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In this paper, we continue to pursue the question of whether gauge theories can be represented in terms of
effective “scalar” degrees of freedom. We provide such a consistent representation for a free photon theory
in 3þ 1 dimensions. Building on results of [Phys. Rev. D 88, 125004 (2013), we construct a Lagrangian
with a four-derivative kinetic term and demonstrate that, despite the seeming nonlinearity of the theory, it is
equivalent to a theory of a free photon.
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I. INTRODUCTION

In a recent paper [1], we constructed an effective theory
of scalar fields in 3þ 1 dimensions with certain features
that could potentially mimic the low-energy limit of
gluodynamics. The idea was based on the known relation
between confinement and ZN symmetry in 2þ 1 dimen-
sions [2,3]. Although the main aim of this construction was
to explore possible low-energy representation of non-
Abelian theories, a certain limit of the construction should
encompass an Abelian gauge theory and its simplest
limit—the theory of a free photon [3].
The construction of Ref. [1], despite having some useful

features, failed to describe this Abelian limit exactly. In this
paper, we rectify this problem. We modify the Abelian limit
of the model of Ref. [1] and demonstrate that the modified
model is exactly equivalent to a theory of the free photon.
The Abelian limit of the model of [1] can be written as

L ¼ 1

4
fμνfμν ¼ −

1

2
ð~e2 − ~b2Þ; ð1Þ

with ei ¼ fi0 and bi ¼ 1
2
ϵijkfjk (fij ¼ ϵijkbk) and fμν

defined as

fμν ¼ gϵμναβϵabcϕa∂αϕb∂βϕc; ð2Þ

where the scalar fields ϕa, a ¼ 1, 2, 3 are constrained by
ϕaϕa ¼ 1. This model was previously discussed in Ref. [4].
There as well as in Ref. [1], it was shown that, despite some
similarities, it fails to describe a free photon primarily
because the magnetic field is not required to be divergence-
less ∂ibi ≠ 0.
To rectify this problem, we now consider the setup

L ¼ 1

4
FμνFμν ¼ −

1

2
ð~E2 − ~B2Þ ð3Þ

Fμν ¼ gϵμναβ½ϵabcϕa∂αϕb∂βϕc þ ðn · ∂Þnα∂βΦ�; ð4Þ

where n ¼ ð1; 0; 0; 0Þ is a timelike unit vector and Φ is an
additional scalar field [5].

The presence of an explicit timelike vector seems to
render the model not Lorentz invariant. However, as wewill
see below, this is not quite the case. The model does possess
a Lorentz-invariant superselection sector, and it is this
sector that is equivalent to QED.
In this paper, we discuss how this modification changes

the model in the Abelian limit. We will show that the theory
has the same canonical structure as free electrodynamics.
This includes the commutation relations between “electric”
and “magnetic” fields as well as the Hamiltonian. The
model is therefore equivalent to a theory of a free photon,
even though it is not formulated in terms of the vector
potential. We also discuss the action of Lorentz trans-
formations on the basic degrees of freedom of the model.
We show explicitly that the fields ϕi are not covariant scalar
fields but rather have an “anomalous” term in their Lorentz
transformation law. With this modification, we show that
the model is indeed Lorentz invariant.

II. EQUATIONS OF MOTION AND
CANONICAL STRUCTURE

A. Equations of motion

Let us define two independent fields χ and z via ϕ3 ¼ z
and ϕ1 þ iϕ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
eiχ . The electromagnetic field can

now be written as

Fμν ¼ ϵμναβ½−2∂βχ∂αzþ nα∂β∂0Φ� ð5Þ

or component by component,

Ei ¼ 2ϵijk∂jz∂kχ ð6Þ

Bk ¼ ½2ð∂kχ∂0z − ∂0χ∂kzÞ − ∂k∂0Φ�: ð7Þ

The Lagrangian equations of motion that follow from the
Lagrangian Eq. (3) are

∂0∂k½Fijϵ
ij0k� ¼ 0 ¼ ∂0∂kBk ð8Þ
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∂βχ∂αðFμνϵ
μναβÞ

¼ 0 ¼ ∂kχ∂αðFμνϵ
μναkÞ ¼ ∂kχð∂0Bk þ ð∂ × EÞkÞ ð9Þ

∂βz∂αðFμνϵ
μναβÞ

¼ 0¼ ∂kz∂αðFμνϵ
μναkÞ ¼ ∂kzð∂0Bk þ ð∂ ×EÞkÞ: ð10Þ

Equation (8) is a local conservation equation of a
“magnetic charge density” ∂kBk. It ensures that the
Hilbert space of the theory is divided into “superselection
sectors” with a fixed value of the magnetic charge density.
To preserve translational invariance, we limit ourselves to
the sector with ∂kBk ¼ 0. Our considerations in the rest of
this paper pertain to this superselection sector alone.
Using this constraint on the magnetic field, Eqs. (9) and

(10) can be inverted, with the result [6]

∂0Bk þ ð∂ × EÞk ¼ 0: ð11Þ

Recall that with the field strength components given by
Eq. (5) the equation

∂μFμν ¼ 0 ð12Þ

is satisfied identically. We thus have the full set of
Maxwell’s equations.

B. Hamiltonian

We now demonstrate that the Hamiltonian and the
canonical commutation relations of the electromagnetic
fields in our model are identical to those in pure QED.
The canonical momenta can be calculated from Eq. (5) as

pz ¼
δL
δ∂0z

¼ Fijϵ
ij0k∂kχ ¼ 2Bk∂kχ

¼ 2∂kχ½2ð∂kχ∂0z − ∂0χ∂kzÞ − ∂k∂0Φ� ð13Þ

pχ ¼
δL
δ∂0χ

¼ Fijϵ
ijk0∂kz ¼ −2Bk∂kz

¼ −2∂kz½2ð∂kχ∂0z − ∂0χ∂kzÞ − ∂k∂0Φ� ð14Þ

pΦ ¼ δL
δ∂0Φ

¼ 1

2
∂kðFijϵ

ij0kÞ ¼ ∂kBk

¼ ∂k½2ð∂kχ∂0z − ∂0χ∂kzÞ − ∂k∂0Φ�: ð15Þ
It is a straightforward matter to express the time derivative
of χ and z as

_χ ¼ 1

E2
½pzðzχÞ þ pχχ

2 þ ϵijk _ΦiEjχk� ð16Þ

_z ¼ 1

E2
½pzz2 þ pχðzχÞ þ ϵijk _ΦiEjzk�: ð17Þ

The time derivative of Φ is related to canonical momenta
via

pΦ ¼ ∂k

�
1

E2
ϵklmElðpzzm þ pχχmÞ −

1

E2
EkEi

_Φi

�
ð18Þ

or in terms of a “vector potential,”

Ak ¼
1

E2
ϵklmElðpzzm þ pχχmÞ; ð19Þ

as

pΦ ¼ ∂kðAk − ÊkÊi
_ΦiÞ: ð20Þ

The Hamiltonian is then calculated as

H ¼
Z

d3x½pz _zþ pχ _χ þ pΦ
_Φ − L� ¼

Z
d3x

1

2
ðE2 þ B2Þ;

ð21Þ

where we have neglected a boundary term,
R
d3x∂kðBk

_ΦÞ.

C. Canonical structure

To show that our model is equivalent to QED, we need to
make sure that the canonical commutation relations of Ei
and Bi are identical in the two theories.
First of all, since all components of the electric field in

our model are functions only of coordinates and not
canonical momenta, they commute with each other:

½EiðxÞ; EjðyÞ� ¼ 0: ð22Þ

Our next goal is to calculate the commutator between the
electric and magnetic fields. To do that, we set pΦ ¼ 0, as
we are only interested in this superselection sector of the
theory. Then, Eq. (20) becomes

∂kAk

E
¼ Êk∂k

�
Êi

_Φi

E

�
; ð23Þ

where we have used ∂kEk ¼ 0.
The formal solution of this equation can be obtained as

Êi
_Φi ¼ EðxÞ

Z
x

−∞
dlC

∂kAk

E
; ð24Þ

where the integral is along the contour C, which starts at x
and goes to infinity (boundary of space). The contour is
everywhere parallel to the direction of the electric field.
Using the definition, we have

Bk ¼ Ak − Ek

Z
x

−∞
dlC

∂mAm

E
: ð25Þ

As an intermediate step for the calculation of the commu-
tator ½E;B�, we consider
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½EiðxÞ; AkðyÞ� ¼ 2i
ElðyÞ
E2ðyÞ ϵiabϵklm½∂

x
aδðx − yÞχbðxÞzmðyÞ þ ∂x

bδðx − yÞzaðxÞχmðyÞ�

¼ 2i
ElðyÞ
E2ðyÞ ϵiabϵklm∂

x
aδðx − yÞ½χbðyÞzmðyÞ − zbðyÞχmðyÞ�

¼ iÊlðyÞÊcðyÞϵiabϵklmϵcmb∂x
aδðx − yÞ ¼ i½ϵiak − ÊbðyÞÊkðyÞϵiab�∂x

aδðx − yÞ: ð26Þ

Using this, we can calculate

½EiðxÞ; BkðyÞ� ¼ ½EiðxÞ; AkðyÞ� − EkðyÞ
Z

y

−∞
dlC

∂t
m½EiðxÞ; AmðtÞ�

EðtÞ
¼ ½EiðxÞ; AkðyÞ� − EkðyÞ

Z
y

−∞
dlC

1

EðtÞ ∂
t
m½ðϵiam − ÊbðtÞÊmðtÞϵiabÞ∂x

aδðx − tÞ�

¼ ½EiðxÞ; AkðyÞ� þ EkðyÞ
Z

y

∞
dlCÊmðtÞ∂t

m

�
ÊbðtÞ
EðtÞ ϵiab∂x

aδðx − tÞ
�

¼ iϵiak∂x
aδðx − yÞ. ð27Þ

Here we have used the fact that the integration contour C is
defined to run in the direction of electric field and have
assumed that the fields decrease fast enough at the
boundary. The commutator Eq. (27) coincides with the
corresponding commutator in QED.
We now turn to the commutator of components of

magnetic fields. It is straightforward to show that
½BiðxÞ; BaðyÞ� ¼ 0 as long as the curve Cx that defines
BiðxÞ in Eq. (25) does not contain the point y and Cy does

not contain x. When this condition is not met, the direct
calculation of the commutator is not straightforward.
Instead of attempting it, we take an indirect way. A set
of relations that involve the commutator in question is
easily obtained. Consider, for instance,

½BiðxÞ∂iχðxÞ; BjðyÞ∂jzðyÞ� ¼ ½pzðxÞ; pχðyÞ� ¼ 0: ð28Þ

Trivially,

BiðxÞ∂jzðyÞ½∂iχðxÞ; BjðyÞ� þ BjðyÞ∂iχðxÞ½BiðxÞ; ∂jzðyÞ� þ ∂iχðxÞ∂jzðyÞ½BiðxÞ; BjðyÞ�

¼
�
BiðxÞ∂jzðyÞ∂ðxÞ

i

∂AjðyÞ
∂pχðxÞ

− BjðyÞ∂iχðxÞ∂ðyÞ
j

∂AiðxÞ
∂pzðyÞ

�
þ ∂iχðxÞ∂jzðyÞ½BiðxÞ; BjðyÞ�

¼ ðBiðyÞ∂ðxÞ
i δðx − yÞ þ BiðxÞ∂ðyÞ

i δðx − yÞÞ þ ∂iχðxÞ∂jzðyÞ½BiðxÞ; BjðyÞ�
¼ ∂iχðxÞ∂jzðyÞ½BiðxÞ; BjðyÞ� ¼ 0: ð29Þ

Here, we used the fact that Ekzk ¼ Ekχk ¼ 0 and the constraint ∂iBi ¼ 0. Similarly,

∂izðxÞ∂jzðyÞ½BiðxÞ; BjðyÞ� ¼ ∂iχðxÞ∂jχðyÞ½BiðxÞ; BjðyÞ� ¼ 0; ð30Þ
a nd by ∂kBk ¼ 0, we have

∂izðxÞ∂y
j ½BiðxÞ; BjðyÞ� ¼ ∂iχðxÞ∂y

j ½BiðxÞ; BjðyÞ� ¼ ∂x
i ∂y

j ½BiðxÞ; BjðyÞ� ¼ 0: ð31Þ
Thus, the commutator matrixMijðx; yÞ≡ ½BiðxÞ; BjðyÞ�, antisymmetric under the exchange ði; xÞ ↔ ðj; yÞ, satisfies the set
of Eqs. (29)–(31). The general solution for these equations is given by

Mijðx; yÞ ¼ EiðxÞFjðyÞ − EjðyÞFiðxÞ; ð32Þ
where FiðxÞ is an arbitrary function. However, we have already established that if x does not belong to Cy and y does not
belong to Cx, then Mijðx; yÞ ¼ 0. This unambiguously fixes FiðxÞ ¼ 0 so that we have

½BiðxÞ; BjðyÞ� ¼ 0 ð33Þ

for all x; y.

PHOTONS WITHOUT VECTOR FIELDS PHYSICAL REVIEW D 93, 025015 (2016)

025015-3



III. LORENTZ TRANSFORMATIONS
OF THE FIELDS

The final point we address is the Lorentz transformation
properties of the fields z and χ. Since the electric and
magnetic fields are covariant components of the Lorentz
tensor, it is clear that z and χ cannot be covariant scalar
fields. The transformations of z and χ under rotations are
the same as those of covariant fields, and we will not deal
with those here.
Let us parametrize the infinitesimal Lorentz transforma-

tion properties of these fields in the following way:

zðxÞ → zðΛ−1xÞ ¼ ð1þ βΔÞzðxÞ þ a

χðxÞ → χðΛ−1xÞ ¼ ð1þ βΔÞχðxÞ þ b

ΘðxÞ≡ ∂0Φ → ΘðΛ−1xÞ ¼ ΘðxÞ þ c: ð34Þ

Here, β is the boost parameter, andΔ≡ ωμ
νxν∂μ with ω

μ
ν—

an antisymmetric generator of Lorentz transformation. In
particular, for a boost in the direction of a unit vector n̂,
ωi
0 ¼ n̂i. The noncanonical terms a, b, and c are to be

determined such that Fμν transforms as a tensor.
For simplicity, let us consider explicitly a boost trans-

formation in the first direction, n̂ ¼ ð1; 0; 0Þ. The trans-
formation of the components of the field strength tensor is

E2ðxÞ → E2ðΛ−1xÞ − βB3ðΛ−1xÞ; ð35Þ

on the other hand, writing this in terms of z, χ, and Θ, we
have

E2ðxÞ ¼ 2½∂3zðxÞ∂1χðxÞ − ∂1zðxÞ∂3ðxÞ�
→ 2½∂3zðΛ−1xÞ∂1χðΛ−1xÞ − ∂1zðΛ−1xÞ∂3ðΛ−1xÞ�:

ð36Þ

Equating the two, we obtain

−β∂3Θþ 2½∂3z∂1bþ ∂3a∂1χ − ∂1z∂3b − ∂1a∂3χ� ¼ 0:

ð37Þ

Similarly, by considering the transformation of E1, we
obtain

2ð∂2z∂3bþ ∂2a∂3χ − ∂3z∂2b − ∂3a∂2χÞ ¼ 0 ð38Þ

and for E3

β∂2Θþ 2½∂1z∂2bþ ∂1a∂2χ − ∂2z∂1b − ∂2a∂1χ� ¼ 0:

ð39Þ

Defining for convenience fi ¼ 2ða∂iχ − b∂izÞ and
ui ¼ ð0; β∂3Θ;−β∂2ΘÞ, the above equations can be
written as

ϵijk∂jfk ¼ ui: ð40Þ

The general solution for f is

fi ¼ −
ϵijk∂juk

∂2
þ ∂i

~λ

¼ βn̂iΘþ ∂iλ; ð41Þ

where

~λ − β
n̂i∂i

∂2
Θ ¼ λ; ð42Þ

where the function λ still has to be determined.
We can now solve Eq. (41) for a and b by noting that

Eq. (41) is identical to Eq. (7) with the substitution

∂0z → a

∂0χ → b

∂0Φ → λ

Bk → βΘn̂k: ð43Þ

Using Eqs. (16) and (17), we find

a ¼ 1

E2
ðβΘn̂i þ λiÞϵijkEjzk

b ¼ 1

E2
ðβΘn̂i þ λiÞϵijkEjχk: ð44Þ

With this, Eq. (41) yields the equation for λ,

EiðβΘn̂i þ ∂iλÞ ¼ 0; ð45Þ

from which we get

λðxÞ ¼ −β
Z

x

∞
dlCÊin̂iΘ; ð46Þ

where again C is a curve in the direction of E.
To determine the remaining function c, we consider the

transformation of the magnetic field. For the transformation
of the magnetic field, we have

B1ðxÞ → B1ðΛ−1xÞ
¼ 2½∂1χðΛ−1xÞ∂0ðΛ−1xÞ
− ∂0χðΛ−1xÞ∂1zðΛ−1xÞ� − ∂1ΘðΛ−1xÞ; ð47Þ

which yields

2½∂1χ∂0aþ ∂1b∂0z − ∂0χ∂1a − ∂0b∂1z�
− ∂1cþ βΔ∂1Θ ¼ 0: ð48Þ

Similarly, the transformation of B2 and B3 yields
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2½∂2χ∂0aþ ∂0z∂2b − ∂0χ∂2a − ∂2z∂0b�
− ∂2cþ βΔ∂2Θ ¼ 0

2½∂3χ∂0aþ ∂0z∂3b − ∂0χ∂3b − ∂3z∂0b�
− ∂3cþ βΔ∂3Θ ¼ 0: ð49Þ

These can be written as a single vector equation,

∂0fi − ∂if0 − ∂icþ βΔ∂iΘ ¼ 0: ð50Þ

Using Eq. (41), this can be written as

∂i½∂0λ − f0 − cþ βΔΘ� ¼ 0; ð51Þ

yielding

c ¼ 2ða∂0χ − b∂0zÞ − ∂0λ − βΔΘ

¼ β

�
2

E2
ϵijkEjð∂0χzk − ∂0zχkÞ

�
Θn̂i − ∂i

Z
x

∞
dlCÊln̂lΘ

�

þ ∂0

Z
x

∞
dlCÊin̂iΘ − ΔΘ

�
: ð52Þ

Thus, we find that the fields z, χ, and Φ under a Lorentz
boost transform according to Eq. (34) with a, b, and c given
in Eqs. (44), (46), and (52).

IV. DISCUSSION

In this paper, we have amended the model suggested
previously as a candidate for the effective description of a
gauge theory. We have considered only the Abelian limit in
which the model is equivalent to a theory of a free massless
photon. We have proven this equivalence by considering
the canonical structure of the theory. We have also shown
that the basic fields of our model have interesting Lorentz
transformation properties.
We note that the modification discussed here also solves

a certain puzzle posed by the suggestion of Ref. [1].
Namely, the model discussed in Ref. [1] possessed a global
symmetry generated by

CF ¼
Z

d3x

�
pz

∂G½z; χ�
∂χ − pχ

∂G½z; χ�
∂z

�
ð53Þ

for an arbitrary function of two variables G½z; χ�. These
transformations constitute a group of area-preserving

diffeomorphisms on a sphere. The electric and magnetic
fields e and b were invariant under the action of this group.
That in fact suggested that the theory had some degrees of
freedom in addition to the electrodynamic ones, since the
action of the transformation generated by Eq. (53) on the
full phase space of the theory was nontrivial. However, now
the direct consequence of Eqs. (13), (14), and (15) is that
the generator of this transformation vanishes,

CF ¼ 0; ð54Þ

and thus there are no physical degrees of freedom that
transform nontrivially under Eq. (53). Thus, in the present
model, the group of (global) diffeomorphisms SdiffðS2Þ is
in fact a global gauge symmetry; that is, the states are
invariant under the action of CF, and what used to be extra
degrees of freedom in Ref. [1] now becomes an unphysical
“gauge” coordinate. This ensures that electric and magnetic
fields are the only physical degrees of freedom.
Since here we are dealing with the theory of a free

photon, the charged states are not present. It should be,
however, straightforward to extend this discussion to
include electrically charged states. Just like in Ref. [1],
we should lift the constraint of constant length of the field
ϕa and instead allow dynamics of the modulus ϕ2. This will
regulate the energy of the charged states in the UVand will
make it finite. Since the configuration space of the model is
SOð3Þ × R, and the SOð3Þ symmetry is broken toOð2Þ, the
moduli space should have nontrivial homotopy group
Π2ðMÞ ¼ Z, and the relevant topological charge should
be identifiable with the electric charge [7].
The next set of questions to be addressed is how to move

in this theory to the non-Abelian regime. According to the
logic of Ref. [1], we need to find a perturbation that breaks
the global symmetries of the model and through this
breaking generates linear potential between the charges.
The question one has to address is whether this perturbation
has to preserve the SdiffðS2Þ gauge symmetry or if it should
break it explicitly. This global gauge symmetry is a new
element compared to 2þ 1 dimensions [3], and we do not
have any guidance from the 2þ 1-dimensional models.
Perhaps one should deal directly with the breaking of the
generalized magnetic symmetry—the symmetry generated
by the magnetic flux [8,9] in terms of its order parameter,
the ’t Hooft loop [2]. These questions will be addressed in
future work.
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