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The BEC-BCS crossover for a Nambu–Jona-Lasinio (NJL) model with diquark interactions is studied in
the presence of an external magnetic field. Particular attention is paid to different regularization schemes
used in the literature. A thorough comparison of results is performed for the case of a cold and magnetized
two-color NJL model. According to our results, the critical chemical potential for the BEC transition
exhibits a clear inverse magnetic catalysis effect for magnetic fields in the range 1≲ eB=m2

π ≲ 20. As for
the BEC-BCS crossover, the corresponding critical chemical potential is very weakly sensitive to magnetic
fields up to eB ∼ 9m2

π , showing a much smaller inverse magnetic catalysis as compared to the BEC
transition, and displays a strong magnetic catalysis from this point on.
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I. INTRODUCTION

Although a considerable amount of theoretical and
experimental work has been devoted to the subject, the
phase diagram of quantum chromodynamics (QCD) still
remains poorly understood. From the theoretical point of
view, one of the main reasons for this state of affairs is that
the ab initio lattice QCD approach has difficulties dealing
with the region of medium/low temperatures and moder-
ately high densities, owing to the so-called “sign problem”
[1,2]. Thus, most of the present knowledge about the
strongly interacting matter phase diagram arises from the
study of effective models [3]. This is because effective
models offer the possibility of obtaining predictions for
the transition features at regions that are not accessible
through lattice techniques. In this context, in the last years
several works have considered that, at low temperatures,
the transition between the chirally broken phase at low
densities and the color superconducting phase at large
densities proceeds in a smooth way instead of being a
strong first-order transition, as is more commonly believed.
Interestingly, this opens up the possibility that, as density
increases, quark matter undergoes a crossover between a
regime where diquark pairs form difermion molecules in
Bose-Einstein condensation (BEC) and a weakly coupled
Bardeen-Cooper-Schrieffer (BCS) superfluid regime [4].
One of the models where this kind of phenomena has
been more actively investigated is the well-known Nambu–
Jona-Lasinio (NJL) model [5], where gluon-mediated

interactions are replaced by effective local quark-quark
interactions.
The actual existence of a BEC-BCS crossover in the

three-color (Nc ¼ 3) NJL model requires, however, a quite
strong quark pairing interaction. Let us recall that the
application of the Fierz transformations to the effective one-
gluon-exchange (OGE) interaction leads to r≡GD=GS ¼
3=4, where GS and GD are the scalar quark-antiquark and
the diquark coupling constants, respectively. This value is
usually taken as a reference in most model calculations [6].
On the other hand, the existence of a BEC-BCS crossover
at finite baryon chemical potential requires r≳ 1 [7,8]. It
has been argued, however, that in the flavor SU(3) NJL
model the axial anomaly might induce a BEC-BCS cross-
over for more conventional values of r [9,10]. Another
possibility has been proposed in Ref. [11]. Contrary to what
happens for Nc ¼ 3, the situation for the Nc ¼ 2 NJL
model is quite clear. In this case, the Fierz transformation of
the OGE interaction leads to r ¼ 1, as shown in Ref. [12].
For this value of r, the authors in Ref. [7] found that as
the quark chemical potential μ increases, there is first, at
μ ¼ mπ=2, a second-order transition from the chirally
broken phase to the BEC phase, followed by the BEC-
BCS crossover at a somewhat larger chemical potential.
This result was confirmed in Refs. [13,14].
Despite the fact the two-color NJL model might only

share some qualitative similarities with real three-color
QCD, it is still a valuable model for studying in general.
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In fact, studies with two-color QCD-like models, in
particular in the context of the NJL model, have been
quite popular (for a recent review, see, e.g., Ref. [15] and
references therein). Because of the different gauge group
of two-color QCD (which has only pseudoreal, or real
representations) as compared to the three-color case, the
fermion determinant in the former remains real for non-
vanishing chemical potentials (for baryons or quarks).
Hence, the model does not suffer from the fermion-sign
problem that plagues the three-color QCD and its phase
diagram can be studied through lattice Monte Carlo sim-
ulations [16–18]. Besides, the two-color NJL model can be
seen as a relativistic analogue of the low-energy non-
relativistic BCS-BEC crossover in condensed matter fer-
mionic systems. Given the above properties, we hope to
learn some of the related physics associated with diquark
condensation in real QCD by using this simpler model and
the generic properties connected to a BEC-BCS transition
in fermionic systems in general.
In the present work, we will be mainly interested in the

role played by a magnetic field in the BEC-BCS transition
problem. This is mostly motivated by the realization that
strong magnetic fields may be produced in several physi-
cally relevant situations. For example, the compact stellar
objects believed to be the source of intense γ and x rays, the
magnetars, are expected to bear fields of the order of
1013–1015 G at their surface [19], reaching values several
orders of magnitude greater at their center [20–22].
Moreover, such strong magnetic fields are also expected
in present and future experiments at the RHIC, NICA and
FAIR facilities, designed to probe the phase diagram of
strongly interacting matter at low temperatures and inter-
mediate to large densities.
So far, the effect of a magnetic field on the BEC/BCS

crossover has been analyzed in the context of a two-channel
model [23], where fermion and boson degrees of freedom
are introduced from the beginning in the corresponding
effective Lagrangian density. The aim of the present study
is to go beyond this by considering a single-channel model.
Since this is already a quite complicated issue by itself, we
will work in the framework of the two-color NJL model,
where the existence of a BEC-BCS crossover for conven-
tional model parametrizations is firmly established. We
recall here that, in contrast to what happens in Nc ¼ 3
QCD, this theory allows for lattice simulations at finite
chemical potential. Results from this model regarding the
diquark condensation in the absence of magnetic fields
have been compared, e.g. in Ref. [12], with lattice simu-
lations ofNc ¼ 2QCD [16]. It turns out that the predictions
of the NJL model for the diquark condensate are similar to
those of chiral perturbation theory [24], as far as the
agreement with lattice results are concerned. The NJL
model is therefore interesting to investigate the general
symmetry properties associated with two-color quark
matter and their role in the phase transitions. Moreover,

some aspects of the impact of the presence of external
magnetic fields on the properties of two-color quark matter
at finite temperature and vanishing chemical potential have
been investigated using both effective models [25] and
lattice simulations [17,18].
This paper is organized as follows. In Sec. II we

introduce a two-color and two-flavor NJL-type model in
the presence of a magnetic field and the corresponding
thermodynamic potential to study the phase structure and,
in particular, the BEC-BCS transition. Some possible
regularization schemes used in the literature are also given.
In Sec. III we give the results of our analysis and also make
a comparison between different regularizations used when
regarding the critical quantities and the crossover. In
Sec. IV, we interpret the results obtained and check for
their consistency. Our concluding remarks are given in
Sec. V. One appendix is included, where some of the
technical details are given.

II. THE Nc ¼ 2 NJLMODEL IN THE PRESENCEOF
AN EXTERNAL MAGNETIC FIELD

We start by specifying the model and its parameters. We
consider a two-color and two-flavor NJL-type model that
includes scalar-pseudoscalar and color pairing interactions.
The corresponding Lagrangian density, in the presence of
an external electromagnetic field, is given by

L ¼ ψ̄ðiD −mcÞψ þGS½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2�
þGDðψ̄iγ5τ2t2Cψ̄TÞðψTCiγ5τ2t2ψÞ: ð2:1Þ

Here, C ¼ iγ0γ2 is the charge conjugation matrix and mc is
the current fermion mass, which we take to be equal for
both flavors. Moreover, τi and ti are the Pauli matrices in
flavor and color spaces, respectively. As usual, we will
assume that the interaction terms are derived from an
effective local coupling between color current terms. The
two coupling constants GS and GD, for the present two-
color NJL model [12] can be related simply as GS ¼
GD ¼ G. This relation has to be imposed in order to have
the symmetries of two-color QCD, and must be satisfied
regardless of the type of the effective interaction that we
start from. The coupling of the quarks to the electromag-
netic field Aμ is implemented through the covariant
derivative, Dμ ¼ ∂μ − iQAμ, where Q is the usual quark
charge matrix Q ¼ diagðqu; qdÞ. In the present Nc ¼ 2
model we choose the charges to be qu ¼ e and qd ¼ −e. In
this way, as in Ref. [23], the charged fermions can be
considered to mimic the rotated charged quarks that pair to
form the electrically neutral Cooper pairs in actual QCD.
Note, however, that while in the latter case quark matter
will still behave as a color superconductor, two-color
Cooper pairs are color singlets. Therefore, in the two-color
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QCD we are dealing with a true superfluid where just a
global (baryon number) symmetry is spontaneously broken.
Finally, we consider that the system is in the presence of a
static and constant magnetic field in the third direction,
namely, we take Aμ ¼ δμ2x1B.

A. The thermodynamical potential in the mean-field
approximation

At vanishing magnetic field, the mean-field thermody-
namic potential at temperature T and chemical potential μ is
given by [7]

Ω¼Ω0−8T
X
s¼�1

Z
d3k
ð2πÞ3 ln

�
1þexp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEkþsμÞ2þΔ2

p
T

��
;

ð2:2Þ

where Ω0 is the zero-temperature contribution,

Ω0 ¼
ðm −mcÞ2 þ Δ2

4G

− 4
X
s¼�1

Z
d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk þ sμÞ2 þ Δ2

q
; ð2:3Þ

and Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, withm being the dressed quark mass.

The addition of a finite constant magnetic field can be
easily implemented in the above expressions by consider-
ing the following substitutions [26]:

2

Z
d3k
ð2πÞ3 →

Xd
f¼u

jqfjB
4π

X∞
l¼0

αl

Z þ∞

−∞

dk3
2π

;

Ek → Ek3;l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ 2ljqfjBþm2

q
; ð2:4Þ

where αl ¼ 2 − δl;0 takes into account the degeneracy of
the Landau levels. Therefore, the resulting zero-
temperature mean-field thermodynamic potential in the
presence of a constant magnetic field reads

Ω0ðm;Δ; B; μÞ ¼ ðm −mcÞ2 þ Δ2

4G
− 2

Xd
f¼u

jqfjB
4π

X
s¼�1

X∞
l¼0

αl

Z þ∞

−∞

dk3
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk3;l þ sμÞ2 þ Δ2

q
: ð2:5Þ

In the following, we will discuss the different ways to
regularize the thermodynamic potential when including the
effects of an external magnetic field.

B. Model parameters and regularization schemes

Since the model under consideration is nonrenormaliz-
able, a proper regularization scheme is required to avoid
ultraviolet divergences. As it will be discussed below for
the regularization procedures to be used in this work, this
implies the existence of a cutoff parameter Λ. Thus, the
coupling constant G ¼ GS ¼ GD, the current quark mass
mc and Λ form a set of three parameters that must be
specified in order to proceed with the numerical calcu-
lations. In the case of theNc ¼ 3NJL model analysis, these
parameters are usually fixed such as to reproduce the
empirical values in vacuum for the pion mass mπ , the pion
decay constant fπ and for the quark condensate hq̄qi0. The
situation for theNc ¼ 2 case is not, however, so clear. Here,
we follow the procedure proposed in Ref. [13], which is
based on the Nc scaling of physical quantities. Using the
fact that fπ is proportional to

ffiffiffiffiffiffi
Nc

p
and the chiral con-

densate to Nc, we rescale the three-color values by factors
of

ffiffiffiffiffiffiffiffi
2=3

p
and 2=3, respectively. Namely, we choose the

model parameters such as to reproduce the values fπ ¼
75.45 MeV, mπ ¼ 140 MeV and hq̄qi1=30 ¼ −218 MeV.
Let us now turn to the choice of the regularization

scheme. One possibility is to introduce a form factor UΛ
such that

X∞
l¼0

Z
∞

−∞

dk3
2π

→
X∞
l¼0

Z
∞

−∞

dk3
2π

UΛð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ 2ljqfjB

q
Þ: ð2:6Þ

In fact, most of the studies of the effect of magnetic fields
within NJL-type models that include color pairing inter-
actions are based on this kind of regularization (see, for
example, Refs. [27–30]). As for the explicit form of the
regularization function one might, in principle, be tempted
to use a simple step function θðx − ΛÞ. It is known,
however, that this procedure introduces strong unphysical
oscillations in the behavior of different quantities as
functions of the magnetic field. A discussion on this can
be found in, e.g., Refs. [31–33], where it was also observed
that the use of smooth regulator functions improves the
situation. In fact, this allows one to identify possible
physical oscillations appearing in some cases [27,28].
Different smooth form factors have been used in the
literature. For example, in Ref. [32] Lorentzian functions
of the form

UðLorNÞ
Λ ðxÞ ¼

�
1þ

�
x2

Λ2

�
N
�−1

; ð2:7Þ

have been used. Alternatively, in Ref. [29], Wood-Saxon-
type form factors like

UðWSαÞ
Λ ðxÞ ¼

�
1þ exp

�
x=Λ − 1

α

��
−1
; ð2:8Þ
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were introduced. Note that the form factor in the above
expressions is chosen in such a way that three-momentum
cutoff is used concomitant with the introduction of the
magnetic field. In particular, note that the limit of B → 0
reproduces the usual three-momentum cutoff in the simpler
case of a step function regularization. But due to the
aforementioned problem with this regularization, it has
motivated these other forms of regularization in the
literature. It should also be noted that all these form factors
include a constant that regulates its smoothness. To choose
the values for such a constant one is limited by the fact that
a too steep function leads to the unphysical oscillations
already mentioned, while a too smooth function leads to
values of the quark condensate in the absence of the
magnetic field that are quite above the phenomenological
range. Thus, the value N ¼ 5 is usually chosen in the case
of the Lorentzian form factor, while α ¼ 0.05 is taken for

the case of the Wood-Saxon one. In the following, we
will identify these two regularization cases as Lor5 and
WS0.05, respectively.
An alternative way to regularize the finite-B thermody-

namic potential was suggested in Ref. [34]. Within this
procedure, the terms in the thermodynamic potential that
are explicitly dependent on the magnetic field turn out to be
finite and, thus, only those terms that are independent of it
need to be regularized. In a way, this so-called “magnetic-
field-independent regularization” (MFIR) can be consid-
ered as an extension of the method described in, e.g.,
Ref. [26] to the case in which color pairing interactions are
present.
Following the regularization procedure described in

Ref. [34], after summing and subtracting convenient terms,
the thermodynamic potential (2.5) can be cast into the form
(see also the Appendix for details)

Ω0ðm;Δ; B; μÞ ¼ Ω0 −
Nc

2π2
Xd
f¼u

ðjqfjBÞ2
�
ζ0ð−1; xfÞ −

1

2
ðx2f − xfÞ lnðxfÞ þ

x2f
4

�

−
Nc

4π2
Xd
f¼u

ðjqfjBÞ
Z

∞

0

dk3

�X∞
l¼0

αlFðk23 þ 2ljqfjBÞ − 2

Z
∞

0

dyFðk23 þ 2yjqfjBÞ
�
; ð2:9Þ

where

Fðz2Þ¼
X
s¼�1

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2þm2

p
þ sμÞ2þΔ2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2þm2þΔ2

p
�;

ð2:10Þ

and xf ¼ ðm2 þ Δ2Þ=ð2jqfjBÞ. In this expression, a three-
dimensional sharp cutoff Λ can be introduced to regularize
Ω0, which has no explicit magnetic field dependence, while
the other terms are ultraviolet finite. The details concerning
the derivation of Eq. (2.9) can be found in Ref. [34]. For
completeness, the main ones are also given in the Appendix.
For each of the regularization schemes mentioned above,

Lor5, WS0.05, as well as for the MFIR case, we need to
evaluate the parameters that reproduce the scaled physical
values of fπ , mπ and hq̄qi0, in the Nc ¼ 2 case. The
procedure to obtain these quantities is discussed in detail in
Ref. [5]. The values obtained and used in this work are
shown in Table I.

III. NUMERICAL RESULTS

In the previous section we gave the mean-field thermo-
dynamic potential in the presence of an external magnetic
field, Eq. (2.5), and presented some different regularization
schemes to avoid the divergences. Given the corresponding
regularized form Ωreg

0 ðm;Δ; B; μÞ, the associated gap equa-
tions for m and Δ then read

∂Ωreg
0 ðm;Δ; B; μÞ

∂m ¼ 0;
∂Ωreg

0 ðm;Δ; B; μÞ
∂Δ ¼ 0:

ð3:1Þ

In what follows we present and discuss the results obtained
by solving numerically these equations.1

A. Behavior of the order parameters

It is known that at zero chemical potential the magnetic
catalysis effect is present (see, for example, Ref. [35]). This
is seen in Fig. 1(a), where the behavior ofm as a function of
the magnetic field is shown, for all three regularization
schemes studied in this work. This coincides with the result
obtained in the NJL model without the diquark interaction
since Δ vanishes in this case. For B ¼ 0, a transition to a
Δ ≠ 0 phase occurs at μ ¼ mπ=2 [4,7], or, equivalently, at

TABLE I. Parameter sets we have used for the two-color NJL
SUfð2Þ model. Here, mð0Þ stands for the dressed quark mass at
μ ¼ B ¼ 0.

Parameter set mð0Þ (MeV) mc (MeV) G (GeV−2) Λ (MeV)

Lor5 337.232 5.398 8.00 616
WS0.05 311.865 5.401 7.39 650
MFIR 305.385 5.400 7.23 657

1In our notation mπ ¼ 0.14 GeV and mπðeBÞ is a function of
the magnetic field.
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μB ¼ mπ. Here, μB ¼ 2μ is the baryon chemical potential
for theNc ¼ 2 case we are dealing with. Thus, by fixing the
chemical potential at a value μB > mπ a nonvanishing value
for Δ is obtained. The corresponding behavior as a function
of the magnetic field is shown in Fig. 1(b) for the case for a
value of μB ¼ 6.0mπð≡0.84 GeVÞ (which is chosen as a
representative value for illustrative purposes) and the three
regularizations schemes, WS0.05, Lor5 and MFIR.
The aforementioned oscillations are clearly seen in both

panels in Fig. 1, i.e., in both the effective quark mass and
the diquark condensate, when using the WS0.05 and Lor5
regularization schemes. We note that they are somewhat
smaller in the second case, which corresponds to a
smoother regulator. These nonphysical oscillations can be
traced to the fact that the regularization procedure depends
explicitly on the magnetic field. Therefore, they disappear
when the divergent terms are disentangled from the
magnetic contributions by using the MFIR scheme. It is
also clear from both panels in Fig. 1 that the WS0.05 and
Lor5 regularization schemes start to deviate strongly from

the MFIR scheme at large values of the magnetic field,
eB=m2

π ≳ 15. With respect to this, it should be borne in
mind that some estimates [22] indicate that the magnetic
fields at the center of magnetars can be as large as
eB=m2

π ≃ 30.
We consider now the behaviors of Δ and the effective

quark mass as functions of the baryon chemical potential
for different values of the magnetic field. This is shown
in Fig. 2. We restrict ourselves to the results for the MFIR
and WS0.05 regularizations, since the results for Lor5 are
qualitatively similar to those for the WS0.05. There is a
chirally broken phase with Δ ¼ 0 for low enough chemical
potentials and a BEC phase in which Δ is finite and chiral
symmetry is partially restored. The transition connecting
these two phases is of second-\order and, when B ¼ 0, it
occurs at μB ¼ mπ . This result is in agreement with those
obtained using chiral effective theories [16]. This result also
remains true for both schemes presented here. The magnetic
catalysis effect can also be observed, where both m and Δ
are seen to increase with the magnetic field. We also note

0 5 10 15 20

eB / mπ
2

0.9

1.2

1.5

1.8

2.1

2.4

m
 / 

m
(0

)

MFIR
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1.0
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Δ  
/ m

(0
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MFIR
WS0.05
Lor5

(b)

FIG. 1. Results for (a) the effective quark mass m, at μ ¼ 0, and (b) the diquark condensate Δ, at μB ¼ 6mπ , as functions of the
magnetic field for the three regularization schemes (see Table I). Both m and Δ are scaled by mð0Þ≡mðμ ¼ eB ¼ 0Þ.
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FIG. 2. Results for (a) the diquark condensate Δ, and (b) the effective quark mass m, both as a function of the baryon chemical
potential, μB (where μB ¼ Ncμ with Nc ¼ 2), in the WS0.05 and MFIR schemes.
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that for B ¼ 0 (corresponding to the lowest curves in both
panels of Fig. 2), the MFIR regularization exactly reduces
to the traditional three-dimensional cutoff Λ, indicated by
the Λ3d label in the figures, and that the results obtained for
both regularization methods are similar for eB ¼ 0 and
10m2

π , but differ significantly for eB ¼ 20m2
π.

B. The critical chemical potentials

We now determine how the magnetic field affects the
critical baryon chemical potential μBECBc

for the diquark
condensate (BEC) phase transition and for the BEC-BCS
crossover μBEC−BCSBc

.
Since the phase transition for diquark condensation

remains second order even in the presence of an external
magnetic field, we can obtain the corresponding critical
baryon chemical potential by using a Ginzburg-Landau
expansion for the thermodynamic potential (2.5) around the
critical point [14],

Ω0ðm;Δ; B; μB=2Þ ¼ Ω0ðm; 0; B; μB=2Þ
þ α2ðm;B; μB=2ÞjΔj2
þ α4ðm;B; μB=2ÞjΔj4 þOðjΔj6Þ;

ð3:2Þ
where the Ginzburg-Landau coefficients αn are defined as

αnðm;B; μÞ ¼ 1

n!
dnΩ0ðm;Δ; B; μB=2Þ

dΔn

				
Δ¼0

: ð3:3Þ

As customary, the critical chemical potential for the BEC
transition can be obtained from the condition α2ðm;B;
μBECBc

=2Þ ¼ 0, where m results from minimizing the first
term in Eq. (3.2) for each value of eB.
We now turn to the determination of the critical chemical

potential for the BEC-BCS crossover. For this purpose, it is
convenient to define a reference chemical potential,
μN ¼ μB=2 −m, in terms of which the transition between
the two states is characterized by the condition μN ¼ 0 [7].
The rationale behind this is as follows. Considering for
simplicity the case B ¼ 0, a typical dispersion relation is
given by

E�
Δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

q
� μB

2

�
2

þ Δ2

s
; ð3:4Þ

where E−
Δ corresponds to particle and Eþ

Δ corresponds to
antiparticle excitations. For small μB we have μN < 0, and

the minimum of the dispersion is located at j~kj ¼ 0, with
particle gap energy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2N þ Δ2

p
. This corresponds to the

fermionic (quark) spectrum in the BEC state. On the other
hand, at larger values of μB, we have μN > 0. The minimum

of the dispersion is shifted to j~kj ¼ μB=2 and the particle
gap is Δ. This corresponds to the fermionic spectrum in the

BCS state. Thus, the condition μN ¼ 0 can be used to
determine the position of the crossover. Note that it implies
m ¼ μBEC−BCSBc

=2. Therefore, the critical chemical poten-
tial can be obtained by setting this relation in the gap
equations (3.1) and by solving them for Δ and μBEC−BCSBc

for
different values of B.
In Fig. 3 we show the reference chemical potential μN as

a function of the chemical potential, for eB ¼ 0, 10m2
π and

20m2
π . We have restricted ourselves again, for simplicity, to

show results only for the MFIR and WS0.05 regularization
schemes. Negative values of μN correspond to the BEC
region, while positive values correspond to the BCS region.
These two phases are indicated by the regions below and
above, respectively, the thin horizontal solid line shown in
Fig. 3. For the values of magnetic fields shown in Fig. 3, we
find that the point for which μN changes sign, the BEC-
BCS crossover, is shifted to the right, i.e., when increasing
the value of the magnetic field, the crossover takes place at
a larger value of μ (or, analogously, at a larger value of μB).
This corresponds to a strengthening of the BEC region.
This phenomenon is observed to occur in both regulariza-
tion schemes considered in this work.
Note that the magnetic field values considered in the

figures, eB ¼ 10m2
π and 20m2

π (corresponding to approx-
imately 0.2 and 0.4 GeV2 respectively) are usually referred
to in the literature as strong magnetic fields. These values
are representative of the fields expected in heavy-ion
collision experiments, like in the RHIC and in the LHC,
which are estimated to have magnitudes of the order of
eB ∼ 15m2

π [36].
The numerical results for the baryon critical chemical

potential for the BEC transition μBECBc
are shown in Fig. 4(a).

In the MFIR scheme, we see that from small to moderately
strong values of eB an inverse magnetic catalysis (IMC)
effect is observed, i.e., the value of μBECBc

decreases with the
magnetic field, while for very strong magnetic fields, μBECBc

grows rapidly with eB in the MFIR scheme. The IMC
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FIG. 3. The reference chemical potential, μN ¼ μB=2 −m, as a
function of the chemical potential in the WS0.05 and MFIR
regularization schemes.
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phenomenon was first observed in the NJL model in
Ref. [37] at T ¼ 0 and in Ref. [38] for the full T − μ −
B case. Since then, it has been found and described in
different models (see, e.g., Refs. [39,40] and references
therein). For the parameters we have considered, the IMC
effect is clearly seen in the interval 1≲ eB=m2

π ≲ 20.
The behavior of μBEC−BCSBc

for the BEC-BCS crossover is
shown in Fig. 4(b). Note that from small to moderate
magnetic field values, eB=m2

π ≲ 9, the value of μBEC−BCSBc

changes little. This indicates that the magnetic field does
not tend to affect strongly the size of the BEC region in that
range of values for the magnetic field. Yet, we can still see
an IMC effect happening also for the crossover, which is
shown in the inset in Fig. 4(b). However, this phenomenon
happens over a much smaller range of magnetic fields and
the variation of the critical baryon chemical potential is
much smaller than the one in the BEC transition. On the
other hand, for larger values of the magnetic fields, the
BEC region increases with the magnetic field, as indicated
by the rise of the critical chemical potential in Fig. 4(b).
The reduced IMC effect in the BEC-BCS crossover can be
qualitatively understood as a competition between mag-
netic catalysis, which always tends to increase the chiral
mass m (see Fig. 1), thus pushing the critical chemical
potential up, and the IMC, which tends to facilitate the BEC
transition. The overall result is an almost constant critical
chemical potential from small to moderate values of the
magnetic field and an increasing μBEC−BCSBc

afterwards.
Finally, note also the differences in behaviors for the

different regularization schemes seen in Fig. 4. Both
WS0.05 and Lor5 regularization schemes produce again
nonphysical oscillations similar to what we have seen
before in Fig. 1. It is important to remark that, for the
chosen parametrizations, there are no oscillations related to
the van Alphen–de Haas (vA-dH) effect in this model.
These oscillations do have a physical meaning and would
usually be expected to appear as a consequence of the

oscillations of the density of states near the Fermi surface.
In the present case they are not visible because Δ takes
rather large values in the crossover side, while in the BEC
side the effective quark mass remains also rather large. As a
consequence, the oscillations are washed away in both
cases. Studies have been reported in which the oscillations
are actually visible, owing to a smaller diquark coupling
[27,28] or because there are quark species that do not
participate in the pairing [as would occur in the 2SC phase
for color SU(3)], which have ordinary vA-dH oscillations,
which in turn produce oscillations indirectly on Δ [34].
In the later case, the quarks that are decoupled from the
diquark gap produce vA-dH transitions, which are related
to the change in population of Landau levels, and are nearly
vertical in the phase diagram for chemical potential and
magnetic field. Note also that the WS0.05 and Lor5 re-
gularization schemes always overestimate the values for
the critical baryon chemical potentials, both for the BEC
second-order diquark condensate phase transition and also
for the BEC-BCS crossover, with the difference increasing
with the magnetic field. The reason for this is the same as
already explained before with respect to the same behavior
seen in Fig. 1.

IV. INTERPRETING THE RESULTS

Let us better interpret the numerical results shown in the
previous section. For the numerical results presented in this
section, we restrict ourselves to showing only the MFIR
scheme for simplicity.
First, let us show that the condition used to determine the

BEC transition point remains valid. The transition point
was determined by setting the coefficient for the quadratic
term in the diquark field in Eq. (3.2) to zero, i.e., by making
α2ðm;B; μBECBc

=2Þ ¼ 0. This condition is, of course, only
valid if the transition is second order. We can verify that the
transition is in fact second order and remains so in a finite
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FIG. 4. Critical baryon chemical potential μB as a function of the magnetic field for (a) the diquark BEC phase transition and (b) the
BEC-BCS crossover, in the WS0.05, Lor5 and MFIR regularization schemes. The inset in panel (b) shows the region for IMC for the
MFIR case.
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magnetic field by analyzing the coefficient for the quartic
term in the diquark field in Eq. (3.2). If the quartic term is
positive for the values of magnetic field considered, i.e.,
α4ðm;B; μBECBc

=2Þ > 0 across the BEC transition, then the
transition remains second order.
In Fig. 5 we plot both α2ðm;B; μB=2Þ and α4ðm;B;

μB=2Þ for a reasonable range of chemical potentials and for
different values for the magnetic field. Note that on the
horizontal axis in Fig. 5 we are using the baryon chemical
potential normalized by the pion mass computed at a given
value of magnetic field, μB=mπðBÞ. The reason for pre-
senting the results this way will be fully justified below,
where we explicitly give the expression defining the pion
mass in a finite magnetic field, mπðBÞ. As is well known,
at B ¼ 0 the BEC transition for diquark condensation
happens at μB ¼ mπ. As shown in the previous section,
in the presence of a magnetic field the BEC transition tends
to happen for a different value for μB. The value for μB
where the transition happens can be either smaller, in the
case of IMC, or higher, as in the case where magnetic
catalysis (MC) becomes dominant, than in the case where
B ¼ 0. However, the BEC transition can be shown to
always happen at the value of the pion mass where it is
now determined at the given value of the magnetic field,
μB ¼ mπðBÞ. The plot in Fig. 5(a) indeed confirms this.
It shows that α2ðm;B; μB=2Þ ¼ 0 at μB ¼ mπðBÞ for all
values of magnetic field.
Finally, in Fig. 5(b), we also show that α4ðm;B; μB=2Þ

remains positive at the point where μB ¼ mπðBÞ and,
therefore, the BEC transition remains second order at finite
magnetic fields. We also notice from the results in Fig. 5
that α4 becomes negative for values of μB slightly higher
than the BEC transition point. But this does not indicate
that a first-order phase transition would follow the BEC
transition, since this happens where α2 is already negative.
Hence, no additional (local) vacuum values for the diquark
field can be generated.
The dependence of the critical chemical potential for the

BEC phase can be related to the magnetic field dependence

of the diquark mass md (at zero chemical potential). As the
diquark is an electrically neutral particle, its mass should be
insensitive to B to leading order, and it will mildly decrease
as B gets bigger. In the Nc ¼ 2 case we are dealing with,
at μ ¼ 0 the diquark is degenerated with π0 and we can
analyze what happens with md by looking at the neutral
pion mass [41]. As a side observation concerning this
degeneracy between the scalar diquarks with the neutral
pion, we can interpret it based on some symmetry argu-
ments satisfied by the model. Note that in the absence of the
magnetic field the symmetry group of the present NJL
model is Spð4Þ (see, e.g., Ref. [24] for associated analysis
in two-color QCD) with scalar diquarks and pions lying in
the corresponding five-dimensional irrep. This symmetry,
however, gets broken in the presence of the magnetic field,
since the charged particles acquire a different mass than the
neutral ones. Thus, the five-dimensional irrep goes to a
three-dimensional one for the neutral sector, containing the
two diquarks and the neutral pion.
The neutral pion mass decreases in real QCD, and it

justifies our IMC results shown in Fig. 4(a) (at least below
10m2

π). A similar situation is seen to happen in real QCD
with isospin chemical potentials (see, e.g., Ref. [42]),
where the BEC phase also contains charged pions. Accord-
ingly, the magnetic field enhances the critical chemical
potential, since the charged pion mass increases with B.
To further understand the IMC seen in the numerical

results shown in Fig. 4, we can first establish a relation
between the critical baryon chemical potential and the
effective mass for the (neutral) pion field. Note that in the
absence of the magnetic field the BEC transition happens at
μBECBc

¼ mπ , as is well known and explicitly seen from the
results of the previous section. As we have also shown
above, at a finite magnetic field this transition also remains
of second order. It is natural to then expect that the condition
for the transition, μBECBc

¼ mπ, remains valid also at finite
magnetic field values if we replace the vacuum pion mass by
its effective value at some magnetic field, i.e., mπðBÞ. Since
the BEC transition is for diquark condensation and the
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FIG. 5. The quadratic and quartic coefficients in the Ginzburg-Landau expansion for the thermodynamic potential, Eq. (3.2).
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diquarks are neutral here, we can try to relate the transition
point directly in terms of the neutral pion effective mass.
The effective pion mass is determined from its inverse

propagator, which in momentum space-time can be ex-
pressed as

Gπðp0; ~pÞ ¼ −
1

2G
− Ππðp0; ~pÞ; ð4:1Þ

where Ππðp0; ~pÞ is the self-energy contribution for the
pion, coming from a quark-antiquark loop at leading one-
loop order. Since we are interested in the pion mass, we
evaluate the self-energy in the rest frame, ~p ¼ 0 and then
set the energy at the mass shell, p0 ¼ mπ, wheremπ is to be
interpreted as the effective pion mass. The effective pion
mass is then determined by the pion pole condition,
Gπðp0 ¼ mπ; ~p ¼ 0Þ ¼ 0, or

1

2G
¼ −Ππðp0 ¼ mπ; ~p ¼ 0Þ: ð4:2Þ

In the rest frame and computed at zero temperature, the
one-loop self-energy for the pion in the present two-color
NJL model can be expressed as [43]

Ππðp0 ¼ mπ; ~p ¼ 0Þ

¼ 4Nc

Z
d3k
ð2πÞ3

Eþ
ΔE

−
Δ þ ϵþk ϵ

−
k þ Δ2

m2
π − ðEþ

Δ þ E−
ΔÞ2

�
1

Eþ
Δ
þ 1

E−
Δ

�
;

ð4:3Þ

where we have defined E�
Δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵ�k Þ2 þ Δ2

q
, ϵ�k ¼ Ek � μ

and Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, as also defined earlier in Sec. II. At

the BEC transition point for diquark condensation, we can
set Δ ¼ 0 in Eq. (4.3) and the pion pole condition becomes

1

2G
¼ 16Nc

Z
d3k
ð2πÞ3

Ek

4E2
k −m2

π
: ð4:4Þ

To introduce the magnetic field, we can follow the
prescription as given in Eq. (2.4), to then obtain that

1

2G
¼ 8Nc

Xd
f¼u

jqfjB
4π

X∞
l¼0

αl

Z þ∞

−∞

dk3
2π

Ek3;l

4E2
k3;l

−m2
π
: ð4:5Þ

An explicit derivation of the pion one-loop polarization
term at zero temperature and in an external magnetic field
can be found in Ref. [41]. In that work the authors evaluated
the masses of σ and π0, the π0 decay constant in the presence
of a magnetic field at vanishing temperatures and baryon
densities. In particular, they showed that the Gell-Mann–
Oakes–Renner relation remains valid in a magnetic medium.
We can now compare the pion pole condition (4.5)

with the one determining the BEC transition point, which
is determined by setting the coefficient of the quadratic
term in the diquark field in Eq. (3.2) to zero,
α2ðm;B; μBECBc

=2Þ ¼ 0. Using Eq. (3.3), we obtain that

α2ðm;B; μBECBc
=2Þ ¼ 0

¼ 1

4G
−
Nc

2

Xd
f¼u

jqfjB
4π

X∞
l¼0

αl

Z þ∞

−∞

dk3
2π

×

�
1

Ek3;l þ μBECBc
=2

þ 1

Ek3;l − μBECBc
=2

�
: ð4:6Þ

The above equation can be rewritten in the form
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FIG. 6. (a) Diquark condensate Δ and (b) effective quark mass m, both as a function of the baryon chemical potential μB in the MFIR
scheme. Here the pion mass used to rescale μB is a function of the magnetic field mπðBÞ.

TABLE II. The mass m and diquark Δ in the two phases of the
theory.

phase m Δ

μB < mπðBÞ mðB; 0Þ 0

μB ≥ mπðBÞ mðB; 0Þ½mπðBÞ
μB

�2 mðB; 0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½mπðBÞ

μB
�4

q
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1

2G
¼ 8Nc

Xd
f¼u

jqfjB
4π

X∞
l¼0

αl

Z þ∞

−∞

dk3
2π

Ek3;l

4E2
k3;l

− ðμBECBc
Þ2 :

ð4:7Þ
Comparing Eq. (4.5) with Eq. (4.7) it becomes clear that the
BEC condition for diquark condensation, μBECBc

¼ mπ , also
remains valid at finite magnetic field, i.e., μBECBc

¼ mπðBÞ,
where mπðBÞ is the solution of Eq. (4.5) along the BEC
transition.
In Fig. 6 we show our numerical results for the diquark

condensate Δ and for the effective quark mass m as a
function of μB for different values of the magnetic field.
Note that we have normalized μB with respect to mπðBÞ.
We can then observe that indeed the BEC transition always
happens at μBECBc

¼ mπðBÞ.
In Refs. [15,44] the authors showed analytically that the

“chiral rotation” behavior predicted by chiral perturbation

theories (ChPTs) [12,13,45] is valid in the NJL model near
the quantum phase transition. The ChPT results for the
diquark condensate and effective quark mass at B ¼ 0 can
be found for example in Table 3 of Ref. [24]. We have
verified that the relations found in the framework of ChPT
[24] at vanishing magnetic field are also very well satisfied
in our case at finite values of B. The relevant expressions
at finite B are given in Table II, where mðB; 0Þ ¼
mðB; μB ¼ 0Þ.
In Fig. 7 we numerically verify the validity of the

relations given in Table II at finite values of the magnetic
field. The difference between the approximate relations and
the numerical results are at the percentage level.
Having better understood the results for the BEC

transition, we can now move to the case of the
BEC-BCS crossover. The authors of Ref. [7] gave a very
simple approximate analytic expression for the position of
the BEC-BCS crossover [see, for instance, Eq. (40) in that
reference], which only depends on the constituent quark
mass and on the pion mass in the vacuum, μ0B ¼
½2mð0Þm2

π�1=3. We can show in the present study that a
similar expression also holds when accounting for the
magnetic field dependence of m and mπ . Moreover, we
have already proved analytically that μBECB ¼ mπðBÞ. Using
this relation, the properly extended version of Eq. (40)
given in Ref. [7], expressing both the effective quark mass
and pion mass as functions of the magnetic field,

μBEC=BCSB ðBÞ≃ ½2mðBÞm2
πðBÞ�1=3; ð4:8Þ

turns out to be valid for all the values of the magnetic
considered in the present work. In Fig. 8 we show our
numerical results for μBEC=BCSB ðBÞ and the analytical
expression obtained at finite B. It is clear that the result
(4.8) holds in the present study.
The expression (4.8) is particularly useful to better

understand the results of the previous section, shown in
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FIG. 7. (a) Diquark condensate Δ and (b) effective quark mass m, both as a function of the baryon chemical potential μB for
eB ¼ 10m2

π . Solid lines are evaluated with the MFIR scheme and dashed lines are for our analytical approximation.
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Fig. 4(b), as far as the behavior with the magnetic field is
concerned. For small/intermediate values of B, the decrease
of μBECB ðBÞ is basically compensated by the increase of the
effective quark mass that follows from the MC effect. At
around eB ¼ 10m2

π , both mπðBÞ and mðBÞ display a sharp
increase as a function of the magnetic field, leading to the
observed behavior of μBEC=BCSB ðBÞ.

V. CONCLUSIONS

In this work we studied the effect of the application of an
external magnetic field on the BEC-BCS crossover. The
model considered was the two-color NJL with diquark
interactions. When including magnetic fields, special
attention has to be paid to the regularization scheme used.
We have considered in our studies three forms of regulari-
zation: one with the Lorentzian form factor (Lor5), another
one using a Wood-Saxon form factor (WS0.05) and a
recently studied regularization procedure (MFIR) in which
the contributions that are explicitly dependent on the
magnetic field are finite and, thus, do not have to be
regularized. As shown in Ref. [34] in the two-flavor NJL
model and also here when a diquark interaction term is
included, the MFIR scheme fully prevents unphysical
oscillatory behavior from appearing in the physical quan-
tities, like in the condensates and in the critical chemical
potentials.
Our results show that there is an IMC effect in the critical

chemical potential for the BEC transition for diquark
condensation. This is clearly observed for magnetic fields
in the range 1≲ eB=m2

π ≲ 20. The critical chemical poten-
tial decreases during the IMC by at most 15%, favoring the
BEC transition. For larger values of the magnetic field, only
magnetic catalysis is observed, requiring larger chemical
potentials for the diquark condensation. With the further
increase of the chemical potential, the system reaches the
BEC-BCS crossover. The corresponding critical chemical
potential is very weakly affected by the magnetic field up to
values eB≃ 9m2

π . There is still an IMC happening also for
the crossover, but the phenomenon is much weaker than the
one seen in the BEC transition with diquark condensation.
The critical chemical potential for the crossover decreases
at most by only 1.5%. For larger magnetic fields,
eB≳ 9m2

π , the BEC-BCS crossover does however exhibit
a magnetic catalysis effect. Thus, strong magnetic fields
tend to strengthen the BEC region, once the difference
μB=2 −m becomes positive at a higher value of μB.
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APPENDIX: THE MFIR SCHEME

Let us briefly describe the MFIR scheme applied to the
thermodynamic potential (2.5). We follow closely the
procedure shown in Ref. [34], where the interested reader
can find more details.
Let us consider the contribution of each flavor to the

second term in Eq (2.5). It reads

If ¼ jqfjB
2π

X
s¼�1

X∞
l¼0

αl

Z þ∞

−∞

dk3
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk3;l þ sμÞ2 þ Δ2

q
:

ðA1Þ

Summing and subtracting a similar expression but where μ
is set to zero, we get

If ¼
jqfjB
2π

X∞
l¼0

αl

Z þ∞

−∞

dk3
2π

Fðk23 þ 2ljqfjBÞ

þ jqfjB
π

X∞
l¼0

αl

Z þ∞

−∞

dk3
ð2πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k3;l

þ Δ2
q

; ðA2Þ

where Fðz2Þ was defined in Eq. (2.10).
By adding and subtracting its form at vanishing mag-

netic field, the first term on the right-hand side of Eq. (A2)
results in

jqfjB
2π

X∞
l¼0

αl

Z þ∞

−∞

dk3
2π

Fðk23 þ 2ljqfjBÞ

¼ 2

Z
d3k
ð2πÞ3 Fð

~k2Þ þ jqfjB
ð2πÞ

Z þ∞

−∞

dk3
ð2πÞFðk

2
3Þ

þ 2jqfjB
2π

Z þ∞

−∞

dk3
2π

�X∞
l¼1

Fðk23 þ 2ljqfjBÞ

−
Z

∞

0

dyFðk23 þ 2yjqfjBÞ
�
; ðA3Þ

where in the last term of the above expression we have

used cylindrical coordinates, ~k≡ ðkρ; kθ; k3Þ, performed
the angular integration and defined the new variable
y ¼ k2ρ=ð2jqfjBÞ.
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The second term on the right-hand side of Eq. (A2)
can be evaluated using the method discussed in Ref. [26].
We get

jqfjB
π

X∞
l¼0

αl

Z þ∞

−∞

dk3
ð2πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k3;l

þ Δ2
q

¼ 4

Z
d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2 þ Δ2

p

þ ðjqfjBÞ2
π2

�
ζ0ð−1; xfÞ −

1

2
ðx2f − xfÞ lnðxfÞ þ

x2f
4

�
;

ðA4Þ
where xf ¼ ðm2 þ Δ2Þ=ð2jqfjBÞ and ζ0ðs; aÞ is the s
derivative of the Hurwitz zeta function [46].
Replacing Eqs. (A3) and (A4) in Eq. (A2) and using the

definition of Fðz2Þ, Eq. (2.10), we get

If ¼ 2
X
s¼�1

Z
d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk þ sμÞ2 þ Δ2

q

þ ðjqfjBÞ2
π2

�
ζ0ð−1; xfÞ −

1

2
ðx2f − xfÞ lnðxfÞ þ

x2f
4

�

þ jqfjB
2π2

Z
∞

0

dk3

�X∞
l¼0

αlFðk23 þ 2ljqfjBÞ

− 2

Z
∞

0

dyFðk23 þ 2yjqfjBÞ
�
: ðA5Þ

The first term in Eq. (A5) is exactly the B ¼ 0 contribution.
It is divergent, but it can now be handled through standard
methods, e.g., using a three-dimensional cutoff. At the
same time, all the remaining terms in Eq. (A5) depending
on the magnetic field are finite. Summing over flavors and
using Eq. (2.3) we get Eq. (2.9).
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