PHYSICAL REVIEW D 93, 025008 (2016)

Quantum renormalization group

S. Nagy,' I. Polonyi,” and L. Steib'

1Department of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4010 Debrecen, Hungary
2Stmsb0urg University, CNRS-IPHC, 23 rue du Loess, BP28 67037 Strasbourg Cedex 2, France
(Received 18 August 2015; published 12 January 2016)

The observed IR and the spectator UV particles of a regulated, cutoff quantum field theory are entangled
by their interactions; hence, the IR sector can be described by the help of the density matrix only. The tree-
level renormalized trajectory is obtained for a self-interacting scalar field theory, containing the mixed state
contributions. One needs a sharp cutoff in the momentum space as a regulator to realize the true loss of

information caused by massive particles.
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I. INTRODUCTION

A many-body system can display an extremely rich
dynamics which is covered partially by our observations,
based usually on a few-particle subsystem only. Our goal is
the reconstruction of the effective dynamics of the observed
subsystem, leaving the unobserved particles as spectators,
simply an environment. This is aimed by the renormaliza-
tion group (RG) method, the successive elimination of the
unobserved, short scale fluctuations which was originally
applied to eliminate the UV divergences of quantum field
theories [1]. Such a strategy turned out to be very useful in
statistical physics as well [2] but it has been not realized
that the mathematical setup of performing the blocking
transformations on the partition function of classical
statistical physical models, where one integrates out recur-
sively the variables within a block by keeping an average
block variable fixed [3], is incomplete for the prescription
of the transition amplitude in quantum theories. What is
missing in this scheme when applied to quantum systems is
the mixed state contribution which arises due to the
elimination of degrees of freedom even if the full system
is in a pure state [4].

The formalism of quantum field theory, based on the
density matrix rather than transition amplitudes between
pure states, is provided by Schwinger’s closed time path
(CTP) scheme [5] and it has already widely been used to
describe nonequilibrium physics [6,7] and high energy
physics [8]. This formalism, applied for a closed system, is
well suited to calculate of the expectation values and its
efficiency becomes evident when applied to open systems.

When the high energy modes are not observed and they
are eliminated then the remaining, observed degrees of
freedom find themselves in an environment and their
dynamics will be an open one. A modest step is presented
in this paper in developing the RG scheme to find the mixed
state contributions to the reduced density matrix of the
observed system. The contributions of the eliminated
degrees of freedom, calculated within the framework of
the loop-expansion, usually start at the O(%), one-loop
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level, the only exception, known so far is the unstable,
inhomogeneous mode in a vacuum with condensate [9].
But there is actually a tree-level piece even without a
condensate, only we need a bilocal action to capture it. This
phenomenon is demonstrated here within the framework of
the relativistic, scalar field theory, by the help of the
functional RG method. The functional RG method can
be realized in two different manners by using sharp [10] or
smooth cutoff [11,12]. Most of the calculation, presented
below, is performed with a sharp cutoff; however, a brief
comparison with the smooth cutoff scheme is included, too.

Several publications have already been devoted to the
study of the loop-corrections, generated by the generali-
zation of the RG procedure to the CTP formalism. The
generalization of the Wegner-Houghton equation, corre-
sponding to a sharp cutoff where the evolution of the
blocked action is followed in the local potential approxi-
mation was the subject of the earliest publications [13]
which was restricted to the pure state contributions. The
mixed state terms were kept in [14] where the renormalized
trajectory was considered for a scalar field theory, brought
into contact with a heat bath. But the friction force has
already been introduced in the bare theory; hence, the
mixed state contributions appear in a regular manner,
without a gap. The master and the Langevin equations
were derived for semiclassical gravity by coarse graining in
Ref. [15]. The RG strategy was applied in the CTP
formalism and the one-loop blocking was used to derive
the KPZ equation of stochastic quantization in Ref. [16].
The evolution generated by a sharp energy cutoff was
derived for quantum dots [17] and in quantum mechanics
[18]. Such a cutoff does not correspond to the elimination
of degrees of freedom and the mixed state contributions
were generated by the heat bath only.

The functional RG scheme [11,12] is usually employed
with smooth cutoff which keeps the state of the renormal-
ized theory pure. Nevertheless some mixed state contribu-
tions can nevertheless be picked up by the coupling to an
external heat bath. The exploration of nonthermal fixed
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points [19] and the loop-generated evolution of the effec-
tive action, kept in the local potential approximation [20]
has already been achieved in this manner. Some spectral
functions have been calculated in Ref. [21] but the ansatz,
the local potential approximation for the effective action,
does not allow the mixed state contributions to emerge. The
RG strategy can be used as a tool for a partial resummation
of the perturbation series. When carried out in the CTP
formalism may lead to a realization of the dynamical RG
procedure [22].

In Sec. II we briefly recall the CTP formalism and its
slight extension. The reader finds in Sec. III the definition
of the blocked action and its ansatz, used to defined the
renormalized trajectory. The calculation of the tree-level
effective action is reproduced in Secs. IV and V contains the
interpretation of the results. We turn briefly to the smooth
cutoff scheme in Sec. VI. Finally, the conclusions are given
in Sec. VIL

II. OPEN QUANTUM SYSTEMS

The formalism, we need to handle open systems, can be
reached in two steps, first the CTP scheme is worked out,
followed by a slight generalization, the closed and open path
(COTP) method, to deal with the reduced density matrix.

A. CTP formalism

One starts with a closed systems and uses the original
CTP scheme [5], developed for the calculation of the
expectation values. It is based on the generating functional,

Zj JT) = Te(U(ty 155 ) U (15 =57)], - (1)

where p; is the initial density matrix, j* and j~ denote two
sources, coupled linearly to the elementary variables, to
generate expectation values and interaction vertices by
functional derivation and U stands for the unitary time
evolution operator. The minus sign of j~ is only a
convention, motivated by simplicity. What makes this
scheme particularly well suited for the calculation of the
reduced density matrix is the unrestricted time evolution in
contrast to the traditional formalism of quantum field
theory where both the initial and the final states are fixed.
The path integral expressions for the generating functional
for a scalar field theory can be written in the form

20 = [ Dl i, @)

where the CTP doublets, ] = (j*,j7), ¢ = (¢T, ™) with
the CTP “scalar product”, }'(}:Zgj"ﬁ’, have been
introduced and the bare CTP action is given by
S[p] = Spldp™] — 5[], Sg[¢] being the usual bare action.
The integration is over closed time paths configurations,
satisfying the condition ¢,J;,x = ¢,‘f,x. The bare theory,
regulated by an UV cutoff which assumes a large but
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finite value, A, is considered to be complete, namely its
cutoff characterizes a complete set of physical states rather
than our ignorance. As a result the bare theory is assumed
to be closed and to have no environment. The convolution
of q;ﬁ,i x with the initial density matrix, p; and the details of
the regularization of the path integral are suppressed.

We take either the perturbative vacuum or a free, sta-
tionary thermal state as the initial state and the interactions
are switched on adiabatically as ¢; - —oo. The closing of
the trajectories at the final time breaks the translation
invariance in time and to recover this symmetry we go into
the limit 7, — oo where we can represent the trace at the
final time in Eq. (1) by a redefinition of the free part of the
CTP action, found by the help of the free propagator,

bypx >
Tyl )

T(¢.,]

by e

ihDOx,y = Trpi<
defined by the free generating functional,
ZO [‘;] — e_ﬁfdx-dy},\b(]x.y}y‘ (4)
The identity

Tipupy) + Tahy]" = by + brby. (5)

imposes the condition D™* + D™~ = D"~ + D~" which
together with DY} = —D;7* and D = —D; " yield the
block structure,

. D"+ iD'
b—(

-Df + iD">
D/ +iD' '

~D" +iD

(6)

for the two-point function of any local operator in terms
of three real functions, D}, = Df Df,y e —vax and

yx
Di, =Di,, where D" and D/ are called near and far
Green functions by analogy with classical electrodynamics.
One finds the Feynman propagator in the blocks D™+ =
—D™* and D" = -D"* is given by the on shell
Wightman function. These functions are the easiest to
calculate in the operator representation where a straightfor-

ward calculation yields

1
pP—m

Dy, =P 2
D{, = —iz5(p* — m?)sign(p°),
Dy, = —i(1 +2n,)z8(p* — m?), (7)

for the Fourier transform,

025008-2



QUANTUM RENORMALIZATION GROUP

where P denotes the principal value prescription,
n,=1/(ef*» —1) is the occupation number, and

®, = \/m*+p>.
p p

The kernel of the free CTP action,

~ 1 AN oA oA
Sold] =5 [ drdsivyiy. ©
is the inverse of the propagator, K = D" and the inversion,
performed by the regulated Dirac-delta, 65.(z) =
e/n(z> + €?), yields the block structure,
. K"+ iK' K/ —iK'
k= ( o ’ > (10)
—K/ — iK' —K" + iK'
and the relations
Dt’i — (Kz'i)—l’
D' = —D'K'De, (11)

where D% = D" + D/ stands for the retarded and advanced

Greens functions and the notation K¢ = K" + K/ is used
for the kernel, too. We have

K}[l] — p2 _ n,l27
K}, = iesign(p"),
Ki, =ie(1+2n,), (12)
after ignoring O(e?) terms. The action of an interactive
system, written as the sum of the free and the interaction
pieces, S[p] = So[¢] + Si[¢], yields the CTP action,
S[@] = Sol@] + S:[¢*] — S;[¢~], for the path integral (2)
where the integration is over independent trajectories,
¢*(x), with free initial and final conditions.

B. COTP formalism

In the second step the system, consisting of a particle of
bare mass m, is brought into contact with its unobserved
environment, made up by another kind of particle of bare
mass m,, and write action of the complete, closed system in
the form S[¢’)d = SOS [¢] + SOe b(] + Sse [457)(]’ where the
fields ¢ and y describe the system and the environment
degrees of freedoms and Sy,[¢] and Sy, [y] are the free
action with m?> = m? and m? = m2, respectively. The
reduced density matrix of the system, p[qb;?, ¢7], is given

by the partial trace over the environment,

p[¢;,¢;,ﬂ = <¢}_|Trem:[U<tf7ti;j+)piUT(tf7ti;_j_)]|¢;>'
(13)

It can be written as a path integral,
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b} 975 = [ DA a

extending over open system trajectories, gz’rt x = éﬁfx, and
containing the COTP effective action,

N 1 A A oA A
Seff[¢] = E/ dXdyqﬁxK)‘cl,yqﬁy + Si kb} (15)

The first term here is the free action, constructed by the help
of the CTP diagonal kernel,

N (pz—mz—i—ie 0

K? = . (16
b 0 —p2+m2—|—i€> (16)

with m? = m?2 and S, is defined by the CTP path integral,
oS3 / Dlgletr ] adtKahtiselo 1=l (1)

integrating over closed environment trajectories,

)(g x = Xijx and using the free kernel, (12), with

m? = m?. The unitarity of the time evolution for the full

system assures that the predictions are independent of 7,
and the trace of the reduced density matrix remains unity.

III. BLOCKING

The blocked theory is defined by a gliding sharp cutoff,
k, reflecting our ignorance about or inability of observing
the UV modes. The bare theory is supposed to be defined
with the same cutoff at k = A. The bare action is assumed
to be of the form

2
mp

SB[¢]:/dx|:_%¢xD¢x__

2 ;- UB(¢X) ’

(18)

where the bare potential, Ug(¢), is an even polynomial,
starting beyond the quadratic order. The reduced density
matrix of the blocked theory can be found by integrating
out the unobserved modes and it defines the COTP effective
theory according to (14), where the integration extends over
modes with spatial momentum |p| < k and the blocked
action is defined by Egs. (15)~(16) with m> = m% and the
bare CTP path integral,

oS3 / Dot ] xRty [ dalUsi x)-Us(7+20)
(19)

with integration over the UV field, y, with spatial momen-
tum k < |p| and the free kernel K, defined by Eq. (12),
has m? = gp,.

The CTP index appears like an internal quantum number
in the Feynman rules and the lines of a graph represent
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either the diagonal or the off diagonal CTP blocks of the
free propagator (3). To find the physical interpretation of a
graph it is important to realize that the off diagonal CTP
block of the propagator,

Dy =) (nlg(x)pig(y)In). (20)

n

represents the elementary processes where a particle is
added or removed by U and U in the generating functional
of Eq. (13). Such a modification of the state appears in the
distant future at the trace hence it must be on shell. Thus the
lines which stand for the CTP off diagonal propagator and
have UV spatial momentum represent the (de)excitations of
the environment.

It is instructive to distinguish three kinds of CTP
Feynman graph [23]. The graphs without CTP off diagonal
lines, D*F, are called homogeneous. These graphs are
identical to those of the traditional, transition amplitude
based formalism. The graphs which have CTP off diagonal
lines but all external legs belong exclusively either to ¢* or
¢~ are called inhomogeneous. These graphs contribute
such CTP Green functions which occur in the traditional
formalism, too. Finally, a genuine CTP graphs has the CTP
off diagonal lines and its external legs belong to both ¢
and ¢~. If the initial state is the vacuum with a gap in the
excitation spectrum then the energy conservation cancels
the inhomogeneous graphs and the Green functions which
are present in the traditional and the CTP formalisms are
identical. Hence the new effective vertices of (19), com-
pared to the traditional formalism, arise either from the
genuine CTP graphs including couplings between ¢* and
¢~ and expressing IR-UV entanglement or from the heat
bath. Both kinds of vertex represent entanglement and
generate mixed state contributions.

The gliding cutoff poses a serious problem, namely we
can not preserve the Lorentz symmetry in a theory with
finite cutoff. The problem of an UV cutoff in the
Minkowski space-time can be seen by noting that the
volume of the space-time region which is bounded by two
hyperboloids is infinite. Thus one can not define a region of
finite volume by the help of invariants. Different regulators
break the boost symmetry in different manner. For instance
when the Wick rotation, following a regularization in the
Euclidean space-time, is performed within a finite energy
interval it generates an exponentially weak symmetry
breaking which is acceptable in a renormalizable theory
where A — co but remains problematic in an effective
theory with a finite cutoff. There is a Lorentz invariant
regulator which is based on higher order derivatives [24]
but the cancellation of the divergences in such a manner
leads to physically unacceptable, negative norm states.
Hence we assume a Lorentz noninvariant, sharp gliding
cutoff, |p| < k, for the blocked theory and project the
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evolving blocked action after each blocking step onto a
Lorentz invariant ansatz.

The blocked action is obtained in the RG strategy by
subsequent infinitesimal blockings: We start with the bare
action at k = A and decrease the gliding cutoff in infini-
tesimal steps, k - k — Ak. The infinitesimal blocking is
therefore the transfer of the modes with momentum
k—dk < |p| <k from the system to the environment
and the modification of the effective action is given by
the equation

erSianld) — / Dmeésk[&wﬂ, (21)

where ¢ and y are nonvanishing for |[p| < k — Ak and
k — Ak < |p| < k, respectively. This step yields a func-
tional differential equation, a far too involved mathematical
problem and one has to use an approximate equation,
obtained by projecting it onto a functional space, defined
by some ansatz. We shall use the form § = S; + §,, where
S is kept in the local potential approximation,

5181 = [ drddkid, - [ axlvi) - v,
22)

involving the block-diagonal kernel in (16), of the free
action with m? being the running mass and a real, even
polynomial potential starting beyond the quadratic order.
The nonlocal part of the action can be organized within the
cluster expansion. Since the nonlocality arises mainly due
to the on shell modes we truncate this expansion at the
bilocal cluster,

S21d] = - / dxdyV_,($r. ). (23)

When a mode is transferred from the open to the close
time path sector then we have to provide the off diagonal
blocks of the kernel in its free action which represent the
trace operation in the generating functional (13). Therefore
the kernel in the free action in the path integral on the right-
hand side of Eq. (21) is given by Eq. (12), using the
running mass.

IV. TREE-LEVEL EVOLUTION

To find the saddle point to the path integral (21) we have
to solve the equation of motion for 7(x) for a given ¢(x).
The scalar product of a function f, with a regular Fourier
transform and y%, the space-time integral of the product, is
O(Ak™) thus it is enough to look for the saddle points
of the linearized equation of motion. We seek the solution
of the linearized equation of motion, D! ¥ = I:, where
(D)7 = (D)7 — 67 6U"(¢°) is the inverse of the
environment propagator and
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L7 = U () — 2 / AoV (Bedy).  (24)

The substitution of the solution back into Sy [ + 7] yields

Sk—Ak = Sk + ASk’ Wlth
Sk_Sk—Ak
Ak 7 (k) p(k=Akk) 7y (k)=1 p(k=Ak,k) 7)(k) s
= [ dxdyL (DW USRI DW pU=skOpW) T
(25)

where the projector,

4
k) [ dp
Py = [ S Eielpl - ket -

restricts the contributions to the environment momentum
shell, k — Ak < |p| < k, and the environment propagator is

Dﬁ)z/( 22)’*

The projection onto our

pe= . (26)

KD (1)

ansatz suppresses the

¢-dependence in D™,
Sp— S ar = % / dxdyl, DL, (28)
cf. Fig. 1, imposes the truncation
LS~ L7 =oU'(¢7) -2 / dyWi,(¢,).  (29)
with

W?c—y ((;5) = a(ﬁ’fvx—y ((;5/’ &)W:o (30)

and yields the evolution equation
5= / dxdyL, DL, (31)
The right-hand side of this equation can be written in form
LY / dxdy [UU/(gb;)DE"_);’*”’o/U’(gz;;)
2 6,0
—4 [ dewe (pD U g)
4 [ aazwe (GO0 W @) ()

making the preservation of the two-cluster structure
explicit.
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To find the solution of the evolution equation we rewrite
it first in momentum space,

4
%S = % / éﬂ‘; 5(q| — K)[4[W? ,(d)]_, D57 WT ()],

—4[W7,(})]_, D57 o' U (¢7)],
+0[U'(¢°))_ D57 o' [U'(¢°)]

(33)

by the help of the Fourier transforms, f, = [dxf e™.
Note the simple structure of the evolution: for each value of
the gliding cutoff the function V , is fixed within the Fourier
space space region k — Ak < |g| < k without using the
other values of V. Thus the tree-level evolution simply
accumulates the independent contributions recovered at
each gliding cutoff value. The solution, corresponding to
the initial condition (18), is S,, given by Eq. (23) with

)

(k,A\)oc’

V(¢ @) = ——Zaa U(¢5) D7 U (¢5). (34)

where

4
A (k,A) d q
D)2y’ = ®

is the propagator, covering all eliminated mode. The local

potential does not evolve on the tree level, U(¢) = Ug(¢)

and m?> = m3.

~k)O(A ~ |g)Dye~ e (35)

V. TREE-LEVEL SYSTEM-ENVIRONMENT
ENTANGLEMENT

To find the physical interpretation of the tree-level
contribution to the blocking we choose the vacuum as
the initial state, place the system into a large but finite
quantization box and write the running density matrix in the
form

=S "y )| (36)

where the state [(¥142)) belongs to the sector of the Fock-
space which contain particles with spatial momentum
ky < |p| < k,. The bare theory is closed thus the summa-
tion over n is restricted to a single value for k = A and

i) =
external field, g;ﬁ, and seek the leading order contribution
to the running density matrix during the blocking,
k — k — Ak, by expanding in ¢.

Let us first consider the change of the density matrix
which is induced by the CTP diagonal contributions in (34)
for a given x and y. These terms describe the creation and
annihilation of an UV particle at x and y, a correction to U
and U" in the generating functional (13), written in the form

|0<O*A)>. Furthermore, we introduce a weak,
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M) e ) @ Y

where ¢; = min(x?, y9),
(k

t, = max(x°,y°) and the sum is over the pairs, m = (m*, m™),
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t<t, or t,<t,

(0.k— Ak)| (37)

H<t<lty,

m* > 0, excluding the case

= (0,0). The states |1, _Ak’k>> with m > 1 are normalized momentum eigenstates of an UV particle and m = 0 denotes

the UV vacuum state, |;1 (k=Ak. k>>

the UV particle, is the relative state of |1//,(10’k)

[0k=8%) hence (1"

) with respect to |;7

(k=Ak k)
m*

Y = &,y m-- The IR state, (Ok ak)

(k—Ak.k)
')

), generated by

[25]. A system-environment entanglement is

generated for #; < t < t, and it produces a mixed contribution to the state of the blocked theory,

0
Ap_ar =

(0.k—AK) |

nm

(0,k—Ak)
anh//n m ><

t<t, or t,<t,

Hh<t<t. (38)

Such an IR-UV entanglement and the resulting mixed states are properly given account in the traditional RG scheme
because there are no environment excitations in the final state at 1, > 1.
The off diagonal terms describe the creation of an UV particle in both U and U™ with the same momentum and their sum

yields

0

(0,k—Ak)
anZIWn A0 @ Il
Apk = n

k Ak.k) k— Akk
)

t<t,
< (0.k— Ak)|

®

H<t<t, (39)

(0,k—Ak (k— Akk k—Ak.k) (0.k—Ak
an2|wnmlm£>®|n ><mm2 |®< nm m)| I <1,

1y 1y

(k—Ak,

where |i1mI iy >> denotes a two UV particle state for m, m, # 0, a single UV particle state if one of the indices is 0 and the
UV vacuum when both indices are 0. Now the system-environment entanglement and the mixed terms in the reduced

density matrix,

0

(0.k—Ak)

an Il//,, ot
Apr_ar =

(0,k—Ak 0,k—Ak
Z |l//" nmy m2)><w§l-m1~m2)|

my,my,n

persist until the final time and indicate that the environment
is left in an excited state. These contributions require the
COTP formalism.

The CTP diagonal terms to the blocking are complex and
their real and imaginary components are proportional to
Dy_, and Di_ _y» Trespectively, the latter representing the
finite lifetime of the environment excitations. Such a
contribution would be interpreted in the traditional formal-
ism of quantum field theory as the violation of the unitarity
of the time evolution. But the CTP off diagonal contribu-
tions are imaginary, as well, and restore the unitarity of the
time evolution for the reduced density matrix.

The excitations at the final time, 7, — oo must preserve
the energy and are on shell. The distinguished feature of the

on shell excitations is that they can be captured as O(#°)

r<t,
(Ok—Ak)| p
Yin,m~ | <1 <1,
(40)
1 <t,

saddle point contributions, cf. Fig. 1. It is remarkable that
the hallmark of quantum physics, the system-environment
entanglement, is generated on the tree-level. This contri-
bution is described by classical field theory, by the radiation

FIG. 1. An O(¢™3¢~) contribution to the right-hand side of
Eq. (28) which couples the time axes by the help of a fourth and
sixth order vertex. The two vertices are connected by a dashed
line, standing for D®)+—
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field, generated by the far field Green function, D/, in the
language of classical electrodynamics.

VI. SMOOTH CUTOFF

The functional RG method with smooth cutoff is an
algorithm to solve quantum field theoretical models by
interpolating along an arbitrary, nonphysical, one param-
eter family of systems between a soluble model and our
bare theory. This strategy can be realized by the help of
either the bare [26] or the effective action [11,12]. We
extend the latter scheme to allow unrestricted final state and
the evolution of the effective action is followed as the
modes are turned on gradually from a hardly fluctuating,
perturbative model until we reach the physical theory. The
final result is independent of the path used in the process as
long as the evolution equation is solved exactly. In other
words, the modes are eliminated with a freely chosen
dispersion relation but the effects of this arbitrary feature
cancel between the subsequent steps of the evolution.

The interpolating theories are constructed by inserting a
suppressing quadratic term into the bare action, D' —
Dy' + R, with R = Diag(R;, —Ry), k parameterizing the
interpolation. In order to recover some qualitative similarity
with the scale dependence, generated by a sharp cutoff, one
requires that the Fourier transform of the suppression, Ry ,,
is large for |g| < k and is small when |g| > k. The former
makes the field weakly fluctuating and renders the theory
soluble for large k and the latter assures that the original
theory is recovered as k — 0. The system remains closed
during the evolution of k from its large initial value to 0 and
the k-dependence of its expectation values is generated by
the k-dependent dispersion relation of its free particles. One
follows in this scheme the effective action,

rig] = wij] - / dxdh (41)

~

defined by the help of W[j] = —ilnZ[j], given by the
generating functional, (2), and ¢ = 5W/§].

The path integral (2) possesses a saddle point but we do
not have a small parameter to organize the nonlinear terms
in its equation of motion. In fact, such a small parameter,
Ak/k, owes its existence in the sharp cutoff scheme to the
complete freeze out of the modes |p| < k — Ak during the
blocking. By assuming that the saddle point has a small
amplitude, 7 ~ 0, one can easily calculate the effective
action in O(?) by following the steps, outlined in the case
of a sharp cutoff. The result for I'[¢] is the expression (34),
except the replacement DY) — DReA where

X 4 —i(
D,‘Sg,A:/d_”@(A-w) ¢

x=y)p
—_. 42
(27)* D' + Ry, (42)
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The local potential receives no contributions similarly to the
case of the sharp cutoff hence U(¢) = Ug(¢p) and m*> = m3.

The sharp and the smooth cutoff schemes are comple-
mentary in the following sense. A disadvantage of the sharp
cutoff scheme is the impossibility of going beyond the local
potential approximation and including higher order con-
tributions of the gradient expansion in the blocked action.
Furthermore, the blocked action, used in the path integral,
offers little help in finding the expectation value of
observables. Another feature of this scheme which some-
how restricts its application is that the genuine CTP
contributions are on shell and describe the excitations in
the asymptotic state of the environment which take place
beyond the cutoff. To generate such an excitation we need a
large number of IR excitations if the cutoff is high. The
gradient expansion is not limited, important expectation
values, the one particle irreducible vertex functions, are
known and arbitrarily small energy excitations are elimi-
nated in the smooth cutoff scheme. However this scheme
has two important shortcomings. It follows interpolating
theories, an arbitrary family of models, and only the end
point of the evolution, k = 0, belongs to the physical case.
Furthermore, it is impossible to separate the states to be
eliminated and retained in the Fock space. This prevents us
from looking for the system-environment entanglement,
from defining the reduced system density matrix and from
finding the mixed system states. Nevertheless the density
matrix can be calculated and the expressions are formally
similar to Egs. (37) and (39), except that the system state
remains pure. We follow here the interpolation of the
density matrix of a closed system as the dispersion relation
of the particles is gradually changed.

VII. CONCLUSIONS

We believe that the RG procedure, embedded into the
CTP formalism opens up several issues which appeared to
be complete and closed in the traditional renormalization in
quantum field theories. The reason is that the renormalized
theory corresponds to an open system, the monitored, low
energy particles interact with the unobserved high energy
sector. The IR-UV entanglement, generated in such a
manner, produces a mixed state for the IR sector.
Although it is always possible to reconstruct the expect-
ation values by the help of transition amplitudes this
procedure is rather cumbersome in practice. In the light
that the ultimate theory of everything is unknown and we
are always dealing with effective field theories in physics
the IR-UV entanglement seems to be a generic feature of
our observations. As opposed to the traditional RG method
the CTP improved renormalization scheme can give
account of the system-environment entanglement which
has no counterpart in classical statistical physics; therefore,
we call the procedure, presented above, the quantum
renormalization group.
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The IR-UV entanglement, addressed here by following
the cutoff-dependence of the bare action within the frame-
work of the functional RG method, equipped with sharp
gliding cutoff, originates from processes, taking place
above the cutoff and this feature limits its importance.
For instance an O(¢") term in the action generates IR-UV
entanglement if the energy of n — 1 IR particles is sufficient
to create an UV particle, a weak effect for high cutoff. But
the IR-UV entanglement takes place in theories with
nonpolynomial action, such as the nonlinear sigma model
and gauge theories with compact gauge group, as soon as
the energy of a particle at the sharp cutoftf scale is available
in a finite space region. A natural application of the
calculation of the blocked, bare action by taking into
account the IR-UV entanglement are the high energy
threshold effects, such as relativistic corrections.

Entanglement effects persist for long time if the envi-
ronment is soft, ie. it supports low energy excitations and
we may encounter irreversibility and dissipation when the
environment is gapless. Such a situation can better be
handled by calculating the effective action for all environ-
ment modes. This scheme motivates the use of smooth
cutoff where the truncation of the functional evolution
equation is less problematic.

We mention two lessons to be learned from the calcu-
lation, presented in this work. One point is the importance
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of facing the loss of information, resulting from the
unobserved high energy modes. This generates entangle-
ment and mixed state components which have observable
effects but can be recovered by a cutoff which is con-
structed by the careful modelization of the effects of the
unobserved particles in the measuring device. In the case of
an environment with a gap in its excitation spectrum one
needs a sharp cutoff in an obvious manner. Another, more
technical point concerns the emergence of the tree-level
contributions to the blocking relations. Such contributions
to both the pure and the mixed state components appear
with a gap and are missed in the gradient expansion,
employed in the usual RG calculations.

Finally, the basic, open question: What happens
when usual one-loop contributions are retained? An open
system displays a richer dynamics and has more coupling
constants than a closed one. Are there new fixed points,
universality classes, by taking into account the mixed state
components?
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