point box at its symmetric point. The former complement
the same values for the six-dimensional case which were
presented in Ref. [78].
Applying this procedure we have found that the various

renormalization group functions for Eq. (2.6) are

γϕðg1; g2; g3Þ ¼ −
g21
12

þ ½801Ng21 þ 2250g21 − 10800g1g2 − 1072g22�
g21

777600

þ ½179415N2g41 þ 89688870Ng41 þ 419904000ζ3g41 − 520870500g41

þ 56945160Ng31g2 þ 87750000g31g2 þ 3280536Ng21g
2
2 þ 186624000ζ3g21g

2
2

− 491324400g21g
2
2 − 116640000g21g

2
3 − 65550960g1g32 − 90720000g1g2g23

− 437392g42 − 11275200g22g
2
3 − 5370300g43�

g21
50388480000

þOðg8i Þ;

γσðg1; g2; g3Þ ¼ ½9Ng21 − 8g22�
1

1080

þ ½−5265Ng41 þ 51840Ng31g2 þ 4392Ng21g
2
2 − 2344g42 − 21600g22g

2
3 − 12150g43�

1

17496000

þ ½−255817035N2g61 − 944784000ζ3Ng61 þ 1761646725Ng61

− 47764080N2g51g2 − 66703500Ng51g2 − 85536N2g41g
2
2

− 1049760000ζ3Ng41g
2
2 þ 3348988740Ng41g

2
2 þ 1043199000Ng41g

2
3

þ 370958940Ng31g
3
2 þ 660474000Ng31g2g

2
3 þ 19729152Ng21g

4
2

þ 80578800Ng21g
2
2g

2
3 þ 28048275Ng21g

4
3 þ 36288000ζ3g62 − 376270760g62

þ 445780800g42g
2
3 þ 389431800g22g

4
3 þ 75451500g63�

1

1133740800000
þOðg8i Þ;

β1ðg1; g2; g3Þ ¼ ½9Ng21 þ 180g21 − 240g1g2 − 8g22�
g1

2160

þ ½187920Ng41 − 516375g41 þ 65880Ng31g2 þ 486000g31g2 þ 2196Ng21g
2
2

− 827280g21g
2
2 − 729000g21g

2
3 − 36120g1g32 − 162000g1g2g23 − 1172g42

− 10800g22g
2
3 − 6075g43�

g1
17496000

þOðg7i Þ;

β2ðg1; g2; g3Þ ¼ ½270Ng31 þ 27Ng21g2 þ 76g32�
1

2160

þ ½−91125Ng51 þ 662985Ng41g2 þ 14715Ng31g
2
2 þ 121500Ng31g

2
3

− 7083Ng21g
3
2 þ 8100Ng21g2g

2
3 − 43394g52 þ 43200g32g

2
3

þ 109350g2g43�
1

11664000
þOðg7i Þ;

β3ðg1; g2; g3Þ ¼ ½810Ng41 þ 27Ng21g
2
3 þ 160g42 þ 696g22g

2
3 þ 405g43�

1

1620
þOðg6i Þ ð3:1Þ

where ζz is the Riemann zeta function and the order symbol in perturbative expressions throughout indicates any
combination of couplings whose powers sum to that indicated. While the three-loop field anomalous dimensions satisfy
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internal consistency checks the main motivation is to ascertain whether Eq. (2.6) is in the same Wilson-Fisher universality
class as Eqs. (2.1), (2.2) and (2.5) which requires computing the critical exponents in the large-N expansion. To do this we
follow the same prescription and method introduced in Ref. [17]. First, we introduce rescaled coupling constants

g1 ¼
ffiffiffiffiffiffiffiffiffiffi
120ϵ

N

r
x; g2 ¼

ffiffiffiffiffiffiffiffiffiffi
120ϵ

N

r
y; g23 ¼

120ϵ

N
z: ð3:2Þ

Then solving βiðg1; g2; g3Þ ¼ 0 we find

x¼ 1þ ½−110þ 252ϵ� 1
N
þ ½18150− 48475ϵ� 1

N2
þ ½67232500− 551223750ϵ� 1

N3
þO

�
ϵ2;

1

N4

�
;

y¼ −15þ ½14250− 21210ϵ� 1
N
þ ½−36182250þ 89882625ϵ� 1

N2
þ ½128836402500− 416828165250ϵ� 1

N3
þO

�
ϵ2;

1

N4

�
;

z¼ −60−
12000

N
þ 1045416000

N2
−
13222012800000

N3
þO

�
1;

1

N4

�
ð3:3Þ

where the order symbol for 1=N expansions indicates the truncation powers of both expansions. Using these to evaluate
γϕðg1; g2; g3Þ and γσðg1; g2; g3Þ at this large-N fixed point we find that the exponents are

η ¼
�
−20ϵþ 89

3
ϵ2
�
1

N
þ
�
4400ϵ −

77950

3
ϵ2
�

1

N2
þ ½−968000ϵþ 18577400ϵ2� 1

N3
þO

�
ϵ3;

1

N4

�
;

ηþ χ ¼ ϵþ ½−420ϵþ 673ϵ2� 1
N
þ
�
428400ϵ −

4544450

3
ϵ2
�

1

N2
þO

�
ϵ3;

1

N3

�
ð3:4Þ

for comparison with the exponents given in Refs. [35–37]
when expanded in powers of ϵ where d ¼ 8 − 2ϵ. Here η
relates to the renormalization group function γϕðg1; g2; g3Þ
and ηþ χ is the exponent underlying γσðg1; g2; g3Þ in the
exponent notation of Ref. [35,36]. Comparing the explicit
perturbative results with the known large-N exponents
there is precise agreement to Oðϵ2Þ. While this is not a
full proof of the equivalence of Eq. (2.6) with the lower-
dimensional scalar theories, it has been established in a
similar way. More importantly it strongly suggests that the
procedure for constructing a Lagrangian which is a partner
in the d-dimensional tower is well defined. Crucial in this
establishment is the spectator interactions whose effects
first appear at two loops which is a reason why we
constructed the wave-function renormalization group func-
tions to this order. Given this agreement it is not difficult to
write down a candidate for the next Lagrangian in the
sequence. In ten dimensions following our prescription we
would have

Lð10Þ
ϕ ¼ 1

2
∂μϕ

i∂μϕiþ 1

2
ð□∂μσÞð□∂μσÞþ

1

2
g1σϕiϕi

þ 1

6
g2σ2□2σþ 1

2
g3σð□σÞ2þ 1

24
g24σ

3□σþ 1

120
g35σ

5

ð3:5Þ

which is renormalizable by power counting. In constructing
Eq. (3.5) we have ensured that the spectator interactions are

independent. Also it shares structural similarities to
Eq. (2.6) in that the σ propagator has an increased pole
structure and there are more derivative couplings in
addition to a pure quintic σ self-interaction.
We close this section by considering extensions to each of

our scalar theories where (local) operators of dimension
lower than the critical dimension for renormalizability are
included. There are various reasons for this. One is that the
structure of these massive Lagrangians is not unrelated to the
Lagrangians with lower critical dimensions. Indeed this is an
indication of the larger vision of the operators varying
between being relevant and irrelevant in different dimen-
sions. A second reason is that one can access an additional
check on the equivalence of Eq. (2.6). First, the massive
extension of the respective four-, six- and eight-dimensional
Lagrangians are

Lð4Þ
ϕm ¼ Lð4Þ

ϕ þ 1

2
m2

1ϕ
iϕi;

Lð6Þ
ϕm ¼ Lð6Þ

ϕ þ 1

2
m2

1ϕ
iϕi þ 1

2
m2

2σ
2;

Lð8Þ
ϕm ¼ Lð8Þ

ϕ þ 1

2
m2

1ϕ
iϕi −

1

2
m2

2σ□σ þ 1

2
m4

3σ
2 þ 1

6
m2

4σ
3:

ð3:6Þ

Common to each is a mass term for what one can regard as
the matter field ϕi. In the context of the large-N critical
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point equivalence, as is well known the critical exponent
of the ϕi mass operator is the same as σ field critical
exponent [35,36]. For the six- and eight-dimensional
cases there are additional lower-dimensional operators
depending purely on σ including derivative couplings in
the latter case. These operators are effectively the same as
the interactions in theories at lower dimensions. When one

determines the dimensionality of the associated coupling
constant in d dimensions then it is clear why these
operators are present in the massive extensions.
However there is one minor caveat with this in that this
also includes two-point operators which are to be regarded
as part of the free Lagrangian. So, for instance, the
propagators of Lð8Þ

ϕm are

hϕiðpÞϕjð−pÞi ¼ δij

½p2 þm2
1�
; hσðpÞσð−pÞi ¼ 1

½ðp2Þ2 þm2
2p

2 þm4
3�
: ð3:7Þ

A propagator similar to the denominator of the Stingl
propagator [79] emerges for the σ field. While this may
appear to be a nonstandard propagator, it transpires that
this form of a propagator can arise in models of the
infrared behavior of the gluon in QCD. As a further check
on our equivalence we have computed the anomalous
dimension of m3 or equivalently the operator σ2 in Lð8Þ

ϕm at

two loops. This is achieved by inserting the operator in a σ
two-point function but in such a way that a momentum
flows through the operator itself. The reason for this
specific momentum configuration is to ensure that there
are no infrared problems in extracting the associated
operator renormalization constant. Therefore, at two loops
we found

γm3
ðg1; g2; g3Þ ¼ ½−Ng21 − 8g22 − 10g23�

1

120
þ ½14085N þ 24240Ng31g2 þ 3952Ng21g

2
2 þ 3330Ng21g

2
3

þ 18136g42 þ 25640g22g
2
3 − 3150g43�

1

1944000
þOðg6i Þ: ð3:8Þ

From this if we evaluate the corresponding critical ex-
ponent in the large-N expansion using Eq. (3.4) the
exponent is in precise agreement with the critical exponent
ω computed in Ref. [38] at Oð1=N2Þ. In Ref. [38] ω was
determined as it corresponded to the critical slope of the β
function of Eq. (2.2) and was therefore of interest in
accessing the higher-order perturbative structure of the
OðNÞ ϕ4 β function. In Refs. [17,33,80] the same exponent
was used to check the three- and four-loop mass anomalous
dimension of the σ field in Eq. (2.5). Therefore, the same
reasoning applies here and the expansion of ω in powers of
1=N and ϵ where d ¼ 8 − 2ϵ means that it has to be

consistent with the anomalous dimension of m3 in Lð8Þ
ϕm

which is what we have found. It is possible to carry out a

similar analysis for the cubic operator of Lð8Þ
ϕm and we found

γm4
ðg1; g2; g3Þ ¼ −½9Ng21 þ 152g22 þ 180g23�

1

720
þOðg4i Þ:

ð3:9Þ
Extracting the OðϵÞ term at Oð1=NÞ of the critical
anomalous dimension we find that it agrees with the
exponent derived in Refs. [81–83]. To determine this
anomalous dimension we inserted the cubic operator in
a σ three-point function at the fully symmetric point.
This was to ensure the infrared safeness of the ultraviolet
renormalization.

Having established the equivalence of the renormaliza-
tion group functions with lower-dimensional theories, the
next task is to briefly analyze the fixed-point structure. The
first issue is to see if there is a conformal window. Again we
follow Refs. [15,17] and solve for the value of N where

β1ðg1; g2; g3Þ ¼ β2ðg1; g2; g3Þ ¼ β3ðg1; g2; g3Þ ¼ 0;

det

�∂βi
∂gj

�
¼ 0 ð3:10Þ

where the first three equations determine the values of the
couplings at the conformal window and the final equation
relates to where there are zero eigenvalues of the β-function
Hessian. In solving these equations we find several real
solutions for N but only three are positive. These are at
Ncr ¼ 0.006773, 0.043641 and 0.1097804. So in effect
there is no conformal window unlike the six-dimensional
case. To give a flavor of what the fixed-point structure looks
like at leading order we have solved

β1ðg1; g2; g3Þ ¼ β2ðg1; g2; g3Þ ¼ β3ðg1; g2; g3Þ ¼ 0

ð3:11Þ
for the value N ¼ 500. This is partly to compare with a
similar analysis in the gauge theory case. Aside from the
trivial solution we found the following fixed points, labeled
with a subscript,
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xð1Þ ¼ 0.806810þ 0.262894iþOðϵÞ; yð1Þ ¼ −0.606634þ 11.002012iþOðϵÞ;
zð1Þ ¼ 170.524352 − 1.949764iþOðϵÞ; xð2Þ ¼ 0.806810þ 0.262894iþOðϵÞ;
yð2Þ ¼ −0.606634þ 11.002012iþOðϵÞ; zð2Þ ¼ 34.132430þ 10.748863iþOðϵÞ;
xð3Þ ¼ −0.806810þ 0.262894iþOðϵÞ; yð3Þ ¼ 0.606634þ 11.002012iþOðϵÞ;
zð3Þ ¼ 34.132430 − 10.748863iþOðϵÞ; xð4Þ ¼ −0.806810 − 0.262894iþOðϵÞ;
yð4Þ ¼ 0.606634 − 11.002012iþOðϵÞ; zð4Þ ¼ 170.524352 − 1.949764iþOðϵÞ;
xð5Þ ¼ 0.849156þOðϵÞ; yð5Þ ¼ −8.093663þOðϵÞ; zð5Þ ¼ −22.804535þOðϵÞ;
xð6Þ ¼ 0.849156þOðϵÞ; yð6Þ ¼ −8.093663þOðϵÞ; zð6Þ ¼ −97.139996þOðϵÞ;
xð7Þ ¼ OðϵÞ; yð7Þ ¼ 7.694838þOðϵÞ; zð7Þ ¼ −21.929825þOðϵÞ;
xð8Þ ¼ OðϵÞ; yð8Þ ¼ 7.694838þOðϵÞ; zð8Þ ¼ −63.157895þOðϵÞ;
xð9Þ ¼ OðϵÞ; yð9Þ ¼ OðϵÞ; zð9Þ ¼ 16.666667þOðϵÞ ð3:12Þ

in the same notation as the large-N analysis. In this list we have not included simple reflections gi → −gi or complex-
conjugate partner solutions. For those solutions where there are real and imaginary parts for a fixed-point coupling constant
the corresponding critical point anomalous dimensions are complex. So there are several cases where real anomalous
dimensions for critical γϕðg1; g2; g3Þ and γσðg1; g2; g3Þ emerge. Only solution 5 is stable. Using the same labeling as for the
critical points for the cases where we have real exponents we have, for example

γϕðg1; g2; g3Þjð5Þ ¼ −0.014421ϵþOðϵ2Þ; γσðg1; g2; g3Þjð5Þ ¼ 0.604609ϵþOðϵ2Þ;
γϕðg1; g2; g3Þjð6Þ ¼ −0.014421ϵþOðϵ2Þ; γσðg1; g2; g3Þjð6Þ ¼ 0.604609ϵþOðϵ2Þ;
γϕðg1; g2; g3Þjð7Þ ¼ Oðϵ2Þ; γσðg1; g2; g3Þjð7Þ ¼ −0.105263ϵþOðϵ2Þ;
γϕðg1; g2; g3Þjð8Þ ¼ Oðϵ2Þ; γσðg1; g2; g3Þjð8Þ ¼ −0.105263ϵþOðϵ2Þ;
γϕðg1; g2; g3Þjð9Þ ¼ Oðϵ2Þ; γσðg1; g2; g3Þjð9Þ ¼ Oðϵ2Þ: ð3:13Þ

Several features emerge, which it transpires will be similar
in the gauge theory case, and that is that different fixed
points have the same leading-order values for the wave-
function exponents. There is nothing deeply significant
about this. It is mainly due to the absence of g3 in the
corresponding one-loop anomalous dimensions. Where
those exponents have the same critical values the fixed
points only differ in the leading-order critical value for g3.
The results for fixed points numbered 7, 8 and 9 are special
cases. For these the value for the coupling at criticality
means that ϕi is in effect a free field. Therefore, the
exponents correspond to a theory which only involves the σ
field in effect. For instance, solution 9 in essence is the
eight-dimensional single field ϕ4 theory when the propa-
gator has a double pole.

IV. EIGHT-DIMENSIONAL SpðNÞ
SCALAR THEORY

While the fixed-point structure of the OðNÞ eight-
dimensional scalar theory (2.6) does not appear as rich as

the six-dimensional counterpart in that the conformal
window reaches down to small N, there is a related
scalar theory which does run parallel to Eq. (2.5). This is
the eight-dimensional version of Eq. (2.6) but where
the symmetry group is SpðNÞ. Such a variation of the
scalar theories was considered in six dimensions in
Refs. [40,84]. It involves the presence of an anticommut-
ing scalar, similar to ϕi, which carries the symplectic
property. However, it was shown in those articles that the
renormalization group functions could be simply derived
from those of the OðNÞ model by making the map
N → −N. Therefore, if we repeat this for the renormal-
ization group functions of Eq. (2.6) we will be able to
analyze the SpðNÞ version. The first step is to ascertain if
there is a conformal window and again we solve
Eq. (3.10) but use

~x ¼ ix; ~y ¼ iy; ~z ¼ −z ð4:1Þ

instead. In this instance we find a set of solutions
given by
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NðAÞ ¼ 13563.468614þOðϵÞ; ~xðAÞ ¼ 1.008162þOðϵÞ;
~yðAÞ ¼ −16.322777þOðϵÞ; ~zðAÞ ¼ 4.533577þOðϵÞ;
NðBÞ ¼ 6720.118606þOðϵÞ; ~xðBÞ ¼ 1.015639þOðϵÞ;
~yðBÞ ¼ −19.355633þOðϵÞ; ~zðBÞ ¼ −202.850049þOðϵÞ;
NðCÞ ¼ 6145.191926þOðϵÞ; ~xðCÞ ¼ 1.014734þOðϵÞ;
~yðCÞ ¼ −22.265284þOðϵÞ; ~zðCÞ ¼ −188.134273þOðϵÞ;
NðDÞ ¼ 6145.191926þOðϵÞ; ~xðDÞ ¼ 1.014734þOðϵÞ;
~yðDÞ ¼ −22.265284þOðϵÞ; ~zðDÞ ¼ −446.807837þOðϵÞ;
NðEÞ ¼ 2.894045þOðϵÞ; ~xðEÞ ¼ 0.197977iþOðϵÞ;
~yðEÞ ¼ −0.456225iþOðϵÞ; ~zðEÞ ¼ 0.215506þOðϵÞ;
NðFÞ ¼ 1.345536iþ 6.030563þOðϵÞ; ~xðFÞ ¼ 0.276745iþ 0.025867þOðϵÞ;
~yðFÞ ¼ −0.686337iþ 0.344352þOðϵÞ; ~zðFÞ ¼ 0.383205iþ 0.186459þOðϵÞ ð4:2Þ

where we have omitted the conjugate solution to F to save space. It turns out that there are several real solutions for the value
of N where the number of real eigenvalues change. These are Ncr ¼ 13564, 6721, 6146, and 3.
Given the several ranges for the windows, we have analyzed representative values of N in order to see the structure of the

fixed points for each sector by solving Eq. (3.11). It turns out that the behavior varies from sector to sector. Therefore, we
provide a set of fixed points for various representative values of N. For instance, when N ¼ 15000 we have the critical
couplings

~xð1Þ;15000 ¼ 1.007382þOðϵÞ; ~yð1Þ;15000 ¼ −16.164156þOðϵÞ;
~zð1Þ;15000 ¼ 103.672328þOðϵÞ; ~xð2Þ;15000 ¼ 1.007382þOðϵÞ;
~yð2Þ;15000 ¼ −16.164156þOðϵÞ; ~zð2Þ;15000 ¼ −37.868526þOðϵÞ;
~xð3Þ;15000 ¼ 0.974832þOðϵÞ; ~yð3Þ;15000 ¼ −47.393461þOðϵÞ;
~zð3Þ;15000 ¼ −735.06222þOðϵÞ; ~xð4Þ;15000 ¼ 0.974832þOðϵÞ;
~yð4Þ;15000 ¼ −47.393461þOðϵÞ; ~zð4Þ;15000 ¼ −2674.674316þOðϵÞ;
~xð5Þ;15000 ¼ 0.865512þOðϵÞ; ~yð5Þ;15000 ¼ 53.493631þOðϵÞ;
~zð5Þ;15000 ¼ −840.729642þOðϵÞ; ~xð6Þ;15000 ¼ 0.865514þOðϵÞ;
~yð6Þ;15000 ¼ 53.493631þOðϵÞ; ~zð6Þ;15000 ¼ −3827.814755þOðϵÞ;
~xð7Þ;15000 ¼ OðϵÞ; ~yð7Þ;15000 ¼ 42.146362iþOðϵÞ; ~zð7Þ;15000 ¼ 1894.736842þOðϵÞ;
~xð8Þ;15000 ¼ OðϵÞ; ~yð8Þ;15000 ¼ 42.146361iþOðϵÞ; ~zð8Þ;15000 ¼ 657.894737þOðϵÞ;
~xð9Þ;15000 ¼ OðϵÞ; ~yð9Þ;15000 ¼ OðϵÞ; ~zð9Þ;15000 ¼ −500.000000: ð4:3Þ

In these and subsequent fixed-point solutions we omit critical points which are related by reflections or complex conjugates.
Similar features are common with the OðNÞ theory with N ¼ 500 such as solutions 7, 8 and 9 which correspond to the
ϕi-free case. Also there are pairs with the same ~x and ~y values but a different value for ~z. The main difference is that all
solutions are real when ~x ≠ 0. By contrast examining the N ¼ 10000 case we find
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~xð1Þ;10000 ¼ 1.011031þOðϵÞ; ~yð1Þ;10000 ¼ −17.015872þOðϵÞ;
~zð1Þ;10000 ¼ −74.728621þ 81.472666iþOðϵÞ;
~xð2Þ;10000 ¼ 0.989137þOðϵÞ; ~yð2Þ;10000 ¼ −36.865152þOðϵÞ;
~zð2Þ;10000 ¼ −454.998667þOðϵÞ;
~xð3Þ;10000 ¼ 0.989137þOðϵÞ; ~yð3Þ;10000 ¼ −36.865152þOðϵÞ;
~zð3Þ;10000 ¼ −1561.607482þOðϵÞ;
~xð4Þ;10000 ¼ 0.854964þOðϵÞ; ~yð4Þ;10000 ¼ 43.810992þOðϵÞ;
~zð4Þ;10000 ¼ −558.723323þOðϵÞ;
~xð5Þ;10000 ¼ 0.854964þOðϵÞ; ~yð5Þ;10000 ¼ 43.810992þOðϵÞ;
~zð5Þ;10000 ¼ −2585.830662þOðϵÞ;
~xð6Þ;10000 ¼ OðϵÞ; ~yð6Þ;10000 ¼ 34.412360iþOðϵÞ;
~zð6Þ;10000 ¼ 1263.157895þOðϵÞ;
~xð7Þ;10000 ¼ OðϵÞ; ~yð7Þ;10000 ¼ 34.412360iþOðϵÞ; ~zð7Þ;10000 ¼ 438.596491þOðϵÞ;
~xð8Þ;10000 ¼ OðϵÞ; ~yð8Þ;10000 ¼ OðϵÞ; ~zð8Þ;10000 ¼ −333.333333þOðϵÞ: ð4:4Þ

Here there is one fully complex solution. In the next lower window the reality of all solutions is restored since, for example,

~xð1Þ;6500 ¼ 1.015877þOðϵÞ; ~yð1Þ;6500 ¼ −19.862247þOðϵÞ;
~zð1Þ;6500 ¼ −174.63918þOðϵÞ;
~xð2Þ;6500 ¼ 1.015877þOðϵÞ; ~yð2Þ;6500 ¼ −19.862247þOðϵÞ;
~zð2Þ;6500 ¼ −272.79598þOðϵÞ;
~xð3Þ;6500 ¼ 1.009679þOðϵÞ; ~yð3Þ;6500 ¼ −25.636626þOðϵÞ;
~zð3Þ;6500 ¼ −234.623913þOðϵÞ;
~xð4Þ;6500 ¼ 1.009679þOðϵÞ; ~yð4Þ;6500 ¼ −25.636626þOðϵÞ;
~zð4Þ;6500 ¼ −669.753355þOðϵÞ;
~xð5Þ;6500 ¼ 0.841616þOðϵÞ; ~yð5Þ;6500 ¼ 35.419872þOðϵÞ;
~zð5Þ;6500 ¼ −360.906735þOðϵÞ;
~xð6Þ;6500 ¼ 0.841616þOðϵÞ; ~yð6Þ;6500 ¼ 35.419872þOðϵÞ;
~zð6Þ;6500 ¼ −1704.819491þOðϵÞ;
~xð7Þ;6500 ¼ OðϵÞ; ~yð7Þ;6500 ¼ 27.744132iþOðϵÞ; ~zð7Þ;6500 ¼ 821.052632þOðϵÞ;
~xð8Þ;6500 ¼ OðϵÞ; ~yð8Þ;6500 ¼ 27.744132iþOðϵÞ; ~zð8Þ;6500 ¼ 285.087720þOðϵÞ;
~xð9Þ;6500 ¼ OðϵÞ; ~yð9Þ;6500 ¼ OðϵÞ; ~zð9Þ;6500 ¼ −216.666667þOðϵÞ ð4:5Þ

when N ¼ 6500. The solutions in this region in effect have the same structure as that for N > 13563. Dropping to the next
sector two purely complex solutions emerge. For instance, when N ¼ 100 we find
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~xð1Þ;100 ¼ 0.504796þ 0.886070iþOðϵÞ; ~yð1Þ;100 ¼ 1.604579 − 6.710841iþOðϵÞ;
~zð1Þ;100 ¼ 48.95388þ 37.45947iþOðϵÞ;
~xð2Þ;100 ¼ 0.504796þ 0.886070iþOðϵÞ; ~yð2Þ;100 ¼ 1.604579 − 6.710841iþOðϵÞ;
~zð2Þ;100 ¼ 17.146965þ 5.514596iþOðϵÞ;
~xð3Þ;100 ¼ 0.567011þOðϵÞ; ~yð3Þ;100 ¼ 3.980936þOðϵÞ;
~zð3Þ;100 ¼ −3.101886þOðϵÞ;
~xð4Þ;100 ¼ 0.567011þOðϵÞ; ~yð4Þ;100 ¼ 3.980936þOðϵÞ;
~zð4Þ;100 ¼ −25.322927þOðϵÞ;
~xð5Þ;100 ¼ OðϵÞ; ~yð5Þ;100 ¼ 3.441236iþOðϵÞ; ~zð5Þ;100 ¼ 12.631579þOðϵÞ;
~xð6Þ;100 ¼ OðϵÞ; ~yð6Þ;100 ¼ 3.441236iþOðϵÞ; ~zð6Þ;100 ¼ 4.385965þOðϵÞ;
~xð7Þ;100 ¼ OðϵÞ; ~yð7Þ;100 ¼ OðϵÞ; ~zð7Þ;100 ¼ −3.333333þOðϵÞ: ð4:6Þ

Throughout each of these solutions one of the real fixed points is the one which the large-N exponents in the SpðNÞ version
of Eq. (2.6) are connected to.
One final example is of special interest. When N ¼ 2 our solutions to Eq. (3.11) are

xð1Þ;2 ¼ 0.193438iþOðϵÞ; yð1Þ;2 ¼ −0.269684iþOðϵÞ;
zð1Þ;2 ¼ 0.091641þOðϵÞ;
xð2Þ;2 ¼ 0.193438iþOðϵÞ; yð2Þ;2 ¼ −0.269684iþOðϵÞ;
zð2Þ;2 ¼ −0.038310þOðϵÞ;
xð3Þ;2 ¼ 0.149071iþOðϵÞ; yð3Þ;2 ¼ −0.447214iþOðϵÞ;
zð3Þ;2 ¼ 0.207407þOðϵÞ;
xð4Þ;2 ¼ 0.149071iþOðϵÞ; yð4Þ;2 ¼ −0.447214iþOðϵÞ;
zð4Þ;2 ¼ 0.066667þOðϵÞ;
xð5Þ;2 ¼ 0.282351þOðϵÞ; yð5Þ;2 ¼ 0.433979þOðϵÞ; zð5Þ;2 ¼ 0.027985þOðϵÞ;
xð6Þ;2 ¼ 0.282351þOðϵÞ; yð6Þ;2 ¼ 0.433979þOðϵÞ; zð6Þ;2 ¼ −0.407685þOðϵÞ;
xð7Þ;2 ¼ OðϵÞ; yð7Þ;2 ¼ 0.486664iþOðϵÞ; zð7Þ;2 ¼ 0.252632þOðϵÞ;
xð8Þ;2 ¼ OðϵÞ; yð8Þ;2 ¼ 0.486664iþOðϵÞ; zð8Þ;2 ¼ 0.087719þOðϵÞ;
xð9Þ;2 ¼ OðϵÞ; yð9Þ;2 ¼ OðϵÞ; zð9Þ;2 ¼ −0.066667þOðϵÞ: ð4:7Þ

While there are fewer purely real solutions those that are
imaginary only for ~x and ~y will have real squares when put
on the same footing as ~z. The main observation is that
solution 4, which is a stable fixed point, has the property
that

~y ¼ 3~xþOðϵÞ; ~z ¼ 3~x2 þOðϵÞ: ð4:8Þ

This is not an accident as a similar solution emerged in the
six-dimensional SpðNÞ case for N ¼ 2 [84], although there
was no quartic interaction there. In Ref. [84] it was shown
to be due to a hidden supersymmetry based on the super-
group OSpð1j2Þ. Thus it would appear that the same

symmetry arises in the eight-dimensional scalar theory.
One property of this supersymmetry is that the field
anomalous dimension for ϕi and σ should be equivalent
and we have checked this and found that

γϕðg1; g2; g3Þjð4Þ;2 ¼ γσðg1; g2; g3Þjð4Þ;2
¼ −0.111111ϵþOðϵ2Þ: ð4:9Þ

Actually the same leading-order exponents emerge for
solution 3 too but this is only due to γϕðg1; g2; g3Þ and
γσðg1; g2; g3Þ not depending on g3 at one loop. What is
perhaps more intriguing is that the critical-point structure of
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the six-dimensional Spð2Þ case is given by the q → 0 limit
of the q-state Potts model, [85]. In Ref. [86] it was
suggested that the upper critical dimension for this equiv-
alence was six. Given the relation of Eq. (2.6) now with
Eq. (2.5) at the Wilson-Fisher fixed point and the appear-
ance of a hidden symmetry for Spð2Þ at a specific fixed
point, similar to six dimensions [84], it would be interesting
to see whether the restriction to six dimensions argued in
Ref. [86] could be extended to eight dimensions. While our
focus in this section has been on the SpðNÞ theory, which
reveals a rich fixed-point spectrum on a par with that of
Eq. (2.5) [17], a full analysis would require higher-order
computations.

V. HIGHER-DIMENSIONAL GAUGE THEORIES

Having discussed a model scalar theory of some of
the structural similarities to higher-dimensional gauge
theories we now concentrate on the construction of the
six-dimensional QCD Lagrangian in this section. In
essence the core properties of eight-dimensional OðNÞ
ϕ3 theory translate to the QCD case. The main difference
is the presence of gauge symmetry which requires a
modification of our algorithm for the completion of the
higher-dimensional theory and the construction of the tower
of theories which are equivalent at the Wilson-Fisher fixed
point. First, we recall that the four-dimensional QCD
Lagrangian is

Lð4Þ ¼−
1

4
Ga

μνGaμν−
1

2α
ð∂μAa

μÞ2− c̄að∂μDμcÞaþ iψ̄ iIDψ iI

ð5:1Þ

where Aa
μ is the gluon, ψ iI is the quark and ca are the

Faddeev-Popov ghost fields. Here the indices take the ranges
1 ≤ a ≤ NA, 1 ≤ I ≤ NF and 1 ≤ i ≤ Nf whereNF andNA
are the respective dimensions of the fundamental and adjoint
representations of the color group and Nf is the number of
quark flavors. Also Dμ is the covariant derivative and Ga

μν is
the field strength. Throughout we choose to work with the
canonical linear covariant gauge fixing whose associated
gauge parameter is α. While this is a standard Lagrangian it
is worth noting several features relevant to the present
discussion. The Lagrangian is constructed in several stages.
The first is to write down all independent local gauge-
invariant operators which are built from the Aa

μ and ψ iI fields
and are renormalizable in the dimension of interest which is
four for Eq. (5.1). For the moment we will exclude lower-
dimensional operators which would introduce masses.
Unlike scalar theories such gauge-invariant Lagrangians
produce fields with more degrees of freedom than are
present in nature and therefore a gauge fixing is required.
Again this gauge fixing, which does not have to be covariant
or linear as we are choosing here, has to be local,
renormalizable and of dimension four. The gauge-fixing
terms subsequently break gauge invariance. So one instead

requires that the Lagrangian is Becchi-Rouet-Stora-Tyutin
(BRST) invariant rather than gauge invariant. These con-
siderations clearly have been satisfied in Eq. (5.1).
One ingredient from our earlier algorithm appears to

have been omitted in this instance and that is the theory in
two dimensions with the same symmetries which is
connected via the Wilson-Fisher fixed point; in other words
the base theory which is in the same universality class. This
requires some care given the nature of a two-dimensional
spin-1 field. It transpires that the equivalent theory is the
non-Abelian Thirring model (NATM) [60], which has the
Lagrangian

Lð2Þ ¼ iψ̄ iI∂ψ iI þ g
2
ðψ̄ iITa

IJγ
μψ iJÞ2 ð5:2Þ

where Ta are the color group generators. Unlike Eq. (2.1)
there can be no base Lagrangian which is linear in a spin-1
field without breaking color and Lorentz symmetry. As
presented the connection with Eq. (5.1) appears distant due
to the absence of a field Aa

μ. However, the interaction of
Eq. (5.2) may be rewritten in two dimensions in terms of an
auxiliary spin-1 field to produce

Lð2Þ ¼ iψ̄ iI∂ψ iI þ gψ̄ iITa
IJγ

μψ iJAa
μ −

g
2
Aa
μAaμ: ð5:3Þ

As it stands this version of Lð2Þ appears to be an improve-
ment on Eq. (5.2) with regard to equivalence with Eq. (5.1)
but it does not appear to be consistent with our completion
argument. One objection is the apparent absence of gauge
invariance and by association the gauge-fixing and ghost
terms. On the contrary the equivalence with four-
dimensional QCD observed in Ref. [60] has subsequently
been verified computationally to several orders in the large-
Nf expansion in Refs. [61–63]. The bridge is in the main
twofold. First, the auxiliary field reformulation is a strictly
a two-dimensional relation. Second, to proceed with the
large-Nf analysis through the connecting Wilson-Fisher
fixed point the key is the quark-gluon vertex which together
with the quark kinetic term define the canonical dimensions
of the field in the d-dimensional universality class. The
sector which is purely gluonic, such as 1

2
Aa
μAaμ in Eq. (5.3)

and Ga
μνGaμν in Eq. (5.1), in essence defines the canonical

dimensions of the respective coupling constants in each
theory. Of course, the couplings have different dimension-
alities in renormalizable theories in different spacetime
dimensions. Therefore, in the large-Nf approach discussed
in Ref. [63], the gauge-fixed Lagrangian at criticality has an
analytically regularized gauge fixing with associated
Faddeev-Popov ghost sector modifications [63]. In other
words formally

LNATM ¼ iψ̄ iI∂ψ iI þ gψ̄ iITa
IJγ

μψ iJAa
μ − c̄að∂μDμcÞa

−
g
2
Aa
μAaμ þ 1

2α
ð∂μAa

μÞ
1

□
4−d ð∂νAa

νÞ ð5:4Þ
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is used to determine the large-Nf critical exponents [63].
One immediate objection to this is that one does not have
locality. Equally one also loses perturbative renormaliz-
ability for the lower-dimensional theory but at criticality
these is not an issue. What one has to accept is that the
critical equivalence is valid in the Landau gauge which
corresponds to α ¼ 0. This is more subtle than it appears
and is not unrelated to our algorithm extended to the gauge
theory context. In two dimensions we have treated Aa

μ as an
auxiliary spin-1 field. If it were a gauge field in the context
of Eq. (5.1) then clearly the operator 1

2
Aa
μAaμ is not gauge

invariant. However, it is possible to write down several
gauge-invariant dimension-two operators but in this in-
stance the locality assumption has to be dropped.
For example, the operator

O2 ¼ −
1

2
Gaμν 1

D2
Gaμν ð5:5Þ

is dimension two and gauge invariant but clearly nonlocal.
Such an operator has appeared before [87,88] in the context
of three-dimensional gauge theories and studied for their
relation to temperature QCD. Despite the presence of the
nonlocality it is possible to localize the operator and
determine its renormalization to several loop orders
[89,90]. In other words this nonlocal operator can be
regarded as being perturbatively renormalizable. For in-
stance, the one-loop anomalous dimension in four dimen-
sions is proportional to the one-loop QCD β function
[89,90]. Beyond one loop this proportionality ceases. This
is due to the presence of extra or ghost fields which arise in
the localizing procedure and their coupling constants
appear in the two-loop and higher operator anomalous
dimension. Another gauge-invariant gluonic dimension-
two operator is

O≡ 1

2
fUg
min

Z
d4xðAaU

μ Þ2 ð5:6Þ

where AaU
μ is the transport of a gauge field along a gauge

orbit

AU
μ ¼ UAμU† −

i
g
ð∂μUÞU† ð5:7Þ

and U is gauge group element. By construction O is gauge
invariant and forms the basis for a gauge fixing [91–94],
which does not suffer from Gribov copy issues. There are
various ways of writing O perturbatively in terms of other
nonlocal operators [91,95]. A gauge-invariant expansion
was given in Refs. [91,95] and O2 is in fact the first term.
The three-leg operator was presented in Ref. [91] and has
structural similarities to the dimension-six operator con-
sidered later. More recently an algorithm to produce the
subsequent operators was given in Ref. [95]. Despite the
nonlocality the one-loop renormalization ofO was given in

Ref. [96]. There it was shown that the gauge parameter
was indeed absent in the anomalous dimension. While
such operators address the issue of constructing a gauge-
invariant dimension-two operator, which is present in
theories connected at the Wilson-Fisher fixed point, there
is a connection with Eq. (5.3). Although locality is
sacrificed for gauge invariance to produce a nonlocal
operator, both of the operators O2 and O truncate to
1
2
Aa
μAaμ when one specifies the Landau gauge. In this

gauge this operator is also BRST invariant as the ghost
mass term is absent. The upshot is that as discussed in
Ref. [63] when comparing our perturbative results at the
Wilson-Fisher fixed point for gauge theories in the different
dimensions, we can only compare critical exponents which
derive from gauge-dependent renormalization group func-
tions in the Landau gauge. For exponents based on gauge-
independent renormalization group functions this point will
not be relevant.
Returning to the problem of constructing a six-dimen-

sional gauge theory the first stage is to write down the set of
independent gauge-invariant dimension-six operators with
which to build a Lagrangian. For the quark sector to
maintain connectivity with the four-dimensional gauge
theory the set includes iψ̄ iIDψ iI. In six dimensions this
immediately defines the canonical dimension of the quark
field to be 5

2
. Thus unlike two dimensions there are no

quartic or higher operators which include quark fields. As
such an operator would require an antiquark to ensure a
Lorentz scalar term one sees that there is only one
dimension-six quark operator. This is important since,
for instance, when considering six-dimensional operators
in four-dimensional QCD effective theories, 4-fermi oper-
ators are included in the same discussion. In the six-
dimensional case they will not appear in a Lagrangian since
such 4-fermi operators actually have a canonical dimension
of ten and so are absent in a renormalizable Lagrangian.
Such 4-fermi operators are only perturbatively renormaliz-
able in two dimensions as is evident in Eq. (5.2) or
Eq. (5.3). We now change our focus to the gluonic sector.
In Refs. [41,66] such dimension-six gluonic operators were
considered and it transpires that there are four potential
candidates which are

Oð6Þ
1 ¼ ðDμGa

νσÞðDμGaνσÞ; Oð6Þ
2 ¼ ðDμGa

μσÞðDνGaνσÞ;
Oð6Þ

3 ¼ ðDμGa
νσÞðDσGaμνÞ; Oð6Þ

4 ¼ fabcGa
μνGbμσGcν

σ :

ð5:8Þ

However, these are not all independent due to either
integration by parts or use of the Bianchi identity

DμGa
νσ þDνGa

σμ þDσGa
μν ¼ 0: ð5:9Þ

Total derivative operators can be ignored in the Lagrangian
construction due to conservation of energy-momentum.
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So of the set (5.8) we are free to choose any two for our six-

dimensional QCD Lagrangian Lð6Þ. In Ref. [41] Oð6Þ
1 and

Oð6Þ
2 were chosen as the two independent operators but we

will take a different basis which is Oð6Þ
1 and Oð6Þ

4 . The
reason for this choice rests partly in the potential con-
nection with four dimensions as noted earlier. Thus if there
are fixed points in the six-dimensional gauge theory which
connect with the infrared structure of QCD in four
dimensions after some sort of summation, it seems appro-
priate to include the key operator explicitly with its own

coupling constant at the outset. Moreover, Oð6Þ
1 is the

natural extension of the gluon kinetic term which is why
that is chosen for the other independent operator.
Irrespective of which basis choice we make the gluon
propagator will now have a double pole. However, if there
is connectivity with the infrared structure of a lower-
dimensional gauge theory a double-pole propagator may

not be inappropriate. Another reason for taking Oð6Þ
1 and

Oð6Þ
4 rests in the nature of the coupling constants. If one

choseOð6Þ
2 instead ofOð6Þ

4 then there is the problem of what
relative weight to assign each term. The appropriate way to
proceed is to introduce a weighting parameter such as β and
include

βOð6Þ
1 þ ð1 − βÞOð6Þ

2 ð5:10Þ

as the two independent operators in the Lagrangian. The
parameter β would not be present in the gluon propagator
but would be present in the interaction terms. It is not a
gauge-fixing parameter but rather represents a measure of
the interpolation. Thus its renormalization would be inde-
pendent of the gauge parameter in MS for instance. In effect
in the interaction terms the product of β with g1 corre-
sponds to a second coupling constant which is independent
of g1 and if one were to use this set of operators in the
Lagrangian then βg1 would be redefined as a second
coupling. While this is perfectly viable as a strategy it
seems more appropriate to use one two-leg operator for the
kinetic term and have the second independent operator as

higher leg which is why we choose Oð6Þ
1 and Oð6Þ

4 . Equally
no intermediate interpolating parameter needs to be intro-
duced as one just couples the latter operator with the
independent coupling retaining the gauge coupling, g1, in
the gluon kinetic term. Thus the gauge-invariant six-

dimensional Lagrangian, Lð6Þ
GI , of QCD we begin with is

Lð6Þ
GI ¼ −

1

4
ðDμGa

νσÞðDμGaνσÞ

þ g2
6
fabcGa

μνGbμσGcν
σ þ iψ̄ iIDψ iI : ð5:11Þ

As we have an interaction over and above those which
derive from terms involving the covariant derivative we

need to be clear about the notation. Throughout when
additional operators are appended to a gauge theory in
higher dimensions such as here then we will use the
coupling constant g1 as that which appears in the covariant
derivative, Dμ, and hence also Ga

μν. For theories with extra
symmetries such as supersymmetry the second coupling,
g2, could be related to g1. Equally if one proceeded with the
choice involving β its value would be fixed by the extra
symmetry. As an aside effective Lagrangians similar to
Eq. (5.11) have been studied in four dimensions in various
covariant and noncovariant gauges in order to explore the
possible nonperturbative behavior of the gluon propagator
in the infrared region [97–99].
The final aspect of our discussion centers on the form of

the gauge-fixing terms which need to be present in order to
carry out perturbative calculations. As in four dimensions
we choose to fix in an arbitrary linear covariant gauge
∂μAa

μ ¼ 0. However, the usual four-dimensional gauge-
fixing term in addition to the Faddeev-Popov ghost term
which implements this condition cannot be used in six
dimensions due to the fact that the canonical terms are
dimension four. Instead motivated by Eq. (5.4) we use a
BRST invariant dimension-six gauge fixing where the
shortfall in dimensionality of the operators are made up
for by spacetime derivatives. In other words our gauge-
fixed six-dimensional QCD Lagrangian is

Lð6Þ ¼ −
1

4
ðDμGa

νσÞðDμGaνσÞ þ g2
6
fabcGa

μνGbμσGcν
σ

−
1

2α
ð∂μ∂νAa

νÞð∂μ∂σAa
σÞ− c̄a□ð∂μDμcÞa þ iψ̄ iIDψ iI

ð5:12Þ

where α is the covariant fixing parameter with the Landau
gauge corresponding to α ¼ 0. It is straightforward to
check that the Lagrangian is BRST invariant without
modification of the canonical BRST transformations on
the fields. The gauge-fixing term allows one to find the
gluon propagator since when α ≠ 0 the quadratic part of the
momentum-space Lagrangian is invertible. The gluon and
ghost propagators are then

hAa
μðpÞAb

νð−pÞi ¼ −
δab

ðp2Þ2
�
ημν − ð1 − αÞpμpν

p2

�
;

hcaðpÞc̄bð−pÞi ¼ −
δab

ðp2Þ2 ð5:13Þ

with the double-pole propagator emerging as noted earlier
and similar to Refs. [97–99].
We close this section by considering the extension of the

Lagrangians to lower-dimensional operators and hence
mass terms. This is similar to the scalar theory case but
with the constraint that additional terms have to be gauge
invariant in the first instance and when the gauge is fixed
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they have to be BRST invariant. For a gauge theory in D
dimensions whereD is an integer the extra operators are no
more than (D − 2) dimensional for the gluon and ghost
sector. The upshot of this is that the structure is available
from the lower-dimensional Lagrangians discussed above
but with the caveat that a quark-mass operator can be
included. This will be common to all gauge theories and is
(D − 1) dimensional. We will always denote the quark
mass as m1. In four dimensions there is therefore only one
dimension-two gluonic operator to be added in to Lð4Þ. If
one requires it to be gauge invariant then one has to use O
but weaken the locality assumption. Otherwise the only
operator possible is the local BRST mass operator [100], in
the massive extension of Eq. (5.1) which is

Lð4Þ
m ¼ Lð4Þ þm1ψ̄

iIψ iI −
1

2
m2

2A
a
μAaμ þm2

2αc̄
aca: ð5:14Þ

The pattern for six dimensions is straightforward to see and
we find that the extension to Eq. (5.12) is

Lð6Þ
m ¼ Lð6Þ þm1ψ̄

iIψ iI −
1

4
m2

2G
a
μνGaμν −

1

2α
m2

3ð∂μAa
μÞ2

−m2
3c̄

að∂μDμcÞa −
1

2
m4

4A
a
μAaμ þm4

4αc̄
aca: ð5:15Þ

In effect each gauge or BRST-invariant lower-dimensional
operator gains a separate mass. In essence this is the
coupling constant of the corresponding operator in the
lower-dimensional theory and across the different dimen-
sions these operators range from being relevant to irrel-
evant. While Lð4Þ

m can only be extended by a BRST-
invariant operator, in Lð6Þ

m before gauge fixing one can
have a mass associated with a gauge-invariant gluonic
operator. To see the effect of such a term it is instructive to
derive the propagators for Lð6Þ

m . We have

hAa
μðpÞAb

νð−pÞi ¼ −
δab

½ðp2Þ2 þm2
2p

2 þm4
4�

×

�
ημν −

½p2 þm2
3 − αðp2 þm2

2Þ�pμpν

½ðp2Þ2 þm2
3p

2 þ αm4
4�

�
;

hcaðpÞc̄bð−pÞi ¼ −
δab

½ðp2Þ2 þm2
3p

2 þ αm4
4�

ð5:16Þ

for arbitrary α. Alternatively one can express the gluon
propagator in terms of the respective transverse and
longitudinal tensors as

hAa
μðpÞAb

νð−pÞi

¼ −δab
�

PμνðpÞ
½ðp2Þ2 þm2

2p
2 þm4

4�
þ αLμνðpÞ
½ðp2Þ2 þm2

3p
2 þ αm4

4�
�

ð5:17Þ

where

PμνðpÞ ¼ ημν −
pμpν

p2
; LμνðpÞ ¼

pμpν

p2
: ð5:18Þ

In this formulation the connection of the longitudinal part
of the gluon propagator with the ghost propagator is clearer.
As an aside the gluon propagator takes a simpler form in the
Feynman gauge α ¼ 1. If in addition, for instance, it were
the case that m2 ¼ m3 then the gluon propagator would
simplify further and only involve ημν similar to the
completely massless theory for this specific gauge.
However, this mass equality condition would require an
additional symmetry in order to have this simplification. In
the case when there is only a gauge-invariant dimension-
four mass operator the propagators reduce to

hAa
μðpÞAb

νð−pÞijm3¼m4¼0
¼ −

δab

p2½p2 þm2
2�
�
ημν −

pμpν

p2

�

− αδab
pμpν

ðp2Þ3 ;

hcaðpÞc̄bð−pÞijm3¼m4¼0 ¼ −
δab

ðp2Þ2 ð5:19Þ

so that this mass operator removes the double-pole propa-
gator. The double pole remains in the ghost propagator to
account for the corresponding pole in the longitudinal part
of the gluon propagator. Another limit to consider is that of
the Landau gauge as it will transpire that α ¼ 0 is a fixed
point of the renormalization group flow. Then we have

hAa
μðpÞAb

νð−pÞijα¼0
¼−

δab

½ðp2Þ2þm2
2p

2þm4
4�
�
ημν−

pμpν

p2

�
;

hcaðpÞc̄bð−pÞijα¼0¼−
δab

p2½p2þm2
3�

ð5:20Þ

so that the gluon propagator has a denominator similar to
that of a Stingl propagator [79]. The form of these massive
Landau gauge propagators is interesting in respect of the
current understanding of the infrared behavior of the four-
dimensional gluon propagator. Briefly, lattice analyses of
the gluon and Faddeev-Popov ghost propagators in the
zero-momentum limit indicate that the gluon propagator
freezes to a nonzero finite value while the ghost propagator
behaves like 1=p2. This has been observed in a variety of
nonperturbative studies. For instance, the present situation
can be found in a representative set of articles [49–59]. This
low-energy behavior has been modelled directly in four
dimensions with various approaches including a modifi-
cation of the Gribov Lagrangian [89,90,101]. It would be
interesting to see if the lattice data could be modeled with
the parametrization of Eq. (5.20). This would require
appending a numerator parameter for each propagator.
However, if the infrared behavior derives from a
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nonperturbative fixed point in four-dimensional QCD
accessing it in perturbation theory will not be viable. On
the contrary if a fixed point in six-dimensional QCD is in
the same universality class as this infrared one in four
dimensions then it may be the case that it will be computa-
tionally accessible from the higher-dimensional theory.
Though it would require high-loop calculations and sum-
mation methods to quantify the qualitative behavior we
have presented. Intriguingly the Schwinger-Dyson analysis
of Ref. [98] produced an effective infrared QCD
Lagrangian in four dimensions whose gauge-invariant part
involved the two gluonic operators of Eq. (5.11) together
with a mass scale necessary to balance the dimensionality.
In some sense this gives weight to the idea that a
perturbatively accessible fixed point of the actual six-
dimensional Lagrangian of Eq. (5.11) could be in the same
universality class of an infrared or nonperturbative fixed
point in four-dimensional QCD. While lattice evidence
[49–59], in recent years suggests a nonscaling gluon
propagator in the low-momentum region, the additional
freedom provided by lower-dimensional operators in
Eq. (5.15), which appears to give propagators qualitatively
consistent with the data, could be regarded as corrections to
the scaling behavior in the neighbourhood of the fixed
point. What is also apparent is the parallel relation of
Eqs. (2.5) and (2.6). A toy ϕ3 theory was examined in
Refs. [67,68] as a model of QCD but equally the eight-
dimensional partner has propagator structures parallel to
the infrared gluon propagator behavior in Ref. [98]. Finally
in comparing Eq. (5.20) with the corresponding form in the
models of Ref. [101] it is interesting to contrast the nature
of the operators which correspond to the masses of the
gluon propagator. In Ref. [101] m2 coupled to the dimen-
sion-two BRST-invariant gluon-mass operator, which is
local in the Landau gauge, while m4 was associated with
the Landau gauge Gribov operator which is nonlocal and
dimension zero.

VI. LARGE-Nf EXPANSION

As we will be using large-Nf results to compare our
higher-dimensional perturbative QCD results it is worth
relating relevant aspects to our Lagrangian construction. It
is based on the observation of Ref. [60] that QCD and the
NATM are in the same universality class. In other words the
connecting interaction is the quark-gluon vertex but for the
d-dimensional critical point large-Nf construction of
Refs. [35,36] one has to reformulate Eq. (5.3) in a slightly
different way at the outset. Beginning from Eq. (5.2) we
rewrite it as

Lð2Þ ¼ iψ̄ iI∂ψ iI þ ψ̄ iIγμTa
IJψ

iJ ~Aa
μ −

1

2g
~Aa
μ
~Aaμ ð6:1Þ

at criticality in preparation for large Nf. The main reason
why the coupling constant has been rescaled into the spin-1

field is that the interaction is common to all theories in the
universality class. The coupling constants have different
dimensions and are themselves not universal being tied to
each theory in the integer dimensions. In other words they
are the couplings of different operators in the overall
universal theory but their associated operator is only
relevant in the critical sense in a particular spacetime
dimension. A similar rescaling in Lð4Þ would produce
the same interaction as Eq. (6.1) but with the new coupling
appearing in front of the Ga

μνGaμν term. In the following we
use the same notation as Refs. [61,62]. In the limit as Nf →
∞ the critical propagators behave as

hψðpÞψ̄ð−pÞi ∼ Ap

ðp2Þμ− ~α
;

hAa
μðpÞAb

νð−pÞi ∼
Bδab

ðp2Þμ−β
�
ημν −

pμpν

p2

�
;

hcaðpÞc̄bð−pÞi ∼ Cδab

ðp2Þμ−γ ð6:2Þ

in the Landau gauge. These are the dominant scaling forms
of the respective propagators. It is possible to include
corrections to scaling but we omit them here [62]. The
powers of the momenta in each propagator in Eq. (6.2) are
the scaling dimensions of the fields and are defined as

~α ¼ μ − 1þ 1

2
η; β ¼ 1 − η − χ; γ ¼ μ − 1þ 1

2
ηc

ð6:3Þ

where d ¼ 2μ and η, χ and ηc are the critical exponents
associated with the quark wave function, quark-gluon
vertex operator and the Faddeev-Popov ghost wave-func-
tion renormalization group functions. On notation we use ~α
here to avoid confusion with the gauge parameter α which
was the notation for the quark dimension in the early large-
Nf work [61]. The remaining parts of the scaling dimen-
sions are the canonical dimensions of the fields as dictated
by requiring that the action is dimensionless in d dimen-
sions. Appending the ghost sector as discussed earlier there
is also a ghost-gluon vertex operator anomalous dimension
exponent χc. However, it is not independent due to the
Slavnov-Taylor identity. Its manifestation at the critical
point requires that [61],

ηc ¼ ηþ χ − χc ð6:4Þ

is satisfied. However at leading order in 1=Nf there are no
quark contributions to the ghost-gluon vertex and thus
χc1 ¼ 0. We use the notation that an exponent, such as η, is
expanded as
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η ¼
X∞
i¼1

ηi
Ti
FN

i
f
: ð6:5Þ

One point concerning Nf worth noting here rests in the
conventions for the trace over γ matrices. Throughout we
take TrI ¼ 4 and retain four-dimensional γ matrices in six
as well as two dimensions. This is partly because our
comparison in large Nf is primarily with four-dimensional
results which use this convention and the fact that we have
retained that convention in our six-dimensional perturba-
tive computations. One could of course have used higher-
dimensional representations for six-dimensional γ matrices.
However, that convention can be accommodated by scaling

Nf itself by the appropriate factor since a closed quark loop
is always associated with a γ-matrix trace. The quantities A,
B and C are the associated momentum-independent ampli-
tudes of the theory. While they can be evaluated in the
large-Nf expansion they are not central to the present
review.
As we will be using our results to check with the known

large-Nf exponents, it is worth collecting their values for
completeness here. First, the quark wave-function exponent
η is given by [61],

η1 ¼ CFη
o
1 ð6:6Þ

and [63],

η2 ¼
�
2ðμ − 1Þðμ − 3Þ

μðμ − 2Þ þ 3μ

�
ΘðμÞ − 1

ðμ − 1Þ2
�� ðμ − 1ÞC2

Fη
o
1
2

ðμ − 2Þð2μ − 1Þ

þ
�ð12μ4 − 72μ3 þ 126μ2 − 75μþ 11Þ

2ð2μ − 1Þ2ð2μ − 3Þðμ − 2Þ2 −
μðμ − 1Þ

2ð2μ − 1Þðμ − 2Þ ½ΨðμÞ2 þ ΦðμÞ�

þ ð8μ5 − 92μ4 þ 270μ3 − 301μ2 þ 124μ − 12ÞΨðμÞ
4ð2μ − 1Þ2ð2μ − 3Þðμ − 2Þ2

�
CFCAη

o
1
2 ð6:7Þ

where

ηo1 ¼ −
ð2μ − 1Þð2 − μÞΓð2μÞ
4μΓð2 − μÞΓ3ðμÞ : ð6:8Þ

We have only provided the Landau-gauge expressions since that is a fixed point of the renormalization group functions and
the large-Nf arbitrary gauge-dependent expression has no relation to the critical-point renormalization group functions for
α ≠ 0. We have defined

ΘðμÞ ¼ ψ 0ðμ − 1Þ − ψ 0ð1Þ;
ΨðμÞ ¼ ψð2μ − 3Þ þ ψð3 − μÞ − ψð1Þ − ψðμ − 1Þ;
ΦðμÞ ¼ ψ 0ð2μ − 3Þ − ψ 0ð3 − μÞ − ψ 0ðμ − 1Þ þ ψ 0ð1Þ ð6:9Þ

where ψðzÞ ¼ d
dz lnΓðzÞ. At leading order the gluon and ghost critical exponents are equivalent and are [61],

ηþ χ ¼ ηc ¼ −
CAη

o
1

2ðμ − 2ÞTFNf
þO

�
1

T2
FN

2
f

�
: ð6:10Þ

The remaining main exponents of interest here are both gauge parameter independent but were evaluated in critical point
large Nf using a scaling propagator with a nonzero gauge parameter. The first such exponent is the correction to the scaling
exponent ω which is the anomalous dimension of the operator Ga

μνGaμν. In other words ω relates to the β function of QCD
and is the critical slope at the Wilson-Fisher fixed point. We have [62]

ω ¼ ðμ − 2Þ −
�
ð2μ − 3Þðμ − 3ÞCF −

ð4μ4 − 18μ3 þ 44μ2 − 45μþ 14ÞCA

4ð2μ − 1Þðμ − 1Þ
�

ηo1
TFNf

þO

�
1

T2
FN

2
f

�
ð6:11Þ

where the quantum electrodynamics (QED) piece was determined in Ref. [102]. Finally, the quark-mass anomalous
dimension is available to two orders in large Nf and is [63],
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ηψ̄ψ1 ¼ −
2CFη

o
1

ðμ − 2Þ ð6:12Þ

and

ηψ̄ψ2 ¼ −
2η2

ðμ − 2Þ −
2ð2μ2 − 4μþ 1ÞC2

Fη
o
1
2

ðμ − 2Þ3ð2μ − 1Þ þ μ2ð2μ − 3Þ2CFCAη
o
1
2

4ðμ − 2Þ3ðμ − 1Þð2μ − 1Þ ð6:13Þ

where η2 was given earlier. We note that when these exponents are expanded in d ¼ 4 − 2ϵ dimensions they are in
agreement with all currently available QCD renormalization group functions. This in essence is four loops but also includes
the recent five-loop MS quark-mass anomalous dimension of Ref. [103]. While ω corresponds to the gluonic operator of
Lð4Þ the exponent for the gluonic operator of Lð2Þ is not independent in the Landau gauge. This is because of a Slavnov-
Taylor identity [104] which means that the anomalous dimension of O ¼ 1

2
Aa
μAaμ is the sum of the gluon and ghost

anomalous dimensions. This has been verified in the Landau gauge in the large-Nf expansion [105], and in the exponent
language at leading order in large Nf corresponds to

ηO1 ¼ η1 þ χ1 −
1

2
ηc1: ð6:14Þ

While our focus here will mainly be on even dimensions the large-Nf exponents provide information on the odd-dimension
versions of non-Abelian gauge theories. For instance, in five dimensions the above exponents evaluate to

η ¼ −
256CF

45π2TFNf
þ ½200π2CA þ 600π2CF − 335CA − 8288CF�

1024CF

10125π4T2
FN

2
f

þO

�
1

T3
FN

3
f

�
;

ηþ χ ¼ ηc ¼
256CA

45π2TFNf
þO

�
1

T2
FN

2
f

�
;

ω ¼ 1

2
− ½48CF þ 103CA�

16

135π2TFNf
þO

�
1

T2
FN

2
f

�
;

ηψ̄ψ ¼ 1024CF

45π2TFNf
− ½600π2CA þ 1800π2CF − 3005CA − 21504CF�

4096CF

30375π4T2
FN

2
f

þO

�
1

T3
FN

3
f

�
: ð6:15Þ

These expressions will be of interest to any future con-
formal bootstrap analysis of higher-dimensional gauge
theories.

VII. SIX-DIMENSIONAL QCD

We now turn to the renormalization of Eq. (5.12) at two
loops in the MS scheme. This required the renormalization
of the three fields and two coupling constants. For the
respective two- and three-point functions the graphs were
generated by QGRAF and the numbers of Feynman dia-
grams for each are given in Table 1. Compared to the
corresponding renormalization in four dimensions the
number of graphs is similar. The main difference is in
the triple-gluon vertex renormalization due to the presence
of the quintic gluon vertex which first arises at two loops.
The sextic gluon vertex will not be present until three loops.
Unlike the parallel eight-dimensional scalar theory which
mimics Eq. (5.12) in some ways, we do not have to
consider four-point vertex functions to complete the full
renormalization. For each of the two- and three-point
functions we follow the same methodology and apply
the Laporta algorithm as implemented in REDUZE. The

main difference with the scalar theory is the presence of
numerator scalar products and tensor integrals. For the
latter we follow the projection method for the three three-
point vertex renormalizations outlined in Ref. [106]. In
other words we compute the three-point functions at a
symmetric point where there is no nullification of external
legs. It is important to be clear why we took this more
involved route. In the renormalization of four-dimensional
QCD the coupling-constant renormalization can be
deduced from a three-point vertex by setting an external

TABLE I. Number of Feynman diagrams computed for each
two- and three-point function.

Green’s function One loop Two loop Total

Aa
μAb

ν 3 18 21
cac̄b 1 6 7
ψψ̄ 1 6 7
Aa
μAb

νAc
σ 8 115 123

cac̄bAc
σ 2 33 35

ψψ̄Ac
σ 2 33 35

Total 17 211 228
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momentum to zero. This is an infrared-safe procedure for
this exceptional momentum configuration due to the
presence of momenta in the numerator of the integrand.
Moreover, this reduction of the computation to effectively a
two-point function analysis means that the evaluation of the
Feynman graphs can be computed relatively quickly. For
Eq. (5.12) this nullification technique cannot be applied
because the gluon and ghost propagators have higher-order
poles. Therefore, at a nullification a Feynman integral will
potentially have a 1=ðk2Þ4 factor like Eq. (2.6) but this
cannot be infrared protected by numerator momenta in the
six-dimensional gauge theory unlike the four-dimensional
case. In other words such a nullification for Eq. (5.12)
would require an infrared rearrangement. Therefore, we
have proceeded by considering each three-point function at
a nonexceptional momentum configuration which is infra-
red safe. Therefore we use the same decomposition and
projection of each three-point vertex into the basis of
Lorentz tensors given in d dimensions in Ref. [106]. For the

quark and ghost vertices the process is similar to the four-
dimensional case and does not deserve further comment.
The complication occurs with the triple-gluon vertex. From
Eq. (5.12) g2 only appears in the Feynman rules for the
gluon vertices. Therefore, it might be tempting to focus on
the renormalization of g2 solely from the triple-gluon vertex
and assume that the renormalization constant for g1 is
deduced from one of the other two vertices. However, as an
independent check on our FORM code and for completeness
we have checked that the same MS renormalization
constant for g1 emerges from each of the three three-point
functions. Moreover, we have performed the computation
in an arbitrary linear covariant gauge and verified that α is
absent in the β functions. This nontrivial check gives us
confidence in the final expressions of the renormalization
group functions.
The outcome of the computation is the renormalization

group functions

γAðg1; g2; αÞ ¼ ½20αCA − 199CA − 16NfTF�
g21
60

þ ½130α2C2
Ag

3
1 þ 1095αC2

Ag
3
1 − 81412C2

Ag
3
1 þ 2178C2

Ag
2
1g2 þ 5658C2

Ag1g
2
2

− 630C2
Ag

3
2 − 1568CANfTFg31 − 1248CANfTFg21g2 þ 192CANfTFg1g22 − 6080CFNfTFg31�

g1
4320

þOðg6i Þ;

γcðg1; g2; αÞ ¼ CA½α − 5� g
2
1

12
þ ½−55α2CAg21 þ 60αCAg21 − 19952CAg21 þ 2700CAg1g2 þ 600CAg22

− 1088NfTFg21�
CAg21
8640

þOðg6i Þ;

γψðg1; g2; αÞ ¼ CF½3αþ 5� g
2
1

6
þ ½75α2CAg21 þ 1830αCAg21 þ 43617CAg21 − 600CAg22 − 8000CFg21

þ 2048NfTFg21�
CFg21
4320

þOðg6i Þ ð7:1Þ

for the wave-function renormalization. In our convention the nonrenormalization of α manifests itself in the relation

γAðg1; g2;αÞ þ γαðg1; g2;αÞ ¼ 0 ð7:2Þ
which we have checked is satisfied at two loops. The β functions are

β1ðg1; g2Þ ¼ ½−249CA − 16NfTF�
g31
120

þ ½−50682C2
Ag

3
1 þ 2439C2

Ag
2
1g2 þ 3129C2

Ag1g
2
2 − 315C2

Ag
3
2 − 1328CANfTFg31

− 624CANfTFg21g2 þ 96CANfTFg1g22 − 3040CFNfTFg31�
g21

4320
þOðg7i Þ;

β2ðg1; g2Þ ¼ ½81CAg31 − 552CAg21g2 þ 135CAg1g22 − 15CAg32 þ 104NfTFg31 − 48NfTFg21g2�
1

120

þ ½10212C2
Ag

5
1 − 417024C2

Ag
4
1g2 þ 142617C2

Ag
3
1g

2
2 − 1014C2

Ag
2
1g

3
2 − 4725C2

Ag1g
4
2

þ 450C2
Ag

5
2 − 7052NfTFCAg51 − 20296NfTFCAg41g2 þ 8868CANfTFg31g

2
2

− 1056CANfTFg21g
3
2 þ 61600NfTFCFg51 − 30400NfTFCFg41g2�

1

14400
þOðg7i Þ: ð7:3Þ
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The one-loop term of β1ðg1; g2Þ is clearly negative for all
Nf unlike four dimensions and therefore in six dimensions
the quark-gluon coupling is asymptotically free. The
corresponding one-loop result in six-dimensional QED
was recently given in Ref. [65] with which we agree.
In order to provide more checks on the connection of

Eq. (5.12) with lower-dimensional gauge theories at the
Wilson-Fisher fixed point we have also computed the
quark-mass operator anomalous dimension at two loops.
To do this we inserted the mass operator ψ̄ψ in a quark two-
point function but such that there is a momentum flowing
into the operator itself similar to the parallel scalar theory
calculation. At one and two loops there are 1 and 13 graphs
respectively. For α ≠ 0 we find a gauge-parameter-
independent MS expression for the quark-mass operator
anomalous dimension since

γψ̄ψ ðg1; g2Þ ¼ −
5

3
CFg21 þ ½−11301CAg21 þ 300CAg22

− 200CFg21 − 544NfTFg21�
CFg21
1080

þOðg6i Þ:
ð7:4Þ

This expression was derived from the massless version of
six-dimensional QCD [Eq. (5.12)]. As it is possible to
include lower-dimensional operators with associated
masses, we have also determined the renormalization of
mi in Eq. (5.15) at one loop in the Landau gauge. This
choice of gauge is motivated by the potential connection
with the infrared structure in four dimensions. In this
instance the presence of four mass terms means that we
have to determine the mixing matrix of mass anomalous
dimensions which limits this analysis to the leading order.
However, that is sufficient to form a picture of how the
masses relate under renormalization. If we formally label
the operators by the label of the associated mass as given
in Eq. (5.15) then we find that the mixing matrix,

γijðg1; g2; αÞ, is sparse at one loop and the only nonzero
elements are

γ11ðg1; g2; 0Þ ¼ −
5

3
CFg21 þOðg4i Þ;

γ21ðg1; g2; 0Þ ¼
4

3
TFNfg21 þOðg4i Þ;

γ22ðg1; g2; 0Þ ¼ −
2

3
CAg22 − 2CAg1g2 −

4

15
TFNfg21

þ 281

60
CAg21 þOðg4i Þ;

γ44ðg1; g2; 0Þ ¼ −
2

15
TFNfg21 −

28

15
CAg21 þOðg4i Þ: ð7:5Þ

One feature of the result is that γ44ðg1; g2; 0Þ satisfies

γ44ðg1; g2; 0Þ ¼
1

2
½γAðg1; g2; 0Þ þ γcðg1; g2; 0Þ� þOðg4i Þ

ð7:6Þ

parallel to the corresponding four-dimensional relation.
This six-dimensional result is consistent with the large-Nf
exponent.
One of the motivations for studying Eq. (5.12) is to

establish the connection of four-dimensional QCD with a
higher-dimensional gauge theory in the Wilson-Fisher
chain. To access the large-Nf exponents of the previous
section we set d ¼ 6 − 2ϵ and follow the algorithm of
Ref. [17]. First, we define scaled couplings by

g1 ¼
i
2

ffiffiffiffiffiffiffiffiffiffiffiffi
15ϵ

TFNf

s
x; g2 ¼

i
2

ffiffiffiffiffiffiffiffiffiffiffiffi
15ϵ

TFNf

s
y ð7:7Þ

and solve βiðg1; g2Þ ¼ 0 for the critical values of x and y to
Oðϵ2Þ. We find

x ¼ 1þ
�
−
249

32
CA þ

�
475

48
CF þ 5855

768
CA

�
ϵ

�
1

TFNf

þ
�
186003

2048
C2
A þ

�
−
197125

512
CACF −

7530655

32768
C2
A

�
ϵ

�
1

T2
FN

2
f

þO

�
ϵ2;

1

T3
FN

3
f

�
;

y ¼ 13

4
þ
�
−
51327

2048
CA þ

�
2325

64
CF þ 62385

4096
CA

�
ϵ

�
1

TFNf
þO

�
ϵ2;

1

T2
FN

2
f

�
: ð7:8Þ

Equipped with these we have expanded out the other
renormalization group functions (7.1), to the same orders
as the available exponents in the Landau gauge in both ϵ
and 1=Nf and found full agreement. Another check derives
from γ22ðg1; g2; 0Þ of Eq. (7.6) which corresponds to
the renormalization of the mass associated with the

field-strength operator in Eq. (5.12). In four dimensions
this operator would be the gluon kinetic term and its large-
Nf critical exponent, ω, relates to the critical slope of the
four-dimensional QCD β function. Expanding ω1 in
Eq. (6.11) to OðϵÞ near six dimensions we get precise
agreement. For this element of Eq. (7.6) at one loop it will
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be an eigen-anomalous dimension as there are no other
entries at this order in the matrix. At higher order mixing
with this operator would require diagonalizing Eq. (7.6).
The agreement of the perturbative results with the large-Nf
exponents is important for various reasons. For instance, it
demonstrates that the role of the spectator operator with
coupling g2 is crucial in getting agreement. For instance,
the presence of g2 in γ22ðg1; g2; 0Þ is necessary for the check
with ω to work at leading order in ϵ. This spectator operator
is present to ensure renormalizability in six dimensions but
would be irrelevant in lower dimensions at the Gaussian
fixed point. That the exponents can be derived in the large-
Nf expansion form a critical theory with only a quark-
gluon interaction is remarkable in some sense. Moreover it
substantiates the point of view of Ref. [60] that the triple-
and higher-leg gluon interactions derive from three-point
and higher Green’s functions with only quark loops and no
gluon interactions. That this picture extends to six dimen-
sions establishes the same point of view for quintic gluon
interactions in Eq. (5.12).

Having established the connection with a lower-
dimensional gauge theory we now turn to the analysis of
the six-dimensional renormalization group functions in
their own right. One of the interests in higher-dimensional
cubic scalar theories was to ascertain where the conformal
window existed if present at all. In four-dimensional
QCD this equates to the range of Nf for which a Banks-
Zaks fixed point is present [1]. Therefore we proceed by
solving

β1ðg1; g2Þ ¼ β2ðg1; g2Þ ¼ 0;
∂β1
∂g1

∂β2
∂g2 −

∂β1
∂g2

∂β2
∂g1 ¼ 0:

ð7:9Þ

The first two determine the location of zeros of the β
functions while the third is the condition for a zero
eigenvalue in the matrix of β-function slopes. Like
Ref. [17] we find three solutions one of which is a real
solution and two other two are complex conjugates. The
real solution is

NfðAÞ ¼ 2.797566
CA

TF
þ ½2.198165CF − 3.432003CA�

ϵ

TF
þOðϵ2Þ;

xðAÞ ¼ 0.390349þ ½0.162047CF − 0.064751CA�
ϵ

CA
þOðϵ2Þ;

yðAÞ ¼ 0.965498þ ½0.412927CA þ 0.185332CF�
ϵ

CA
þOðϵ2Þ ð7:10Þ

and the other two are

NðBÞ ¼ ½3.283595þ 0.660678i�CA

TF
þ ½½−2.089275 − 3.907327i�CA þ ½3.737235þ 1.869896i�CF�

ϵ

TF
þOðϵ2Þ;

xðBÞ ¼ 0.0344173iþ 0.420036þ ½½−0.039289 − 0.150826i�CA þ ½0.244905þ 0.074815i�CF�
ϵ

CA
þOðϵ2Þ;

yðBÞ ¼ 1.467391 − 0.100116iþ ½½−0.079478 − 0.487643i�CA þ ½1.077389 − 0.083226i�CF�
ϵ

CA
þOðϵ2Þ ð7:11Þ

and its complex conjugate denoted by C. For reference the
real solution for SUð3Þ is

NfðAÞjSUð3Þ ¼ 16.785398 − 14.730246ϵþOðϵ2Þ;
xðAÞjSUð3Þ ¼ 0.390349þ 0.007270ϵþOðϵ2Þ;
yðAÞjSUð3Þ ¼ 0.965498þ 0.495297ϵþOðϵ2Þ: ð7:12Þ

Interestingly the location of the conformal window in
purely six dimensions is between Nf ¼ 16 and 17 similar
to four-dimensional QCD. However, in Ref. [17] the
higher-dimensional theory and the ϵ expansion were used
to estimate the boundary of the window in a lower
dimension by summation. If we consider that approach

the two-loop correction to the real solution, NfðAÞ, is
comparable to the one-loop part. This suggests that
perturbation theory may not be reliable. However, using
a simple Padé approximant, which is possible due to
the negative correction, in four dimensions we find
NfðAÞ ¼ 8.939991. This is lower than the leading order,
and similar to the situation in scalar OðNÞ ϕ3 theory. It
would be interesting to see what effect the three-loop
corrections would have on this critical Nf value.
Having found the region where there is a conformal

window it is worth analyzing the renormalization group
functions within this for specified values of Nf. We take
Nf ¼ 3, 12 and 16. These choices are motivated by values
in four dimensions. For instance, the first is because it
corresponds to the number of light quarks. The value of 16
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is chosen since it is the largest within the six-dimensional
conformal window. Finally, we consider Nf ¼ 12 since
there is interest in four-dimensional theories with this value
due to trying to understand the Banks-Zaks fixed point
nonperturbatively on the lattice. For each of the cases there
are four solutions to the equations

β1ðg1; g2Þ ¼ 0; β2ðg1; g2Þ ¼ 0 ð7:13Þ

for a particular value of Nf excluding the trivial one. In this
counting we ignore solutions which are obtained from these
by reflections gi → −gi. For each value of Nf we give the
location of the fixed point in terms of x and y and the
renormalization group functions evaluated at each fixed
point in the Landau gauge. Included in this are the eigen-
critical exponents ω� which are the eigenvalues of the
matrix ∂βi∂gj. The signs of these exponents determine the
stability or otherwise of the fixed point. In our labeling of
the four nontrivial solutions for each Nf value, solutions 1
and 3 are stable while 2 and 4 are saddle points. For
solutions 1, 2 and 3 the first term of the same exponent in
each solution is the same. This is because the one-loop term
of the corresponding renormalization group function only
depends on g1 and there is no g2 dependence in the one-
loop term of β1ðg1; g2Þ. The values for the exponents begin
to differ at Oðϵ2Þ due to g2 appearing in the two-loop
expressions. This is the main reason for a two-loop
renormalization as a one-loop analysis would not reveal
distinctive differences. The solution labeled 4 is somewhat
different in that it corresponds to g1 ¼ 0. In effect there are
no quarks or Faddeev-Popov ghosts in the corresponding
Lagrangian but only the three-leg gauge-invariant operator.
Also the kinetic term for the gluon derives from the free
part ofOð6Þ

1 . In some sense this solution is not interesting as
all the critical exponents are zero except ω� which take
their canonical values of 2ϵ and −ϵ respectively. Therefore,
solution 4 appears to be in effect a free-field solution. So we
do not explicitly record any exponent values for solution 4.
More specifically our results for Nf ¼ 3 are

xð1Þ ¼ 0.176432 − 0.003730ϵþOðϵ2Þ;
yð1Þ ¼ 0.936586þ 0.548703ϵþOðϵ2Þ;

γAðg1; g2; 0Þjð1Þ ¼ 0.805447ϵ − 0.127340ϵ2 þOðϵ2Þ;
γcðg1; g2; 0Þjð1Þ ¼ 0.097276ϵþ 0.063670ϵ2 þOðϵ2Þ;
γψ ðg1; g2; 0Þjð1Þ ¼ −0.086468ϵþ 0.139232ϵ2 þOðϵ2Þ;
γψ̄ψ ðg1; g2; 0Þjð1Þ ¼ 0.172936ϵ − 0.079266ϵ2 þOðϵ2Þ;

ωþjð1Þ ¼ 2.000000ϵþ 0.084558ϵ2 þOðϵ3Þ;
ω−jð1Þ ¼ 0.598467ϵþ 0.971180ϵ2 þOðϵ3Þ;
xð2Þ ¼ 0.176432þ 0.052245ϵþOðϵ2Þ;
yð2Þ ¼ 0.558153þ 0.113962ϵþOðϵ2Þ;

γAðg1; g2; 0Þjð2Þ ¼ 0.805447ϵ − 0.040157ϵ2 þOðϵ2Þ;
γcðg1; g2; 0Þjð2Þ ¼ 0.097276ϵþ 0.020079ϵ2 þOðϵ2Þ;
γψðg1; g2; 0Þjð2Þ ¼ −0.086468ϵþ 0.145505ϵ2 þOðϵ2Þ;
γψ̄ψðg1; g2; 0Þjð2Þ ¼ 0.172936ϵ − 0.091812ϵ2 þOðϵ2Þ;

ωþjð2Þ ¼ 2.000000ϵ − 1.184488ϵ2 þOðϵ3Þ;
ω−jð2Þ ¼ −0.329946ϵ − 0.055233ϵ2 þOðϵ3Þ;
xð3Þ ¼ 0.176432þ 0.111433ϵþOðϵ2Þ;
yð3Þ ¼ 0.093152þ 0.204520ϵþOðϵ2Þ;

γAðg1; g2; 0Þjð3Þ ¼ 0.805447ϵ − 0.007256ϵ2 þOðϵ2Þ;
γcðg1; g2; 0Þjð3Þ ¼ 0.097276ϵþ 0.003628ϵ2 þOðϵ2Þ;
γψðg1; g2; 0Þjð3Þ ¼ −0.086468ϵþ 0.120224ϵ2 þOðϵ2Þ;
γψ̄ψðg1; g2; 0Þjð3Þ ¼ 0.172936ϵ − 0.041251ϵ2 þOðϵ2Þ;

ωþjð3Þ ¼ 2.000000ϵ − 2.526371ϵ2 þOðϵ3Þ;
ω−jð3Þ ¼ 0.735370ϵ − 0.731156ϵ2 þOðϵ3Þ;
xð4Þ ¼ Oðϵ2Þ;
yð4Þ ¼ 0.730297 − 0.365148ϵþOðϵ2Þ:

ð7:14Þ
When Nf ¼ 12 we have

xð1Þ ¼ 0.337460þ 0.040482ϵþOðϵ2Þ;
yð1Þ ¼ 1.540384þ 1.051213ϵþOðϵ2Þ;

γAðg1; g2; 0Þjð1Þ ¼ 0.822064ϵ − 0.071166ϵ2 þOðϵ2Þ;
γcðg1; g2; 0Þjð1Þ ¼ 0.088968ϵþ 0.035583ϵ2 þOðϵ2Þ;
γψðg1; g2; 0Þjð1Þ ¼ −0.079083ϵþ 0.129510ϵ2 þOðϵ2Þ;
γψ̄ψðg1; g2; 0Þjð1Þ ¼ 0.158165ϵ − 0.078886ϵ2 þOðϵ2Þ;

ωþjð1Þ ¼ 2.00000ϵ − 0.479845ϵ2 þOðϵ3Þ;
ω−jð1Þ ¼ 0.256816ϵþ 0.215915ϵ2 þOðϵ3Þ;
xð2Þ ¼ 0.337460þ 0.108330ϵþOðϵ2Þ;
yð2Þ ¼ 1.030159þ 0.255942ϵþOðϵ2Þ;

γAðg1; g2; 0Þjð2Þ ¼ 0.822064ϵ − 0.026704ϵ2 þOðϵ2Þ;
γcðg1; g2; 0Þjð2Þ ¼ 0.088968ϵþ 0.013352ϵ2 þOðϵ2Þ;
γψðg1; g2; 0Þjð2Þ ¼ −0.079083ϵþ 0.130122ϵ2 þOðϵ2Þ;
γψ̄ψðg1; g2; 0Þjð2Þ ¼ 0.158165ϵ − 0.080112ϵ2 þOðϵ2Þ;

ωþjð2Þ ¼ 2.000000ϵ − 1.284069ϵ2 þOðϵ3Þ;
ω−jð2Þ ¼ −0.134787ϵþ 0.145784ϵ2 þOðϵ3Þ;
xð3Þ ¼ 0.337460þ 0.174074ϵþOðϵ2Þ;
yð3Þ ¼ 0.466593þ 1.074306ϵþOðϵ2Þ;
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γAðg1; g2; 0Þjð3Þ ¼ 0.822064ϵ − 0.001544ϵ2 þOðϵ2Þ;
γcðg1; g2; 0Þjð3Þ ¼ 0.088968ϵþ 0.000772ϵ2 þOðϵ2Þ;
γψ ðg1; g2; 0Þjð3Þ ¼ −0.079083ϵþ 0.120155ϵ2 þOðϵ2Þ;
γψ̄ψ ðg1; g2; 0Þjð3Þ ¼ 0.158165ϵ − 0.060177ϵ2 þOðϵ2Þ;

ωþjð3Þ ¼ 2.000000ϵ − 2.063346ϵ2 þOðϵ3Þ;
ω−jð3Þ ¼ 0.283665ϵ − 0.844111ϵ2 þOðϵ3Þ;
xð4Þ ¼ Oðϵ2Þ;
yð4Þ ¼ 1.460593 − 0.730297ϵþOðϵ2Þ:

ð7:15Þ
Finally,

xð1Þ ¼ 0.382473þ 0.070883ϵþOðϵ2Þ;
yð1Þ ¼ 1.584443þ 0.868230ϵþOðϵ2Þ;

γAðg1; g2; 0Þjð1Þ ¼ 0.828571ϵ − 0.050107ϵ2 þOðϵ2Þ;
γcðg1; g2; 0Þjð1Þ ¼ 0.085714ϵþ 0.025053ϵ2 þOðϵ2Þ;
γψ ðg1; g2; 0Þjð1Þ ¼ −0.076190ϵþ 0.125124ϵ2 þOðϵ2Þ;
γψ̄ψ ðg1; g2; 0Þjð1Þ ¼ 0.152381ϵ − 0.077478ϵ2 þOðϵ2Þ;

ωþjð1Þ ¼ 2.000000ϵ − 0.741312ϵ2 þOðϵ3Þ;
ω−jð1Þ ¼ 0.144292ϵ − 0.115028ϵ2 þOðϵ3Þ;
xð2Þ ¼ 0.382473þ 0.135377ϵþOðϵ2Þ;
yð2Þ ¼ 1.067822 − 0.219836ϵþOðϵ2Þ;

γAðg1; g2; 0Þjð2Þ ¼ 0.828571ϵ − 0.017142ϵ2 þOðϵ2Þ;
γcðg1; g2; 0Þjð2Þ ¼ 0.085714ϵþ 0.008571ϵ2 þOðϵ2Þ;
γψ ðg1; g2; 0Þjð2Þ ¼ −0.076190ϵþ 0.123897ϵ2 þOðϵ2Þ;
γψ̄ψ ðg1; g2; 0Þjð2Þ ¼ 0.152381ϵ − 0.075023ϵ2 þOðϵ2Þ;

ωþjð2Þ ¼ 2.000000ϵ − 1.415811ϵ2 þOðϵ3Þ;
ω−jð2Þ ¼ −0.050461ϵþ 0.434552ϵ2 þOðϵ3Þ;
xð3Þ ¼ 0.382473þ 0.166952ϵþOðϵ2Þ;
yð3Þ ¼ 0.789993þ 2.368779ϵþOðϵ2Þ;

γAðg1; g2; 0Þjð3Þ ¼ 0.828571ϵ − 0.005495ϵ2 þOðϵ2Þ;
γcðg1; g2; 0Þjð3Þ ¼ 0.085714ϵþ 0.002748ϵ2 þOðϵ2Þ;
γψ ðg1; g2; 0Þjð3Þ ¼ −0.076190ϵþ 0.120535ϵ2 þOðϵ2Þ;
γψ̄ψ ðg1; g2; 0Þjð3Þ ¼ 0.152381ϵ − 0.068298ϵ2 þOðϵ2Þ;

ωþjð3Þ ¼ 2.000000ϵ − 1.746028ϵ2 þOðϵ3Þ;
ω−jð3Þ ¼ 0.077597ϵ − 0.989589ϵ2 þOðϵ3Þ;
xð4Þ ¼ Oðϵ2Þ;
yð4Þ ¼ 1.686548 − 0.843274ϵþOðϵ2Þ

ð7:16Þ

for Nf ¼ 16. For Nf > 16 there are two real solutions and
two complex-conjugate solutions ignoring the reflection
symmetry. For the real solutions one is stable while the
other is a saddle point. The former has a nonzero value for g1
at criticality and is the solution which in effect corresponds
to the large-Nf solution. The other real solution is the
effective free-field solution as it corresponds to g1 ¼ 0.

VIII. HIGHER-DIMENSIONAL QED

Having concentrated for the most part on non-Abelian
gauge theories we devote the remainder of our analysis to
Abelian theories in six and higher dimensions. One of the
reasons for this is that the analysis is more straightforward
due to fewer interactions and also because of recent activity
in this area [64,65]. The easier calculability has allowed the
authors of Refs. [64,65] to extract interesting features of the
F-theorem in higher-dimensional Abelian gauge theories
which may be shared with non-Abelian ones. Based on our
earlier considerations the six-dimensional QED Lagrangian
is [65],

Lð6ÞjQED ¼ −
1

4
ð∂μFνσÞð∂μFνσÞ

−
1

2α
ð∂μ∂νAνÞð∂μ∂σAσÞ þ iψ̄ iDψ i: ð8:1Þ

The main differences are the absence of the three-point
operator with coupling g2 which was proportional to the
color group structure functions and the replacement of
the covariant derivative in the gauge field kinetic term by
the partial derivative. The gauge-fixing term is similar to
QCD but in a linear covariant gauge there are no Faddeev-
Popov ghosts. The upshot is that we have renormalized
Eq. (8.1) to three loops in the MS scheme. We find

γAðg1; αÞ ¼ −
4

15
Nfg21 −

38

27
Nfg41

þ 17Nf½200 − 111Nf�
g61

6075
þOðg81Þ;

γψðg1; αÞ ¼ ½3αþ 5� g
2
1

6
þ 2½32Nf − 125� g41

135

þ ½2864N2
f − 648000ζ3Nf þ 730375Nf

þ 1944000ζ3 − 1033000� g61
243000

þOðg81Þ;

β1ðg1Þ ¼ −
2

15
Nfg31 −

19

27
Nfg51

þ 17Nf½200 − 111Nf�
g71

12150
þOðg91Þ ð8:2Þ

where we confirm the one-loop asymptotically free β
function of Ref. [65]. To derive these expressions we have
independently renormalized the photon two-point func-
tion and the electron-photon vertex separately so that the
Ward-Takahashi identity
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β1ðg1Þ ¼
g1
2
γAðg1; αÞ ð8:3Þ

emerges naturally and plays the role of a computational
check. One advantage of considering the Abelian theory is
that there are no triple or quartic photon vertices. Thuswe can
access the vertex renormalization by the method discussed in
Ref. [33]. There six-dimensional ϕ3 theory was renormalized
to four loops by considering only two-point functions. The

three-point Green’s functions with zeromomentum insertions
were generated by expanding themassless propagatorwith the
appropriate Feynman rule for the insertion. Also for Eq. (8.1)
nullification does not involve a vertex with three photons.
So no infrared problems arise which prevented us from using
this approach in QCD. Overall this reduces the number of
graphs to be evaluated. In addition we have also determined
the MS electron-mass anomalous dimension which is

γψ̄ψðg1Þ ¼ −
5g21
3

þ ½−68Nf − 25� g41
135

þ ½13456N2
f þ 648000ζ3Nf − 818575Nf þ 1215000ζ3 − 726875� g61

121500
þOðg81Þ: ð8:4Þ

From the three-loop results, there are several interesting
features. First, we have computed all renormalization group
functions in terms of a nonzero α. However, from Eq. (8.2)
the only place where α appears in these MS results is in the
one-loop term of the electron wave-function anomalous
dimension. Clearly in MS the β function will be α
independent which by the Ward-Takahashi identity means
that the photon anomalous dimension is independent of the
gauge parameter. The absence of α beyond one loop in
γψðg1; αÞmight be surprising if it was not in fact completely
parallel to the situation in four dimensions. Indeed from
explicit four-loop computations α is absent after one loop
[107]. In Refs. [108,109] an argument was given which
suggested that to all orders α appears only in the one-loop
term. The fact that such a property seems to be present in
six dimensions suggests that the result is independent of
dimension. The next observation concerns the β function
which is that each term is negative for Nf > 1. When
Nf ¼ 1 there is a pseudo-Banks-Zaks fixed point at
g1 ¼ 2.415479. We have attributed it as a nonstandard
Banks-Zaks fixed point as it derives from an imbalance of
the signs of the first three terms rather than the one- and
two-loop terms in the QCD case. As such it may not survive
in a four-loop analysis. As a check on our three-loop results
we have verified that the critical exponents determined at
the Wilson-Fisher fixed point agree precisely with the
corresponding ones determined at various orders in the
large-Nf expansion [61,62,102] with those exponents
being expanded in the neighborhood of six dimensions.
This is another reason why we considered the Abelian
theory at one loop order higher than the non-Abelian
extension. It was important to put a six-dimensional gauge
theory on the same footing as scalar ϕ3 theory. In other
words there is a tower of gauge theories driven by a
common interaction and underlying symmetry.
One observation which has been made in the context of

the tower of theories in d dimensions is that at the Wilson-
Fisher fixed point one of the two connecting theories is
asymptotically free while the other is nonasymptotically

free [65]. In other words there is a type of ultraviolet/
infrared duality across the dimensions such that the infrared
fixed point of one is an ultraviolet fixed point of the other.
In the OðNÞ scalar theory case the nonlinear σ model is
asymptotically free in two dimensions whereas ϕ4 theory
is not in four dimensions. The six-dimensional partner is
asymptotically free although it is not immediately clear if
this is the case in the eight-dimensional cousin (2.6). This is
because asymptotic freedom usually refers to the theory
with a single scalar field and no OðNÞ symmetry. In the
theories in six and lower dimensions they all have a single
coupling in that instance. In the eight-dimensional scalar
theory case in the absence of the OðNÞ symmetry there are
two couplings. Setting g1 ¼ 0 in Eq. (3.1) both one-loop
terms of β2ðg1; g2; g3Þ and β3ðg1; g2; g3Þ are positive. So in
this instance it appears that the base eight-dimensional
theory is not asymptotically free. As noted in Ref. [65] a
similar picture is present in the QED tower. In four
dimensions QED is not asymptotically free whereas in
six dimensions it is [65]. As we have considered the eight-
dimensional OðNÞ scalar theory extension it is worthwhile
repeating the exercise for QED in eight dimensions. To
write down the Lagrangian one has to follow our earlier
prescription which requires extra interactions akin to the
situation for Eq. (2.6). We have

Lð8ÞjQED¼−
1

4
ð∂μ∂νFσρÞð∂μ∂νFσρÞ− 1

2α
ð∂μ∂νAνÞð∂μ∂σAσÞ

þ iψ̄ iDψ iþ g22
32

FμνFμνFσρFσρþg23
8
FμνFμσFνρFσρ:

ð8:5Þ

The corresponding QCD Lagrangian would be much more
involved. For instance, dimension-eight and -ten gluonic
operators were considered for SUðNcÞ gauge theories in
Ref. [66]. Equipped with Eq. (8.5) we have found that
the renormalization group functions to a similar order as
Eq. (2.6) are
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γAðg1; g2; g3; αÞ ¼
Nfg21
35

þ 11Nfg41
120

þOðg6i Þ;

γψðg1; g2; g3; αÞ ¼ ½2αþ 7� g
2
1

12
þ ½−964Nf − 13475� g41

33600
þOðg6i Þ;

β1ðg1; g2; g3Þ ¼
Nfg31
70

þ 11Nfg51
240

þOðg7i Þ;

β2ðg1; g2; g3Þ ¼ ½1120g41Nf þ 72g21g
2
2Nf − 861g42 − 1659g22g

2
3 − 609g43�

1

1260
þOðg6i Þ;

β3ðg1; g2; g3Þ ¼ ½−1568g41Nf þ 144g21g
2
3Nf − 21g42 − 294g22g

2
3 − 1029g43�

1

2520
þOðg6i Þ;

γψ̄ψðg1; g2; g3Þ ¼ −
7g21
12

þ ½2052Nf − 1225� g41
100800

þOðg6i Þ: ð8:6Þ

The structure of these functions is different from those of
Eq. (2.6). The absence of a triple photon vertex means that
at one loop there are no g2 or g3 couplings in β1ðg1; g2; g3Þ.
That this persists at two loops is somewhat surprising given
that there is one topology which involves a quartic photon
vertex in the electron-photon vertex function. It transpires
that the graph is finite. Equally the two-loop photonic
sunset graph in the photon two-point function is also finite
which ensures the Ward-Takahashi identity is not violated.
The absence of g2 and g3 dependence at least to two loops
in β1ðg1; g2; g3Þ exposes the nonasymptotic freedom of
eight-dimensional QED. Next we note that at least at two
loops the electron anomalous dimension has no gauge
parameter dependence in the two-loop term. While this is
not inconsistent with the lower-dimensional observations it
again lends some weight to the one-loop α dependence
being dimension independent. The final comment on
Eq. (8.6) is that we have again verified that the critical
exponents at the Wilson-Fisher fixed point are in exact
agreement with the exponents from the large-Nf expansion
when evaluated near eight dimensions.
In light of these latter remarks it is worth making a few

brief comments about what lies beyond eight dimensions
for QED. For instance, one can try and address the issue of
asymptotic freedom in higher dimensions by exploiting
properties of the gauge theory which are not present in a
scalar theory. One feature in QED is that the β function of
the gauge coupling to matter can be deduced from the
photon two-point function. At one loop the graph does not
involve photon propagators. This is under the assumption
that there are no triple photon vertices. If such a three-point
vertex is present then the following argument will be
invalid. However, if the only three-point vertex is the
electron-photon one then from the photon two-point
function the one-loop β function is

βðDÞ
1 ðg1; g2;…Þ ¼ 2ð−1ÞD=2Γð1

2
DÞNfg31

ðD − 1ÞΓðD − 2Þ þOðg5i Þ ð8:7Þ

in d ¼ D − 2ϵ where D is an even integer with D > 2.
The expression tallies with the known results up to eight
dimensions. Under the assumption we have made it is
evident that QED yoyos between being asymptotically
free and not being asymptotically free. The origin of the
varying sign is the residue of the simple poles in the Euler
Γ-function when one expands around the appropriate
simple pole in ϵ to determine the photon wave-function
renormalization constant and via the Ward-Takahashi
identity the β function of g1. In using Eq. (8.7) it is
important to realize that it is only valid for even integers
larger than two. It cannot be used in the intervening
continuous dimensions and expressed in terms of a regu-
larizing parameter which has already been used to deter-
mine Eq. (8.7) in the MS scheme.

IX. DISCUSSION

We make some closing observations. First, we have
achieved one of the main goals which was to construct and
establish higher-dimensional field theories which lie in the
same universality class as already well-established theories
at the Wilson-Fisher fixed point. The process is based on a
common interaction which underpins each Lagrangian in a
chain as well as renormalizability. Aside from the fields
being in the same symmetry groups, one consequence is the
appearance of extra interactions over and above the core
one connecting all candidates. These spectator interactions
play a key role in ensuring d-dimensional equivalences. In
their critical dimension the extra coupling constants pro-
duce a rich spectrum of fixed points and if analyzed in d
dimensions several of these may be connected to nontrivial
and perhaps nonperturbative fixed points in the companion
lower-dimensional model. One hint of this, for example,
may be in the infrared behavior of the four-dimensional
gluon propagator. In the Landau gauge it has been shown to
freeze to a finite nonzero value at zero momentum in lattice
analyses over recent years [49–59]. Such behavior for the
gluon and Faddeev-Popov ghost propagators can be mim-
icked from the six-dimensional gauge theory if one allows
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for the presence of lower-dimensional operators in the
Lagrangian with associated masses. While this approach
should be regarded as a model it may be indicative
that higher-dimensional operators, including the six-
dimensional ones considered here, could become relevant
in the critical sense and be the dominant operators driving
the gluon propagator infrared behavior. There is evidence
from a Schwinger-Dyson analysis to support this [98]. On a
related issue we have established that six-dimensional QCD
has asymptotic freedom. So this theory is potentially
another where the issues of color confinement could be
investigated especially as its Abelian partner is also
asymptotically free but probably does not have confine-
ment. At this stage it is still perhaps premature to think that
links with lower-dimensional nonperturbative fixed points
have been fully established. This is primarily because in the
gauge theory we only performed the renormalization to two
loops. This was mainly to demonstrate the viability of the
approach. A one-loop computation would not really have
been sufficient since in the critical dimension the effect of
the spectator interaction coupling constant does not appear
in anomalous dimensions until two loops. Going beyond
two loops is possible but not as straightforward as for a
four-dimensional gauge theory due to the technical issues
surrounding infrared problems if vertices are computed at
exceptional momenta configurations. However, using a
nonexceptional setup would require the three-loop three-
point masters which are not yet known even in four
dimensions. With the two-loop renormalization of
Eq. (5.12) it should be possible to extend the F-theorem
studies in six-dimensional QED [65], to the non-Abelian
case. Moreover, it would be interesting to compare the
perturbative picture with a gauge theory conformal boot-
strap analysis.
Our final remarks are aimed at trying to give an overall

perspective. Several interesting features emerged in six-
dimensional gauge theories. For instance, properties of
four-dimensional gauge theories appear to have parallels in
higher dimensions. One, which is not surprising, is that the
Landau-gauge anomalous dimension of the dimension-two
local gluon-mass operator is the sum of the gluon and ghost
anomalous dimensions. This follows purely as a conse-
quence of the universal structure of BRST invariance and
the dimension-independent proof of Ref. [104]. What was
less apparent was the result for the electron wave-function
anomalous dimension. The gauge parameter dependence
arose only in the one-loop term in the six- and eight-
dimensional cases to the various orders we computed. This
may give some insight into the reasoning behind the

four-dimensional argument of Refs. [108,109]. From
another point of view it might be better to examine the
connection of the field theories in different dimensions at a
more fundamental level. A clue to this may be in the way
we had to carry out our higher dimension renormalization.
For instance, the underlying master integrals were deduced
using Tarasov’s method [76,77], which connects masters in
d dimensions to those in (dþ 2) dimensions. While this is
at a Feynman-integral level there is a hint that there is a
Lagrangian field theory connection which may be quanti-
fiable using path-integral methods. An indication of this
here may be seen in the operators in various Lagrangians.
For instance, in Eq. (5.20) the mass parameters m2 and m4

are associated withGa
μνGaμν and the Landau-gauge operator

O. In the corresponding four-dimensional propagator
[89,90,101], the respective operators are O2 and the
Gribov operator, Oγ , which is

Oγ ¼
1

2
Aa
μ

�
1

∂νDν

�
ab
Ab
μ ð9:1Þ

which is also nonlocal. The anomalous dimension of the
latter is formally the same as O in that it is the sum of the
gluon and ghost anomalous dimensions. However, compar-
ing the structure of the respective operators between four
and six dimensions they are essentially equivalent when
one recognizes that the nonlocality accounts for the differ-
ing dimensionalities. This may be an indication that non-
local problems in lower dimensions could be studied in a
local higher-dimensional context and give insight into
effective field theories.
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APPENDIX: EIGHT-DIMENSIONAL
MASTER INTEGRALS

In this appendix we record the values of the various one-
and two-loop three-point master integrals at the fully
symmetric point needed to carry out the renormalization
of Eqs. (2.6) and (8.5) in eight dimensions. They are
constructed from lower-dimensional masters using
Tarasov’s method [76,77]. For ease of comparison and
definition we use the same labeling of the integrals as that
given in the four-dimensional summary of Ref. [110]. First,
the one-loop triangle integral is

Mð1Þ
31 ¼

�
−

1

8ϵ
−

61

144
−

2

81
π2 þ 1

27
ψ 0
�
1

3

�

þ
�
−
895

864
−

23

864
π2 −

2

3
s3

�
π

6

�
þ 1

18
ψ 0
�
1

3

�
þ 35

5832

ffiffiffi
3

p
π3 þ 1

216

ffiffiffi
3

p
ln2ð3Þπ

�
ϵþOðϵ2Þ

�
ð−~μ2Þ: ðA1Þ

SIX DIMENSIONAL QCD AT TWO LOOPS PHYSICAL REVIEW D 93, 025025 (2016)

025025-27



At two loops we have

Mð2Þ
42 ¼

�
1

50400ϵ2
þ 323

4233600ϵ
þ
�
2234400ψ 0

�
1

3

�
− 1754200π2 þ 6391701

�
1

80015040000

þ
�
81496800

ffiffiffi
3

p
ln2ð3Þπ − 133358400

ffiffiffi
3

p
lnð3Þπþ79301600

ffiffiffi
3

p
π3 þ 3775312800ψ 0

�
1

3

�

þ 4800902400s2

�
π

6

�
− 9601804800s2

�
π

2

�
− 18136742400s3

�
π

6

�
þ 6401203200s3

�
π

2

�

− 2773272600π2 − 2667168000ζ3 − 11102348079

�
ϵ

20163790080000
þOðϵ2Þ

�
~μ8;

Mð2Þ
43 ¼

�
1

2880ϵ2
þ 401

172800ϵ
þ
�
−2400ψ 0

�
1

3

�
− 3800π2 þ 937449

�
1

93312000

þ
�
108000

ffiffiffi
3

p
ln2ð3Þπ − 1944000

ffiffiffi
3

p
lnð3Þπ − 244000

ffiffiffi
3

p
π3 þ 4600800ψ 0

�
1

3

�

þ 69984000s2

�
π

6

�
− 139968000s2

�
π

2

�
− 108864000s3

�
π

6

�
þ 93312000s3

�
π

2

�

− 9563400π2 − 38880000ζ3 þ 611480367

�
ϵ

16796160000
þOðϵ2Þ

�
~μ6;

Mð2Þ
52 ¼

�
1

960ϵ2
þ 2371

345600ϵ
þ
�
−38400ψ 0

�
1

3

�
− 6800π2 þ 5299929

�
1

186624000
þOðϵÞ

�
~μ6;

Mð2Þ
61 ¼

�
1

240ϵ2
þ 329

9600ϵ
þ
�
16200

ffiffiffi
3

p
ln2ð3Þπ − 194400

ffiffiffi
3

p
lnð3Þπ − 17400

ffiffiffi
3

p
π3 þ 628800ψ 0

�
1

3

�
þ 6998400s2

�
π

6

�

− 13996800s2

�
π

2

�
− 11664000s3

�
π

6

�
þ 9331200s3

�
π

2

�
− 494800π2

− 1166400ζ3 þ 19175391

�
1

108864000
þOðϵÞ

�
~μ4 ðA2Þ

where

snðzÞ ¼
1ffiffiffi
3

p ℑ

�
Lin

�
eizffiffiffi
3

p
��

ðA3Þ

and LinðzÞ is the polylogarithm function. We have used the notation of Ref. [110] but it is worth noting that they are related
to cyclotomic polynomials [111]. We have not included values for the two-loop mastersMð1Þ

21 ,M
ð2Þ
31 ,M

ð2Þ
41 andMð2Þ

51 in the
notation of Ref. [109] as they are products of one-loop masters or two-loop two-point integrals.
Finally we record the value of the eight-dimensional one-loop four-point box integral at the fully symmetric point. This

was required for the renormalization of Eq. (2.6). In Ref. [112] the four-dimensional version was derived but again we have
used Refs. [76,77] for our purposes. Using the same notation as Ref. [112] the corresponding d ¼ 8 − 2ϵ-dimensional
value is

Dð1Þ
�
−~μ2;−~μ2;−~μ2;− ~μ2;−

4

3
~μ2;−

4

3
~μ2
�

¼ 1

6ϵ
þ 11

18
−

1

24
ln

�
4

3

�
þ 25

192
Φ1

�
9

16
;
9

16

�
−
29

96
Φ1

�
3

4
;
3

4

�
þOðϵÞ ðA4Þ

where [112],

Φ1ðx; yÞ ¼
1

λ

�
2Li2ð−ρxÞ þ 2Li2ð−ρyÞ þ ln

�
y
x

�
ln

�ð1þ ρyÞ
ð1þ ρxÞ

�
þ lnðρxÞ lnðρyÞ þ π2

3

�
ðA5Þ

and
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λðx; yÞ ¼
ffiffiffiffiffiffiffi
ΔG

p
; ρðx; yÞ ¼ 2

½1 − x − yþ λðx; yÞ� ðA6Þ

with

ΔGðx; yÞ ¼ x2 − 2xyþ y2 − 2x − 2yþ 1: ðA7Þ
We note that the finite piece can also be expressed in terms of the Clausen function Cl2ðθÞ via [113],

Φ1

�
3

4
;
3

4

�
¼

ffiffiffi
2

p �
2Cl2

�
2cos−1

�
1ffiffiffi
3

p
��

þ Cl2

�
2cos−1

�
1

3

���
;

Φ1

�
9

16
;
9

16

�
¼ 4ffiffiffi

5
p

�
2Cl2

�
2cos−1

�
2

3

��
þ Cl2

�
2cos−1

�
1

9

���
: ðA8Þ

The finite part has been provided for the reader interested in the Tarasov approach.
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