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As originally described by Rubakov, particles are produced during the tunneling of a metastable
quantum field. We propose to extend his formalism to compute the backreaction of these particles on the
semiclassical decay probability of the field. The idea is to integrate out the external bath of particles by
computing the reduced density matrix of the system. Following this approach, we derive an explicit
correction factor in the specific case of scalar particle production in flat spacetime. In this given framework,
we conclude that the backreaction is ultraviolet finite and enhances the decay rate. Moreover, in the weak
production limit, the backreaction factor is directly given by one half of the total number of created
particles. In order to estimate the importance of this correction, we apply our formalism to a toy model
potential which allows us to consider both the decay of a homogeneous bounce and the nucleation of a thin-
wall bubble. In the former case, the impact of the created particles is parameter dependent and we exhibit a
reasonable choice of variables for which ones the backreaction is significant. In the latter case, we conclude
that the backreaction is always negligible.
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I. INTRODUCTION

A quantum field lying at a local minimum of its potential
has a nonzero probability to tunnel to a more energetically
favorable state through barrier penetration. Such a phase
transition known as false vacuum decay is typically
described as the nucleation of a bubble of true vacuum
surrounded by the initial metastable phase [1,2].
This process may occur in various quantum field

theories. Currently, a lot of attention is given to the stability
of the electroweak vacuum of the Standard Model (SM).
Since the discovery of the Higgs boson [3,4] with a mass of
mH ¼ 125.09� 0.24 GeV [5], all the parameters of this
theory are known without any sign of new physics.
Therefore, extrapolating the SM to high energies, state-
of-the-art calculations indicate that the Universe is lying at
the edge between stability and metastability [6–10]. In the
latter case, the Higgs potential becomes negative at an
instability scale around ΛI ≈ 1011 GeV and thus develops a
global minimum at large field values. In this context, the
decay probability of the electroweak vacuum may become
a crucial parameter to probe both the fate and the history of
our Universe. In particular, it has to agree with the
observation that the Higgs field has not yet decayed during
the early stage of the Universe or during its subsequent
evolution.
The usual starting point to evaluate such a false vacuum

decay rate in flat spacetime is the instanton method of
Coleman [2]. In this formalism, the decay probability per
unit time per unit volume is computed at the lowest order of

the semiclassical approximation: Γ=V ≈ e−SB , where SB
is the Euclidean action evaluated along the bounce
trajectory. The precision of this result can then be improved
including one-loop quantum corrections [11] or finite
temperature [12,13]. When gravitational effects cannot be
neglected, e.g. during the early Universe, it is well known
that the decay can take place either through the Coleman–de
Luccia instanton [14], which is the analogue of bubble
nucleation in flat spacetime, or through the Hawking-Moss
instanton [15] which is a homogeneous process allowed
when the geometry of the Universe is closed.
These formalisms have been applied to the SM stability

in the past few years. They indicate that the lifetime of the
current electroweak vacuum is much longer than the age of
the Universe by many orders of magnitude, both at the
semiclassical [9] and one-loop [16,17] level. Thus, it does
not contradict any observation. However, the situation is
more intriguing during the early Universe assuming a
period of inflation. Recent investigations suggest that the
survival of the electroweak vacuum during this epoch
implies stringent constraints on the Hubble rate and the
top quark mass depending on the details of the process, like
for example the coupling of the Higgs field to gravity
[18–27]. It also appears that the temperature of the Universe
during the reheating process following inflation influences
the stability of the SM [27–29]. In addition to this, some
other effects that could change our knowledge of the Higgs
decay rate have also been considered including modifica-
tions from Planck scale higher-dimensional operators
[17,30–32], the presence of an impurity in the metastable
phase [33] or the influence of black holes as nucleation
seeds [34,35].*cyril.lagger@sydney.edu.au
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This paper investigates another effect which has not yet
been taken into account to the best of our knowledge and
which occurs in every type of false vacuum decay: the
backreaction of particle production. In the 1980s, Rubakov
[36,37] proved that the fluctuations generated during the
tunneling of a metastable field produce a spectrum of real
particles. This observation was then confirmed by other
groups using different formalisms [38,39]. We propose to
review and extend Rubakov’s work to evaluate the impact
of these particles on the decay rate of the field. Our
approach will follow the reduced density matrix formalism
used in quantum mechanics to address the influence of the
environment on a given quantum process [40–43].1 In this
scheme, the information related to the system is extracted
by integrating out the external degrees of freedom. Applied
to our case, the decaying field is considered as the system of
interest while the environment corresponds to the external
bath of created particles.
It is worth mentioning that the objective of this article is

to present our formalism and thus we restrict our attention
to the simplest scenario, namely the backreaction of scalar
particles in flat spacetime. We postpone the study of spinor
and vector fields, necessary to fully address the SM, as well
as gravitational effects to a subsequent work. The article is
organized as follows. In Sec. II, we review the instanton
formalism in flat spacetime and the process of particle
production as described by Rubakov. In Sec. III, we
explicitly compute the reduced density matrix for a system
of two scalar fields and we derive a correction factor which
accounts for the backreaction of particle production. An
interpretation of this new factor is given. Section IV is
dedicated to the application of the previous formalism to a
toy model potential for which we consider two types of
decay: the nucleation of a thin-wall bubble and a homo-
geneous process. In the last section, we summarize our
results and describe what would be our future investigations
in particular the application of this formalism to the Higgs
potential of the SM.

II. VACUUM DECAY AND PARTICLE
PRODUCTION

A. Semiclassical decay rate

Consider a real scalar field σ in Minkowski spacetime:

Lσ ¼
1

2
∂μσ∂μσ − VðσÞ: ð1Þ

We assume that the potential V has a local minimum at σF
(false vacuum) and a global minimum at σT (true vacuum).
In the semiclassical approximation, the decay probability

per unit time per unit volume of a field initially trapped near
σF is given by [2]2

Γ
V
¼ Ae−

SB
ℏ ð1þOðℏÞÞ: ð2Þ

The semiclassical exponent SB corresponds to the
Euclidean action SE computed along the bounce trajectory:
SE ¼ R

dτd3x½1
2
ð∂τσÞ2 þ 1

2
ð∂iσÞ2 þ VðσÞ�, where we have

introduced the formal Euclidean time τ ¼ it. The bounce
σBðx; τÞ is the Euclidean trajectory which minimizes SE
with the conditions that it starts from σF at τ ¼ −∞,
evolves under the barrier until it reaches the boundary with
the classically allowed region at τ ¼ 0 and then bounces
back to σF at τ ¼ þ∞. In equations, it satisfies

ð∂2
τ þ ∂2

i Þσ ¼ ∂V
∂σ ; σðτ;xÞ ⟶τ→�∞

σF;
∂σ
∂τ

����
ðτ¼0;xÞ

¼ 0:

ð3Þ

According to Eq. (2), the decay process is exponentially
suppressed for large values of SB. It means that the field
cannot decay homogeneously in an open universe. This
restricts our attention to two cases of interest: a homo-
geneous decay taking place in a finite volume V or the
nucleation of a bubble of true vacuum σT . In the former
case, Eq. (3) reduces to ∂2

τσ ¼ ∂V
∂σ with the same boundary

conditions. The Euclidean action also simplifies to

SE;hom ¼ V
Z

dτ

�
1

2
ð∂τσÞ2 þ VðσÞ

�
: ð4Þ

In the latter case, Coleman proved that it always exists an
Oð4Þ symmetric solution σBðρÞ, where ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ x2

p
,

satisfying3

d2σ
dρ2

þ 3

ρ

dσ
dρ

¼ ∂V
∂σ ; σðρ → þ∞Þ ¼ σF;

dσ
dρ

����
ρ¼0

¼ 0:

ð5Þ

The Euclidean action then becomes

SE;Oð4Þ ¼ 2π2
Z þ∞

0

dρρ3
�
1

2

�
dσ
dρ

�
2

þ VðσÞ
�
: ð6Þ

The previous equations give all the information to
compute the decay rate at the lowest order of the semi-
classical approximation. On the other hand, the prefactor A
in Eq. (2) corresponds to the one-loop quantum corrections.

1This formalism was actually proposed to describe the envi-
ronment-induced decoherence which attempts to explain why the
world looks classical despite its quantum nature.

2Except in Eq. (2), we shall work in natural units ℏ ¼ c ¼ 1
throughout this paper.

3Note that the last condition in Eq. (5) is not a consequence of
(3) but is added to avoid any singular solution at the origin.
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Using a path integral formulation, Callan and Coleman
showed in [11] that it reduces to the computation of a
functional determinant. In practice, this is often a very
difficult task since this quantity is ultraviolet divergent
per se and requires renormalization techniques. Physically,
this prefactor corresponds to the smallest fluctuations of the
tunneling field around the bounce trajectory. Thus, roughly
speaking, it represents the effect of virtual particles on the
decay rate. Our aim in this paper is actually to derive a new
correction factor related to the production of real particles
during the false vacuum decay.

B. Particle production

Formally, the phenomenon of particle creation takes
place once we add another field to the Lagrangian (1). In
this article, we restrict our attention to an external scalar
field ϕ coupled to σ in the following way:

Ltot ¼ Lσ þ
1

2
∂μϕ∂μϕ −

1

2
m2ðσÞϕ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Lϕ

; ð7Þ

where m2ðσÞ is an arbitrary coupling parameter. It is worth
mentioning that this model allows us to consider the self-
excitation of the tunneling field around its bounce solution
if we write σ ¼ σB þ ϕ and ifm2ðσÞ is replaced by V 00ðσBÞ.
We now review the formalism of Rubakov [36] who

proved that some ϕ particles are created during the decay
process of σ. The state vector of the total system jΨi
satisfies the stationary Schrödinger equation

ðHσ þHϕÞjΨi ¼ EjΨi; ð8Þ

where Hσ and Hϕ are the Hamiltonians associated to the
Lagrangians Lσ and Lϕ. In the absence of ϕ, the model is
well approximated by the quasiclassical bounce trajectory
σBðx; τÞ described in the previous section. In that case, the
wave functional associated to the state jΨi becomes para-
metrized, in the field representation, by the Euclidean time
τ as hσBðτÞjΨi ¼ Ψ½σBðτÞ� ≈ e−SE½σBðτÞ� where

SE½σBðτÞ�¼
Z

τ

−∞
dτ0

Z
d3x

�
1

2
ð∂τ0σBÞ2þ

1

2
ð∂iσBÞ2þVðσBÞ

�
:

ð9Þ

Then, we assume that the addition of the new field ϕ does
not significantly change this behavior. In other words, we
study the field ϕ in the background of the semiclassical
tunneling bounce σB without taking into account the action
of the former on the latter. This is actually the purpose of
Sec. III to investigate this effect. Under this assumption, we
can parametrize the total state for the two fields as

jΨðτÞi ≈ e−SEðτÞjϕðτÞi; ð10Þ

where the state jϕðτÞi≔jϕ½σBðτÞ�i encodes all the infor-
mation related to the fluctuating field ϕ along the Euclidean
trajectory [for convenience we simply wrote the depend-
ence in τ instead of σBðτÞ]. Before tunneling, we ask for
this state to be an eigenstate of Hϕ according to

Hϕ½σF�jϕ½σF�i ¼ Ejϕ½σF�i; ð11Þ

where the Hamiltonian is also parametrized in the function
of the bounce:

Hϕ½σBðτÞ� ¼
Z

d3x

�
1

2
π2ϕþ

1

2
∂iϕ∂iϕþ 1

2
m2ðσBðx;τÞÞϕ2

�
:

ð12Þ

Even in the Schrödinger picture [with time-independent
operators ϕðxÞ and πϕðxÞ], we note that the Hamiltonian
has an explicit τ dependence coming from m2ðx; τÞ≔
m2ðσBðx; τÞÞ. This is a typical signature of systems
exhibiting particle production like the well-known exam-
ples of particle creation by an external electromagnetic field
[44] or by a curved spacetime background [45] (with the
important difference that our system evolves in Euclidean
time rather than in physical time).
From the above considerations, Rubakov showed that

the stationary equation (8) with the boundary condition
(11) reduces to a Euclidean Schrödinger equation for ϕ:

∂jϕðτÞi
∂τ ¼ −ðHϕðτÞ − EÞjϕðτÞi: ð13Þ

Since in this article we are only concerned with ϕ initially
in its vacuum state, we set E ¼ 0 and jϕ½σF�i ¼ jOτ−i.4 For
convenience, we write the initial instant as τ− remembering
that the limit τ− → −∞ has to be taken at the end of the
calculation. As usual in the Schrödinger picture, the
solution of the previous equation can be expressed from
the operator of evolution

Uτ ¼ T exp

�
−
Z

τ

τ−

Hϕðτ0Þdτ0
�

ð14Þ

as

jϕðτÞi ¼ UτjOτ−i; ð15Þ

where T is the time ordering operator. In contrast with
quantum field theory in Minkowski spacetime, this oper-
ator is not unitary: U−1

τ ≠ U†
τ (note the absence of the

imaginary factor i in the exponent since we are working in
Euclidean time).

4For the interesting discussion of an initially excited state, we
refer to Rubakov’s [36] original paper.
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We now introduce the set of creation-annihilation oper-
ators b†α, bα which diagonalize the initial Hamiltonian
Hϕðτ−Þ and satisfy bαjOτ−i ¼ 0 (α represents a generic set
of quantum numbers and

P
α shall either refer to summa-

tion or integration). Since Hϕ is explicitly time dependent,
the vacuum state is not conserved. In other words, at a given
instant τ, the vacuum is defined by a new set of operators
a†α;τ, aα;τ as aα;τjOτi ¼ 0. The two sets of operators at
different times are related by a time-dependent unitary
Bogoliubov transformation aα;τ ¼ W†

τbαWτ, where the
unitary operator Wτ has the property to relate the different
vacuum states through jOτ−i ¼ WτjOτi. Combining this
expression with Eq. (15), we observe that the state of ϕ at
any given instant can be expressed from the vacuum at this
moment according to

jϕðτÞi ¼ UτWτjOτi≔X τjOτi: ð16Þ

Starting from the vacuum, the field has evolved to an
excited state whose spectrum is encompassed in the
nonunitary operator X τ. The main result of Rubakov
was to explicitly write this operator in terms of the
creation-annihilation operators a†α;τ, aα;τ, thus acting
directly on their related vacuum state jOτi. He used the
method of nonunitary (resp. unitary) Bogoliubov trans-
formations to compute Uτ (resp. Wτ). We do not give the
details of this calculation and directly present the prescrip-
tion to find X τ.
At any instant τ, the state of ϕ is given by5

jϕðτÞi ¼ X τjOτi ¼ C exp

�
1

2

X
α;β

DαβðτÞa†α;τa†β;τ
�
jOτi

ð17Þ

and the number of particles in a given mode α is then

NαðτÞ ¼
hϕðτÞja†α;τaα;τjϕðτÞi

hϕðτÞjϕðτÞi ¼
�

D2ðτÞ
1 −D2ðτÞ

�
αα

; ð18Þ

where C is a constant number and D is a real symmetric
matrix defined as follows. The two key ingredients to
compute it are the sets of functions fξατ ðxÞg and fhαðx; τÞg.
At each instant τ, the ξατ form the complete set of real wave
functions of the ϕ particles in the background of the
bounce. So, they satisfy

½−∂2
i þm2ðx; τÞ�ξατ ðxÞ ¼ ðωα

τ Þ2ξατ ðxÞ ð19Þ

with the normalization condition

ðξατ ; ξβτ Þ≔
Z

d3xξατ ðxÞξβτ ðxÞ ¼ ð2ωα
τ Þ−1δαβ: ð20Þ

On the other hand, the hα form the set of real Euclidean
mode functions similar to the positive-frequency functions
in Minkowski spacetime. So, they satisfy the Euclidean
field equation

½−∂2
τ − ∂2

i þm2ðx; τÞ�hαðx; τÞ ¼ 0 ð21Þ
with the condition that they exponentially decrease to zero
for τ → −∞. The last step is to construct the above matrix
as

D ¼ VZ−1; ð22Þ
where

VαβðτÞ ¼ ðωα
τ ξ

α
τ ; hβÞ − ðξατ ; ∂τhβÞ;

ZαβðτÞ ¼ ðωα
τ ξ

α
τ ; hβÞ þ ðξατ ; ∂τhβÞ: ð23Þ

In summary, the spectrum of created particles described
by Eqs. (17) and (18) is entirely defined by the solutions of
the differential equations (19) and (21). However, the
computation of the matrix D can be a very difficult task
since it requires us to invert a generally infinite-dimen-
sional matrix. In the case of a homogeneous decay, we shall
see in Sec. IV that this computation can be performed
straightforwardly because the above matrices are diagonal.
However, this becomes often impossible in the case of
bubble nucleation. In order to avoid this problem, Rubakov
actually provided an iterative way to estimate D. Before
presenting this method in the next section, it is worth
making some remarks on the above result.
First, the number of created particles (18) has only a

physical meaning at τ ¼ 0 when the bubble materializes.
Second, we observe that this result diverges if the matrix
1 −D2 has a zero eigenvalue. According to Rubakov, this
problem could occur for the self-excitation of the tunneling
field σ itself. So we should remember this remark if we
want to consider such a case. However, it is important to
realize that this divergence is not related to the common
ultraviolet divergences of quantum field theories. Actually,
Rubakov proved that the total number of created particles
per bubble N ¼ P

αNα is ultraviolet finite. As this result
will be important for our own discussion regarding the
backreaction of these particles, we shall discuss the reason
of this fact below.

C. Weak particle production and UV finiteness

Let us now present how the matrix D can be approxi-
mated without inverting an infinite-dimensional matrix. It
relies on the observation that D satisfies the following
matrix differential equation:

∂τD ¼ −ðEDþDEÞ þ Bþ ðAD −DAÞ −DBD ð24Þ
5We stress that this formula is only valid if jϕðτ−Þi ¼ jOτ−i.

Rubakov [[36], Eq. (3.16)] gave the more complete expression
for an initially excited state.
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where E, A and B are some matrices given by Rubakov
([36], Sec. 3.3.3):

Eαβ ¼ ωα
τ δαβ; Aαβ ¼

	 0; α ¼ β
1

ωα
τ−ω

β
τ
ðξατ ; ∂τm2ξβτ Þ;α≠β ;

Bαβ ¼
1

ωα
τ þ ωβ

τ

ðξατ ; ∂τm2ξβτ Þ: ð25Þ

We note that D is now uniquely specified by the wave
functions ξατ , without reference to hα. Moreover, when the
parameter ∂τm2 is small [typically compared to ðωα

τ Þ3], the
matrices A and B can be considered as a perturbation and
Eq. (24) can be solved iteratively. The lowest order solution
of Eq. (24) is given by the formula (3.28) in [36]:

DαβðτÞ¼e−ðWαðτÞþWβðτÞÞ
Z

τ

−∞
eðWαðτ0ÞþWβðτ0ÞÞ ðξ

α
τ0 ;∂τ0m2ξβτ0 Þ
ωα
τ0 þωβ

τ0
dτ0;

ð26Þ

where WαðτÞ ¼
R
τ
0 dτ

0ωα
τ0 . This limit corresponds to say

that the number of created particles is weak and the matrix
D is small. Thus, Eq. (18) for the number of created
particles in a given mode and the total number of particles
reduce to

NαðτÞ ¼ ðD2ðτÞÞαα and N ¼ TrD2: ð27Þ
The two previous equations are also useful to prove that

the total number of created particles is ultraviolet finite.
Indeed, ∂τm2 becomes clearly negligible in front of ðωα

τ Þ3
for high energy particles. Moreover, the m2 term can be
neglected in Eq. (19), such that the wave functions ξατ
simply become in that sector6

ξατ ðxÞ ¼
eikx

ð2πÞ3=2
ffiffiffiffiffiffiffiffiffi
2ωk

τ

p with ωk
τ ¼ k ¼ jkj: ð28Þ

Plugging Eq. (28) in Eqs. (26) and (27), Rubakov [36]
concluded that the number of particles in the UV region
roughly behaves as

NUV ¼
Z

d3kd3k0jDkk0 j2

∝
Z

d3kd3k0 1

kk0ðkþ k0Þ4 j
g∂τm2ðk − k0; τÞj2;

ð29Þ

where g∂τm2 is the Fourier transform of ∂τm2. The above
integral converges if g∂τm2 rapidly goes to zero when

jk − k0j → þ∞. This is actually the case since at high
momentum m ≪ ωk

τ ≈ k. It means that in the ultraviolet
sector the system is insensitive to the variations of the
background ∂τm2 and this naturally regularizes the expres-
sion (29).

III. BACKREACTION OF PARTICLE
PRODUCTION

A. Reduced density matrix formalism

In the previous section, we assumed that the external
field ϕ had no impact on the tunneling process. We propose
now an approach to estimate the effect of the created
particles on the semiclassical decay rate of σ. The idea is to
work with the reduced density matrix which is a tool
introduced in the early days of quantum mechanics by
Landau [40]. Its use is convenient to investigate the impact
of the environment on a given quantum system. Let us
briefly expose how this mechanism works at the gen-
eral level.
Consider a system S of interest described by a Hilbert

space HS coupled to an environment E with the Hilbert
space HE . The total state vector satisfies jΨi ∈ HS ⊗ HE
and the total density operator is then given by

ρ̂ ¼ jΨihΨj: ð30Þ

We suppose that we are interested in an observable Âwhich
is only related to the system S and not to the environment E.
In other words, we can write it as Â ¼ ÂS ⊗ ÎE where ÂS
acts onHS and IE is the identity acting on the environment.
An important consequence from quantum mechanics is that
the measurement of Â satisfies [42,43]

hÂiΨ ¼ Trðρ̂ ÂÞ ¼ TrHS
ðρ̂SÂSÞ; ð31Þ

where ρ̂S is the reduced density operator obtained by
tracing over the environment:

ρ̂S ¼ TrHE
ðρ̂Þ: ð32Þ

The right-hand side of Eq. (31) tells us that the effect of the
environment only enters in the reduced density operator
and thus it entirely contains the effect of these external
degrees of freedom.
We can now apply this formalism to our situation as well.

Indeed, the role of S and E is played by σ and ϕ
respectively. Moreover, since the decay rate is a quantity
which is only related to σ, the backreaction of the created ϕ
particles is entirely encompassed in the reduced density
operator. We shall now explicitly compute it and discuss its
impact on Γ. From the expressions (10) and (17) describing
the state vector of the model of the two scalar fields, we can
write the density operator as

6Although the formalism was built with real wave functions ξατ ,
there is no difficulty to consider complex functions in this short
discussion.
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ρ̂ðτÞ ¼ jΨðτÞihΨðτÞj ¼ e−2SE½σBðτÞ�ðX τjOτihOτjX†
τÞ:
ð33Þ

In this context, tracing over the environment means to sum
over all possible particle states of the field σ. So we define

jfαgnðτÞi ¼
Yn
i¼1

a†αi;τjOτi; ð34Þ

which describes an unnormalized n-particle state with each
particle in a given mode αi: fαgn ¼ fα1; α2;…;αng. As it
should be the case for bosons, no restriction on fαgn is
imposed, meaning that two or more particles can be in the
same state, as for example if αi ¼ αj for some i ≠ j. To
obtain the reduced density operator, we first apply the state
(34) on both sides of (33) and then we have to sum over all
the possible configurations fαgn and all the numbers of
particles. Thus,

ρ̂rðτÞ ¼ e−2SE½σBðτÞ�
X∞
n¼0

X
fαgn

jhfαgnðτÞjX τjOτij2
n!

; ð35Þ

where we have introduced the factor n! to ensure the correct
normalization. In this formula, the dependence on the
modes appears as a sum and can easily be extended to
an integral in the case of a continuous index α. For
convenience, we shall keep the summation symbol
throughout this section.
The decay rate of σ including the backreaction of the ϕ

particles is now given by

ΓBa

V
¼ ρ̂rð0Þ

ρ̂rð−∞Þ ¼ e−SB
F ð0Þ

F ð−∞Þ ; ð36Þ

where we have used SB ¼ 2SE½σBðτ ¼ 0Þ� and F ðτÞ is
defined as7

F ðτÞ¼
X∞
n¼0

X
fαgn

jhfαgnðτÞjexpð12
P

α;βDαβðτÞa†α;τa†β;τÞjOτij2
n!

:

ð37Þ
As expected, we recover in Eq. (36) the semiclassical
exponential and the new correction factor. The main
purpose of the next section is to find a convenient
expression for F ðτÞ.

B. Explicit computation

Since we shall work at a given instant, we omit
the τ dependence in the expression (37) for F. We first
simplify the matrix element Mfαgn≔hOjaα1…aαn exp×ð1
2

P
α;βDαβa

†
αa

†
βÞjOi. Once we expand the exponential as

the usual power series, we observe that the only non-
vanishing contribution comes from the term which contains
the same number of creation operators a† as the number of
annihilation operators a on their left. It implies in particular
that the matrix element vanishes for n odd. So with n ¼ 2k,
we get

Mfαgn ¼ Mfαg2k ¼
1

2kk!
hOjaα1…aα2k


X
α;β
Dαβa

†
αa

†
β

�
kjOi

¼ 1

2kk!

X
β1;…;β2k

Dβ1β2…Dβ2k−1β2k

× hOjaα1…aα2ka
†
β1
…a†β2k jOi; ð38Þ

where we have factorized the Dαβ since they are real
numbers. The remaining matrix element can be computed
straightforwardly from the commutation rules of the
bosonic operators (½aα; a†β� ¼ δαβ and zero otherwise):

hOjaα1…aα2ka
†
β1
…a†β2k jOi ¼ hOjOi

X
π∈S2k

δβ1απð1Þ…δβ2kαπð2kÞ

ð39Þ
where π is a permutation of the symmetric group S2k. Once
(39) is introduced into (38), each delta symbol selects one
term of each sum over the modes βi and thus

Mfαg2k ¼ hOjOi 1

2kk!

X
π∈S2k

Yk
i

Dαπð2i−1Þαπð2iÞ : ð40Þ

The initial expression (37) actually involves jMfαg2k j2.
As D is a real matrix, it reduces to take the square of
Eq. (40). As usual, the square of a sum can be written as a
double sum and we find

F ¼ jhOjOij2
Xþ∞

k¼0

1

ð2kÞ!ðk!Þ222k

×
X
fαg2k

X
π;σ∈S2k

Yk
i¼1

Dαπð2i−1Þαπð2iÞDασð2i−1Þασð2iÞ : ð41Þ

Thanks to the summation over fαg2k, we can relabel the
dummy indices in the previous equation as απðiÞ → αi and
ασðiÞ → απ−1ðσðiÞÞ. It allows us to factorize the productQ

k
i¼1Dα2i−1α2i in front of the summation over π and σ

and then to use the identity

X
π;σ∈S2k

Yk
i¼1

Dαπ−1ðσð2i−1ÞÞαπ−1ðσð2iÞÞ
¼ ð2kÞ!

X
λ∈S2k

Yk
i¼1

Dαλð2i−1Þαλð2iÞ :

ð42Þ

This equality holds because for each one of the ð2kÞ!
permutations π, the sum over σ is always the same up to the

7Note that we dropped the constant C from X τ since it cancels
out in the ratio (36).
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order of the terms. The reason behind this statement comes
from the group property of S2k: when π is fixed and σ runs
over all the elements of the symmetric group, π−1∘σ covers
the whole group as well. So, we have reduced the
expression to a single sum over the permutations and
moreover the two factors ð2kÞ! cancel out:

F ¼ jhOjOij2
X∞
k¼0

1

ðk!Þ222k
X
fαg2k

X
λ∈S2k

Yk
i¼1

Dα2i−1α2iDαλð2i−1Þαλð2iÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≔Ak

:

ð43Þ
To understand how to further simplify this expression, it

is worth writing the first terms Ak explicitly. Since the
matrix D is symmetric, the summation over the modes
α1; α2;… gives the trace of an even power of the matrix D,
as for instanceX
α1;α2

Dα1α2Dα1α2 ¼
X
α1;α2

Dα1α2Dα2α1 ¼
X
α1

ðD2Þα1α1 ¼ TrðD2Þ:

ð44Þ
So a straightforward computation gives us the first four
terms:

A0 ¼ 1;

A1 ¼
1

2
TrðD2Þ;

A2 ¼
1

8
TrðD2Þ2 þ 1

4
TrðD4Þ;

A3 ¼
1

48
TrðD2Þ3 þ 1

8
TrðD2ÞTrðD4Þ þ 1

6
TrðD6Þ: ð45Þ

It is clear from both (43) and (45) that each term Ak is
a sum of products of the following form:
TrðD2Þj1TrðD4Þj2…TrðD2kÞjk , where the integers ji satisfy
j1 þ 2j2 þ � � � þ kjk ¼ k. Such a set fjigk is called a
partition of k. Thus, Ak can be written as a sum over all
the partitions of k as

Ak ¼
X
fjigk

Cfjigk
ðk!Þ222k

Yk
i¼1

TrðD2iÞji ; ð46Þ

where each coefficient Cfjigk counts the number of permu-
tations λ ∈ S2k in (43) which lead to the partition fjigk. In
particular, they satisfy

P
fjigkCfjigk ¼ ð2kÞ!. According to a

combinatorial argument given in Appendix A, we find an
explicit formula for them:

Cfjigk ¼
ðk!Þ222kQ
k
i¼1 ji!ð2iÞji

: ð47Þ

This result significantly simplifies Ak and F . Indeed, if we
insert it in (46) and define for convenience the variables

ai≔TrðD2iÞi!=ð2iÞ, we find that Ak actually corresponds to
a complete Bell polynomial Bkða1;…; akÞ [46]:

Ak ¼
X
fjigk

Yk
i¼1

1

ji!

�
ai
i!

�
ji ¼ 1

k!
Bkða1; a2;…; akÞ: ð48Þ

It is a well-known fact in combinatorics that these poly-
nomials give an exponential formula for any formal series
a1xþ � � � þ an

n! x
n þ � � � [47]:

Xþ∞

k¼0

Bkða1;…; akÞ
k!

xk ¼ exp

�Xþ∞

k¼1

ak
k!

xk
�
: ð49Þ

If we set x ¼ 1, the left-hand side of this equation is exactly
the sum over the terms Ak. So it is now straightforward to
conclude that F is given by the following expressions

F ¼ jhOjOij2 exp
�X∞

k¼1

TrðD2kÞ
2k

�
;

¼ jhOjOij2 exp
�
−
1

2
Tr ln ð1 −D2Þ

�
;

¼ jhOjOij2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Detð1 −D2Þ

p : ð50Þ

From this result, we can now derive a convenient

expression for the backreaction factor F ð0Þ
F ð−∞Þ in

Eq. (36). Since Dðτ ¼ −∞Þ ¼ 0 and hOτ¼−∞jOτ¼−∞i ¼
hOτjW†

τWτjOτi ¼ hOτjOτi, we obtain the modified decay
rate as follows:

ΓBa

V
¼ e−SBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Detð1 −D2
τ¼0Þ

p ¼ e−SB−
1
2
Tr ln ð1−D2

τ¼0
Þ: ð51Þ

C. Interpretation of the backreaction factor

Without considering any particular model, Eq. (51) gives
interesting information on the effect of particle production
during tunneling. The first remark is to realize that our
derivation has been formal and that we should pay attention
to potential divergences. As it was already the case for the
number of particles (18), we observe again a problematic
behavior when 1 −D2 has a zero eigenvalue. As already
explained, this has nothing to do with the usual UV
divergence and this problem should be treated on a case-
by-case basis. More interestingly, we can show that the
backreaction factor is UV finite. The reason is clear if we
look at the first line of Eq. (50). Indeed, we already showed
in Eq. (29) that the first term TrD2 is finite. It is then
straightforward to extrapolate the argument to each follow-
ing term, TrðD2kÞ for k ¼ 2; 3;…, since they will converge
faster and faster. We conclude, in contrast with one-loop
quantum corrections, that the backreaction factor does not
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require any renormalization technique in order to be
computed.
The second remark is related to the weak particle

production limit. As we explained in Sec. II C, the total
number of created particles is given in this approximation
by N ≈ TrD2 since D is small. For the same reason, the
terms TrðD2kÞ with k > 2 appearing in Eqs. (50) and (51)
are negligible in front of the dominant term TrD2. It means
that in this limit, the modified decay rate becomes
ΓBa
V ≈ e−SBþ1

2
N . In other words, we see that the backreaction

is directly given by one half of the total number of produced
particles. This is a useful result if we are interested in an
approximated value of the backreaction, since its evaluation
does not require us to perform any computation in addition
to Rubakov’s prescription to find N.
The third observation of interest is that the backreaction

of scalar particle production enhances the semiclassical
decay probability in this given framework. Looking at
Eq. (51) or at the approximate formula we just discussed,
ΓBa
V ≈ e−SBþ1

2
N , we observe that the backreaction contribu-

tion is positive compared to the semiclassical (−SB)
contribution. At first sight, this result might seem surpris-
ing. During tunneling, the field σ transfers some amount of
energy to the environment ϕ which consequently exhibits a
spectrum of particles. We may have expected that this
dissipation from the system to the surrounding bath slows
down the decay process. However, the created particles are
fluctuations of the field ϕ which in turn reacts on σ. We are
actually facing a situation which has some similarities with
the fluctuation-dissipation relation in statistical physics
[48]. Both the system and the environment interact with
each other in a nontrivial way and eventually Eq. (51) tells
us that the tunneling process is enhanced in this particular
case. This kind of behavior has already been discussed in a
variety of situations. The investigation of the impact of the
environment on the tunneling of a quantum mechanical
particle was initiated by Caldeira and Leggett in [49]. By
considering a dissipative interaction with a bath of har-
monic oscillators, they derived a friction term suppressing
the decay rate. On the other hand, [50,51] subsequently
described systems for which the impact of the environment
results in an enhancement of the tunneling probability of
the quantum particle. More closely related to our case,
[52,53] also reported an enhanced decay rate for a quantum
field interacting with some external degrees of freedom.
Our next objective is to quantitatively estimate the

contribution of the backreaction in comparison to the
semiclassical decay exponent SB. This requires us to
explicitly evaluate the formula (51) and thus to consider
some specific models.

IV. TOY MODEL POTENTIAL

In order to illustrate the mechanism of particle produc-
tion and the related backreaction, we consider the following
tractable potential:

VðσÞ ¼ λ

8
ðσ2 − v2Þ2 − ϵ

2v
ðσ þ vÞ; ð52Þ

where λ, v and ϵ are three parameters with dimension
½λ� ¼ E0, ½v� ¼ E1 and ½ϵ� ¼ E4. This model is widely used
in the literature since the bounce solution can be computed
analytically in the limit of small ϵ. In particular, Coleman
[2] introduced it to show how to compute the semiclassical
decay rate SB and Rubakov [36] used it to illustrate its
prescription of particle production. Our aim is now to
extend these investigations by estimating the backreaction
of the created particles.
As already discussed in Sec. II A, we can focus on two

different types of decay, namely the nucleation of an Oð4Þ
bubble or a homogeneous process in a finite volume V. We
shall consider both of these cases in the approximation that
the energy difference between the two vacua of the
potential VðσÞ is much smaller than the height of the
barrier. It is not difficult to show that it corresponds to a
small value of ϵ. Indeed, in that case, the vacua are
approximately located at σT=F ≈ �v, the energy difference
becomesΔV ¼ jVðσFÞ − VðσTÞj ≈ ϵ and the barrier height
is given by VB ≈ Vð0Þ ≈ 1

8
λv4. As expected, the require-

ment ΔV ≪ VB is fulfilled for

ϵ ≪
1

8
λv4: ð53Þ

We now compute the semiclassical decay exponent SB in
the two cases of interest:
(1) Thin-wall (TW) bounce

Let us focus first on the bubble nucleation under
the condition (53). The bounce satisfying Eq. (5) is
well approximated by the kink

σðρÞ ¼ v tanh

�
1

2
v

ffiffiffi
λ

p
ðR − ρÞ

�
; ð54Þ

where R is the radius of the bubble at the nucleation
time τ ¼ 0. The value of this parameter which
minimizes the action (6) is given by

R⋆ ¼ 2
ffiffiffi
λ

p
v3

ϵ
: ð55Þ

The semiclassical decay exponent is then computed
by evaluating the action (6) along the solution (54)
with this value of R⋆. This gives

SB;TW ¼ 8

3
π2

λ2v12

ϵ3
: ð56Þ

We now understand why this solution is called a
thin-wall bubble. Under the approximation of small
ϵ, its radius (55) is large while the transition wall
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between the false and true vacua is thin because of
the tanh shape of Eq. (54).

(2) Homogeneous bounce
We consider a spatially homogeneous solution

σBðτÞ of Eq. (3) in a sphere of radius RH. For a small
ϵ, the result is again the kink:

σðτÞ ¼ v tanh

�
1

2
v

ffiffiffi
λ

p
τ þ C

�
: ð57Þ

The constant C is chosen in order to satisfy the
condition that the field emerges under the barrier
at τ ¼ 0. Since the escape point is given by

σesc ¼ v − 1
v

ffiffiffiffi
2ϵ
λ

q
þOðϵÞ, we have

tanhðCÞ ≈ 1 −
1

v2

ffiffiffiffiffi
2ϵ

λ

r
: ð58Þ

We can evaluate the Euclidean action (4) along the
bounce taking into account the above value of C and
the volume V ¼ 4

3
πR3

H.
8 In the limit of vanishing ϵ,

we get

SB;hom ¼ 16

9
πR3

H

ffiffiffi
λ

p
v3: ð59Þ

Looking at the tanh form of the bounce, we observe
that the field is nearly constant in Euclidean time
until it suddenly endures a rapid transition from its
false vacuum to the escape point beyond the barrier.
This change occurs around the moment ~τ < 0
corresponding to the center of the kink:

σð~τÞ ¼ 0 ⇒ ~τ ¼ −
2C

v
ffiffiffi
λ

p : ð60Þ

Now that we have explicitly computed the semiclassical
exponents in both cases, we rewrite them in terms of
dimensionless parameters. First we introduce α ¼ λv4

ϵ such
that the approximation (53) of small ϵ reduces to α ≫ 8.
Another useful quantity is the ratio β ¼ RH

R⋆ between the size
of the homogeneous bounce and the radius of the thin-wall
bubble. It is straightforward to see that the semiclassical
decay exponents reduce to

SB;TW ¼ 8π2

3

α3

λ
; SB;hom ¼ 128π

9

α3β3

λ
: ð61Þ

From this parametrization, we can give a few remarks.
First, the thin-wall exponent is generally large and leads to

a highly suppressed decay probability. Indeed, for the
minimal acceptable value α ∼ 10 and for λ of order one,
SB;TW is already of order four. On the other hand, there is
more freedom for the homogenous factor SB;hom, because of
the parameter β entering in it. When β ¼ 1, namely when
the bounces are of the same size, we observe that the two
types of decay have a similar probability to occur. Since the
radius R⋆ of the thin-wall bubble is very large, it is
reasonable to also consider a homogeneous tunneling
taking place in a smaller volume. In that case, the decay
probability would be more significant. For instance, when
α ¼ 10, β ¼ 0.1 and λ ¼ 1, we find SB;hom ≈ 45 and
e−SB;hom ≈ 10−20. We shall make use of this discussion to
investigate how the backreaction of particle production
modifies these results.

A. Backreaction during the homogeneous bounce

We consider the production of ϕ particles during the
homogeneous tunneling process. As described in Sec. II B,
the key parameter to introduce is the coupling m2ðσÞ
between the two fields σ and ϕ. Since the homogeneous
bounce (57) is almost a step function, we approximate this
coupling in the following way:

m2ðσÞ ¼ m2ðτÞ ¼
	
m2

− for τ < ~τ

m2þ for τ > ~τ
; ð62Þ

where m� are the masses of the ϕ particles in the true and
false vacua, respectively. We remind that the transition
occurs at the instant ~τ given by Eq. (60) and that ~τ < 0.
In this model, Rubakov’s prescription to compute the

matrix D can be performed easily. According to the
spherical background geometry, the indices of this matrix
are given by the discrete radial momentum k ¼ n

RH

(n ¼ 0; 1; 2;…) and the usual angular momentum ðl; mÞ
(0 ≤ l ≤ n, −l ≤ m ≤ l). After a computation detailed in
Appendix B, similar to the one performed by Rubakov
([36], Sec. 4), we note that D is diagonal and does not
depend on ðl; mÞ. Omitting these indices, the diagonal part
of this matrix reads

Dnnðτ ¼ 0Þ ¼ ωþ − ω−

ωþ þ ω−
e2ωþ ~τ; ð63Þ

where

ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

�
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

R2
H
þm2

�

s
: ð64Þ

It is worth directly rewriting this expression in terms of
dimensionless quantities. In addition to the two parameters
α, β already introduced above, we define δ� ¼ RHm�.
From the previous equation forDnn and expression (60) for
~τ, it is straightforward to show that

8Note that the solution (57) only covers one half of the bounce
(τ < 0) and that σð−τÞ gives the τ > 0 part.
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Dnn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ δ2þ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ δ2−

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ δ2þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ δ2−

p e−2
ffiffiffiffiffiffiffiffi
n2þδ2þ

p
~αβ ; ð65Þ

where ~α≔ α
arctanhð1−

ffiffi
2
α

p
Þ.

In this way, the backreaction is entirely determined by
the four parameters (α, β, δ�). We can now compute the
correction factor entering in Eq. (51). Since D is diagonal,
the logarithm of 1 −D2 is just the logarithm of each
diagonal element and we get

1

2
Tr ln ð1 −D2Þ ¼ 1

2

Xþ∞

n¼0

Xn
l¼0

Xl

m¼−l
ln ð1 −D2

nnÞ

¼ 1

2

Xþ∞

n¼0

ðnþ 1Þ2 ln ð1 −D2
nnÞ: ð66Þ

For consistency with our discussion in Sec. III C, we
explicitly check that this series is convergent. Indeed, its
asymptotic expansion is given by

1

2
ðnþ 1Þ2 ln ð1 −D2

nnÞ

⟶
n→∞

�
−

1

32n2
ðδ2þ − δ2−Þ2 þO

�
1

n3

��
e−4

n
~αβ; ð67Þ

meaning that the backreaction is exponentially suppressed
at high momentum. It is also clear that the dominant part in
Eq. (66) comes from the n ¼ 0 term and so the computation
of this leading contribution will already tell us if the
backreaction is negligible or significant compared to
SB;hom. For simplicity, we restrict this analysis to two
limiting cases, namely a small and a large mass difference.

(i) Small mass difference: Δδ2≔δ2þ − δ2− ≪ δ2þ. In this
limit, the n ¼ 0 term in the series (66) becomes

1

2
ln ð1−D2

00Þ ¼ −
1

32

�
Δδ2

δ2þ

�
2

e−4
δþ
~αβ þO

��
Δδ2

δ2þ

�
3
�
;

ð68Þ

and we directly conclude that this contribution is
small. Indeed, the exponential is bounded by 1 and
Δδ2
δ2þ

≪ 1 because of the small mass difference
assumption. Thus we conclude that the backreaction
is negligible in front of values of SB;hom which are
typically bigger than order one.

(ii) Large mass difference: δ− ≪ δþ. Under this
assumption, we obtain

1

2
ln ð1 −D2

00Þ ¼
1

2
ln

�
1 − e−4

δþ
~αβ

�
þO

�
δ−
δþ

�
;

ð69Þ
where the leading term corresponds to directly take
δ− ¼ 0. In contrast with the previous case, this

contribution can be arbitrarily large when δþ
~αβ be-

comes small. Thus we should investigate if the
backreaction could become of the order of SB;hom
for some reasonable values of these parameters. It
turns out that the expression (69) grows very slowly
because of the logarithm. Hence the backreaction
would unlikely be significant in front of large values
of SB;hom. For instance for ðα; βÞ ¼ ð10; 1Þ, we saw
that SB;hom ¼ Oð104Þ and so δþ should be as small
as many thousand orders of magnitude for the
backreaction to be non-negligible.
However the situation is more interesting for

smaller decay exponents. When ðα; βÞ ¼ ð10; 0.1Þ
we found SB;hom ≈ 45 and in this case the correction
(69) becomes significant for acceptable values of δþ.
Explicitly, we have

−
1

2
ln ð1 −D2

00Þjðα;β;δþÞ¼ð10;0.1;f10−1;10−4;10−10gÞ

≈ f0.8; 4.1; 11.2g: ð70Þ

In terms of the decay probability, this corresponds
to corrections respectively of order e0.8 ¼ Oð1Þ,
e4.1 ¼ Oð102Þ and e11.2 ¼ Oð105Þ, in front of
e−SB ≈ 10−20. It confirms that in this case the
backreaction enhances the decay rate by some orders
of magnitude.

Although we have not investigated the entire range of
parameters of this toy model, the two above cases already
give us useful information. The first remark is that large
semiclassical decay exponents would generally be insensi-
tive to the production of particles. However, we were also
able to exhibit a choice of parameters leading to weaker
values of SB;hom which are significantly modified by the
particle backreaction.

B. Backreaction during the thin-wall bounce

Wewant to perform the same kind of analysis as above but
during the nucleation process of the thin-wall bubble. Since
the bounce solution (54) is again almost a step function, the
system is also well described by the two quantities mþ, m−
corresponding to the masses of the ϕ particles in the
background of the true and false vacua, respectively.
In contrast to the homogeneous case, the matrix D is not

diagonal. A tractable way to compute it is the use of the
weak particle production limit described in Sec. II C. Under
this approximation, we saw in Sec. III C that the back-
reaction correction is given by one half of the total number
of created particles as 1

2
TrD2. Fortunately, Rubakov ([36],

Sec. 5) already computed this quantity since he was
interested in the number of created particles in this model.
We present some details of his calculation in Appendix C
for consistency and directly give his results here. He proved
that the main contribution to the number of produced
particles comes from the case m− ≪ ðR⋆Þ−1 ≪ mþ and
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from particles with radial momentum m− ≪ p ≪ mþ and
angular momentum l ¼ m ¼ 0. In these conditions, he
found that N ¼ TrD2 ¼ Oð10−2Þ. It means that the number
of particle is weak (at the best roughly one particle
produced per 100 bubbles) whatever the values of the
parameters.
Remembering that SB;TW in Eq. (61) is at least of order

Oð104Þ, it is clear that the backreaction factor 1
2
TrD2 is

completely negligible.

V. CONCLUSION AND OUTLOOK

This paper offers a new approach to compute the
backreaction of particle production on the decay rate of
a false vacuum. We explicitly derived a formula which
corrects the usual semiclassical decay probability, in the
case of a tunneling field coupled to a scalar environment in
flat spacetime. Starting from Rubakov’s formalism describ-
ing the spectrum of created particles, the main idea of this
work was to integrate out this external bath of particles
using the reduced density matrix prescription.
As a first consequence, we found that the correction

factor is ultraviolet finite. Hence its computation does not
require any renormalization techniques in contrast with the
calculation of one-loop quantum corrections. We also
showed that scalar particle production enhances the decay
probability in the context of this formalism. It may be
interpreted as the sign that the dissipation of the tunneling
field into the environment is compensated by the external
fluctuations. Another important observation is the fact that
the backreaction is given by one half of the total number of
created particles, in the approximation that they are weakly
produced. In other words, Rubakov’s prescription gives
directly both the spectrum of particles and their back-
reaction in this limit.
These general remarks would not be of particular

importance if the backreaction were always negligible
compared to the semiclassical decay rate. That is why
we explicitly computed this effect for a toy model potential.
We found a negligible impact in the case of the thin-wall
bubble nucleation. However, when the field decays homo-
geneously in a finite volume, we computed a significant
correction for a reasonable choice of parameters. Therefore,
it would be interesting to apply this formalism to more
interesting systems, especially to the Higgs potential of the
Standard Model. Of course, a complete analysis of the SM
requires extending this formalism to subjects that we
should investigate in a subsequent work, including spinor
fields, vector fields and eventually gravitational effects.
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APPENDIX A: COMBINATORIAL ARGUMENT

We explicitly derive Eq. (47) for the coefficients Cfjigk
entering into the derivation of the backreaction factor. We
remind that they are defined in order to satisfy the following
equation for a fixed integer k:

X
fαg2k

X
λ∈S2k

Yk
i¼1

Dα2i−1α2iDαλð2i−1Þαλð2iÞ ¼
X
fjigk

Cfjigk
Yk
i¼1

TrðD2iÞji :

ðA1Þ
The left-hand side of this expression becomes clearer if we
introduce a diagrammatic representation. For each Dα2i−1α2i ,
we draw a horizontal solid segment with the two end points
α2i−1 and α2i. Then we horizontally align all these factors to
picture the product over i. We do exactly the same thing for
the Dαλð2i−1Þαλð2iÞ but we align them below the first product.
The last step is to connect with a dashed line each end point
αi with the corresponding end point αλðjÞ where λðjÞ ¼ i.
There is such a diagram for each permutation λ ∈ S2k and
we give one example in Fig. 1.
When we take the sum over fαg2k, each connected block

of 2i solid segments gives a factor of the form TrðD2iÞ. It
explains the form of the right-hand size of Eq. (A1). Indeed,
each diagram can be decomposed in j1 blocks of two solid
lines, j2 blocks of four solid lines and so on where the ji
form a partition of k as explained in the main text. Of
course, it is clear that many permutations give the same
partition and this is actually what we want to compute. Let
us consider a given partition fjigk. To compute Cfjigk , we
proceed in two steps. First, we forget the internal structure
of each block in the diagrams described above and we
compute the number of ways, say Afjigk, in which we can
arrange these blocks under the constraint given by the
partition. In the second step, we compute the number of
internal structures, say Bfjigk, corresponding to each
arrangement.

FIG. 1. Diagram corresponding to the case k ¼ 3 and the
permutation (1)(2)(3)(465). In terms of partition, it corresponds to
j1 ¼ 1, j2 ¼ 1, j3 ¼ 0. The sum over α1;…α6 gives the result
TrðD2Þj1TrðD4Þj2TrðD6Þj3 .
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(i) Expression for Afjigk
Since there are k segments on each row of each

diagram, we can arrange them in ðk!Þ2 different ways.
We still have to divide by the correct overcounting
factor. First, a permutation between the blocks of same
size does not change the structure, sowe can divide byQ

k
i¼1 ji!. Second, consider a block of size (2i). Since

we do not care about its internal structure, we can
permute the segments of the upper row and the
segments of the lower row independently. It gives a
factor ði!Þ2 for eachblock and so the final expression is

Afjigk ¼
ðk!Þ2Q

k
i¼1 ji!ði!Þ2ji

: ðA2Þ

(ii) Expression for Bfjigk
Consider again a block of size (2i). We want to

find the number of ways to connect each upper end
point to a lower end point in order to keep the block
in a single connected piece. We proceed as follows.
The first upper point can be linked to one of the 2i
lower points. Then the lower point lying on the same
segment can be connected to only 2i − 2 upper
points in order not to close the cycle. We again
have 2i − 2 possibilities for the next upper point and
so on and so forth. So the total contribution of the
block is ð2iÞð2i − 2Þð2i − 2Þð2i − 4Þð2i − 4Þ…1 ¼
ð2iÞ!!ð2i − 2Þ!!. The double factorial of an even
integer can be simplified as ð2iÞ!! ¼ 2ii!. So the
total contribution from all the blocks becomes

Bfjigk ¼
Yk
i¼1

ðð2iÞ!!ð2i − 2Þ!!Þji ¼
Yk
i¼1

�
22iði!Þ2

2i

�
ji

¼ 22k
Yk
i¼1

ði!Þ2ji
ð2iÞji ; ðA3Þ

where we have used
Q

k
i¼1 2

2iji ¼ 22k since the ji are
a partition of k.

It is clear that the second expression is the same for
each one of the Afjigk arrangements of the blocks. It means
that the final coefficient is just the product of Eq. (A2) and
Eq. (A3):

Cfjigk ¼
ðk!Þ222kQ
k
i¼1 ji!ð2iÞji

: ðA4Þ

APPENDIX B: D MATRIX FOR THE
HOMOGENEOUS BOUNCE

We explicitly derive Eq. (63) for the matrix D during the
homogeneous decay, according to Rubakov’s prescription.
In that case, Eq. (19) for the wave functions becomes

½∂2
i þ ðωα

�Þ2 −m2
��ξα� ¼ 0; ðB1Þ

where ξα− (resp. ξαþ) corresponds to τ < ~τ (resp. τ > ~τ).
Taking into account the spherical background geometry of
the process, the solutions of this equation are given by

ξnlm� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω�R3

H

p Ynlm

�
x
RH

�
n ¼ 0; 1;…

0 ≤ l ≤ n − l ≤ m ≤ l; ðB2Þ
where Ynlm are the real harmonics on the unit 3-sphere and
the prefactor ensures the normalization condition (20). The
momentum of the particle is discrete and given by k ¼ n

RH
which implies

ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

�
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

R2
H
þm2

�

s
: ðB3Þ

Thanks to the homogeneity of the bounce, the functions
hαðτ; xÞ can be written as hnlmðτ;xÞ ¼ hnðτÞYnlmð x

RH
Þ

where hnðτÞ satisfies�
−

∂2

∂τ2 þm2ðτÞ þ n2

R2
H

�
hnðτÞ ¼ 0: ðB4Þ

As m2ðτÞ is constant in the two regions τ < ~τ and τ > ~τ, a
solution exponentially decreasing at τ → −∞ is simply
given by

hnðτÞ ¼
	
eω−τ for τ < ~τ

Aneωþτ þ Bne−ωþτ for τ > ~τ
; ðB5Þ

where the two coefficients An, Bn are determined from the
continuity conditions at ~τ:

An ¼
ωþ þ ω−

2ωþ
e−ðωþ−ω−Þ~τ; Bn ¼

ωþ − ω−

2ωþ
eðωþþω−Þ~τ:

ðB6Þ

The two matrices V and Z defined by (23) can now easily
be computed at τ > ~τ:

Vþ
nn0;ll0;mm0 ðτÞ ¼ δnn0;ll0;mm0 ðgnðτÞωþ − ∂τgnðτÞÞ

¼ 2Bne−ωþτδnn0;ll0;mm0 ;

Zþ
nn0;ll0;mm0 ðτÞ ¼ δnn0;ll0;mm0 ðgnðτÞωþ þ ∂τgnðτÞÞ

¼ 2Aneωþτδnn0;ll0;mm0 : ðB7Þ

As expected, they are diagonal and do not depend on the
angular momentum ðl; mÞ. Omitting these indices, the
diagonal elements of D at τ > ~τ are

DnnðτÞ ¼
Bn

An
e−2ωþτ ⇒ Dnnð0Þ ¼

Bn

An
¼ ωþ − ω−

ωþ þ ω−
e2ωþ ~τ:

ðB8Þ
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APPENDIX C: D MATRIX FOR THE
THIN-WALL BOUNCE

We briefly show how the matrix D and the number of
created particles are computed in the case of the thin-wall
bounce. We use the weak particle production limit
described in Sec. II C and follow the derivation performed
by Rubakov ([36], Sec. 5). As we consider the nucleation of
a symmetric bubble, we can work in spherical coordinates
and parametrized the wave functions ξατ as

ξplmτ ðxÞ ¼ 1

r
ffiffiffiffiffiffiffiffiffiffi
ωplm
τ

p ηplmτ ðrÞYlm

�
x
r

�
; ðC1Þ

where Ylm are the real spherical harmonics. The label α
corresponds now to the radial momentum p of the particle
and the angular momentum ðl; mÞ. Equation (19) and
normalization (20) for ξατ become for ηplmτ :�

−
d2

dr2
þ lðlþ 1Þ

r2
þm2ðr;τÞ

�
ηplmτ ¼ ðωplm

τ Þ2ηplmτ ; ðC2Þ

Z þ∞

0

drηplmτ ηp
0l0m0

τ ¼ δðp − p0Þδll0δmm0 : ðC3Þ

With this parametrization and omitting the indices l, m,
Eq. (26) for D becomes

Dpp0 ðτ ¼ 0Þ ¼
Z

0

−∞
dτeWpðτÞþWp0 ðτÞ Dðp; p0; τÞ

ωp
τ þ ωp0

τ

ðC4Þ

where

Dðp; p0; τÞ ¼
Z þ∞

0

dr
ηpτffiffiffiffiffiffiffiffi
2ωp

τ

p ηp
0

τffiffiffiffiffiffiffiffiffi
2ωp0

τ

q ∂m2

∂τ and

WpðτÞ ¼
Z

τ

0

dτ0ωp
τ0 : ðC5Þ

We now specify the form of the parameter m2 for the
thin-wall bounce configuration. As already explained, this

parameter reduces to a step function and we can para-
metrize it as

m2ðr;τÞ¼
	
m2

− if τ<−R⋆

m2þþðm2
−−m2þÞΘðr−r⋆ðτÞÞ if −R⋆≤ τ≤0

;

ðC6Þ

where r⋆ðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R⋆2 − τ2

p
is the size of the Euclidean

growing bubble and Θ is the Heaviside step function. It
directly gives us the time derivative of the mass coupling
entering in Eq. (C5):

∂m2

∂τ ¼ −
τ

r⋆
ðm2þ −m2

−Þδðr − r⋆Þ; ðC7Þ

meaning that the particles are produced at the wall of the
bubble. According to the form of m2, the solutions ηpτ of
Eq. (C2) at each instant τ admit an analytical expression in
terms of Bessel functions. Their integration in Eq. (C5) can
only be performed analytically under some simplifications.
For the case which provides the dominant contribution to
the number of particles, namely when m− ≪ ðR⋆Þ−1 ≪
mþ, m− ≪ p ≪ mþ and l ¼ 0, it is possible to show that

Dl¼0ðp; p0; τÞ ¼ −
τ

πr⋆
ðpp0Þ1=2; ðC8Þ

and thus

Nl¼0 ¼
1

π2

Z þ∞

0

dpdp0
Z

0

−R⋆
dτdτ0eðpþp0Þðτþτ0Þ

×
pp0

ðpþ p0Þ2
ττ0

r⋆ðτÞr⋆ðτ0Þ
¼ 1

12π2
¼ Oð10−2Þ ðC9Þ

which is the result quoted in Sec. IV B. For more details,
like the treatment of the other cases or the explicit form of
the functions ηpτ , we directly refer to [36].
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