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Abelian gauge theory in d ≠ 4 spacetime dimensions is an example of a scale-invariant theory which
does not possess conformal symmetry—the special conformal transformation (SCT) explicitly breaks the
gauge invariance of the theory. In this work, we construct a nonlocal gauge-invariant extension of the SCT,
which is compatible with the BRST formalism and defines a new symmetry of the physical Hilbert space of
the Maxwell theory for any dimension d ≥ 3. We prove the invariance of the Maxwell theory in d ≥ 3 by
explicitly showing that the gauge-invariant two-point correlation functions, the action, and the classical
equation of motion are unchanged under such a transformation.
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I. INTRODUCTION

Conformal field theories (CFT) are of great interest in
physics research since conformal symmetry appears to be
an underlying fundamental property of nature. In a second-
order phase transition, the divergence of correlation length
implies that a theory is scale invariant at the critical point.
In fact, the theory at the critical point almost always
possesses a larger symmetry than scale invariance—the
conformal symmetry. In perturbative string theory, con-
formal invariance of the world-sheet action is crucial for
consistency of the theory. The AdS/CFT correspondence
provides new insights into the nonperturbative domain of
quantum field theories, such as QCD, thus also promotes
the significance of CFT [1].
CFTs have been studied extensively in d ¼ 2 spacetime

dimensions due to the powerful conformal group algebra
specific to d ¼ 2. However, the operation of conformal
transformations in d ≥ 3 has not been fully understood. For
instance, the relation of scale invariance and conformal
invariance is unclear in general dimensions. In d ¼ 2,
Zamolodchikov and Polchinski showed that scale invari-
ance guarantees conformal invariance in a unitary theory
[2,3]. For d ≥ 3, unitary theories which exhibit scale
invariance usually are conformally invariant; however, a
general proof that scale implies conformal invariance has
not been discovered. In fact, a few counterexamples are
known [4–6].
One simple counterexample of a unitary scale-invariant

theory which is not conformally invariant in general
dimensions is the free Maxwell theory, where

LðxÞ ¼ −
1

4
FμνðxÞFμνðxÞ: ð1Þ

This theory is known to break conformal invariance in
d ≠ 4 due to the nonvanishing trace of the stress-energy
tensor. Interestingly, El-Showk et al. argued that the con-
formal invariance of the Maxwell theory in d ≠ 4 can be
restored in a specific ξ-gauge with ξ ¼ d=ðd − 4Þ using the
Faddeev-Popov procedure [6]. Nevertheless, there is a
difficulty in this construction: the special conformal trans-
formation (SCT) maps physical states to zero-norm states
which are unphysical in the BRST Hilbert space. Thus, the
conformal invariance in this theory cannot be understood as
a property of the physical sector of the theory alone, i.e., the
unitary gauge-invariant Maxwell theory.
On the other hand, El-Showk et al. showed that the

two-point correlation function of the field strength Fμν is
conformally invariant. Evidently the correlation function of
the field strength is gauge invariant, so if it is SCT invariant
under a certain ξ gauge, it should also be invariant in any
gauge. It is thus intriguing to ask, if the original conformal
invariance is not present in the physical Maxwell theory,
why is the physical correlation function still invariant under
such transformations?
In this paper, we define a nonlocal gauge-invariant

extended special conformal transformation (ESCT), in
which the field strength transforms in a similar but
gauge-invariant way. It is compatible with the BRST
formalism, and only maps between states within the
physical Hilbert space, in contrast to the usual SCT [7].
In fact, we shall demonstrate that the operation of the ESCT
reveals a symmetry of the free Maxwell theory in d ≥ 3 by
showing that the action, the classical equation of motion
(EOM), and physical two-point correlation functions are all
invariant under the ESCT.
The paper is organized as follows: In Sec. II, we briefly

remind the readers how conformal transformations act both
on coordinates and fields in d ≥ 3. In Sec. III, we review
why the classical Maxwell theory is not conformally
invariant. We then move on to the quantum version, and
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by studying the BRST Hilbert space, we show that the SCT
is not compatible with gauge invariance of the theory since
it mixes physical states with the unphysical ghost degrees
of freedom. In Sec. IV, we employ a method of decom-
posing the gauge field and explicitly compute how the SCT
operator acts on physical and unphysical components.
It is important to avoid mixing between physical and

unphysical degrees of freedom present induced by the SCT,
thus in Sec. V, following the gauge field decomposition, we
define an ESCTwhich commutes with the BRST generator
and only acts within the physical sector. We then prove the
ESCT invariance of both the classical and quantum
Maxwell theory. Finally, we conclude in Sec. VI.

II. CONFORMAL TRANSFORMATION

An infinitesimal coordinate transformation xμ → x0μ ¼
xμ þ ϵμðxÞ generated by the connected part of the con-
formal group preserves the metric up to a scale factor λðxÞ:
g0μνðx0Þ ¼ λðxÞgμνðxÞ, where gμν ¼ diagð1;−1;−1;…Þ is
the flat spacetime metric.
By requiring that a coordinate transformation be con-

formal, we must have [8]

∂μϵν þ ∂νϵμ ¼
2

d
gμν∂ · ϵ: ð2Þ

It can be shown that for d ≥ 3, only terms up to x2 are
allowed in ϵðxÞ. There are four classes of solutions [9]:

(i) Translation: ϵμðxÞ ¼ aμ, where aμ is a constant.
(ii) Lorentz transformation: ϵμðxÞ¼ωμ

νxν, ωμν ¼ −ωνμ.
(iii) Scaling (dilatation): ϵμðxÞ ¼ σxμ.
(iv) Special conformal transformation (SCT): the SCT

can be understood as the series of operations
(inversion → translation → inversion):

xμ →
xμ

x2
→

xμ

x2
− cμ →

xμ

x2 − cμ

ðxμx2 − cμÞ2 ¼ x0μ: ð3Þ

Expanding the result to first order, we obtain the
infinitesimal SCT

ϵμðxÞ ¼ 2c · xxμ − cμx2; ð4Þ

and

∂x0μ
∂xν ¼ ð1þ 2c · xÞδμν þ ð2xμcν − 2xνcμÞ: ð5Þ

Thus, the SCT can be interpreted as a combination
of a position-dependent scaling and a Lorentz
rotation.
For convenience, for the SCT, we define

δσxμ ≡ δϵμðxÞ
δcσ

¼ 2xσxμ − gσμx2: ð6Þ

In d ≥ 3, translation, rotation, dilatation, and the SCT
together form the SOðd; 2Þ conformal group. In addition,
one can express an infinitesimal conformal transfor-
mation as

∂x0μ
∂xν ¼ δμν þ σðxÞδμν þ ωμ

νðxÞ; ð7Þ

where

σðxÞ ¼
8<
:

0 translation and rotation
σ dilatation
2c · x SCT

ð8Þ

and

ωμ
νðxÞ¼

(
0 translation and dilatation
ωμ

ν rotation
2xμcν−2xνcμ SCT

ð9Þ

With the appropriate σðxÞ and ωμνðxÞ as defined in (8) and
(9) for each transformation, a conformal transformation
acts on a field with spin-J as

ϕ0Aðx0Þ ¼ ϕAðxÞ − σðxÞ▵ϕAðxÞ þ 1

2
ωμνðxÞðΣμνÞABϕBðxÞ

¼ ϕAðx0 − ϵÞ − σðx0 − ϵÞ▵ϕAðx0 − ϵÞ

þ 1

2
ωμνðx0 − ϵÞðΣμνÞABϕBðx0 − ϵÞ; ð10Þ

where ▵ is the specific scale dimension pertaining to the
field, and ðΣμνÞAB is the spin-J matrix representation.
Therefore, to first-order approximation, we can deduce

the infinitesimal field transformation rule

δϕAðxÞ≡ ϕ0AðxÞ − ϕAðxÞ
¼ −∂αϕ

AðxÞϵαðxÞ − σðxÞ▵ϕAðxÞ

þ 1

2
ωμνðxÞðΣμνÞABϕBðxÞ: ð11Þ

In particular, for a spin-1 vector field VμðxÞ,

▵ ¼ d − 2

2
and ðΣμνÞAB ¼ gμAδνB − δμBgνA: ð12Þ

Thus, under the SCT, we have

δσVμðxÞ ¼ ðx2∂σ − 2xσx · ∂ − ðd − 2ÞxσÞVμðxÞ
þ 2xμVσðxÞ − 2gσμx · VðxÞ: ð13Þ
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III. IS MAXWELL THEORY CONFORMALLY
INVARIANT?

A. Classical Maxwell theory

In this section, we review the literature on the conformal
symmetry of classical Maxwell theory.
The free Maxwell theory, with the Lagrangian density

LðxÞ ¼ −
1

4
FμνðxÞFμνðxÞ; ð14Þ

is known to have scale invariance in any dimension.
To see whether or not the classical theory is also

conformally invariant, we will calculate how the
Lagrangian transforms under the SCT. If the change of
LðxÞ in (14) can be written as a total derivative, then the
action will be conformally invariant.
Let us first consider the SCT on the field strength

FμνðxÞ ¼ ∂μAνðxÞ − ∂νAμðxÞ. Recall that in a scalar field
theory, ∂μϕðxÞ, the derivative of the primary scalar field,
would not transform as a primary vector under the SCT.
The SCT on ∂μϕðxÞ is defined such that the partial
derivative acts only after the SCT acts on the primary
field ϕðxÞ; hence δσð∂μϕðxÞÞ≡ ∂μðδσϕðxÞÞ. Analogously,
since Fμν is a descendant of the primary vector field Aμ, it
would not transform as a primary 2-form under the SCT.
The SCT on Fμν is defined as δσFμνðxÞ≡ ∂μδσAνðxÞ−
∂νδσAμðxÞ, where again, derivatives acts after the SCT on
AμðxÞ. Thus, by using the infinitesimal transformation for
AμðxÞ,

δσAμðxÞ ¼ ðx2∂σ − 2xσx · ∂ − ðd − 2ÞxσÞAμðxÞ
þ 2xμAσðxÞ − 2gσμx · AðxÞ; ð15Þ

one deduces the SCT on FμνðxÞ [10]:

δσFμνðxÞ ¼ ∂μδσAνðxÞ − ∂νδσAμðxÞ
¼ ðx2∂σ − 2xσx · ∂ − dxσÞFμνðxÞ þ 2xμFσνðxÞ
− 2xνFσμðxÞ þ 2gσμxαFναðxÞ − 2gσνxαFμαðxÞ
þ ðd − 4Þ½gσνAμðxÞ − gσμAνðxÞ�: ð16Þ

The last term shows explicitly that Fμν does not transform
as a primary field in d ≠ 4. Moreover, the SCT of
the physical observable strength Fμν is gauge dependent
for d ≠ 4.
In fact, the gauge noninvariance of (16) cannot be

compensated by modifying the usual SCT with an addi-
tional associated infinitesimal gauge transformation. To see
this, let us assume the following modified transformation as
a trial:

δ0σAμ ≡ δσAμ þ ∂μασ; ð17Þ

which is the combination of the SCT and an infinitesimal
gauge transformation. It follows that

δ0σFμν ¼ δσFμν þ ð∂μ∂νασ − ∂ν∂μασÞ
¼ δσFμν: ð18Þ

We see that after the additional gauge transformation, Fμν

still remains the same as in (16). Thus, it is not possible to
remove the gauge dependence in (16) by the modified
transformation defined in (17). Therefore, classically, the
usual SCT is not compatible with gauge symmetry, and it is
not a valid symmetry transformation for the gauge theory.
In addition, one finds

δσLðxÞ¼−
1

2
FμνðxÞδσFμνðxÞ

¼−∂μ½ð2xσxμ−gσμx2ÞLðxÞ�þðd−4ÞFσμðxÞAμðxÞ:
ð19Þ

The change of the Lagrangian can be expressed as a total
derivative only in d ¼ 4. Furthermore, it is gauge invariant
only in d ¼ 4. Therefore, for d ≠ 4, the classical Maxwell
theory is not conformal invariant.
As an aside, using (16), one can show the classical

equation of motion ∂μFμν ¼ 0 is also not invariant under
the SCT in d ≠ 4:

∂μðδσFμνðxÞÞ
¼ ðx2∂σ − 2xσx · ∂ − ðdþ 2ÞxσÞ∂μFμνðxÞ þ 2xν∂μFμσðxÞ
− 2gσνxα∂μFμαðxÞ þ ðd − 4Þ½gσν∂ · AðxÞ − ∂νAσðxÞ�

¼ ðd − 4Þ½gσν∂ · AðxÞ − ∂νAσðxÞ�
≠ 0: ð20Þ

This result is expected since the action of the Maxwell
theory is SCT invariant only in d ¼ 4, and the noninvar-
iance of the EOM is simply a reflection of the non-
invariance of the classical theory.

B. Recovering conformal symmetry of Maxwell theory
in the Faddeev-Popov gauge with ξ ¼ d=ðd − 4Þ
Even though the gauge-invariant Maxwell theory does

not have the SCT invariance in d ≠ 4, El-Showk et al. [6]
argued that the gauge-fixed theory with

LξðxÞ ¼ −
1

4
FμνðxÞFμνðxÞ −

1

2ξ
ð∂μAμðxÞÞ2 ð21Þ

is invariant under the SCT if ξ ¼ d=ðd − 4Þ. In their paper,
El-Showk et al. proved the invariance by showing the
quantum two-point correlation function hAμðxÞAνð0Þi does
not change under the SCT.
As an alternative, we will check the SCT invariance of

the gauge-fixed theory by explicitly computing how the
classical action and EOM transform under the SCT.
The SCT of the gauge-fixed Lagrangian can be calcu-

lated by using (15) and (19),

EXTENDED CONFORMAL SYMMETRY IN d ≠ 4 : … PHYSICAL REVIEW D 93, 025009 (2016)

025009-3



δσLξðxÞ ¼ −∂μ½ð2xσxμ − gσμx2ÞLξðxÞ�

þ ðd − 4ÞFσμðxÞAμðxÞ −
d
ξ
AσðxÞ∂ · AðxÞ: ð22Þ

The gauge-fixed action is invariant under the SCT only
when ξ ¼ d=ðd − 4Þ. In this case, the last two terms can be
combined, and the change of the Lagrangian becomes a
total derivative,

δσLξðxÞ¼−∂μ½ð2xσxμ−gσμx2ÞLξðxÞ�þðd−4Þ∂σ

�
A2ðxÞ
2

�
:

ð23Þ

Furthermore, the terms in the classical EOM transform
under the SCT as

δσ
�
∂μFμνðxÞ þ 1

ξ
∂νð∂ · AðxÞÞ

�
¼ ðx2∂σ − 2xσx · ∂ − ðdþ 2ÞxσÞ

�
∂μFμνðxÞ þ 1

ξ
∂νð∂ · AðxÞÞ

�

þ 2xν
�
∂μFμσðxÞÞ þ 1

ξ
∂σð∂ · AðxÞÞ

�
− 2gσνxα

�
∂μFμαðxÞ þ 1

ξ
∂αð∂ · AðxÞÞ

�

þ
�
d − 4 −

d
ξ

�
½gσν∂ · AðxÞ − ∂νAσðxÞ�: ð24Þ

All terms except the last term are proportional to the terms
in the original EOM ð∂μFμν þ 1

ξ ∂ν∂ · AÞ. Therefore, only
when ξ ¼ d=ðd − 4Þ does the last term vanish, and the
EOM is SCT invariant.
The classical gauge-fixed theory with ξ ¼ d=ðd − 4Þ is

SCT invariant in any d ≥ 3. This is true in contradiction to
the fact that the gauge-invariant Maxwell theory is gen-
erally not SCT invariant except in d ¼ 4. If d ¼ 4, then
ξ → ∞, the gauge fixing term vanishes, and the gauge-
invariant theory by itself is SCT invariant, which is
consistent with the conclusions of the previous section.
In classical field theory, the gauge-invariant Maxwell

theory and the gauge-fixed theory are two distinct theories.
In contrast, in quantum field theory, from the path integral
point of view, the expectation values of gauge-invariant
operators should be independent of specific gauge choices.
Does this distinction imply that the quantum Maxwell
theory is SCT invariant since it is invariant in the particular
gauge of ξ ¼ d=ðd − 4Þ?
A critical fact noticed by El-Showk et al. is that the

quantum two-point function hAμðxÞAνð0Þi of the gauge-
fixed theory defined in (21) with ξ ¼ d=ðd − 4Þ violates
unitarity. Thus, the gauge-fixed theory, contrary to the
gauge-invariant Maxwell theory defined in (14), is not a
unitary theory. However, the two-point function is not
gauge invariant nor a physical observable. Thus, it is an
intriguing question whether there exists a different gauge-
invariant two-point function defined by the gauge-invariant
Maxwell theory in (14) which is SCT invariant and also
satisfies unitarity.
Motivated by the above questions, we shall study in more

detail in the next section how the SCT operator acts on the
physical or gauge-invariant sector of the quantum Maxwell
theory.

C. Abelian quantum gauge theory
and the BRST formalism

In quantum field theory, the compatibility of a symmetry
transformationO with gauge symmetry is not as strict as its
classical counterpart—one need not require O to be
compatible with gauge symmetry in the entire Hilbert
space. As long as the two transformations commute within
the physical sector,O is a symmetry of the quantum theory.
One common tool for studying the Hilbert space of a

quantum gauge theory is the BRST formalism. In the
Faddeev-Popov procedure, there is an extra gauge fixing
term plus a term involving ghost c and antighost c̄ degrees
of freedom (d.o.f.) in addition to the gauge-invariant
Lagrangian:

LFPðxÞ ¼ −
1

4
FμνðxÞFμνðxÞ −

1

2ξ
ð∂μAμðxÞÞ2

þ ∂μc̄ðxÞ∂μcðxÞ: ð25Þ

The gauge-fixed Lagrangian, in spite of losing full gauge
invariance, is still invariant under a residual symmetry
transformation—the BRST transformation.
The BRST generator QB is nilpotent (Q2

B ¼ 0), and the
BRST transformation can be interpreted as a global gauge
transformation within Lorenz gauge (∂μAμ ¼ 0):

½QB; AμðxÞ� ¼ i∂μcðxÞ ð26Þ

fQB; c̄ðxÞg ¼ −i
∂μAμðxÞ

ξ
ð27Þ

fQB; cðxÞg ¼ 0: ð28Þ
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Therefore, we can classify the Hilbert space into three
sectors:

H1∶ jψ1i satisfiesQBjψ1i≠ 0

H2∶ jψ2i¼QBjψ1i and QBjψ2i¼ 0 ðimageÞ
H0∶QBjψ0i¼ 0; for which jψ0i≠QBjψ1i ðcohomologyÞ:

ð29Þ

Since the physical states are gauge invariant, they must
satisfy QBjphysi ¼ 0. Furthermore, the states inH2 cannot
be physical states since they have zero norm. Therefore, in
a theory with BRST symmetry, the only possible physical
Hilbert space is H0, the cohomology of the BRST charge.
The mode expansion for the photon on-shell configura-

tion reads

AμðxÞ ¼
X
λ

Z
dd−1k
ð2πÞd−1

1ffiffiffiffiffiffiffiffi
2Ep

p ½εμλðkÞa†λðkÞeik·x

þ ε�μλ ðkÞaλðkÞe−ik·x�; ð30Þ
where a†λðkÞ and aλðkÞ are the creation and annihilation
operators for the Aμ field, and ½aλðkÞ; a†λ0 ðk0Þ� ¼
ð2πÞd−1δðd−1Þðk − k0Þδλλ0 . The symbol λ denotes the
photon polarizations in d dimension. For example, if
kμ ¼ ωð1; 0; 0;…; 1Þ, then

εμþðkÞ ¼
1ffiffiffi
2

p ð1; 0; 0;…; 1Þ

εμ−ðkÞ ¼
1ffiffiffi
2

p ð1; 0; 0;…;−1Þ

εμ⊥i
ðkÞ ¼ ð0;…; 0; i; 0;…; 0Þ; i ¼ 1; 2;…; d − 2; ð31Þ

where εμþðkÞ and εμ−ðkÞ are the forward and backward
polarization vectors, respectively, and εμ⊥i

ðkÞ denotes the
d − 2 transverse polarizations.
Similarly, the mode expansion of the ghost field is

cðxÞ ¼
Z

dd−1k
ð2πÞd−1

1ffiffiffiffiffiffiffiffi
2Ep

p ½c†ðkÞeik·x þ cðkÞe−ik·x�; ð32Þ

with the ghost field creation and annihilation operators
c†ðkÞ=cðkÞ and fcðkÞ; c†ðk0Þg ¼ ð2πÞd−1δðd−1Þðk − k0Þ.
Applying the above mode expansions to (26) and (28),

one finds

½QB; a
†
λðkÞ� ¼

ffiffiffiffiffiffi
2w

p
δλþc†ðkÞ

fQB; c†ðkÞg ¼ 0: ð33Þ
In particular, for the d − 2 transverse modes,

½QB; a
†
⊥i
ðkÞ� ¼ 0; i ¼ 1; 2;…; d − 2: ð34Þ

Indeed, the transverse modes a†⊥i
ðkÞ in the physical Hilbert

space H0 are BRST invariant.

Now, we are ready to investigate the SCT of the physical
modes. A sensible transformationO compatible with gauge
symmetry should only map one physical state to another
physical state. Therefore, if a transformation maps a
physical state outside of H0, then it is not a well-defined
transformation. In other words, for Maxwell theory, a
physical transformation O must satisfy:

½½QB;O�; a†⊥i
ðkÞ� ¼ 0: ð35Þ

That is, the BRST charge must commute with the trans-
formation O in the physical Hilbert space. It can be readily
checked that this condition is satisfied for the Poincare
transformations and dilatation.
Let us now examine whether or not the SCT is com-

patible with the BRST transformation on the physical
modes by computing ½½QB; δσ�; a†⊥i

ðkÞ�, where δσ is the
SCT generator and its operation on the gauge field is
defined in (15). We first find for the full gauge field

½½QB; δσ�; AμðxÞ� ¼ −½2xσ∂μ þ ðd − 2Þgσμ�cðxÞ; ð36Þ

where we have used the SCT for the ghost δσcðxÞ ¼
½x2∂σ − 2xσx · ∂ − ðd − 2Þxσ�cðxÞ since it is a scalar field
with scale dimension ▵ ¼ d−2

2
[6].

As an example, we take the Lorenz gauge and write the
mode expansion in a convenient form:

AμðxÞ ∼
X
λ

Z
ddk
ð2πÞd ½ε

μ
λðkÞa†λðkÞeik·x

þ ε�μλ ðkÞaλðkÞe−ik·x�δðk2Þ ð37Þ

cðxÞ ∼
Z

ddk
ð2πÞd ½c

†ðkÞeik·x þ cðkÞe−ik·x�δðk2Þ: ð38Þ

Combining with (36), we obtain

½½QB; δσ�; a†⊥i
ðkÞ� ∼ ðd − 4Þεσ⊥i

c†ðkÞ: ð39Þ

Therefore, even for the physical modes, the SCT is not a
symmetry in d ≠ 4 because the SCT maps the physical
modes out of H0 to the unphysical Hilbert space. This
implies the SCT is a valid transformation only in d ¼ 4 for
quantum Maxwell theory.

IV. SCT FOR THE PHYSICAL AND
GAUGE-DEPENDENT FIELDS

In the previous sections, we have seen that the SCT is
gauge dependent for both classical and quantum Maxwell
theories when d ≠ 4. In this section, we shall employ a
method1 of decomposing the full gauge field into physical

1It is helpful to avoid using the mode expansion directly since
it is gauge dependent and valid only on shell.
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and gauge-dependent components. This will allow us to
compute explicitly how the physical and unphysical d.o.f.
transform under the SCT and understand how they mix
under such a transformation.

A. Gauge field decomposition

The Uð1Þ gauge field AμðxÞ, in both classical and
quantum theories, can be decomposed into longitudinal
and transverse components which explicitly preserve the
Lorentz invariance of the theory [11]:

AμðxÞ ¼ Aμ
TðxÞ þ Aμ

LðxÞ ð40Þ

Aμ
LðxÞ ¼

1

□
∂μð∂ · AðxÞÞ ð41Þ

Aμ
TðxÞ ¼ AμðxÞ − 1

□
∂μð∂ · AðxÞÞ; ð42Þ

where □≡ ∂μ∂μ; μ ¼ 0; 1;…; d − 1 in d dimension.
By definition, the transverse component is

divergence free (∂ · AT ¼ 0) and therefore ∂ · A ¼ ∂ · AL.
Furthermore, the fact that the longitudinal component
does not contribute to the field strength (∂μAν

L−∂νAμ
L¼0)

is an indication that AL corresponds to the unphysical
gauge d.o.f.
Under a gauge transformation,

AμðxÞ → A0μðxÞ ¼ AμðxÞ þ ∂μαðxÞ: ð43Þ

Since the transversality condition requires ∂ · A0
T ¼ 0, and

in general □α ≠ 0, then the gauge transformation of the
transverse and longitudinal components is

Aμ
TðxÞ → A0μ

T ðxÞ ¼ Aμ
TðxÞ ð44Þ

Aμ
LðxÞ → A0μ

L ðxÞ ¼ Aμ
LðxÞ þ ∂μαðxÞ: ð45Þ

Clearly, Aμ
T is gauge invariant2; i.e., Aμ

L fully accounts for
the change of Aμ under a gauge transformation. One can
thus interpret Aμ

T as the physical field, and Aμ
L as the

unphysical gauge d.o.f in the theory.
In addition, the gauge field decomposition in (41) and

(42) is indeed consistent with the classification of the
BRST Hilbert space since

½QB; A
μ
TðxÞ� ¼ 0 ð46Þ

½QB; A
μ
LðxÞ� ¼ i∂μcðxÞ; ð47Þ

where we have used (26).
Therefore, we can attribute Aμ

T to the physical3 Hilbert
spaceH0, and A

μ
L to the unphysical sector H1 in the BRST

formalism.

B. SCT of Aμ
LðxÞ and Aμ

TðxÞ
In this section, we will define the SCTon Aμ

T and Aμ
L. We

will show the SCT is not a physical transformation since
the transformation of Aμ

T also depends on Aμ
L, whereas in

the case of Poincare transformations and dilatation, there is
no mixing between the physical and gauge-dependent
components.
By definition, the action of the SCT on Aμ

LðxÞ and Aμ
TðxÞ

is [13]

δσAμ
LðxÞ≡ 1

□
∂μ∂α½δσAαðxÞ� ð48Þ

δσAμ
TðxÞ≡ δσAμðxÞ − 1

□
∂μ∂α½δσAαðxÞ�: ð49Þ

Notice that the decomposition into transverse and longi-
tudinal components acts only after transforming the full
gauge field under the SCT to ensure that the transversality
condition is satisfied, and ∂μδ

σAμ
T ¼ 0. However, this

condition does not guarantee that the SCT of Aμ
T only

depends on Aμ
T itself.

The task remains is to use the transformation of the
primary field in (15) to derive the transformation of the
transverse and longitudinal components defined above.
A detailed calculation can be found in Appendix A. The
results are

δσAμ
TðxÞ ¼ KσAμ

TðxÞ − d
1

□
∂μAσ

TðxÞ

− ðd − 4Þ 1
□
½∂μAσ

LðxÞ − gσμ∂ · ALðxÞ� ð50Þ

δσAμ
LðxÞ ¼ KσAμ

LðxÞ þ d
1

□
∂μAσ

TðxÞ

þ ðd − 4Þ 1
□
½∂μAσ

LðxÞ − gσμ∂ · ALðxÞ�; ð51Þ
2In fact, under a gauge transformation, the most general ex-

pression is Aμ
TðxÞ→A0μ

T ðxÞ¼Aμ
TðxÞ−∂μβðxÞ, and Aμ

LðxÞ→A0μ
L ðxÞ¼

Aμ
LðxÞþ∂μαðxÞþ∂μβðxÞ, for any βðxÞ satisfying □βðxÞ ¼ 0.

The term involving βðxÞ corresponds to the residual gauge
degree of freedom after fixing the primary gauge. The freedom
of choosing βðxÞ without affecting the primary gauge condition
is often referred to as the residual Stueckelberg symmetry [12].Once
a residual gauge condition βðxÞ is chosen, there is no ambiguity in
the definition ofAμ

T . For our purposes, wewill set β ¼ 0 throughout
this paper.

3Equation (46) only tells us Aμ
T is the kernel of the BRST

charge and belongs to a superposition of H0 and H2 Hilbert
space. The residual d.o.f from H2 can be understood as the
aforementioned residual Stueckelberg symmetry, where βðxÞ
controls how much of Aμ

T is in H2. Once we fix β ¼ 0, Aμ
T

can be identified as H0.
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where Kσ denotes the action of the SCT on a vector field,

KσAμ
TðLÞðxÞ ¼ ðx2∂σ − 2xσx · ∂ − ðd − 2ÞxσÞAμ

TðLÞðxÞ
þ 2xμAσ

TðLÞðxÞ − 2gσμx · ATðLÞðxÞ; ð52Þ

and

δσAμðxÞ ¼ KσAμðxÞ ¼ KσAμ
TðxÞ þ KσAμ

LðxÞ: ð53Þ

Unlike the full gauge field Aμ which transforms as a
vector under the SCT, the SCT of Aμ

T and Aμ
L contains

nonhomogeneous parts in addition to the usual vector
transformation. This is due to the fact that the SCT
transformation does not commute with the decomposition
of the full gauge field into Aμ

L and Aμ
T . Therefore, they

cannot be transformed as normal vectors under the SCT.
Furthermore, ∂ · AT transforms like a conformal scalar
under the SCT:

∂μðδσAμ
TðxÞÞ ¼ ðx2∂σ − 2xσx · ∂ − dxσÞ∂ · ATðxÞ: ð54Þ

This is in contrast to ∂ · A, for which the SCT contains an
extra term in addition to the transformation of a primary
scalar field:

∂μðδσAμðxÞÞ ¼ ðx2∂σ − 2xσx · ∂ − dxσÞ∂ · AðxÞ þ dAσðxÞ:
ð55Þ

Equation (54) provides another check that the transversality
condition is ensured after the SCT.

V. THE EXTENDED CONFORMAL SYMMETRY
OF MAXWELL THEORY

A. The extended conformal transformation

Let us further investigate the action of the SCTapplied to
Aμ
TðxÞ and Aμ

LðxÞ. At first glance, the transformation of Aμ
L

in (51) looks problematic, since it contains a term propor-
tional to ∂μAσ

T . Nonetheless, this term does not affect the
physical field strength because ∂μ∂νAσ

T − ∂ν∂μAσ
T ¼ 0.

Thus, one can get rid of the Aμ
T term in (51) by a gauge

transformation Aμ
L → Aμ

L þ ∂μα, with α ¼ −d 1
□
ε · AT .

On the other hand, when one applies the SCT to Aμ
T , the

Aμ
L term in (50) mixes the transverse and longitudinal

components for d ≠ 4. Since Aμ
T is gauge invariant, it is not

possible to remove the Aμ
L dependence by a gauge trans-

formation. Indeed, the SCT maps the physical field inH0 to
the nonphysical H1 space, and this confirms the result
obtained from studying the BRST Hilbert space of this
theory in Sec. IIIC that the SCT is not a valid trans-
formation of the physical Hilbert space in d ≠ 4.

Now we will show that it is possible to define an
extended special conformal transformation (ESCT),4

which meets all the requirements of a valid transformation
compatible with gauge symmetry:

(i) It only maps one physical state to another and
does not mix unphysical and physical degrees of
freedom.

(ii) It preserves the transversality condition,∂μ
~δσAμ

TðxÞ¼0.
(iii) It ensures that the longitudinal component is pure

gauge and does not contribute to the field strength,
i.e., ~δσð∂μAν

LðxÞ − ∂νAμ
LðxÞÞ ¼ 0.

Furthermore, we will show that the ESCT is a symmetry for
both classical and quantum Maxwell theories.
In contrast to (50) and (51), the ESCT on Aμ

LðxÞ and
Aμ
TðxÞ is defined as

~δσAμ
TðxÞ≡ KσAμ

TðxÞ − d
1

□
∂μAσ

TðxÞ ð56Þ

¼ δσAμ
TðxÞ þ ðd − 4Þ 1

□
½∂μAσ

LðxÞ − gσμ∂ · ALðxÞ�
ð57Þ

~δσAμ
LðxÞ≡ KσAμ

LðxÞ þ ðd − 4Þ 1
□
½∂μAσ

LðxÞ − gσμ∂ · ALðxÞ�
ð58Þ

¼ δσAμ
LðxÞ − d

1

□
∂μAσ

TðxÞ; ð59Þ

where Kσ is as in (52).
Note that the ESCT is a nonlocal transformation.

In (56), the ESCT on Aμ
T acts only within the physical

Hilbert space; similarly, the ESCT on Aμ
L in (58) depends

only on the longitudinal component. The transversality
condition is maintained for Aμ

T : ∂μð~δσAμ
TÞ ¼ 0, since

1
□
ð∂μAσ

L − gσμ∂ · ALÞ is divergence free. Aμ
L is guaranteed

to be pure gauge because the second term in (59) does not
change the field strength.
By combining (56) and (58), we can define the action of

the ESCT on the vector gauge field:

~δσAμðxÞ≡ KσAμðxÞ − d
1

□
∂μAσ

TðxÞ

þ ðd − 4Þ 1
□
½∂μAσ

LðxÞ − gσμ∂ · ALðxÞ�: ð60Þ

4An alternative definition of the ESCT is given in Appendix C.
The alternative ESCT is the combined operation of a finite gauge
transformation to Lorenz gauge, followed by the usual SCT and
the inverse of the finite gauge transformation. With this defi-
nition, Aμ

T has the same transformation properties as in this
section; however, the transformation of the unphysical field Aμ

L is
altered. In this alternative approach, the ESCT can be understood
as the gauge-invariant extension of the SCT in Lorenz gauge.
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It can be verified that the field strength transforms under the
ESCT as

~δσFμνðxÞ ¼ðx2∂σ − 2xσx · ∂ − dxσÞFμνðxÞ þ 2xμFσνðxÞ
− 2xνFσμðxÞ þ 2gσμxαFναðxÞ − 2gσνxαFμαðxÞ
þ ðd − 4Þ½gσνAμ

TðxÞ − gσμAν
TðxÞ�: ð61Þ

Although Fμν still does not transform as a primary tensor
field under the ESCT due to the last term in (61), ~δσFμν is
independent of gauge choices, in contrast to δσFμν in (16);
this is because Fμν is a descendant of the gauge-invariant
Aμ
T , and ~δσAμ

T depends only on the physical field AT as in
(56). Thus, the ESCT is a valid transformation for Abelian
gauge theory. The algebra of the extended conformal
transformations is discussed in Appendix B.

B. Invariance of the Maxwell theory

In this section, we demonstrate the invariance of the
Maxwell action and gauge-invariant correlation functions
under the ESCT.
Using the new transformation,

~δσLðxÞ¼−
1

2
FμνðxÞ~δσFμνðxÞ

¼−∂μ½ð2xσxμ−gσμx2ÞLðxÞ�þðd−4ÞFσ
μðxÞAμ

TðxÞ:
ð62Þ

Compared with δσL in (19), the two expressions are almost
identical except that the full gauge field Aμ is replaced by
the physical transverse component Aμ

T in (62). Yet, this tiny
modification makes a huge difference. In (62), the first term
is a trivial total derivative. In fact, the second term

Fσ
μA

μ
T ¼ ð∂σAμ

T − ∂μAσ
TÞAμ

T

¼ ∂σ

�
A2
T

2

�
− ∂μðAσ

TATμÞ þ Aσ
Tð∂ · ATÞ; ð63Þ

is actually also a total derivative as guaranteed by the
transversality condition ∂ · AT ¼ 0. We then have

~δσLðxÞ ¼−∂μ½ð2xσxμ− gσμx2ÞLðxÞ�

þ ∂μ

�
ðd− 4Þ

�
gσμA2

TðxÞ
2

−Aσ
TðxÞAμ

TðxÞ
��

: ð64Þ

Indeed, ~δσLðxÞ is a total derivative, and therefore the
classical Maxwell action would be invariant under
the ESCT.
To study the invariance of the quantum version of the

Maxwell theory under the extended SCT, let us examine
how the gauge-invariant transverse two-point function
hAμ

TðxÞAν
TðyÞi changes under the ESCT.

In momentum space, the transverse two-point function is
defined by

hAμ
TðkÞAν

Tð−kÞi≡ 1

k2

�
gμν −

kμkν

k2

�
: ð65Þ

Its Fourier transformation yields the position-space expres-
sion of the transverse two-point function up to an overall
normalization constant,

hAμ
TðxÞAν

Tð0Þi ¼
1

ðx2Þ▵
�
gμν þ 2▵

xμxν

x2

�
; ð66Þ

where ▵ ¼ d−2
2

is the scale dimension of Aμ.
Recall that the transverse two-point function is invariant

under the Poincare and scale transformations, which are
symmetries of the quantum Maxwell theory. Let us now
compute how the transverse two-point function transforms
under the ESCT:

~δσhAμ
TðxÞAν

Tð0Þi¼hð~δσAμ
TðxÞÞAν

Tð0ÞiþhAμ
TðxÞð~δσAν

Tð0ÞÞi

¼KσhAμ
TðxÞAν

Tð0Þi−d
1

□
ð∂μhAσ

TðxÞAν
Tð0Þi

−∂νhAμ
TðxÞAσ

Tð0ÞiÞ; ð67Þ

where we have used the ESCT of Aμ
TðxÞ in (56).

Note also that KσhAμ
TðxÞAν

Tð0Þi transforms the two-point
function as if its arguments are normal vector fields as
defined in (52). Thus, in order to evaluateKσhAμ

TðxÞAν
Tð0Þi,

let us consider a theory of a vector field Vμ, which is
invariant under Poincare and scale transformations. The
most general form of its correlation function is

hVμðxÞVνð0Þi ¼ 1

ðx2Þ▵
�
c1gμν þ c2

xμxν

x2

�
; ð68Þ

with arbitrary coefficients c1 and c2. A detailed calculation
gives the SCT of this two-point function:

δσhVμðxÞVνð0Þi ¼ KσhVμðxÞVνð0Þi

¼ ð2c1 þ c2Þ
ðx2Þ▵ ðgσνxμ − gσμxνÞ: ð69Þ

Applying (69) to hAμ
TðxÞAν

Tð0Þi in (66), we obtain c1 ¼ 1
and c2 ¼ 2▵, and

KσhAμ
TðxÞAν

Tð0Þi ¼
d

ðx2Þ▵ ðg
σνxμ − gσμxνÞ: ð70Þ

The last term in (67) can be simplified as

KELLY YU-JU CHIU and STANLEY J. BRODSKY PHYSICAL REVIEW D 93, 025009 (2016)

025009-8



− d
1

▫
ð∂μhAσ

TðxÞAν
Tð0Þi − ∂νhAμ

TðxÞAσ
Tð0ÞiÞ

¼ −d
1

□

�
−4▵

ðx2Þ▵þ1
ðgσνxμ − gσμxνÞ

�

¼ −d
1

ðx2Þ▵ ðg
σνxμ − gσμxνÞ: ð71Þ

Finally, substituting (70) and (71) into (67), we find

~δσhAμ
TðxÞAν

Tð0Þi ¼
d

ðx2Þ▵ ðg
σνxμ − gσμxνÞ

−
d

ðx2Þ▵ ðg
σνxμ − gσμxνÞ

¼ 0: ð72Þ

This proves the invariance of the transverse two-point
function under the ESCT.
Since the Uð1Þ gauge theory is a noninteracting free

quantum field theory, the proof of the invariance of the
transverse two-point function is sufficient for showing that
all gauge-invariant n-point functions of the quantum theory
would also be invariant under the ESCT.

C. Invariance of the classical equation of motion

A symmetry of the classical action implies the invariance
of the classical EOM under the symmetry transformation.
Hence, it is necessary to check that the EOM is invariant
under the ESCT. Although the gauge field decomposition
defined in (41) and (42) is sufficient for calculating off-
shell quantities such as the correlation function, it is
problematic on shell. For instance, in the Lorenz gauge
∂μAμ ¼ 0, when the EOM □Aμ ¼ 0 is imposed, Aμ

L ¼
1
□
∂μð∂ · AÞ is not well defined. Thus, to avoid a singularity

of the gauge field decomposition when calculating on-shell
quantities such as the EOM, we will introduce a source
current as a regulator.
The Lagrangian with a source term reads

LJðxÞ ¼ −
1

4
FμνðxÞFμνðxÞ þ JμðxÞAμðxÞ; ð73Þ

where

∂μJμ ¼ 0; ð74Þ

due to conservation of the Uð1Þ charge. The EOM is

∂μFμν − Jν ¼ 0; ð75Þ

and by setting Jν ¼ 0, the EOM of the free theory is
recovered.
In order to calculate how (75) transforms under the

ESCT, we need to know the ESCT on Jμ, which is not yet
specified. The transformation on Jμ should be defined so

that the change of J · A is a total derivative and then it will
not affect the symmetry property of the theory. For
example, since the free Maxwell theory is Lorentz invari-
ant, one would expect that the Lorentz symmetry will still
be a property of (73). Therefore, under a Lorentz trans-
formation, Jμ must transform as a Lorentz vector so that

δðJ · AÞ → δðJ · AÞ − ∂μ½ðJ · AÞωμνxν�; ð76Þ

where the change is a total derivative.
In the case of Poincare and scale transformations, the

source current Jμ indeed transforms as a normal vector with
scale dimension ▵ ¼ dþ2

2
, and ∂μJμ ¼ 0 is preserved.

Conservation of the gauge current under these transforma-
tions implies that Poincare and scaling symmetries are
properties of the gauge-invariant Maxwell theory. However,
for the SCT, it is not obvious whether Jμ transforms as a
primary conformal vector field. In fact, as we shall see,
current conservation will be violated for d ≠ 4 if Jμ is
treated as a conformal vector in the SCT. Nevertheless, we
will find that the gauge current is conserved under the
ESCT in any dimension.
Let us first assume that Jμ transform as a primary vector

with ▵ ¼ dþ2
2

under the SCT:

δσJμðxÞ ¼ ðx2∂σ − 2xσx · ∂ − ðdþ 2ÞxσÞJμðxÞ
þ 2xμJσðxÞ − 2gσμx · JðxÞ: ð77Þ

It follows that the J · A term in the Lagrangian
will transform as a conformal scalar, and δσðJ · AÞ ¼
−∂μ½ðJ · AÞδσxμ�.
Nevertheless, the SCT of (74) then gives

∂μδ
σJμðxÞ ¼ ðx2∂σ − 2xσx · ∂ − ðdþ 4ÞxσÞ∂ · JðxÞ

þ ðd − 4ÞJσðxÞ
¼ ðd − 4ÞJσðxÞ ≠ 0! ð78Þ

We see that after the SCT, ∂μJμ ¼ 0 is still true only in
d ¼ 4. For d ≠ 4, the SCT explicitly breaks gauge invari-
ance of the theory and the Uð1Þ gauge current is not
conserved. This fact reveals that the SCT is compatible with
gauge symmetry only in d ¼ 4.
In fact, we can construct an ESCT for Jμ which preserves

current conservation in any dimension.
We will define

~δσJμðxÞ ¼ δσJμðxÞ − ðd − 4Þ 1
□
∂μJσðxÞ: ð79Þ

In this extended transformation, ∂ · J transforms as a
conformal scalar and the Uð1Þ current is conserved as
desired:

∂μ
~δσJμðxÞ ¼ ½x2∂σ − 2xσx · ∂ − ðdþ 4Þxσ�∂ · JðxÞ: ð80Þ
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It can be verified that the ESCTof the J · A term in the Lagrangian is a total derivative which does not affect the symmetry of
the theory.
We can now compute how the terms in the EOM transform under the ESCT, given the transformations on Fμν and Jμ

defined in (61) and (79), respectively,

~δσð∂μFμν − JνÞ ¼ ðx2∂σ − 2xσx · ∂ − ðdþ 2ÞxσÞð∂μFμν − JνÞ þ 2xνð∂μFμσ − JσÞ − 2gσνxαð∂μFμα − JαÞ

− ðd − 4Þ 1
□
∂ν½□Aσ

T − ∂σð∂ · ATÞ − Jσ�
¼ ðx2∂σ − 2xσx · ∂ − ðdþ 2ÞxσÞð∂μFμν − JνÞ þ 2xνð∂μFμσ − JσÞ − 2gσνxαð∂μFμα − JαÞ

− ðd − 4Þ 1
□
∂νð∂μFμσ − JσÞ

¼ 0: ð81Þ

To derive the second equality, we have used □Aσ
T ¼ ∂μFμν

and ∂ · AT ¼ 0 for the last term in the first equality. Since
every term in (81) is proportional to the terms in the original
EOM, the EOM is thus ESCT invariant. Notice that in the
free theory, the inverse of the d’Alembert operator on Aσ

T is
ill defined because EOM implies□Aσ

T ¼ 0. However, after
the source current Jμ is added, one can rewrite Aσ

T ¼
1
□
ð□Aσ

TÞ without worrying about the on-shell singularity.
Thus, this calculation has demonstrated the invariance of
the classical EOM under the ESCT.
In conclusion, the invariance of the classical action

together with the invariance of the EOM proves the
invariance of classical Maxwell theory under the ESCT.

VI. DISCUSSION

In this paper, we have discovered a gauge-invariant
nonlocal extended special conformal transformation
(ESCT), in which both the quantum and classical
Maxwell theories are invariant for any dimension d ≥ 3.
The ESCT defines a new symmetry of the gauge-invariant
physical sector of the Maxwell theory in general dimen-
sions. Because of its enhanced properties, physical states
are mapped only within the physical Hilbert space, the field
strength Fμν transforms as a descendant of the gauge-
invariant Aμ

T , and the Uð1Þ gauge current is preserved. This
is in contrast to the usual SCT, where the gauge invariance
of theory is broken because of mixing between the physical
and unphysical sectors in the BRST Hilbert space.
The ESCT provides a new way of understanding the

conformal symmetry of gauge theories. Since it is not
necessary to require conformal invariance in the unphysical
sector of a gauge theory, the ESCT invariance of the
physical sector will ensure that all gauge-invariant physical
correlation functions are conformally invariant.
The insights gained from the ESCT can be generalized

and applied to the analysis of other scale-invariant gauge
theories which are normally not considered to be con-
formally invariant in higher dimensions. It will be interest-
ing to investigate the extension of the ESCT to classical

non-Abelian gauge theories. This is a subject for future
studies.
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APPENDIX A: SCT OF AT AND AL

In this appendix, we explicitly derive the SCT on ATðxÞ
and ALðxÞ first introduced in (50) and (51).
Let us first compute the SCT of ALðxÞ:

δσAμ
LðxÞ

¼ 1

□
∂μ∂α½δσAαðxÞ�

¼ 1

□
∂μ½ðx2 − 2xσx · ∂ − dxσÞ∂ · AðxÞ þ dAσðxÞ� ðA1Þ

¼ 1

□
½ð2xμ∂σ − 2gσμx · ∂ − 2xσ∂μ − dgσμÞ∂ · AðxÞ�

þ 1

□
½ðx2 − 2xσx · ∂ − dxσÞ∂μð∂ · AðxÞÞ� þ d

1

□
∂μAσðxÞ:

ðA2Þ

Using the identity [13]

□

�
ð2xμ∂σ − 2gσμx · ∂ − 2xσ∂μÞ 1

□
∂ · AðxÞ

�

¼ ð2xμ∂σ − 2gσμx · ∂ − 2xσ∂μ − dgσμÞ∂ · AðxÞ
þ ðd − 4Þgσμ∂ · AðxÞ; ðA3Þ
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we can rewrite

1

□
½ð2xμ∂σ − 2gσμx · ∂ − 2xσ∂μ − dgσμÞ∂ · AðxÞ�

¼ ð2xμ∂σ − 2gσμx · ∂ − 2xσ∂μÞ 1
□
∂ · AðxÞ

− ðd − 4Þgσμ 1

□
∂ · AðxÞ: ðA4Þ

Similarly,

□

�
ðx2∂σ − 2xσx · ∂Þ 1

□
∂μð∂ · AðxÞÞ

�

¼ ðx2∂σ − 2xσx · ∂ − dxσÞ∂μð∂ · AðxÞÞ

þ ðd − 4Þxσ∂μð∂ · AðxÞÞ þ ð2d − 4Þ 1
□
∂σ∂μð∂ · AðxÞÞ;

ðA5Þ

and we rewrite

1

□
½ðx2− 2xσx · ∂ −dxσÞ∂μð∂ ·AðxÞÞ�

¼ ðx2∂σ − 2xσx · ∂Þ 1
□
∂μð∂ ·AðxÞÞ

− ðd− 4Þ 1
□
½xσ∂μð∂ ·AðxÞÞ�− ð2d− 4Þ 1

□2
∂σ∂μð∂ ·AðxÞÞ:

ðA6Þ

Combining all the terms and plugging in Aμ
LðxÞ ¼

1
□
∂μð∂ · AðxÞÞ and
1

□
½xσ∂μð∂ · AðxÞÞ� ¼ xσAμ

LðxÞ − 2
1

□
∂σAμ

LðxÞ; ðA7Þ

we find

δσAμ
LðxÞ ¼ KσAμ

LðxÞ þ d
1

□
∂μAσ

TðxÞ

þ ðd − 4Þ 1
□
½∂μAσ

LðxÞ − gσμ∂ · ALðxÞ�: ðA8Þ

Since, δσAμðxÞ¼δσAμ
LðxÞþδσAμ

TðxÞ¼KσAμðxÞ, the trans-
formation of Aμ

TðxÞ can thus be deduced:

δσAμ
TðxÞ ¼ KσAμ

TðxÞ − d
1

□
∂μAσ

TðxÞ

− ðd − 4Þ 1
□
½∂μAσ

LðxÞ − gσμ∂ · ALðxÞ�: ðA9Þ

APPENDIX B: EXTENDED CONFORMAL
ALGEBRA

The extended conformal algebra is defined by the
commutation relations among the ESCT generators ~Kα

and with the other normal conformal generators
PαðtranslationÞ, MαβðLorentz rotationÞ, and DðdilatationÞ.
The original conformal generators form a closed group

and have the following commutation relations:

½D;Pμ� ¼ iPμ ðB1Þ
½D;Kμ� ¼ −iKμ ðB2Þ
½Kμ;Pν� ¼ 2iðgμνD −MμνÞ ðB3Þ

½Kα;Mμν� ¼ iðgαμKν − gανKμÞ ðB4Þ
½Pα;Mμν� ¼ iðgαμPν − gανPμÞ ðB5Þ

½Mαβ;Mμν� ¼ iðgανMβμþ gβμMαν − gαμMβν− gβνMαμÞ:
ðB6Þ

One way to obtain the commutators is to let the
generators act on fields and then swap the order. For
example, ½Pσ;Mμν� can be deduced by computing

½½Pσ;Mμν�;AαðxÞ�¼½Pσ;½Mμν;AαðxÞ��−½Mμν;½Pσ;AαðxÞ��:
ðB7Þ

The action of conformal generators on the primary vector
field AαðxÞ is given by

½Pμ; AαðxÞ� ¼ −i∂μAαðxÞ ðB8Þ

½Mμν;AαðxÞ�¼i½ðxμ∂ν−xν∂μÞAαðxÞþgαμAνðxÞ−gανAμðxÞ�
ðB9Þ

½D; AαðxÞ� ¼ −i
�
xμ∂μ þ

d − 2

2

�
AαðxÞ ðB10Þ

½Kμ; AαðxÞ� ¼ i½ðx2∂μ − 2xμx · ∂ − ðd − 2ÞxμÞAαðxÞ
þ 2xαAμðxÞ − 2gμαx · AðxÞ�

≡ iKμAαðxÞ: ðB11Þ

We shall now compute the extended conformal algebra.
Since there is no mixing between physical and unphysical
components in the extended conformal transformations, it
is thus sufficient to calculate the commutation relations by
studying the action of extended conformal generators on
the physical sector spanned by Aμ

T, as defined in (42).
Recall from (50) that under the usual SCT, Aα

T trans-
forms as

½Kμ; Aα
TðxÞ� ¼ i

�
KμAα

TðxÞ − d
1

□
∂αAμ

TðxÞ

− ðd − 4Þ 1
□
ð∂αAμ

LðxÞ − gμα∂ · ALðxÞÞ
�

≡ iδμAα
TðxÞ; ðB12Þ
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and the ESCT on Aα
T is constructed by removing the terms

involving Aα
L in (B12). The ESCT generators thus satisfy

½ ~Kμ; Aα
TðxÞ� ¼ i

�
KμAα

TðxÞ − d
1

□
∂αAμ

TðxÞ
�
≡ i~δμAα

TðxÞ:

ðB13Þ
An explicit calculation then gives the modified commuta-
tors acting on Aα

T :

½½D; ~Kμ�; Aα
TðxÞ� ¼ −i½ ~Kμ; Aα

TðxÞ� ðB14Þ

½½ ~Kμ;Pν�; Aα
TðxÞ� ¼ 2i½gμνD −Mμν; Aα

TðxÞ� ðB15Þ

½½ ~Kσ;Mμν�; Aα
TðxÞ� ¼ i½gσμ ~Kν − gσν ~Kμ; Aα

TðxÞ� ðB16Þ

½½ ~Kμ; ~Kν�; Aα
TðxÞ� ¼ −dðd − 4Þ 1

□

�
1

□
∂αFμνðxÞ

þ gανAμ
TðxÞ − gαμAν

TðxÞ
�
: ðB17Þ

An intuitiveway to understand the results in (B14)–(B17) is
the following: Define P to be the projection operator which
eliminates the Aα

L terms in δσAα
T , and

½ ~Kμ; Aα
TðxÞ� ¼ ½PKμP; Aα

TðxÞ�: ðB18Þ
Since D, Pμ, and Mμν act on Aα

T only within the physical
sector, they all commute with P. We then have, for
example,

½½D; ~Kμ�; Aα
TðxÞ�

¼ ½½D; PKμP�; Aα
TðxÞ�

¼ ½P½D;Kμ�P; Aα
TðxÞ�

¼ −i½ ~Kμ; Aα
TðxÞ�: ðB19Þ

Therefore, the commutation relations in (B14)–(B16)
between ~Kμ and other normal conformal generators retain
the same form. However, since the ESCT generators do not
commute with P, they actually do not commute with each
other in contrast to the usual SCT generators in d ≠ 4.
In addition, it is not possible to express the right-hand

side (rhs) of (B17) in terms of the extended conformal
generators. One may wonder if this can be remedied by a
gauge transformation. The answer is negative, because
gauge transformations only act on the gauge dependent
component Aμ

L and does not affect Aμ
T . Also, if one includes

the new operators on the rhs of (B17) into the extended
conformal group as generators and compute their commu-
tation relations, more powers of 1

□
would occur. This

procedure thus generates an infinite number of new gen-
erators. Hence, the extended conformal generators which
include ~Kα do not form a closed group.

APPENDIX C: ALTERNATIVE
DEFINITION OF THE ESCT

In this appendix, we introduce an alternative definition of
the ESCT, which has very similar properties to the one
defined by (61), and it will give a physical understanding of
the nature of the ESCT.
Recall that the Maxwell action is SCT invariant even in

d ≠ 4 if Fσ
μAμ in (19) is a total derivative. Since

Fσ
μAμ ¼ ð∂σAμ − ∂μAσÞAμ

¼ ∂σ

�
AμAμ

2

�
− ∂μðAσAμÞ þ Aσð∂ · AÞ; ðC1Þ

this term is indeed a total derivative if one works in the
Lorenz gauge (∂ · A ¼ 0). That is, given any gauge
configuration Aμ, as long as it is transformed to the
Lorenz gauge before the SCT is applied, then the action
and the classical EOM will be SCT invariant. In fact, one
can define a gauge transformation,

GAμ ≡ Aμ þ ∂μα; ðC2Þ
which transforms Aμ to the Lorenz gauge where Aμ ¼ Aμ

T
and Aμ

L ¼ 0. The specific gauge transformation GT satisfies

GTAμ ¼ Aμ
T; ðC3Þ

and thus

α ¼ −
1

□
∂ · A ðC4Þ

is a finite transformation independent of the infinitesi-
mal SCT.
Since the SCT is an infinitesimal transformation of

Oðε1Þ and α is independent of εμ at Oðε0Þ, an additional
inverse gauge transformation,

G−1
T Aμ≡Aμ−∂μα; with α¼−

1

□
∂ ·A; and G−1

T GT ¼ 1;

ðC5Þ
must be performed after the SCT to make the combined
transformation only at Oðε1Þ. Therefore, we can define an
alternative extended special conformal transformation
(aESCT) acting on Aμ as

~~δσAμ ≡ G−1
T ð1þ δσÞGTAμ − Aμ ðC6Þ

¼ G−1
T ð1þ KσÞAμ

T − Aμ

¼ ð1þ KσÞAμ
T − ∂μα − Aμ

¼ KσAμ
T: ðC7Þ

In the second line, since GTAμ is a vector field, we can use
(53) and (C3) to rewrite δσGTAμ ¼ KσGTAμ ¼ KσAμ

T . To
yield the third and fourth lines, the gauge transformation
defined by (C2) and (C4) is used.
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Next, we will show that the aESCT in (C6) is compatible
with gauge symmetry; i.e., for any gauge transformation G
as defined in (C2), the aESCT operator satisfies

~~δσGAμ ¼ G ~~δσAμ: ðC8Þ
To see this, let us consider an arbitrary gauge configu-

ration GAμ. The action of the aESCT on GAμ is

~~δσðGAμÞ ¼ GG−1
T ð1þ δσÞGTG−1ðGAμÞ − GAμ

¼ G½G−1
T ð1þ δσÞGT − G�Aμ

¼ G ~~δσAμ: ðC9Þ
Notice that in the first line, the gauge transformation GTG−1

is performed to bring the gauge configuration GAμ to
Lorenz gauge before the SCT is applied.
Since (C8) is verified, the aESCT is thus a valid trans-

formation for Maxwell theory.
Although ~~δσAμ in (C7) is distinct from ~δσAμ defined in

(61), interestingly they have very similar properties; for
example,

~~δσFμν ¼ ~δσFμν; ðC10Þ
the actions of the aESCT and ESCT on the field strength
Fμν are identical. This can be readily checked by using (16).
Furthermore, the action of the aESCT on the physical

field Aμ
T is the same as ~δσAμ

T defined in (56):

~~δσAμ
T ¼ ~~δσAμ −

1

□
∂μ∂α½ ~~δσAμ�

¼ KσAμ
T −

1

□
∂μ∂α½KσAμ

T �

¼ KσAμ
T − d

1

□
∂μAσ

T

¼ ~δσAμ
T; ðC11Þ

where we have used (A1) to get the third equality.
However,

~~δσAμ
L ¼ ~~δσAμ − ~~δσAμ

T

¼ d
1

□
∂σAμ

T

≠ ~δσAμ
L; ðC12Þ

where ~δσAμ
L is defined in (58). Nevertheless, since both

~~δσAμ
L and ~~δσAμ

L are pure gauge ofOðε1Þ, they can be related
by an infinitesimal gauge transformation. Thus, ~~δσAμ and
~δσAμ are equivalent up to a gauge transformation.
Therefore, the aESCT defined in (C7) is equally as good

as the ESCT defined in (60) for deciding whether a gauge-
invariant Abelian gauge theory has ESCT invariance. This
is because the difference between the actions of aESCTand
ESCT on Aμ is an infinitesimal gauge transformation, and
thus their actions are the same on physical observables.
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