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Eigenvalue distributions of properly regularized Wilson-loop operators are used to study the transition
from UV behavior to IR behavior in gauge theories coupled to matter that potentially have an IR fixed
point. We numerically demonstrate the emergence of scale invariance in a matrix model that describes
SUðNÞ gauge theory coupled to two flavors of massless adjoint fermions in the large N limit. The
eigenvalue distribution of Wilson loops of varying sizes cannot be described by a universal lattice beta
function connecting the UV to the IR.
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The Lagrangian of four-dimensional gauge theories
coupled to massless fermions has no dimensionful param-
eter. After applying a proper regulator to cure UV diver-
gences, the physics in the IR limit is expected to fall into
two classes: One provides a quantum description of
relativistic particles where the scale invariance of the
classical Lagrangian is broken; the second describes a
conformal theory with no particle content. QCD, as
observed in nature, belongs to the first class. In both
classes, the physics at asymptotically short distance scales
is described by perturbation theory in terms of a redundant
set of local degrees of freedom. The physics at large
distances, where the two classes are different, can be easily
characterized in terms of nonlocal observables.
Models in the first class which are “borderline” in terms of

their proximity to the second class are central to an activity
evaluating certain proposals for beyond the standard model
physics [1,2]. The present work does not consider this issue.
For us, the mere existence of an interacting conformal gauge
theory in four dimensions, which seems to require no fine-
tuning on the lattice to boot, makes the study of class two
models deserving of attention on its own.
Let a denote an UV regulator with dimensions of length

and let g be the bare coupling introduced into the
Lagrangian. This enables one to perform a calculation that
produces a finite result at a fixed a and g. We define a
dimensionless physical coupling, gRðl; a; gÞ, that depends
on the physical scale l and obeys a renormalization group
(RG) equation,

�
a
∂
∂aþ βðgÞ ∂

∂g
�
gRðl; a; gÞ ¼ 0; βð0Þ ¼ 0; ð1Þ

for every choice of l. The content of the equation is that g
depends on a via

dg
d ln a

þ βðgÞ ¼ 0; ð2Þ

and we can write our observable as gRðl; gðaÞÞ. Noting that
� ∂
∂ lnlþ ∂

∂ ln a
�
gRðl; gðaÞÞ ¼ 0; ð3Þ

we change the variable from g to gRðl; gðaÞÞ for a fixed l
and obtain the renormalized version of Eq. (2) as

∂gRðlÞ
∂ lnl ¼ βRðgRðlÞÞ; βRð0Þ ¼ 0; ð4Þ

where the reference to the UV regulator, a, naturally drops
out. In perturbation theory, the first two coefficients in the
expansion of the renormalized beta function,

βRðgRðlÞÞ ¼ β0g3RðlÞ þ β1g5RðlÞ þ � � � ; ð5Þ

are the same as that of the unrenormalized beta function βðgÞ.
It is tempting to define a new renormalized couplingwhere the
associated beta function is exactly given by the first two terms
inEq. (5). This new renormalized couplingwill admit aTaylor
expansion in terms of the old coupling around the joint value
zero. There is no guarantee that this new renormalized
coupling and the bare coupling g are related by a map that
is well behaved at all points away from the origin.
If we assume that βRðgRðlÞÞ remains positive for all

l > 0, it follows from the RG equation for gRðlÞ that it
grows monotonically without bound as l increases, starting
from gRð0þÞ ¼ 0þ. There is only one length scale in such a
theory: a scale, l0, beyond which higher order terms in
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Eq. (5) begin to matter and the theory becomes non-
perturbative. In a theory like QCD, l0 is close to 1 F, and
long distance physics can be numerically studied with
small systematic errors by simulating QCD in a periodic
box with a linear extent of a few Fermi.
Now consider theories where βRðg�Þ ¼ 0 and becomes

negative for gR > g� > 0. The renormalization coupling
constant will not grow without bound; instead, it will start
from gRð0þÞ ¼ 0þ and reach gRð∞Þ ¼ g�. In such a theory,
we expect that two physically relevant length scales
ls ≪ ll exist, such that gRðlÞ will be governed by
perturbation theory for l < ls and become scale invariant
for l > ll. In order to see the onset of scale invariance, a
numerical study should be performed in a periodic box with
a linear extent significantly larger than ll, and this will be
practically impossible if also ls ≪ ll holds. Two scale
problems are notoriously difficult to control by numerical
methods. They are also a challenge to analytical methods.
We will consider SUðNÞ gauge theory with nM flavors

of massless Majorana fermions in the adjoint representation
in this paper. For this theory [3],

β0 ¼
Nð11 − 2nMÞ

48π2
; β1 ¼

N2ð17 − 8nMÞ
384π4

: ð6Þ

If 17
8
< nM < 11

2
, we have β0 > 0 and β1 < 0 and

5

7
≥
g�2

2N
8π2

≥
1

23
for 3 ≤ nM ≤ 5; ð7Þ

as given by the first two terms in Eq. (5). It is unlikely this
estimate of g� is correct even for nM ¼ 5. One needs to study
the theorynonperturbatively inorder to establish the existence
of a window in nM where scale invariance is observed.
The lattice action for massless fermions coupled to gauge

fields has one coupling, b ¼ 1=λ, where λ ¼ g2N is the
’t Hooft coupling. The aim of a lattice study of a theory that
possibly exhibits scale invariance in the IR is not neces-
sarily to identify a RG trajectory along which to carry out
simulations, since a trajectory connecting ls to ll might
require a path visiting actions containing a large number of
terms with many couplings that need to be precomputed.
Keeping only one coupling b, all we can say with some
certainty is that at large b its variation is tangential to this
RG trajectory. Once the regime of large b is left, we likely
wander off quite far from any RG trajectory corresponding
to some decent RG transformation. A “decent” RG tra-
jectory is defined by a RG transformation in the space of
actions which respects all important symmetries and is
local, in the sense that the new fields are local functionals of
the old fields. Also, it is required to check that the space of
couplings one needs to keep track of is of a low dimension
to good numerical accuracy (that is, most of the couplings
of the infinite space of actions can be ignored).
The continuum situation may be taken to simply indicate

that for more or less all b’s the single coupling system is

critical, and its large distance asymptotic behavior is scale
and conformal invariant. We do not ever sit at, nor are close
to, the IR fixed point (FP) of some RG map; only the large
distance behavior is governed by some IR FP. This is the
generic case for a critical system. For a given b, there will
two scales, LsðbÞ ≪ LlðbÞ in lattice units. For L < LsðbÞ,
scaling is violated as in QCD, and for L > LlðbÞ, scaling is
restored, but the dimensions take “anomalous” values. As
we vary b in some range, b ∈ ðb0; b∞Þ, the LsðbÞ ≪ LlðbÞ
vary, but outside this range, their very definitions are in
jeopardy and may become inconsistent. For intermediate
scales L, LsðbÞ < L < LlðbÞ, the most plausible behavior
is one strongly dependent on the form of the lattice action.
There, lattice observables cannot be described by a con-
tinuum action on some RG trajectory. In short, the UV-IR
interpolation offered by a single coupling lattice action
does not necessarily admit a useful continuum description
throughout, but only at sufficiently short and sufficiently
long scales.
Large N reduction enables one to reduce the lattice action

to a matrix model [4,5]. In some cases, the matrix model
reproduces physics at infinite volume lattice theory. For
QCD-like theories with the number of Dirac flavors in the
fundamental representation kept finite, this connection breaks
down as one approaches the continuum limitb → ∞ [6]. This
breakdown can be avoided if one uses more than a modest
amount of adjoint matter [7–9]. Assuming no other problems
with largeN reduction, this offers the opportunity to look for
asymptotic scale invariance in a large N matrix model.
We will require nonlocal observables to properly study

the IR behavior. A basic set of nonlocal operators in the
continuum or on the lattice is given by Wilson loops (WL).
We proceed using continuum language. Classically, for
SUðNÞ, these are unitary matrices associated with closed
smooth spacetime curves C. Quantum mechanically, one
needs to renormalize, giving the loop an effective thickness:

WfðC; x; sÞ ¼ P exp

�
i
I

x

x;C
Af
μðy; sÞdyμ

�
∈ SUðNÞ: ð8Þ

f denotes the fundamental representation of SUðNÞ, and x
is a marked point on C. s is a smearing parameter, providing
the thickness. The N × N matrix Wf has operator valued
entries which obey ½WfW

†
f�ij ¼ δijI, detðWfÞ ¼ I.

Starting from the four-dimensional quantum field,
Bf
μðxÞ; x ∈ R4, appearing in the path integral, the act of

smearing [10,11] extends the gauge fields to the five-
dimesional space, R4 × Rþ, with the smearing parameter
s ∈ Rþ. The five-dimensional gauge fields, Af

μðx; sÞ, are
defined for s ≥ 0 by

Fμs ¼ DνFμν; Af
μðx; s ¼ 0Þ ¼ Bf

μðxÞ: ð9Þ
Note that s has dimensions of area. The five-dimensional
gauge freedom is partially fixed, leaving a four-dimensional
one, by Af

s ðx; sÞ ¼ 0. All divergences coming from
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coinciding spacetime points in products of renormalized
elementary fields are eliminated for s > 0 by a limitation on
the resolution of the observer, parametrized by s. In QCD, a
reasonable value for s for a loop of size ∼1 F is s ∼ 0.05 F2.
Let us focus on square Wilson loops of side l, noting

that the effects of the sharp corners have also been
smoothed out by the smearing. For every such
Wfðl; x; sÞ, we consider its set of eigenvalues

Θðl;sÞ¼feiθ1 ;…;eiθNg;
XN
i¼1

θi¼0 mod 2π: ð10Þ

The label x drops out since the eigenvalues do not depend
on the choice of the point x on C. Θðl; sÞ parametrizes the
gauge invariant content of Wfðl; x; sÞ. Using the eigen-
values, Θðl; sÞ, we can define vacuum averages which
provide the complete information about the Θðl; sÞ in
terms of n-angle densities pðΘ;l; sÞ normalized to unity. p
contains a periodic δ function representing the det ¼ 1
constraint. Instead of working with two dimensionful
parameters ðl; sÞ, we change the variables to ðl; f ¼ s

l2Þ.
We focus on the simplest marginal of p, the normalized
single-angle eigenvalue distribution

ρðθ; f;lÞ¼ 1

N

XN
i¼1

�YN
j¼1

Z
2π

0

dθj

�
pðΘ; s¼fl2;lÞδðθ− θiÞ;

Z
2π

0

dθρðθ;l; fÞ ¼ 1: ð11Þ

ρ carries no information about correlations between the
various θi. The question of interest is how the dimension-
less ρðθ; f;lÞ depends on l for a fixed f.
In the case of pure gauge theory, ρðθ; f; lÞ provides an

acceptable definition of a θ independent β function because
the θ-dependence admits an accurate parametrization by
one variable only. The observable, ρðθ; f;lÞ, has proven to
be quite useful in understanding the transition from weak
coupling to strong coupling in the large N limit of QCD
[10,12,13]. In the ’t Hooft N ¼ ∞ limit, oscillations in θ
disappear from ρðθ; f;lÞ, and ρ is very smooth almost
everywhere, but a nonanalyticity in the dependence on l
appears at some lc. For l < lc, the support of ρðθ; f;lÞ is
restricted to an arc < 2π symmetrically around θ ¼ 0. For
l > lc, the support is the entire unit circle. For any finite
N ≫ 1, the transition is smoothed out. For N ≫ 1, the
l-dependence for l ≈ lc is universal. If one uses a related
observable, the average of the characteristic polynomial of
the WL, a derived quantity from it is very well described by
Burgers’s equation with viscosity 1

2N [14].
Because perturbation theory amounts to path-integral

integration over the Lie algebra suðNÞ and not over the
group SUðNÞ, the large N transition at lc demarcates a
scale where the prediction from perturbation theory departs
substantially from the true values. That there exists an lc
[15] does not imply confinement (it only removes the gap

in the eigenvalue distribution, so it could smoothly be
deformed into a uniform distribution). Confinement is
reflected by the eigenvalue distribution approaching uni-
formity exponentially in l2 as l → ∞. This behavior
occurs far from lc and has nothing to do with the
mechanism that produced lc in the first place.
Consider a theory that is expected to be scale invariant in the

IR. Let us consider the lattice version of single-angle eigen-
value distribution, ρðθ; f; b; LÞ, whereL is the linear extent of
the loop in lattice units. If L < LsðbÞ, we will find a strong
dependence of the distribution on b and L separately. But we
will be able to absorb it by findinga functionLðbÞ such that the
distribution only depends on LðbÞ. The resulting continuum
distribution will exhibit the UV nature of the theory.
If L > LlðbÞ, we should expect the distribution to

stabilize and essentially become independent of L and b.
The resulting stable continuum distribution exhibits the scale
invariance in the IR. The distribution in the crossover region,
LsðbÞ < L < LlðbÞ, will show dependence on L and b. If
we define a lattice β function with argument λ ¼ 1=b in the
crossover range by ½L ∂

∂L − βðλÞ ∂
∂λ�ρðθ; λ; LÞ ¼ 0, we shall

find that βðλÞ comes out strongly θ dependent and is
therefore not universal in any sense. These βðλÞ functions
have lost all the power that the βðλÞ functions have at short
distances, where they are universal.
A natural way to single out theories exhibiting “pertur-

bative IR behavior” is to require that the lattice ρðθ;LÞ have
a gapped contiguous support on the unit circle ∀L,
including L → ∞. This definition is at N ¼ ∞. If we have
perturbative IR behavior, there is reason to hope that a
simple single coupling lattice approximation to the con-
tinuum RG trajectory holds.
We will now provide numerical results for ρðθ; f; b; LÞ in

a matrix model where the IR behavior is not expected to be
perturbative. The model is a single site SU(N) gauge theory
coupled to two massless Majorana fermions realized using
overlap fermions [16]. This theory is not expected to show
scale invariant behavior if we go by the perturbative beta
function in Eq. (6), but a nonperturbative study might show
otherwise since the relevant couplings are strong at nM ¼ 2.
We will provide results for N ¼ 25 which we consider to be
large in the sense that the large N limit for this particular
lattice model is reasonably well approximated for most of the
observables we look at. We will show data for three different
values of lattice coupling, b ¼ 0.4, 0.5, 0.6. The lattice
version of Eq. (9) is realized as follows. Let UμðsÞ ¼ eiAμðsÞ
be the four smeared link variables on the single site lattice.
The smeared plaquettes are given by

PμνðsÞ ¼ UμðsÞUνðsÞU†
μðsÞU†

νðsÞ: ð12Þ
Then,

DνFμνðsÞ ¼ i
X
ν

½P†
μνðsÞ þU†

νðsÞPμνðsÞUνðsÞ

− PμνðsÞ −U†
νðsÞP†

μνðsÞUνðsÞ�: ð13Þ
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The evolution of UμðsÞ as per Eq. (9) becomes

dUμðsÞ
ds

¼ −iDνFμνðsÞUμðsÞ: ð14Þ

The folded and smeared Wilson loops used in the compu-
tation of ρðθ; f;b; LÞ are
WμνðL; s ¼ fL2Þ ¼ ½UμðsÞ�L½UνðsÞ�L½U†

μðsÞ�L½U†
νðsÞ�L:

ð15Þ
Figure 1 shows the results for ρðθ; f; b; LÞ for different
values of L at b ¼ 0.4 and f ¼ 10−3. The top-left panel
shows the behavior for L < LsðbÞ. The L ¼ 1 and L ¼ 2
distributions show a gap with a larger gap for L ¼ 1. The
L ¼ 3 distribution is gapless. The top-right panel shows
the transition of L into the region, LsðbÞ < L < LlðbÞ. The
distributions still remain gapless, but increasing L results in a
distribution that is more peaked around θ ¼ 0. The bottom-
left panel shows the development of scale invariant distri-
bution as L moves closer to LlðbÞ. The bottom-right panel
shows distributions for L > LlðbÞ that are essentially scale
invariant. The distributions show a fast rise around θ ¼ 0 but
have stabilized away from θ ¼ 0. This could be indicative of

a limiting distribution that has an integrable singularity at
θ ¼ 0. Figure 2 shows the distribution as a function of b for
L ¼ 19 which is above LlðbÞ for all three values of b. A
scale invariant distribution seems to have emerged. The
function describing the scale invariant distribution will
depend upon the choice of f. A larger value of f will result
in a distribution that is more peaked at θ ¼ 0, and a smaller
value of f will result in a distribution that is broader. The
indication of scale invariance in the IR, in itself, is
independent of the exact value of f and also of the gauge
coupling in the action at least as long as it is kept in the
range 0.4 and 0.6. Hence, the IR scaling we see requires no
fine-tuning.
We have demonstrated that scale invariance can emerge

in a matrix model, indicating the existence of an IR FP.
The scales LsðbÞ and LlðbÞ have a ratio of order 5, and the
set of lattice models for all couplings is far from making up
an acceptable RG trajectory at intermediary scales. The scale
invariant angle distribution is gapless. Therefore, there is no
indication for a concrete perturbative lattice realization of an
IR FP. We have demonstrated that ρðθ; f; b; LÞ is a useful
probe of the theory. This probe can be defined, and we
suggest it will be useful, also at finite N.
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FIG. 1. The distributions, ρðθ; f; b; LÞ, are shown for several different values of L at b ¼ 0.4. The value ofN is 25, and the value of f is
set to 10−3. The value of L increases as one goes from the top left to bottom right with different panels showing different regions of L.
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This eigenvalue distribution reflects relatively simple
physics for adjoint matter models: the force between
fundamental test charges at distance r is stronger than a
Coulomb 1=r2 at short distances, raises to some constant
value as r increases further, but eventually turns around and
goes like Const=r2 as r → ∞. For a perturbative IR FP,
the intermediary constant force regime would have to be
skipped. A priori, there seems to be nothing prohibiting this
from occurring, but this did not happen in our model.
The matrix model of Ref. [16] has the Wilson mass

parameter that appears in the massless overlap fermion

kernel set to 4 in order to ensure proper reduction. In the
present work, we have reanalyzed data generated for
Ref. [16] for lattice gauge couplings b in the range
[0.32, 0.70]. Already in Ref. [16], lattice beta functions
were found to be far away from two-loop perturbation
theory for this range of couplings.
We plan to continue our work with more extensive

numerical studies on the lines of the present paper, using
the results of Ref. [17] and ensuring that the center
symmetries remain intact. The formulation adopted here
allows us to extend the matrix model to nonintergal
numbers of massless flavors, a device that can, at the
formal level, reduce the contribution of higher than two-
loop terms to perturbative beta functions at will. Also, it
would increase our confidence in the relevance of the
matrix model to the full lattice theory if we could increase
N relative to the L values we now know we need. Recent
interesting work on the reduced model manages to deal
with substantially larger values of N [18]. This work uses
also the device of twisted reduction. For an amount of
matter nM ≥ 1 twisting, or any other trick on top of original
Eguchi-Kawai reduction, is not perturbatively required.
Dropping twisting would simplify numerical work and
might reduce the cost of simulations at N of order 100 to
something manageable on modest Personal Computers
(PC) clusters.
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