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We argue, at a very basic effective field theory level, that higher dimension operators in scalar theories that
break symmetries at scales close to their ultraviolet completion cutoff include terms that favor the breaking of
translation (Lorentz) invariance, potentially resulting in striped, checkerboard or general crystal-like phases.
Such descriptions can be thought of as the effective low energy description of QCD-like gauge theories near
their strong coupling scale where terms involving higher dimension operators are generated. Our low energy
theory consists of scalar fields describing operators such as q̄q and q̄Fð2nÞq. Such scalars can have kinetic
mixing terms that generate effective momentum dependent contributions to the mass matrix. We show that
these can destabilize the translationally invariant vacuum. It is possible that in some real gauge theory such
operators could become sufficiently dominant to realize such phases, and it would be interesting to look for
them in lattice simulations. We present a holographic model of the same phenomena which includes
renormalization group running. A key phenomenological motive to look at such states is recent work that
shows that the nonlinear response in R2 gravity to such short-range fluctuations can mimic a cosmological
constant. Intriguingly in a cosmology with such a Starobinsky inflation term, to generate the observed value
of the present day acceleration would require stripes at the electroweak scale. Unfortunately, low energy
phenomenological constraints on Lorentz violation in the electron-photon system appear to strongly rule out
any such possibility outside of a disconnected dark sector.

DOI: 10.1103/PhysRevD.93.025019

I. INTRODUCTION

Translational invariance is known to be spontaneously
broken in a number of superconducting cuprate systems
[1]. They display phases where the condensate varies
spatially as sin kx manifesting as visible stripes in some
measurements. The existence of such translationally non-
invariant phases has also been speculated to exist in finite
density gauge theory [2–4]. There has been some work
recently on modelling such phases in holographic descrip-
tions of superconductors and finite density QCD [5–9].
Two dimensional checkerboard patterns are also possible
[10]. The chemical potential in these systems already
breaks Lorentz invariance and provides a natural Lorentz
frame for stripes to form. Here though we wish to ask
whether spontaneous breaking of Lorentz invariance, in this
pattern, can occur in scalar or gauge theories at zero
chemical potential (see Ref. [11] for a well-known related
discussion of Lorentz violation in string theory).
A preference for spatially dependent vacuum expectation

values (vevs) for operators essentially requires that the
relevant operators have negative kinetic terms in the
unbroken vacuum which manifest in the effective potential
as a negative k2 dependent contribution to the mass term.

Normally this is associated with ghostlike behavior and
seems forbidden at weak coupling. We will argue though
that it can happen in a theory where many higher dimension
operators are present and are sufficiently large that when
symmetry breaking occurs they generate effective terms
that mimic negative kinetic terms. The true vacuum will
then be characterized by Lorentz breaking vevs, and
fluctuations will then be ghost free in the true vacuum.
Again in principle higher dimension operators evaluated in
the striped vacuum can correct the signs and leave a stable
theory. One could therefore imagine a Higgs-like theory
with condensation occurring close to its UV cutoff
scale displaying dynamical Lorentz invariance breaking.
A natural environment for such an effective theory is the
strong coupling regime of a gauge theory. At the scale of
strong coupling many higher dimension operators become
important, and simultaneously chiral condensation and
condensation of TrF2 occur. It at least seems possible that
within the space of gauge theories, Lorentz symmetry
breaking dynamics might exist. Our effective field theory
discussions will not prove that any particular theory will
behave in this way, but it is a novel possibility that should
be borne in mind in lattice simulations of models beyond
the Standard Model. Alternatively, in gauge theories with-
out translational symmetry breaking, one can reinterpret
our results as bounds on the sizes of certain higher
dimension operators in the effective theory.
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We will also present a holographic model (in the spirit
of Refs. [12,13] and more recently Refs. [14,15]) of the
instability. We describe the operators TrF2, q̄q and q̄F2q
and represent their running anomalous dimensions as
running mass squareds for the appropriate scalars in
anti-de Sitter (AdS) space. The UV of the theory is stable
and has zero operator vevs. As the Brietenlohner Freedman
(BF) bound [16] is violated in the IR, condensation occurs,
and, if suitable (k2 dependent) potentials are chosen, an
instability for Lorentz violating vevs can emerge.
While the possibility of Lorentz violation is intriguing in

itself, we also present a more explicit phenomenological
motivation. It has recently been shown [17] that in R2

gravity short distance fluctuations in the metric can be
converted by the nonlinearities of Einstein’s equations into
an effective long distance cosmological constant. Our
interest in Lorentz violating vacua is partially motivated
by thinking about how to generate such short distance
fluctuations with sufficient power. Intriguingly if one
considers this mechanism in Starobinsky early universe
inflation models where the R2 term is set by the scalaron
scale of M ∼ 1013 GeV, then stripes at the electroweak
scale generate the observed cosmological constant.
Could gauge theories close to the Standard Model

involve Lorentz violation then? The answer is fairly
strongly no. Limits on Lorentz violation [18,19] in the
electron photon system are extremely stringent and con-
strain any coupling of such a system to be associated with
very high scales. Therefore, if stripes are the source of the
observed cosmological constant, then they must be well
hidden in a dark sector.
One might also presume that the spontaneous breaking

of Lorentz symmetry would generate Goldstone poles in
the nonrelativistic propagators of the theory—clearly no
such massless modes exist in the visible Universe. In fact
the number of long-range propagating Goldstone modes
depends on the pattern of symmetry breaking as has been
discussed in Ref. [20]. There are massless modes associated
with each broken direction of translation, but they only
propagate along unbroken directions transverse to the
breaking (this may be familiar to the reader in the case
of D-branes where massless modes result from the dimen-
sional reduction of the ten dimensional gauge field from
the open string sector: they are tied to the D-brane’s
world volume). Thus there will be long-range propagating
Goldstones for striped or checkerboard configurations
where there still exist unbroken directions but not for
cuboid or general crystal-like configurations (where the
second derivative of the potential vanishes only at a lattice
of points and hence resembles an array of D0-branes). We
will not exhibit these Goldstone structures here since we
concentrate on the instability for the formation of stripes
rather than a full model of the final ground state (an
example of such massless phonons in the q̄q scalar was
computed recently at high density in Ref. [21]). Since

phenomenologically the Lorentz breaking sector must be
extremely weakly coupled to the visible sector, the pres-
ence of Goldstones in any case is probably not an issue.
Finally we note that we have considered whether striped

ground states are ruled out in QCD-like gauge theories by
the theorems of Vafa and Witten [22,23]. For example, one
theorem [22] asserts that any state associated with the q̄q
operator must be heavier than the pion; given the pion may
be made massive by a small explicit quark mass, the
breaking of vector symmetries is, for example, forbidden.
This may indeed forbid the appearance of striped and
checkerboard phases in vectorlike gauge theories where
there will be Goldstone modes able to propagate in some
directions but does not clearly prevent cuboid phases where
the Goldstones cannot propagate. (Chiral gauge theories
which have a sign problem are not constrained by the
theorem, so, for example, “moose” [24] with two QCD-like
gauge theories connected by chiral fermions transforming
under each group are examples of escapes from these
theorems although they are untestable on the lattice). A
second theorem [23] proves that parity cannot be sponta-
neously broken in vectorlike theories. Depending on the
form of the translational symmetry breaking and the
placement of the origin, parity is strictly speaking broken
in these cases. However, the theorem does not apply to
these cases because it explicitly assumes that the operators
sensitive to such parity breaking are Lorentz-invariant
operators

R
d4xXðxÞ which are integrated over all space-

time (and thus involve the totally antisymmetric tensor
ϵμναβ). In fact once the operators are integrated over all
space, the parity breaking is no longer visible, since the
modulated phase can effectively be translated and rotated
by a change of the integration coordinate. (The theorem
therefore shows that such modulated phases must be
invariant under parity compensated by translations and
rotations, or more simply—-assuming that charge conju-
gation and CPT are conserved—that T invariance is not
broken).

II. EFFECTIVE HIGGS THEORIES

Let us begin by writing down the simplest possible Higgs
theory with one scalar and to quadratic order to demon-
strate the usual instability

L ¼ ∂μϕ�∂μϕ − VðjϕjÞ; V ¼ −m2jϕj2: ð1Þ

Now if we consider a ground state where the vev of the
scalar has a striped vev in one direction (ϕ ¼ v sin kx), then
there is an effective potential

V ¼ −ðm2 − k2Þjϕj2: ð2Þ
Nonzero k reduces the strength of the potential instability
and is disfavored. We can see that for there to be an
instability that favors stripes we need to reverse the sign of
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the scalar kinetic term. However, we cannot simply flip the
sign on the kinetic term since the theory would become ill
behaved with ghosts.
A scalar theory though is known to suffer from a

hierarchy problem, and the naive expectation is that new
physics will enter at a scale reasonably close to the scalar’s
mass; we will call this somewhat higher scale ΛUV. The
expectation is that at the scale ΛUV higher dimension
operators will generically be present. Such higher dimen-
sion operators can, once symmetry breaking is triggered,
lead to effective kinetic terms that favor translational
symmetry breaking. For example, let us consider including
an additional scalar f. We can imagine a term

ΔL ¼ −
κ0
Λ2
UV

jfj2∂μϕ�∂μϕ: ð3Þ

Were f to condense at some scale and κ0 be large enough,
then the reversal of the kinetic term’s sign is achieved.
Once a striped phase has condensed, other higher

dimension operators can step in to secure the ghost
inducing negative ð∂tϕÞ2 term is not present in the true
vacuum. For example, consider the term

ΔL ¼ κ1
Λ4
UV

j∂μϕj2j∂νϕj2 ð4Þ

evaluated on the symmetry breaking solution (a Lorentz-
invariant term results if the vev occurs twice in one
derivative term, but a spatially preferring term occurs if
the two vevs occur in the different derivative terms). This
term will distinguish the spatial directions in which there
are stripes from the temporal direction, and the coefficient
could be concocted to cure the ghost problem once the
stripy vev had formed.
Of course, in this discussion many other terms might be

present that oppose the effect, or indeed κ0 might be small
or negative. We simply wish to identify terms that could
trigger translational symmetry breaking. Another possible
mechanism is to introduce yet another new scalar, χ, with
the same symmetry properties as the original ϕ. Now
consider the terms

ΔL ¼ j∂μϕj2 þ j∂μχj2 þm2jϕj2 −M2jχj2

þ κ2
Λ2
UV

jfj2∂μϕ�∂μχ: ð5Þ

Were f to get a vev, then an off-diagonal kinetic mixing is
induced for the ϕ; χ pair. The effective k dependent
quadratic potential is then given by

ðϕ; χÞ
 −m2 þ k2 κ2

Λ2
UV
hfi2k2

κ2
Λ2
UV
hfi2k2 M2 þ k2

!�
ϕ

χ

�
: ð6Þ

For small k the negative mass squared eigenvalue becomes

m2
1 ¼ −m2 þ k2 −

1

2

ð κ2
Λ2
UV
hfi2k2Þ2

M2 −m2
: ð7Þ

Again for not unreasonable choices of parameters, this term
could be made to favor translational symmetry breaking.
Of course this is an argument for an instability rather than a
full model of the final vacuum. The potential at large k2

would need to be stabilized by terms with higher powers,
and the dynamically determined value of k may lie close to
ΛUV. The precise form of the vacuum is also dynamically
determined—one could envisage one dimensional stripes,
two dimensional checkerboard patterns or three dimen-
sional cuboid patterns.
Such Lorentz violation would have to dynamically pick a

frame of reference in our Universe; however, it seems likely
that the innate frame of the matter in the Universe that now
gives the frame of the 3 K cosmic microwave background
radiation would be chosen. As the gauge theory cooled and
condensed, the small chemical potential of the Universe
would be the only parameter biasing a specific frame.
Such scalar models with ϕ; χ and f may look baroque. To

argue that this is a sensible arena for discussion, we should
recast this analysis as the effective description of a QCD-like
gauge theory. Consider an SUðNcÞ gauge theory, and
consider a single quenched quark in that theory when the
number of flavorsNf ≪ Nc. We know that the vacuum has a
nonzero value of the quark condensate q̄q which carries a
Uð1ÞA charge of 2 (we neglect the anomaly here). This
operator should be mapped to ϕ. We also know that the
operator TrF2 is nonzero in the vacuum and a singlet under
flavor symmetries. It is the scalar f above. Finally χ could
represent the higher dimension operator of the form q̄F2q
(or possibly those with higher powers ofF); this operator has
the same symmetry properties as q̄q but in the quantum
theory is a distinct operator of which the vev should be
determined by the effective theory. In fact above we assumed
that the χ field does not condense but simply mixes with ϕ.
In such asymptotically free theories, the running coupling

enters a regime of strong coupling at some scale which
should be associated with the cutoff ΛUV of the scalar theory.
At this scale the strong coupling is expected to generate
higher dimension operators including of the form we have
discussed above. The chiral condensate will then form in
QCD quite quickly in renormalization group (RG) running.
These arguments map the dynamics of strongly coupled

gauge theories to the scalar models discussed above and
suggest that translational symmetry breaking is at least
possible in the vacuum. Of course we have in no way
proved the phenomena occurs or is even likely. However,
given the wide range of asymptotically free gauge theories
that can be constructed, it is possible that among them are
some that do concoct their higher dimension operator
couplings to conspire to this end. It would certainly be
interesting to find such a theory on the lattice.

TRANSLATIONAL SYMMETRY BREAKING IN FIELD … PHYSICAL REVIEW D 93, 025019 (2016)

025019-3



In the next section, we will construct a holographic
model of a gauge theory’s dynamics that reproduces this
line of argument and more carefully takes into account the
scaling dimensions and RG flow in such a theory.

III. HOLOGRAPHIC MODEL

To demonstrate the effective field theory arguments
above a little more robustly, in this section wewill construct
an AdS/QCD style holographic model [12–15]. It will show
the possible translational symmetry breaking instability of
a QCD-like gauge theory we discussed above. We assume
there is some SUðNcÞ gauge theory with a small number of
quenched quarks. As usual we place the effective theory in
AdS5

ds2 ¼ dr2

r2
þ r2dx23þ1: ð8Þ

We assume the underlying Yang-Mills theory generates a
vev for the operator TrF2 and represent that by a back-
ground field in an AdS5 space,

f ¼ c
r4
: ð9Þ

Our model will concentrate on the quenched quark sector
rather than the generation of this vev. Although we will
allow the AdS space to extend to r ¼ ∞, such a gravity
description should really only extend to the UV cutoff
where the asymptotically free theory enters strong cou-
pling. Experience teaches us that the models still work well
without a UV cutoff because the dynamics is determined
around the scale of the BF bound violation. For example,
we might expect c≃ ð0.1 − 1ΛUVÞ4.
We now move to the study of the behavior of the q̄q

operator of the theory. Our model is based on the Dynamic
AdS/QCD model of Ref. [15]. We represent q̄q by a field X
with action

S ¼
Z

d4xdρρ3
�
1

r2
jDXj2 þ Δm2

ρ2
jXj2

�
; ð10Þ

r2 ¼ ρ2 þ jXj2. If Δm2 ¼ 0 then the scalar, X, describes a
dimension 3 operator and dimension 1 source as is required
for it to represent q̄q and the quark mass m. That is, in the
UV the solution for the X equation of motion is
jXj ∼mþ q̄q=ρ2. We will work in the chiral limit with
the quark mass zero henceforth. A nonzero Δm2 allows us
to introduce an anomalous dimension for this operator, γ.
If the mass squared of the scalar violates the BF bound of
−4 (Δm2 ¼ −1, γ ¼ 1), then the scalar field X becomes
unstable, and the theory enters a chiral symmetry breaking
phase. We will fix the form of Δm2 using the two loop
perturbative running of the gauge coupling in QCDwithNf

flavors transforming under a representation R. Of course

this is a crude approximation to the running of the
anomalous dimension γ, but it serves as a reasonable
guess. This takes the form

μ
dα
dμ

¼ −b0α2 − b1α3; ð11Þ

where

b0 ¼
1

6π

�
11C2ðGÞ − 4NfC2ðRÞ

dimðRÞ
dimðGÞ

�
; ð12Þ

and

b1 ¼
1

8π2

�
34

3
½C2ðGÞ�2−

�
20

3
C2ðGÞC2ðRÞ þ 4½C2ðRÞ�2

�

× Nf
dimðRÞ
dimðGÞ

�
: ð13Þ

The one loop result for the anomalous dimension of the
quark mass is

γ1ðμ;RÞ ¼
3C2ðRÞ
2π

αðμ;RÞ: ð14Þ

We will identify the RG scale μ with the AdS radial
parameter r in our model. Note it is important that X enters
here. If it did not and the scalar mass was only a function of
ρ then, were the mass to violate the BF bound at some ρ, it
would leave the theory unstable however large X grew.
Including X means that the creation of a nonzero but finite
X can remove the BF bound violation leading to a stable
solution.
Working perturbatively from the AdS result m2 ¼

ΔðΔ − 4Þ, we have

Δm2 ¼ −2γ1ðμ;RÞ ¼ −
3C2ðRÞ

π
αðμ;RÞ: ð15Þ

This will then fix the r dependence of the scalar mass
through Δm2 as a function of Nc and Nf for each R.
The Euler-Lagrange equation for the vacuum embedding

X is given at fixed Δm2 by the solution of

∂
∂ρ ðρ

3∂ρXÞ − ρΔm2X ¼ 0: ð16Þ

Note that ifΔm2 depends on X at the level of the Lagrangian,
then there would be an additional term −ρX2∂Δm2=∂X. We
neglect this term and instead impose the running of Δm2 at
the level of the equation of motion. The reason is that the
extra term introduces an effective contribution to the running
of γ that depends on the gradient of the running coupling.
Such a term is not present in perturbation theory in our
QCD-like theories; we wish to keep the running of γ in the
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holographic theory as close to the perturbative guidance from
the gauge theory as possible.
In order to find XðρÞ, we solve the equation of motion

numerically with shooting techniques with an input IR
initial condition. A sensible first guess for the IR boundary
condition is

Xðρ ¼ X0Þ ¼ X0; X0ðρ ¼ X0Þ ¼ 0: ð17Þ
This IR condition is similar to that from top down brane
models [25] but imposed at the RG scale where the flow
becomes “on mass shell.” Here we are treating XðρÞ as a
constituent quark mass at each scale ρ. Were we to continue
the flow below this quark mass scale, we would need to
address the complicated issue of the decoupling of the
quarks from the running function γ.
Now we can introduce the field Y that describes the

operator q̄F2q. It will have an intrinsic action

S ¼
Z

d4xdρρ11
�
1

r2
jDYj2 þ Δm2

Y

ρ2
jYj2

�
; ð18Þ

where now r2 ¼ ρ2 þ jXj2 þ ρ8jYj2. Here Y has energy
dimension of -3 and when Δm2

Y ¼ 0 has the solution

Y ¼ αþ β

ρ10
: ð19Þ

α is the source for the q̄F2q term in the action, and β has the
dimension of the vev. If we include Δm2

Y here, then the
dimension of q̄F2q will run from the UV value of 7. For
this toy model, we will assume the dimension is 7 − γ1 so
its dimension falls but the BF bound will not be violated at
the scale where γ1 ¼ 1 and X condenses.
We can now include higher order terms in the action

mixing the fields that favor translational symmetry break-
ing. For example, we might include

ΔL ¼ ~κ3
ρ7

r2
jfj2∂MX†∂MY; ð20Þ

where ~κ3 is dimensionless. As the vev of f grows, this will
introduce a kinetic mixing term that will drive the lowest
mass eigenstate’s mass more negative by a k dependent
factor. As written this term tends to drive the kinetic term in
the holographic ρ direction negative also. However, there
are terms that break the ρ − x symmetry after the f field
acquires a vev. For example,

ΔL ¼ ~κ4
ρ9

r4
ð∂Mf∂MX†Þð∂Nf∂NYÞ: ð21Þ

~κ4 is again dimensionless. Since f only has a nonzero ρ
dependence, this term is, on substituting the vev, simply
a correction to the ρ derivative term mixing X and Y.
By picking ~κ4 appropriately (~κ3 ¼ −16~κ4), one can remove

the mixing term in the ρ derivative but leave a mixing term
in the x, t coordinates

ΔL ¼ ~κ2
c2

ρr4
∂μX†∂μY: ð22Þ

For our computation below, we will assume that the
correction to the ρ kinetic term is zero and that ~κ2 is our
free parameter.
In such a model, one can numerically solve the coupled

ordinary differential equations (ODEs) for the profiles of X
and Y and then evaluate the action on those solutions to
determine the effective potential of a solution. Performing
this computation for a solution of the form X=Y ∼
fX=YðρÞ sin kx allows one to plot the potential against k.
For example, to set the runnings, we can study Nc ¼ 3
Nf ¼ 3 (of course QCD with these values does not generate
stripes, but these choices are indicative of the behavior), with
the scale at which γ ¼ 1 to be ΛQCD and set c ¼ Λ4

QCD. In
Fig. 1 we plot the potential as a function of k2 for different
choices of the higher dimension operator’s coefficient. We
see that for Oð1Þ negative values an instability for stripes is
indeed present. Strictly for QCD, which we know respects
Lorentz invariance, we have placed limits on ~κ2 by this
argument. The instability mechanism may be present in
other gauge theories though.
At this point we will cease speculating about such

unknown gauge dynamics and simply assume that field
theories with translational symmetry broken in the vacuum
exist. We will explore whether they are phenomenologi-
cally interesting and viable as part of beyond the Standard
Model physics.

IV. STRIPED PHASES AND THE COSMOLOGICAL
CONSTANT IN R2 GRAVITY

Our interest in such striped, checkerboardlike or cuboid
phases is that they could have a dramatic cosmological

FIG. 1. Potential (normalized by that at k ¼ 0) against
ln½k=ΛQCD� for varying values of the coefficient of the higher
dimension operator (which is a mix of ~κ2 and ~κ3). We set here
Nc ¼ 3 Nf ¼ 3, the scale at which γ ¼ 1 to be ΛQCD and set
c ¼ Λ4

QCD.
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consequence. The basic observation is that the response of
the metric to such an inhomogeneity in the mass-energy
distribution will be replaced by some average effect on
scales much larger than 1=Λstripe; however, since the
dynamical equations for the metric are nonlinear, this
averaging does not lead to the same dynamical equations
for some “average” metric but rather results in corrections
to the equations themselves.
The fact that inhomogeneity can in general result in a

“cosmological backreaction” has been widely investigated;
see, e.g, Refs. [26–33]. These papers were inspired by the
possibility that cosmological inhomogeneity (the fact that
matter is not uniformly distributed at scales smaller than
about 100 Mpc, but instead concentrated in walls and
clusters of galaxies, containing stars and planets, etc.) leads
to corrections to the average expansion rate which could
explain the observations that indicate that the Universe is
currently undergoing accelerated expansion, such as
Ref. [34]. (The underlying assumption is that for some
still mysterious reason the fundamental cosmological con-
stant exactly vanishes, either because the quantum field
theoretic dark energy also vanishes or because somehow
gravity is decoupled from it).
However, to date the results of these studies have been

either negative or inconclusive.
One particularly elegant and clean approach to inhome-

geneity in a cosmological context was put forward by
Green and Wald [35,36]. A brief summary of the analysis is
as follows: one splits the metric as

gab ¼ gð0Þαβ þ hαβ; ð23Þ
where gð0Þαβ is the Freedman-Robertson-Walker metric of
standard cosmology and hαβ is the piece sensitive to the
matter distribution which we imagine here is the stripy
phase of the gauge theory with structure on scale Λstripe.
The Rαβ − 1

2
gαβR terms in the equation of motion split into

the standard ones for gð0Þαβ plus extra pieces dependent on
hαβ. The philosophy is to take the spatial average of the
pieces dependent on hαβ and then treat the resulting terms
as an effective addition to the stress-energy tensor of the
matter content of the Universe. Assuming that a certain
weak limit exists, they perform a rigorous diffeomorphism-
invariant averaging process of the gravitational response to
mass density fluctuations through the application of this
weak limit. Assuming that the matter stress-energy tensor
Tαβ satisfies the weak energy condition, Green and Wald
prove that the averaged effect of the coupled matter plus
gravitational fluctuations is then encoded in this limit in an

additive correction tð0Þαβ to the stress energy which is
traceless and also satisfies the weak energy condition.
They therefore identify it with gravitational radiation. In
particular in a Freedmann-Lemaitre-Robertson-Walker

(FLRW) background metric, tð0Þαβ is diagonal, corresponding

to an effective fluid with pressure p ¼ ρ=3 ≥ 0, leading to
the conclusion that such a backreaction cannot mimic dark
energy.
The situation changes dramatically, however, if we now

entertain the possibility that Einstein’s general relativity
equations themselves already have gravitational correc-
tions. Indeed, now that the (galactic foreground) dust has
settled on the BICEP2 debate, it is clear that the
Starobinsky model of “R2 inflation” [37,38], one of the
earliest models of inflation, remains highly favored obser-
vationally. In this model the Lagrangian density is given by

L ¼ 1

2κ

�
Rþ R2

6M2

�
þ LMatter ð24Þ

(where κ ¼ 8πG, and
ffiffiffiffiffiffi−gp

is included in the measure). The
new parameter is the so-called scalaron mass, which must
be M ≈ 3 × 1013 GeV, in order to agree with cosmological
observations. Following the above philosophy, we continue
to assume that the underlying (quantum field theoretic) net
vacuum energy effectively vanishes (hence the absence of a
cosmological constant term above). Backreaction is again
encoded in a diffeomorphism-invariant effective additive

correction tð0Þαβ to the matter stress-energy tensor; however, it
is now not traceless. Instead [17]

κtð0Þ ¼
weak

−
Rð1Þ2

6M2
; ð25Þ

where Rð1Þ is the linearized Ricci scalar of the gravitational
fluctuations hαβ, and equality holds rigorously in a certain
weak limit. Encouragingly, tð0Þ thus must be negative, in
agreement with the current acceleration of the Universe.
In general the requirement of a weak limit combined

with subtle cancellations up to second order in the
fluctuations make it difficult to compute tð0Þμν in any given
model [36]. This is illustrated by the existence of an equally
valid alternative expression [17]:

κtð0Þ ¼
weak

1

4
hRð1Þ −

1

2
hαβRð1Þ

αβ : ð26Þ

However, in (25), cancellations have been manifestly
achieved in as much as it leaves behind a negative definite
term. Furthermore it behaves parametrically in the right
way, in the sense that if we assume that the fluctuations are
generated independently of the scalaron scale then we
recover the tracelessness of the additive correction [35,36]
in the limit M → ∞. Therefore, it seems reasonable to
apply order of magnitude estimates to (25) in order to
obtain a rough estimate of the effective cosmological
constant generated by gravitational backreaction from a
striped phase. Setting Rð1Þ ∼ ∂2h ∼ κρ where ρ is the local
mass overdensity, we have from (25) that the effective
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vacuum energy tð0Þ ∼ −κhρ2i=ð6M2Þ. Now we recognize
that κ ¼ 1=M2

Planck, where the reduced Planck mass is
MPlanck ¼ 2.44 × 1018 GeV; that tð0Þ ¼ −E4

vac where the
current effective vacuum energy is Evac ¼ 10−12 GeV in
order to agree with observations; and finally that the rms
value

ffiffiffiffiffiffiffiffiffi
hρ2i

p
∼ Λ4

stripe, where Λstripe is the energy scale that
sets both the amplitude and wavelength of the striped
phase. Combining, we therefore find that

Evac ∼
Λ2
stripeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6MMPlanck
p ; ð27Þ

from which we deduce that Λstripe ∼ 140 GeV, intriguingly
close to the Higgs’ mass and the electroweak (EW) scale.
Of course if tð0Þ is to mimic a cosmological constant and
thus drive the present day acceleration of the Universe, it
must also be (at least approximately) constant. However,
this is guaranteed by the present mechanism since as the
Universe expands the stripes are not diluted but instead
rearrange and get created to fill “the gaps,” since the
wavelength is set at Λstripe by the microscopic dynamics
described in the previous section.
We note again that we have not suggested a mechanism

that naturally suppresses large contributions to the cosmo-
logical constant; in other words we are not attempting
to solve the infamous cosmological constant problem.
Nevertheless we have still shown how to generate a new
type of contribution that can be significant and indeed can
be sufficiently large to explain on its own the value deduced
from the present day cosmological acceleration.

V. CONSTRAINTS ON LORENTZ
SYMMETRY BREAKING

We have seen that a striped phase of a gauge theory
vacuum could potentially be responsible for generating the
observed cosmological constant and that in Starobinsky
inflation models a characteristic scale close to the EW scale
is implied. In this section though we will address the
stringent phenomenological constraints on Lorentz viola-
tion and show that this is categorically ruled out outside of a
totally disconnected dark sector of the Universe.
Let us first entertain the idea that the Higgs vev or some

component of it is spatially varying. Consider an induced
mass term for some scalar that varies spatially,

m2ðxÞ ¼ m2
0 þ μ2ðxÞ;

where for simplicity we take the variation to occur along a
fixed axis defined by a fixed (spacelike) four-vector kμ:
μ2ðxÞ ¼ μ20 cosðkμxμÞ and the magnitude of the wave
number jkj ∼ Λstripe. Write the propagator ð□þm2

0Þ−1 in
position space as Gðx1; x2Þ. By expanding the full inverse
propagator

ð□þm2Þ−1ðx1; x2Þ

¼ Gðx1; x2Þ −
Z
y1

Gðx1; y1Þμ2ðy1ÞGðy1; x2Þ

þ
Z
y1;y2

Gðx1; y1Þμ2ðy1ÞGðy1; y2Þμ2ðy2ÞGðy2; x2Þ

þ � � � ; ð28Þ

and recognizing that μ2ðynÞ ¼ μ2
0

2
ðeik·yn þ e−ik·ynÞ is a stand-

ing superposition of plane waves, we see that the modulated
mass term is physically equivalent to a sum of tree level
processes that exchange momentum�kμ with the (spatially
varying) vacuum.
The most dramatic effect of the spatially varying terms is

to lead to an apparent breakdown of momentum conserva-
tion along the kμ axis such that at each successive
occurrence of μ2ðynÞ the four-momentum receives a kick
Δpμ ¼ �kμ. (Similar to Umklapp scattering in a crystal,
the momentum is actually transferred to the condensate.)
The effect of this kick is generically to push the particle off
shell, and thus the process needs completing with further
interactions (e.g., using Standard Model interactions) into
on-shell decay products of which the total four-momentum
equals the shifted value. Assuming that the particle is
kicked far off shell, it is straightforward to see that the
amplitude for the process is ∼μ20=k2.
In the diagrammatic expansion, there are exchanges with

the vacuum that result in a net nil transfer of momentum; for
example, we can first acceptþkμ from the vacuum, propagate
from y1 to y2 and then accept −kμ from the vacuum, and
vice versa. Summing all such pairwise processes results in a
self-energy correction for the particle m2

0↦m2
0 þ Σ where

Σ ¼ μ40
4

X
�

1

ðp� kÞ2 −m2
0

:

There are infinitely many other processes with a more
complicated pattern of exchanges of �kμ which are equally
important unless there is a hierarchy in the parameters. If for
the moment we assume that μ20 ≪ −k2 (recall that −k2 > 0

since the wave vector defines a spatial modulation), then the
process we have considered is the leading process in a
perturbative expansion of μ20=k

2. Expanding the above
expression, we see that for small μ20=k

2 the leading effects
are a shift of the mass μ40=ð2k2Þ which is probably pretty
harmless and a rotational and Lorentz symmetry breaking
term

ΔΣ ¼ −2
�
μ20
k2

�
2 ðp · kÞ2

k2
:

Unfortunately such terms are severely constrained, and in
practicewe furthermore expect that μ0 ∼ jkj ∼ Λstripe, i.e., that
these terms appear with Oð1Þ coefficients.
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The strongest constraints on Lorentz violation arise from
low energy Michelson-Morley style tests of the electron
QED system [18,19]. The leading Lorentz violating term is

L ¼ 1

2
iψ̄ðγν þ cμνγμÞDνψ − ψ̄meψ ; ð29Þ

where cμν is a symmetric fixed tensor in the laboratory
frame describing the Lorentz violation. The components of
cμν are constrained at the level of 10−18. Generically one
would expect the electron-photon vertex to be corrected by
W and Z exchange which in turn would link to the Higgs
vev and generate such terms if the EW scale did generate
striped behavior. The maximum suppression is only of
order weak scale couplings to the fourth power (assuming
the vev of the Higgs and the scale of the stripes are close as
is natural), and such terms are nothing like sufficiently
suppressed.
To escape tight constraints such as these, one can place the

Lorentz symmetry breaking into a dark sector. Standard
Model particles at a scale q2 see effects from Planck sup-
pressed operators suppressed by a factor ofq2=M2

Pl. However,
here the Planck scale physics respects Lorentz invariance
which is only broken in the dark sector by the striped gauge
dynamics. The gravitational sector must therefore communi-
cate to that new sector, and an additional suppression of
v2=M2

PL enters. For scales v as low as the weak scale in the
dark sector, this factor becomes a suppression by 32 further
orders of magnitude. The effect can certainly be made
invisible, although of course this is a disappointing way to
proceed since one would hope for a signal.
Finally we again stress that striped or checkerboard

configurations will have Goldstone states associated with
the spontaneous breaking of Lorentz symmetry that propa-
gate freely in the unbroken directions [20]. Such states
clearly do not exist in the visible sector but potentially
could in a dark sector. For a cuboid configuration, the mass
term vanishes only at the corners of the cubes, and thus the
potential Goldstone mode cannot propagate. Similar com-
ments apply to more general crystal-like phases.
In conclusion then, if translational symmetry breaking is

responsible for the observed cosmological constant, it must
be present only in a sector of physics disconnected from the
Standard Model. Of course in principle new dark sectors

could have been cast off at scales from the Standard Model
sector up to the Planck scale so sufficient suppression could
be achieved, but the hope of an experimental signature is
then damped, and the intriguing link to EW physics
through generation of an effective cosmological constant
would also be lost.

VI. DISCUSSION

Recent work has shown that short scale structure can
manifest in R2 gravity as a cosmological constant on long
distance scales [17]. To produce such a structure that
does not dilute with the expansion of the Universe, one
should attempt to embed the structure in the vacuum. This
motivated us to consider how Lorentz violating striped
phases could appear in field theory. We have argued that
higher dimension operators in theories with condensation
near the theories’ UV cutoff could cause the spontaneous
breaking of Lorentz symmetry. This naturally maps to the
low energy description of asymptotically free gauge the-
ories where many operators are involved in the vacuum
structure and where higher dimension operators are natu-
rally produced by the strong coupling scale. We displayed a
holographic model of such a scenario showing the insta-
bility to Lorentz violating phases. These ideas raise the
possibility that exotic gauge theories might exist that break
Lorentz invariance spontaneously, and it would be inter-
esting to explore this in lattice simulations of models
beyond the Standard Model.
In Starobinsky inflation models with a vanishing funda-

mental cosmological constant, the scale of stripes needed to
generate the observed current cosmological constant is of
order the electroweak scale. However, as we have dis-
cussed, low energy constraints on Lorentz violation in the
electron photon system do not allow any such Lorentz
violation in the visible sector. A deeply disconnected dark
sector could still display the phenomenon. These arguments
provide further motivation to continue experimental tests of
Lorentz symmetry.
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