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A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the electron
of frequency ma and strength ∼ðfewÞ × 10−32 e-cm, two orders of magnitude above the nucleon, and
within a few orders of magnitude of the present standard model constant limit. We give a detailed study of
this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with
particular emphasis on the decoupling limit of the axion, ∂taðtÞ ∝ ma → 0. The analysis is subtle, and we
find the general form of the action involves a local contact interaction and a nonlocal contribution,
analogous to the “transverse current” in QED, that enforces the decoupling limit. We carefully derive the
effective action in the Pauli-Schrödinger nonrelativistic formalism, and in Georgi’s heavy quark formalism
adapted to the “heavy electron” (me ≫ ma). We compute the electric dipole radiation emitted by free
electrons, magnets and currents, immersed in the cosmic axion field, and discuss experimental
configurations that may yield a detectable signal.
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I. INTRODUCTION

In the present paper we give a detailed study of the
interaction of the cosmic axion through the electromagnetic
anomaly, with the magnetic dipole field of an electron. For
an oscillating cosmic axion field, we show that the electron
acquires an effective oscillating electric dipole moment
(OEDM). Our detailed analysis is subtle, and amplifies the
result of our previous note [1]. The analysis is perturbative,
and is treated both classically and quantum mechanically.
Not surprisingly, we find that the OEDM displays subtleties
that are shared with the axial anomaly itself.
We will assume that the axion fills the vacuum as a

classical coherent field, oscillating in a given frame with
frequency ma, and may be associated with dark matter, as
per the model in [2]. Wewill be interested in the effect upon
magnetic objects that are essentially at rest relative to the
axion cosmic rest frame. The axion field is designated as
θðtÞ ¼ aðtÞ=fa where a is the canonically normalized
axion field and fa the decay constant. The cosmic axion
field is then θðtÞ ¼ θ0 cosðmatÞ where ma ∼mπfπ=fa is
the axion mass.
A simple hand-waving argument can be given for the

existence of induced OEDMs arising from magnetic
moments immersed in a cosmic axion field. Witten showed
that a θ-angle in QED will cause magnetic monopoles to
acquire electric charges proportional to θ; i.e., they become
“dyons” [3,4]. If we thus consider a pair of dyon and
antidyon, separated in space by a very small distance, we
will have both a magnetic and an electric dipole moment
where the electric dipole moment is equal to the magnetic
moment times θ. At very large distances we cannot, for all
practical purposes, discern the presence or otherwise of the

underlying magnetic monopoles, but the electric and
magnetic dipole fields persist. A cosmic axion filling space
is essentially an oscillating θ-angle, and we might expect by
this argument, therefore, an OEDM proportional to θðtÞ.
An OEDM is indeed induced for the electron by the

Feynman diagram of Fig. 1 where the solid dot vertex is the
anomalous coupling of the axion to electromagnetic fields.
Our result can be written as an effective interaction for the
nonrelativistic electron in the zero-electron-recoil limit,
with a time dependent electric field (e.g., radiation or a
cavity mode), asZ

d4x2gAθðtÞμBohrχ†
~σ
2
χðxÞ · ~Eðx; tÞ ð1Þ

where gA is the axion-γ − γ anomaly coefficient

(defined below), μBohr the Bohr magneton, and ~Eðx; tÞ
is an external radiative electric field. The induced

FIG. 1. Feynman diagram for axion induced electric dipole
moment. The solid dot is the axion anomaly interaction, θ~E · ~B.
The dashed line is the incoming axion field, θ. The solid line is
the electron, where the electron-photon vertex is the magnetic
dipole moment operator of the electron.*hill@fnal.gov
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effective oscillating electric dipole moment is proportional
to the magnetic moment, de ≈ 2gAθ0 cosðmatÞμBohr≈
3.2 × 10−32ðgA=10−3Þ cosðmatÞ e-cm. We use the term
“effective” because this arises at the level of a one-particle
reducible Feynman diagram. Note that Eq. (1) is the limit of
the action in the case of source-free, time dependent
(radiation) fields, and one cannot naively take the limit
θðtÞ → (constant) without including the nonlocal terms in
the full action, as in Eqs. (29), (30).
Previously, an OEDM has only been considered to be

specific to baryons. It arises, not by the electromagnetic
anomaly, but rather directly via the QCD-induced axion
potential. The magnetic moment of the electron is much
larger than that of the nucleon, and hence the axion-induced
oscillating electric dipole moment is almost three orders of
magnitude larger than that of the nucleon. Since the current
best limit upon any static elementary particle EDM is that
of the electron, of order de ≤ 8.7 × 10−29 e-cm [5], the
electron may provide a promising place to search for an
oscillating EDM.
While the OEDM appears above to be proportional to

θðtÞ, there is, however, a catch: in the limit that ∂tθðtÞ → 0
(decoupling limit) the perturbative Feynman diagrams
involving the anomaly must vanish. But how do we
reconcile decoupling, i.e., derivative coupling of the axion,
from a hard dependence upon θðtÞ?
The decoupling of the axion at zeromass is subtle.Wewill

see presently that a nontrivial nonlocal term is generated by
Fig. 1, which enforces the decoupling. This nonlocality
is reminiscent of the “transverse current” that arises
in radiation gauge quantization of QED (see, e.g.,
Sec. VI.3 of Ref. [6]). The nonlocal term ensures that the
action, Sðθ; Fμν;…Þ, can be brought to the form
S0ð∂μθ; Aν;…Þ þ ðtotal divergenceÞ, where Fμν ¼ ∂ ½μAν�.
This is a property shared with the anomaly itself whereby
themanifestly gauge invariant form of S does not display the
axion derivative coupling. However, upon integration by
parts we can display the derivative coupling of the axion, as
in S0, while relinquishing manifest gauge invariance. Since
these actions are equivalent up to a total divergence, both the
shift symmetry of the axion and the gauge invariance of
QED remain valid in perturbation theory. Displaying the
action as in S and taking the zero recoil limit of the electron,
which is kinematically dictated in the me ≫ ma limit, we
obtain Eq. (1). The price we pay for this symmetry is the
nonlocality of the effective EDM action of the electron. The
structure of the action is, however, determined completely
by this symmetry, as we discuss in Sec. III.
Indeed, nonlocality arises even in the familiar case of a

classical axion induced RF cavity mode. There, the induced
electric field in the cavity, ~EðtÞ, satisfies a similar condition,
~EðtÞ¼ ~Eðt0ÞþcðθðtÞ−θðt0ÞÞ. This happens simply because
~EðtÞ is governed by a first order inhomogeneous differential
Maxwell equation and requires a boundary condition. As we
will see, the particular solution ofMaxwell’s equations for an

induced electric field in a static background magnetic field is
of fundamental importance in axion electrodynamics and
drives most of the interesting phenomena. Modulo this
subtlety, the explicit calculation of the Feynman diagram
as in Fig. 1 nontrivially confirms the argument based upon
Witten’s dyons. The full calculations simultaneously provide
consistency with decoupling via the nonlocal term.
We begin by giving a detailed derivation of the effective

action of the electronOEDM in Sec. II.We consider both the
nonrelativistic Pauli-Schrödinger formalism for a resting
electron, and also Georgi’s covariant heavy quark formalism
for an electron of 4-velocity vμ [7]. The latter formalism is
adapted to the electron, which may be viewed as ultraheavy
in comparison toma, and shows that the resulting interaction
is of the form ∝ θðtÞψvσμνγ

5ψvFμν for ψv ¼ ð1þ v=Þψ=2,
with 4-velocity vμ. The results are consistent, and reveal the
full effective action with the nonlocal term.
In Sec. III A we show that the structure of the action

with the nonlocal term is completely determined by the
axion decoupling, i.e., by the shift symmetry,
a=fa → a=fa þ ϕ, which is maintained in perturbation
theory. While the physical effective action of the OEDM
is consistent with the a=fa → a=fa þ ϕ symmetry, we
emphasize that there are no additional suppressions
involving higher powers of ma; i.e., our OEDM physics
is on par with the induced oscillating electric field in a
RF cavity experiment. In Secs. III B and III C, we
observe how this nonlocality arises in well-known sol-
utions to, e.g., the RF cavity experiments.
To further probe this phenomenon, we show explicitly in

Sec. IV that the classical Maxwell equations for a localized
magnetic dipole, such as an electron in free space, lead to
the emission of electric dipole radiation; i.e., the classical
radiation field from a stationary electron is that of a
Hertzian electric dipole radiator. The classical calculation
is compared to the quantum calculation, and they are found
to be consistent. Large magnetic fields imbedded in
conductors likewise provide a source for such axion
induced electric dipole radiation.
In Sec. V we consider a possible experimental configu-

ration for detection of this radiation based upon an array.
This is a broadband simple radiator, and can be viewed as an
array of high field magnets, or as a planar slab conductor
with a large magnetic field imbedded in the plane of the
conductor. This can produce a power output of upwards of
order ∼10−24 watts and appears to be detectable radiometri-
cally. Themain advantage over RF cavity experiments is that
broadband radiators do not require resonant tuning. We are
encouraged by the simple estimates of the signal integration
that we provide that thismay lead to detactability, even in the
challenging range 1012 ≥ fa ≥ 1010 GeV, or short axion
wavelength. We note that there are several papers that touch
on these and related ideas, e.g., [8–10].
Let us recall some basic concepts. The axion is a

hypothetical, low-mass pseudo-Nambu-Goldstone boson
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(PNGB) that offers a solution to the strong CP problem
of the standard model, and simultaneously provides a
compelling dark matter candidate. The expected mass scale
of the axion is ma ≈m2

π=fa where typical expected values
of the decay constant fa range from ∼1010 GeV upwards
[11–13].
The axion is expected to have an anomalous coupling to

the electromagnetic field ~E · ~B, taking the form

ga
4

Z
d4x

�
a
fa

�
Fμν

~Fμν ¼ −ga
Z

d4x

�
a
fa

�
~E · ~B ð2Þ

where ~Fμν ¼ ð1=2ÞϵμνρσFρσ, and ga is the dimensionless
anomaly coefficient. In various models we have [14,15,16]

ga ≈ 8.3 × 10−4 DFSZ

ga ≈ −2.3 × 10−3 KSVZ ð3Þ

In making quantitative estimates in Sec. V. we will use the
KSVZ result (see Sec. V, in particular Table I, for a listing
of our preferred parameters).
Most strategies for detecting the cosmic axion exploit

the electromagnetic anomaly [17–19] together with the
assumption of a coherent galactic dark-matter background
field [2], a=fa ≡ θðtÞ ¼ θ0 cosðmatÞ. In typical RF cavity
experiments such as ADMX, one applies a large external
constant magnetic field to the cavity, ~B0 (it suffices to
apply this field only in the conducting walls of the
cavity), and the anomalous coupling to θðtÞ induces an
oscillating electromagnetic response field, ~Er and ~Br. The
“cavity modes” can become excited, which can generate
a resonant signal in the cavity. This offers the possibility
of both detecting the existence of the axion and simulta-
neously establishing that it is a significant component of
dark matter. We briefly discuss, for the sake of com-
parison, the energetics of RF in Sec. III C, and quanti-
tatively in Sec. V.
Recently several authors have considered alternative

modes of axion detection [20–22], in particular, the
possibility of observing an OEDM for the nucleons.
Indeed, a small oscillating electric dipole moment for the
nucleons is predicted with a frequency ma given by dN ∼
10−16θðtÞ ≈ 3.67 × 10−35 cosðmatÞ e-cm [21]. Thus far,
this effect has only been considered to be specific to
baryons. It arises, not by the electromagnetic anomaly
∝ ga, but rather directly via the QCD-induced axion
potential.
The axion induced magnetic moment of the electron is

about two orders of magnitude larger than that of the
nucleon. Since the current best limit upon any DC
elementary particle EDM is that of the electron, of order
de ≤ 8.7 × 10−29 e-cm, [5], the electron may be a prom-
ising place to search for an oscillating EDM and the axion
itself.

II. FEYNMAN DIAGRAM ANALYSIS OF
INDUCED OEDM OF THE ELECTRON

A. Nonrelativistic Pauli-Schrödinger action

We compute the axion induced OEDM of the electron.
We go to the electron rest framewhich we assume to also be
the rest frame of the cosmic axion field, i.e., the frame in
which the axion field oscillates in time with no spatial
dependence, a=f ¼ θ0 cosðmatÞ. We use the Pauli-
Schrödinger formalism, and then follow with an analysis
in Georgi’s heavy fermion formalism.
The Pauli-Schrödinger Lagrangian is, of course, the first

order Dirac action in an expansion in 1=me, and takes the
form

1

2m
ψ†~σ · ði~∂ − e~AÞ~σ · ði~∂ − e~AÞψ ð4Þ

where ψ is a two-component spinor. Equation (4) contains
the term

−
1

2m
ψ†~σ · ði~∂Þ~σ · ðe~AÞψ ⊃ −

ie
2m

ψ†ϵijkσkψ∂iAj ð5Þ

having used σiσj ¼ δij þ iϵijkσk. This is the standard

magnetic dipole interaction, − ige
2mψ† ~σ

2
ψ · ~B with g ¼ 2.

Consider the time-ordered product of i× the magnetic
dipole action with i× the axion anomaly action:

− ðiÞ2T
Z

d4x
ie
2m

ψ†ϵijk∂iAjσkψ
ga
2

×
Z

d4yθϵαβγρ∂αAβ∂γAρ: ð6Þ

Assuming θ has only time dependence, and integrating the
anomaly by parts in time we have

iT
ega
4m

Z
d4xψ†ϵijkσkψ∂iAj

Z
d4yð∂0θÞϵlmnAl∂mAn: ð7Þ

Note that this forces us into the radiation gauge, as a
Coulomb term would be ∼θϵlmn∂lϕ∂mAn and upon inte-
gration by parts we would have ∼ − ∂lθϵlmnϕ∂mAn, which
vanishes by the hypothesis that the axion field depends only
upon time.
Contracting the vector potential from the magnetic

dipole interaction with either vector potential in the
anomaly yields

ega
2m

Z
d4y

Z
d4xψðxÞ†ϵijkσkψðxÞ

× ∂iGðx − yÞ∂0θðy0Þϵjmn∂mAnðyÞ ð8Þ

where we have included a 2× combinatorial factor. Here we
use the covariant Feynman propagator of the photon,
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i

�
gμν − λ

∂μ∂ν

∂2

�
Gðx − yÞ → −iδijGðx − yÞ;

Gðx − yÞ ¼ −
Z

d4k
ð2πÞ4

eik·ðx−yÞ

k2 þ iϵ
ð9Þ

since only the spatial terms are relevant and the gauge
dependent terms, ∝ λ, are seen to cancel owing to anti-
symmetries (see Ref. [1]). Our sign conventions and
normalization are consistent with Ref. [23], where we have
∂2Gðx − yÞ ¼ δ4ðx − yÞ.
Using ϵijkϵjmn ¼ −δimδkn þ δinδkm, we can write

¼ −
ega
2m

Z
d4y

Z
d4xψ†σkψðxÞ

× ∂iGðx − yÞ∂0θðy0Þð∂iAkðyÞ − ∂kAiðyÞÞ: ð10Þ

Note that the result of Eq. (8) is manifestly proportional to
∂0θ and therefore the axion is derivatively coupled up to a
total divergence. However, when displayed in this form we
do not see the manifest gauge invariance. This issue is
addressed in detail in Sec. III.
We assume that the electron is in a common rest frame

with the axion. To a good approximation the electron
operator is static, i.e., ∂0ðψ†σkψÞ ¼ 0þOð1=mÞ. Since the
electron mass is enormous compared to the relevant
momentum exchange, me ≫ ma. The electron can there-
fore absorb this tiny momentum without appreciably
changing its energy.
We can therefore integrate the time derivative by

parts, and drop ∂y0Gðx − yÞ terms. We can also integrate
the spatial derivative ∂yk by parts, and note that the trans-
lational invariance of the propagator implies ∂yGðx − yÞ ¼
−∂xGðx − yÞ. This yields

¼ ega
2m

Z
d4y

Z
d4xψ†σkψðxÞ∇2

xGðx − yÞθð∂0AkðyÞÞ

−
ega
2m

Z
d4y

Z
d4xψ†σkψðxÞ∂kGðx − yÞθð∂i∂0AiðyÞÞ

ð11Þ

where∇2 ¼ ∂k∂k. Using the definition of the electric field in
the radiation gauge, Ei ¼ −∂0Ai, the static electron field
permits us to integrate over x0,

R
dx0∇2Gðx − yÞ ¼

δ3ðx − yÞ. We obtain the effective action (we have removed
the i)

¼ iega
2m

�Z
d4xψ†σkψθðtÞEkðxÞ

þ
Z

d4y
Z

d4x∂kψ
†σkψðxÞGðx−yÞθðy0Þ∂iEiðyÞ

�
: ð12Þ

The result we have obtained contains the local contact
interaction, which is a conventional electric dipole form

proportional to θðtÞ. It also contains a nonlocal component. If
we choose to immerse the electron in a source free field, such
as a RF cavity mode or light, then ∂iEiðyÞ ¼ 0 and only the
contact term remains.
We have written this expression in a manifestly gauge

invariant form, and therefore we display the axion field
without a derivative. Integration by parts, as in the general
argument of Sec. III, shows that the axion is derivatively
coupled. Our interaction behaves like the anomaly itself in
its display of manifest gauge invariance vs manifest shift
invariance.

B. Georgi’s heavy quark effective theory applied
to the electron

The previous analysis relied upon the nonrecoil approxi-
mation of the electron, which is justified since me ≫ ma.
This limit implies that the 4-velocity of the electron is
approximately conserved in its interactions with the
comoving axion field. A more “covariant” representation
can be derived, however, by using Georgi’s heavy quark
effective field theory formalism [7]. We obtain the same
basic structure as in the Pauli-Schrödinger case, but
formulas involving the electric dipole moment will become
the more familiar relativistic forms.
We begin by defining heavy electron Dirac fields with

fixed 4-velocity, vμ:

ψ →

�
1þ v
2

�
ψ ¼ ψv ψ → ψ

�
1þ v
2

�
¼ ψv: ð13Þ

The Dirac magnetic moment operator then takes the form

−
ie
4m

ψvσμνψvFμν ¼ −
ie
2m

ψvðγ5ϵαβργγρvγÞψv∂αAβ ð14Þ

where the axion field is θ ¼ θ0 cosðmavμxμÞ.
We again compute the time ordered product of i× the

magnetic dipole action with i× the axion anomaly action:

− ðiÞ2T iega
4m

Z
d4xψvðxÞðγ5ϵαβργγρvγÞψvðxÞ∂αAβðxÞ

×
Z

d4yθðyÞϵηκωρ∂ηAκðyÞ∂ωAρðyÞ

¼ −
ega
2m

Z
d4y

Z
d4xψvðxÞðγ5ϵαβργγρvγÞψvðxÞ

× ∂αGðx − yÞð∂ηθðyÞϵηβωρ∂ωAρðyÞÞ: ð15Þ

Note again that propagator gauge terms do not contribute
owing to the ϵ-symbols. We now relabel, permute, and use
the identities

ϵαβγρϵ
αηωδ ¼ −ðgηβgωγ gδρ þ ð−1ÞpðpermutationsÞÞ ð16Þ

and
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−iψvγ
5σαβψv ¼ ψvðγ5γαvβ − γ5γβvαÞψv: ð17Þ

Note that we can integrate by parts and rearrange to obtain

¼ iega
2m

Z
d4y

Z
d4xψvγ5σ

ργψv½∂2Gðx − yÞð∂ρθÞAγ

þ∂β∂γGðx − yÞðð∂βθÞAρ − ð∂ρθÞAβÞ�: ð18Þ

This form displays the manifest derivative coupling of the
axion, but not manifest gauge invariance.
Alternatively, we can manipulate Eq. (15), using

∂2GðxÞ ¼ δ4ðxÞ, and multiplying by −i to obtain the action

¼ −
ega
4m

Z
d4xψvðγ5σργÞψvθFργ

−
ega
2m

Z
d4y

Z
d4x∂ρðψvðγ5σργÞψvðxÞÞ

×Gðx − yÞ∂β½θðyÞFγβðyÞ�: ð19Þ

Here we have displayed manifest gauge invariance, while
the derivative coupling of the axion is not manifest. We
emphasize that Eqs. (19) and (18) are equivalent up to
surface terms. Note that in Eq. (19) we see the familiar
covariant EDM operators in the heavy quark
fields: ψ̄vðγ5σργÞψvðxÞ.
To compare the Georgi calculation result to the Pauli-

Schrödinger case we go to the rest frame vi → 0, and
carefully note sign conventions in Ref. [23]:

−
ega
4m

Z
d4xψvγ

5σαβψvðθFαβÞ→iega
2m

Z
d4xψ†σiψðθEiÞ

ð20Þ

and

−
ega
2m

Z
d4y

Z
d4x∂βψ̄vðγ5σβρÞψv ·Gðx−yÞ∂γ½θðyÞFργðyÞ�

→
iega
2m

Z
d4y

Z
d4x∂iðψ̄†σiψðxÞÞGðx−yÞ ·ðθ∂jEjðyÞÞ

ð21Þ

where the latter spinors (without the subscript v) are two-
component spinors. These expressions are equivalent to
Eq. (12). The result of Eq. (19) is somewhat more general
than Eq. (12), the latter referring to the frame with the
electron and axion both having 4-velocity vμ.

III. ANOMALIES, OEDMS,
AND AXION DECOUPLING

A. The general form of the action

Presently we give a general argument as to why the
nonlocal term occurs, and we will derive the general

structure of the action by simply demanding the shift
symmetry of the axion.
The effect we are discussing arises perturbatively, from

the interaction of the axion anomaly with a magnetic
moment, and therefore it must share subtleties with the
anomaly itself. The anomalous interaction of the axion with
electromagnetic fields is written in Eq. (2):

ga
2
ϵμνρσ

Z
d4x θðxÞFμνFρσ ð22Þ

where θðxÞ ¼ aðxÞ=fa.
We can perform a transformation that shifts the axion as

θ → θ þ ϕwhere ϕ is an arbitrary angle. If ϕ is constant the
theory is invariant under this shift, since the anomaly only
causes the action of Eq. (22) to shift by a total divergence,
which has no effect in perturbation theory (a total diver-
gence, or “surface term,” is ∝ the total incoming momen-
tum less the total outgoing momentum of the Feynman
diagram). Therefore, we conclude, a=fa must be deriva-
tively coupled in any perturbative process.
We see this in Eq. (22) if we integrate by parts and write

−gaϵμνρσ
Z

d4x ∂μθðtÞAνFρσ ð23Þ

where Aμ is the vector potential, and Fμν ¼ ∂μAν − ∂νAμ.
Equation (23) displays the derivative coupling of the axion;
however the manifest gauge invariance of electromagnet-
ism is lost. Alternatively, Eq. (22) maintains the gauge
invariance of QED, but does not display the Uð1ÞPQ “shift”
symmetry of the PNGB. Both symmetries are present in
perturbation theory since Eqs. (22) and (23) differ only by
surface terms. We observed in Sec. II that this feature is
shared by the Feynman diagram that generates a perturba-
tively induced OEDM.
We generally define the covariant OEDM of the electron

(or similarly for any other object) in an arbitrary frame in
which the cosmic axion field has 4-velocity uμ, i.e.,
θðxÞ ¼ θ0 cosðuμxμÞ, as

S0 ¼ g0
Z

d4x θðxÞSμνFμν ð24Þ

where Sμν is an antisymmetric odd parity dipole density
(S0μν ∼ ψσμνγ

5ψ ; Sμν will be defined in terms of S0μν
momentarily).
Since this result arises perturbatively from the anomaly,

it must have the shift symmetry in common with the
anomaly. In particular we must be able to move a derivative
exclusively onto θ via integration by parts:

S0 ¼ −2g0
Z

d4x∂μθðxÞSμνAν: ð25Þ
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We see that the gauge field, Aμ, now appears explicitly,
exactly as happens in the case of the anomaly itself.
However, in order for Eq. (25) to be valid, a constraint

must be satisfied:

∂μSμν ¼ 0: ð26Þ

A general solution to this constraint can be written as a
nonlocal form:

Sμν ¼ S0μνðxÞ þ
Z

d4y∂ ½μGðx − yÞ∂λS0ν�λðyÞ ð27Þ

(note the antisymmetrization in μ and ν). Equation (26)
satisfies ∂μSμν ¼ 0 for any antisymmetric S0μν, where the
Green’s function satisfies

∂2Gðx − yÞ ¼ δ4ðx − yÞ ð28Þ

and Gðx − yÞ is as defined in Eq. (9).
The action with Eq. (27) thus becomes

S0 ¼ g0
Z

d4xd4yθðxÞFμνðxÞ

× ½S0μνðxÞδ4ðx − yÞ þ ∂ ½μGðx − yÞ∂λS0ν�λðyÞ� ð29Þ

and S0μν ¼ ψ̄σμνγ
5ψ is local. We can transpose the inte-

grand, using ∂xGðx − yÞ ¼ −∂yGðx − yÞ and performing
integrations by parts in y, to obtain

S0 ¼ g0
Z

d4xθðxÞS0μνðxÞFμν

þ 2

Z
d4x

Z
d4yS0ρνðxÞGðx − yÞ∂ρ∂ ½μðθðyÞFμ

ν�ðyÞÞ:

ð30Þ

This is seen to be equivalent, e.g., to the Georgi formalism
result of Eq. (19) after an integration by parts, where we
have g0 ¼ ega=4m and S0μν ¼ ψ̄vγ5σμνψv. The role of the
nonlocal term is therefore to maintain the shift symmetry of
the axion.
The nonlocal term reduces further in certain limits. In the

limit of a constant θðxÞ we have ∂μðθðyÞFμ
νðyÞÞ ¼

θ∂μFμ
νðyÞ ¼ jνðyÞ, where jνðyÞ is a source current for

the electromagnetic field. Since ∂2G ¼ δ, the vector
potential is given by

AμðxÞ ¼
Z

d4yGðx − yÞjμðyÞÞ: ð31Þ

Hence, for constant θ,

S0 →
Z

θSμνFμν −
Z

θSμνFμν ¼ 0 ð32Þ

which is the simplest statement of decoupling.
We can also consider a static limit for the electron in

which

Z
dy0Gðx − yÞ ¼

Z
d3~k
ð2πÞ3

e−i~k·ð~x−~yÞ

~k2

¼ 1

4π

1

j~x − ~yj≡ −
1

~∇2
ð33Þ

where ~∇2ð1=RÞ ¼ −4πδ3ðRÞ (e.g., see Sec. VI.4 in [6]).
We find by explicit calculation of Fig. 1 that S0μν is the local
electric dipole density operator, ∝ iψ̄γ5σμνψ .
For a purely spatially constant but time dependent axion

field, θðtÞ, and a nonrelativistic, static electric dipole
moment, g0S00i ¼ −g0S0i0 ¼ 1

2
PiðxÞ, where ∂tPiðxÞ ¼ 0, this

becomes

S0 ¼ g0
Z

d4xθðtÞ
�
~P · ~Eþ ~∇ · ~P

�
1

~∇2

�
~∇ · ~E

�
: ð34Þ

In an arbitrary gauge, ~E ¼ ~∇φ − ∂t
~A, we see that

S0 ¼ g0
Z

d4xθðtÞ ~∇ · ð~PφÞ

þ g0
Z

d4x∂tθðtÞ
�
~P · ~Aþ ~∇ · ~P

�
1

~∇2

�
~∇ · ~A

�
: ð35Þ

Therefore, S0 becomes a total divergence in the limit
∂tθðtÞ → 0. In particular, the first term is a total divergence
in space for a spatially constant θðtÞ.
In the case of a source-free electric field, ∇ · ~E ¼ 0, this

becomes

g0
Z

d4xθðtÞ~P · ~E ð36Þ

indistinguishable from a simple electric dipole moment

interaction. Because ~E ¼ −∂t
~A, we can integrate this

expression by parts to write

g0
Z

d4x∂tθðtÞ~P · ~A ð37Þ

and manifest gauge invariance is lost, just as in the case of
the anomaly when the derivative is placed on the axion
field. Equations (36) and (37) differ only by surface terms
that are irrelevant to perturbation theory.
Note that if the electric field has a static source, such as

an electric charge (e.g. an atomic nucleus), located at ~x0,
~∇ · ~EðyÞ ¼ Qδ3ð~y − ~xÞ and, ignoring the explicit ∂tθ ∼ma
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terms in the nonlocal component of Eq. (30), then the
quasistatic action reduces to

g0
Z

d4xðθðtÞ − θðt − j~x − ~x0jÞÞ~PðxÞ · ~EðxÞ: ð38Þ

Here we see that the nonlocal term subtracts a retarded
axion field from the local value of the axion field. This
difference vanishes as ma → 0. This is the way the
decoupling is generally maintained in solutions to
Maxwell’s equations in classical configurations, such as
RF cavities, as we see in the next few sections. This result,
however, implies that the electron OEDM may be difficult
to probe in atomic experiments (such as the ACME
experiment, [5]) where j~x − ~x0j ∼ rBohr is the Bohr radius,
since ðθðtÞ − θðt − j~x − ~x0jÞ ∼marBohr ≪ 1.
We emphasize that a nonlocal operator structure in

electrodynamics is not novel. It is encountered in the
“transverse electromagnetic current” in QED, e.g., when
we quantize in radiation gauge [see, e.g., Sec. VI.3 in [6]
and Eq. (6.28)]. In that case the nonlocal term is essential to
maintain the causality of the theory in this gauge. The
transverse current occurs when we have Coulombic sources
and a nonzero, time dependent component of the vector
potential, A0. A0 has no time derivatives in the action and is
therefore an instantaneously propagating field, and cannot
represent a physical outgoing on-shell photon. The equa-

tion of motion for A0 is ~∇2
A0 ¼ −ρðxÞ, where ρðxÞ is a

charge density. If we want to allow time dependent A0, then
∇2∂0A0 ¼ −∂0ρðx; tÞ, but from current conservation we

have ∂0ρ ¼ ∇ · ~j where ~j is the 3-current. Hence, we have

∂0A0 ¼ −ð1= ~∇2Þ ~∇ · ~j. This means that if A0 is to be time
dependent, then there must necessarily be a 3-current, and

hence a vector potential, ~A. We impose the condition
~∇ · ~A ¼ 0. ~A satisfies ð∂2

0 −∇2Þ~A − ~∇∂0A0 ¼ ~j (the equa-
tion of motion of A0 is unmodified by this). This is often

written as ð∂2
0 −∇2Þ~A ¼ ~jT , where ~jT is the “transverse

current” [6] which takes the form ~jT ¼ ~j − ~∇ð1=∇2Þ ~∇ · ~j.
~jT is identically conserved with the nonlocal term, is

consistent with the radiation gauge condition ~∇ · ~A ¼ 0,
and thus gauge invariance is maintained. From this, Lorentz
invariance is also maintained.
Thus, introducing A0 time dependence requires a non-

local correction to the current to maintain a conserved
current, and hence gauge invariance. This is formally
similar to the structure seen in Eq. (27) which maintains
the shift symmetry (analogue of gauge symmetry) of the
axion. The apparent nonlocality is arising because we are
treating the “vacuum” as effectively containing a space-
time dependence, through the background cosmic classical
θðtÞ field. Physical amplitudes thus inherit a nonlocal
dependence upon the history of the vacuum.

B. Axion in an infinite volume static magnetic field and
inherent nonlocality

The “integral form of axion decoupling,” as we have seen
above arising from the nonlocal term, is a general feature of
the solutions to the Maxwell equations in various practical
situations. Suppose we have an infinite universe which
contains a uniform static magnetic field ~B0 and a back-
ground oscillating classical axion field, aðtÞ=f ≡ θðtÞ ¼
θ0 cos ðmatÞ (this can be considered as an infinite volume
limit of a RF cavity experiment as we do below). We
consider the sources for ~B0 to be far away from the region

of interest and therefore ~∇ × ~B0 ¼ 0. The decoupling,
ma → 0 limit, becomes somewhat subtle, even in this case.
We can analyze this classically.
The axion anomaly will generate an electromagnetic

field of the form ~E ¼ ~Er and ~B ¼ ~B0 þ ~Br where ~Er and ~Br
are oscillating “response fields.” Maxwell’s equations in
these fields become
Maxwell (1):

~∇ × ~Br − ∂t
~Er ¼ −ga ~B0ð∂tθÞ ð39Þ

Maxwell (2)

~∇ × ~Er þ ∂t
~Br ¼ 0 ð40Þ

and ~∇ · ~Br ¼ ~∇ · ~Er ¼ 0.
The Maxwell equations are coupled first order inhomo-

geneous differential equations. They are consistent with the
decoupling of the axion asma → 0, since the source term is
proportional to ∂tθ. The vector potential in Coulomb gauge

likewise satisfies ∂2
t
~Ar − ~∇2 ~Ar ¼ −ga ~B0ð∂tθÞ where ~Er ¼

−∂t
~Ar and ∇ · ~Ar ¼ 0, a single second order inhomo-

geneous differential equation. For an infinite universe filled
with the magnetic field ~B0 we have translational invariance
in space.
The Maxwell equations have a particular solution that is

consistent with the symmetry of spatial translational
invariance:

~Er ¼ ga ~B0

Z
t

0

dτ∂τθðτÞ ¼ ga ~B0ðθðtÞ − θðt0ÞÞ
~Br ¼ 0: ð41Þ

The solutions necessarily require the specification of a
single boundary condition at an initial time, which we take
to be ~Erðt0Þ ¼ 0 and ~Brðt0Þ ¼ 0. We emphasize that this is
a nonpropagating solution (since ~Br ¼ 0) and represents a
time dependent “dual rotation” of ~B0 → ~Er [1].
The dependence upon the initial condition introduces an

apparent nonlocality, or “history,” into the observed ~ErðtÞ.
Clearly ~∇ × ~Er ¼ 0 and hence Br ¼ 0. Note that the vector
potential is nonlocal, satisfying
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~Ar ¼ ga ~B0

Z
t

0

dτ0
Z

τ0

0

dτ∂τθðτÞ: ð42Þ

Our infinite universe with a static magnetic field
and an oscillating axion field has acquired an oscillating
electric field. This is an example of a general “theorem”:
Any magnetic moment becomes an oscillating electric
moment in the presence of the oscillating axion. The
magnetic field need not be restricted to a constant all-
space filling form as in this toy universe example; it can
be, e.g., the local field surrounding a magnetic dipole
moment, as we can see classically. The effect of the axion
is to produce a time dependent electric dipole for the
electron.

C. Axion induced electric field in a RF cavity

To detect a cosmic axion signal we can deploy a very
large constant, externally applied magnetic field ~B0 within
a resonant cavity. The solutions to the Maxwell equations
for the response fields will always involve the same
particular solution we just encountered in the toy universe,
but also now include homogeneous solutions that are
required to implement the boundary conditions of the
cavity.
Maxwell’s equations for the response fields are as in

Eqs. (39) and (40). We now have conducting boundary
conditions at the cavity wall, r ¼ R: ~Eðr ¼ RÞ ¼ 0 [and
since the form of the B-field is parallel to the cavity axis, we
have no constraint upon ~Bðr ¼ RÞ].
With cylindrical coordinates, (ρ, ϕ, z), we find a

cylindrically symmetric solution:

~E ¼ ðkJ0ðρmaÞ þ gaÞB0
~θ ẑ

~B ¼ kJ1ðρmaÞB0

∂t
~θ

ma
ϕ̂: ð43Þ

The electric field has the form of our free space solution
proportional to gA, plus a homogeneous cavity mode
solution proportional to k.
We now apply conducting boundary conditions at the

cavity wall, ~Eðρ ¼ RÞ ¼ 0. We thus determine k:

~E ¼ −ga
�
J0ðρmaÞ
J0ðRmaÞ

− 1

�
B0ẑ ~θ

~B ¼ −ga
J1ðρmaÞ
J0ðRmaÞ

B0ϕ̂

�∂t
~θ

ma

�
: ð44Þ

Note again that the solution vanishes as ma → 0 since we
define ~θðtÞ ¼ R

t
t0
dτ∂τθðτÞ, where t0 is an earlier time at

which ~Eðt0Þ ¼ 0. The solutions are therefore intrinsically
nonlocal in time. Henceforth we will omit the understood
tilde on ~θ, i.e., θ → θðtÞ − θðt0Þ.

This is an idealized solution with a perfect resonant
behavior, i.e., for a special cavity satisfying J0ðRmaÞ ¼ 0
the solution has an apparent infinite amplitude. Of
course, in reality the amplitude is damped by dissipation.
This results in a finite Q value, and modifies the
solution to

~E ¼ −ga
�
J0ðρmaÞ

F
− 1

�
B0ẑθ

~B ¼ −ga
J1ðρmaÞ

F
B0ϕ̂

�∂tθ

ma

�
ð45Þ

where

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ0ðRmaÞÞ2 þ 1=Q2

q
: ð46Þ

Note that the total oscillating field energy in the cavity
is ∝ Q2. The finite Q arises if we include a resistive
damping term in the Maxwell equations. In an idealized
perfect cavity the oscillating fields are the electric field
90° out of phase from the magnetic field, and hence a
vanishing time averaged Poynting vector. However, with
finite Q there is an induced, small Oð1=QÞ, temporal
phase shift, that we have not written, such that ~E and ~B
are not exactly 90o out of phase. This allows the Poynting
vector at the walls of the cavity to average to a nonzero
result. Hence power is extractable at a rate ∝ Q. If we
attempt to extract power at a faster rate then Q will
decrease since the dominant power loss mechanism
becomes the radiative extraction itself. We will consider
some quantitative aspects of the RF cavity solution
in Sec. V.

IV. ELECTRIC DIPOLE RADIATION FROM
A STATIONARY ELECTRON

A. Classical calculation

First we consider the electric dipole radiation from a
classical magnetic moment immersed in the axion field.
This calculation has validity for intense classical magnetic
sources. It cannot be adapted to the case of an electron
which requires the quantum calculation. Nonetheless, it is
instructive to compute and compare it with the quantum
case in Sec. IV B. Wewill see that the radiation is generated
by the physical OEDM. The magnetic dipole field sur-
rounding the source, though it appears on the rhs of
Maxwell’s equations as a source term in the axion back-
ground, does not itself radiate. Instead, this is associated
with the nonradiating particular solution encountered in the
previous section, and it allows implementation of various
boundary conditions at short distance for the electric field.
The standard Maxwell equations with axion anomaly

source in the presence of an arbitrary static, local magnetic
field ~B0ð~rÞ are
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Maxwell (1):

~∇ × ~Brð~r; tÞ − ∂t
~Erð~r; tÞ ¼ −ga ~B0ð~rÞ∂tθðtÞ ð47Þ

Maxwell (2)

~∇ × ~Erð~r; tÞ þ ∂t
~Brð~r; tÞ ¼ 0 ð48Þ

and ~∇ · ~Br ¼ ~∇ · ~Er ¼ 0.
Presently ~B0ð~rÞ≡ ~∇ × ~A0ð~rÞ will be the static field of a

classical solenoidal magnet, centered at the origin, ~r ¼ 0,

where ~A0 can be written formally in terms of a magnetic
dipole source ~m0 ¼ ~mδ3ð~rÞ, (see Ref. [6], Chap. 5.6). We
have formally

− ~∇ × ~B0 ¼ ~∇2 ~A0 ¼ ~∇ × ~m0 ð49Þ

and hence

~A0 ¼
1

4π

~m × ~r
r3

ð50Þ
and

~B0 ¼ −
1

4π

�
8π

3
~mδ3ð~rÞ þ

�
1

r3

��
~m −

3~rð~r · ~mÞ
r2

��
ð51Þ

(see the magnetostatics discussion by Jackson, Eqs. (5.55)–
(5.64) [6]; Jackson states that this is a purely classical
construction and cannot be unambiguously applied to a
quantum mechanical electron).
A subtlety arises in the present case with the particular

solution encountered in Sec. III. Consider a “sourceless
dipole field,” i.e., one in which there is no ~mδ3ð~rÞ term:

B̂0 ¼ −
1

4π

�
1

r3

��
~m −

3~rð~r · ~mÞ
r2

�
: ð52Þ

We consider Maxwell’s equations, replacing ~B0 by B̂0 on
the rhs of Eq. (47). We then have the particular solution to
the vacuum Maxwell equations:

~Erð~r; tÞ ¼ −gaB̂0ð~rÞθðtÞ ð53Þ

and

~Brð~r; tÞ ¼ 0: ð54Þ
This is a solution since

0 ¼ ~∇ ×

�
~m
r3

− 3
~rð ~m · ~rÞ

r5

�
ð55Þ

[note that any potential severe surface term singularity

arising here, e.g., such as in ~∇iðrj=r5Þ, will be ∝ δij or
∝ rirj, but contracted with ϵijk from the cross-product, and

hence zero]. However, since ~Brð~r; tÞ ¼ 0, this is a non-
propagating solution. It exists for any background static

magnetic field satisfying ~∇ × ~B0 ¼ 0. We will require
incorporating this nonpropagating solution into our full
radiation solution momentarily.
The existence of this solution has an important impli-

cation: The sourceless dipole field surrounding the origin
does not lead to radiation. The radiation comes only when
we have a nonzero magnetic field ~B0 which curls around a
nonzero dipole source term. This is analogous to the infinite
universe with a constant magnetic field versus the RF
cavity: it is the conducting wall of the cavity that enforces
the boundary condition that produces the resonant magnetic
and electric fields.
We can now solve the Maxwell equations using retarded

Green’s functions for a vector potential, Arð~r; tÞ, describing
the radiative oscillating response fields in Coulomb gauge.
The analysis mostly follows the textbook derivations as in
[6], Chap. 9, but involves the nonpropagating solution
described above. In what follows, we will pass to a complex
notation where θðtÞ ¼ θ0 expðimatÞ, and the physical

response fields will be the real parts of the complex ~Er

and ~Br. The radiated electromagnetic fields ~Brð~r; tÞ and
~Erð~r; tÞ are obtained as follows:

~Erð~r; tÞ ¼ −
1

4π
gaθðtÞ expð−imaj~rjÞ

·

�
½1 − expðimaj~rjÞ þ imar�

�
~m
r3

− 3
~rð ~m · ~rÞ

r5

�

−m2
a

�
~m
r
−
~rð ~m · ~rÞ

r3

��
ð56Þ

and

~Brð~r; tÞ ¼
1

4π
ga∂tθðtÞ expð−imaj~rjÞ · ~m ×

�
~r
r3

þ ima~r
r2

�
:

ð57Þ

One can readily verify that Eqs. (56), (57) satisfy the
Maxwell equations (47), (48) with the source term

−ga ~B0ð~rÞð∂tθðtÞÞ. Notice that the second term in the
brackets ½…� in Eq. (56) is the nonpropagating solution
of Eq. (53).
Taking the near-zone limit yields

~Erð~r; tÞ → 0 ð58Þ

which vanishes due to cancellation with the particular
solution, and

~Brð~r; tÞ →
1

4π
gaimaθðtÞ

�
~m ×

~r
r3

�
: ð59Þ
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From the near-zone limit we can confirm the Maxwell
equations and read off the source structure:

∇ × ~Br − ∂t
~Er ¼ −

1

4π
gA∂tθðtÞ

�
−
8π

3
~mδ3ð~rÞ

þ ~m
r3

− 3
~rð ~m · ~rÞ

r5

�
: ð60Þ

Thus we see that the propagating radiation is due to the
physical OEDM source, which induces the curling mag-
netic field, and is not due to the dipole magnetic field
surrounding the source.
In the far zone we have

~Erð~r; tÞ →
gam2

a

4π
θðtÞ expð−imaj~rjÞ

�
~m
r
−

~r
r2

~m · ~r
r

�
ð61Þ

~Brð~r; tÞ → −
gam2

a

4π
θðtÞ expð−imaj~rjÞ

�
~m ×

�
~r
r2

��
: ð62Þ

These are seen to be formally equivalent to the electric
dipole radiation fields, where our magnetic moment ~m
replaces the electric moment ~p in [6], Eq. (9.18). Hence, the
source of the radiation is the axion induced OEDM.
From this we can compute the cycle averaged Poynting

vector, ~K ¼ h~Er × ~Bri:

~K ¼ 1

32π2
g2am4

aθ
2
0

��
~r
r2

��
~m2

r
−
ð ~m · ~rÞ2

r3

��
: ð63Þ

Using ~m ¼ μBohr~S, the angular differential emitted
power, P, for our classical electron is therefore given
by the classical dipole pattern [[6], Eq. (9.23)]:

dP
dΩ

¼ 1

32π2
g2am4

aθ
2
0μ

2
Bohrsin

2θ: ð64Þ

The total of the emitted power is then

Ptot ¼
1

12π
g2am4

aθ
2
0μ

2
Bohr: ð65Þ

B. Quantum calculation

The quantum calculation is straightforward, and we will
summarize it presently. From the Pauli-Schrödinger result
we have an effective action for radiation given by Eq. (12):

¼ iega
2m

Z
d4xψ†σkψθðtÞEkðxÞ ð66Þ

where we can neglect the nonlocal term since ∂iEi ¼ 0.
The coherent axion field θðtÞ ¼ θ0

2
ðeimat þ e−imatÞ has

both incoming e−imat and outgoing eþimat components, and
we drop the outgoing component for the process of

conversion of an axion into a photon. Likewise, we replace

EiðxÞ ¼ ∂0AiðxÞ by an outgoing photon ik0ϵieþik0t−i~k·~x

with polarization ~ϵ where ~ϵ · ~k ¼ 0. The electron is
assumed to be localized in space and we write ψ†σkψ ¼
χ†fσkχiδ

3ð~xÞ for initial and final two-component spinors χi
and χf.
Consider an emission amplitude of a photon in the xz

plane (which corresponds to the polar azimuthal angle,
ϕ ¼ 0; we will integrate over ϕ subsequently). The photon

3-momentum is ~k ¼ ðsinðθÞ; 0; cosðθÞÞ. The δ3ð~xÞ distri-
bution implies that the 3-momentum of the photon is
arbitrary, constrained only by the on-shell condition and,

finally, by energy conservation k0 ¼ j~kj ¼ ma. The photon
can, in principle, have two independent polarizations,

satisfying ~ϵi · ~k ¼ 0, which we can take to be ~ϵ1 ¼
ð− cosðθÞ; 0; sinðθÞÞ or ~ϵ2 ¼ ð0; 1; 0Þ.
Consider first the case of the initial electron with spin up

transitioning to a final electron, also with spin up, and
hence χi ¼ χf ¼ ð1

0
Þ. Then, we see that

~ϵ1 · χ
†
f~σχi ¼ sinðθÞ and ~ϵ2 · χ

†
f~σχi ¼ 0: ð67Þ

Therefore, only a photon of polarization ~ϵ1 is emitted in this
case. So the amplitude from spin-up to spin-up is therefore

A↑↑ ¼ 1

2
gaμBohrθ0k0 sinðθÞ × 2πδðma − k0Þ: ð68Þ

The corresponding transition rate is

Γ↑↑ ¼ 1

4
ðgaμBohrθ0Þ2

Z
k20sin

2ðθÞd3k
ð2πÞ32k0

ð2πδðma − k0ÞÞ

¼ 1

4
ðgaμBohrmaθ0Þ2

Z
ma

2ð2πÞ2 sin
3ðθÞdθdϕ

¼ ma

12π
ðgaμBohrmaθ0Þ2: ð69Þ

The emitted power is therefore

P↑↑ ¼ maΓ↑↑ ¼ 1

12π
ðgaμBohrm2

aθ0Þ2: ð70Þ

This is identical to the classical case of Eq. (65).
However, there is, for a free electron, the possibility of a

spin flip. Consider the case of the initial electron with spin
up transitioning to a final electron, with spin down, and
hence χi ¼ ð1

0
Þ, χf ¼ ð0

1
Þ. Now we see that

~ϵ1 · χ
†
f~σχi ¼ 0 and ~ϵ2 · χ

†
f~σχi ¼ i: ð71Þ

Therefore, only a photon of polarization ~ϵ2 is now emitted.
So the amplitude for spin up to spin down is therefore
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A↑↓ ¼ i
2
gaμBohrθ0k02πδðma − k0Þ: ð72Þ

The corresponding rate is

Γ↑↓ ¼ 1

4
ðgaμBohrmaθ0Þ2

Z
ma

2ð2πÞ2 sinðθÞdθdϕ

¼ ma

16π
ðgaμBohrmaθ0Þ2: ð73Þ

The emitted power is therefore

P↑↓ ¼ maΓ↑↓ ¼ 1

16π
ðgaμBohrm2

aθ0Þ2: ð74Þ

Hence, in free space an electron will radiate with a total
power given by

Ptotal ¼ P↑↑ þ P↑↓ ¼ 7

48π
ðgaμBohrm2

aθ0Þ2: ð75Þ

For an electron constrained to remain spin up the power is
that of Eq. (65).
In the following we will be interested in polarized

electrons, such as electrons in ferromagnets. Polarized
electrons are generally sitting in a polarizing B-field, and
there is therefore an energy cost in flipping the spin. Hence,
we are justified in dropping the P↑↓ rate in estimates of
aggregated electrons in magnetic materials emitting dipole
radiation. The quantum calculation, where we restrict the
final state to spin up for an initial spin-up state, gives
identically the same power rate as the classical calculation.
It is interesting that the axion field can also cause

electrons to absorb photons. We will not further consider
this “axion induced cooling” effect, but perhaps it, too, has
some interesting consequences.

V. SOME QUANTITATIVE ESTIMATES

Presently we give some quantitative estimates for pos-
sible detection schemes. We will briefly review the RF
cavity, but then focus exclusively on the possible detection
of the radiation from coherent assemblages of magnets or
large scale magnetic fields. We plan a more detailed
treatment elsewhere [24].
We begin by defining a useful scaling parameter: η ¼

ðfa=1012 GeVÞ. Axion parameters and conversions to
natural units are as follows:

A. RF cavity energetics

Let us estimate the signal power of a resonant RF cavity
experiment. (This follows an estimate by Chou [25] pertain-
ing to the ADMX experiment.) The ADMX microwave
cavity is cylindrical and has a length ofL ∼ 102 cm, a radius
of the cavity bore of R ∼ 25 cm, and therefore a cross
sectional area of πð25Þ2 ¼ 1.96 × 103 cm2. The volume

of the cavity bore is V ¼ πR2L ∼ 1.96 × 105 cm3. We will
assume Q ∼ 105, and an applied constant external magnetic
field B0 ¼ 7 tesla.
We see from Eq. (45) that the oscillating signal fields in a

RF cavity are of order

j~Brj ∼ j~Erj ∼ gaB0θ0Q ≈ 5.8 × 10−12
�

Q
105

�
ðcgsÞ: ð76Þ

The total signal energy in the cavity is therefore

E0 ∼
1

8π
ðgaB0θ0Þ2 ×Q2VC ∼ 1.85 × 10−19ðQ=105Þ2 ergs

ð77Þ

where C is a form factor parametrizing the shapes of the
cavity modes which we take to be C ≈ 0.7.
A damped driven simple harmonic oscillator of natural

frequency ω0, driving force F0 exp ðiωtÞ, satisfies

∂2
tϕþ Γ∂tϕþ ω2

0ϕ ¼ F0 exp ðiωtÞ ð78Þ

and hence

TABLE I. Axion parameters and conversions.1,2

Decay constant fa η ¼ ðfa=1012 GeVÞ
Axion mass ma 6.02 × 10−15η−1 GeV
Axion wavelength λa 2πℏ

mac
20.6η cm

Axion frequency νa c=λA 1.46 × 109 Hz
Cosmic amplitude θ0 3.68 × 10−19ρg
Anomaly coefficient ga −2.26 × 10−3 assumed
Magneton μBohr cgs eℏ

2mec
83.591GeV−1

1 statvolt=cm (cgs) 6.92 × 10−20 GeV2

1 watt 4.09 × 10−15 GeV2

1 tesla 6.92 × 10−16 GeV2

1We assume the galactic halo energy density ρg ¼
ρgalaxy=ð0.3GeV=cm3Þ; the cosmic axion field amplitude,
aðtÞ=fa ¼ θ0 cosðmAtþ ϕÞ, where ϕ is arbitrary. Note that θ0
is independent of fa [17].

2One must be careful, as usual, in the definition of the Bohr
magneton. In quantum electrodynamics we typically use the SI
system of units, in which e2SI=4π ¼ α ¼ 1=137, and field energy
density (Poynting vector) is ð~E2 þ ~B2Þ=2 (~E × ~B). Note that we
define the Bohr magneton μBohr SI ¼ eSIℏ=2mec in the SI system
[see Eq. (5)]. If we choose cgs units where e2cgs ¼ α the energy

density (Poynting vector) is ð~E2 þ ~B2Þ=8π (~E × ~B=4π) and the
Bohr magneton is now μBohr cgs ¼ ecgsℏ=2mec. The definitions in
SI vs mks differ by a familiar factor of

ffiffiffiffiffi
4π

p
, i.e., μBohr SI ¼ffiffiffiffiffi

4π
p

μBohr cgs. Put another way, our above SI calculation of
radiated power, Eq. (65), yielded P ¼ ð12πÞ−1ðμBohr SI…Þ2 ¼
ð12πÞ−1ð ffiffiffiffiffi

4π
p

μBohr cgs…Þ2. Had we used cgs field normalizations
and computed the Poynting vector directly wewould have directly
obtained the formula P ¼ ð3Þ−1ðμBohr cgs…Þ2.
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ϕ ¼ Reðϕ0 expðiωtÞÞ; ϕ0 ¼
F0

ðω2
0 − ω2Þ þ iωΓ

: ð79Þ

On resonance this will have an energy stored in a cycle of
E0 ¼ jϕ0ω0j2=2, and energy lost in a cycle (which must be
replaced in a steady state by the driving term) of
Elost ¼ ð2πω0

ΓÞ × 1
2
jϕ0ω0j2. We define

Q ¼ 2π
E0

Elost
¼ ω0

Γ
: ð80Þ

This holds for an axion RF cavity with ω0 ¼ ma.
Much of what limitsQ in a RF cavity is resistive loss, but

we can define an accessible signal power output as

P0 ¼ ϵ

�
ω0

2π

�
Elost ¼ ϵ

maE0

Q
: ð81Þ

Using ma ¼ 2π×1.46ðfa=1012ÞGHz¼ 9.1×109 Hz, we
have a signal power P0 ¼ 8.48 × 10−22ð2ϵÞ watts, where
our numerical coefficient corresponds to an efficiency
of ϵ ¼ 1=2.3

How challenging is the extraction of the signal from a RF
cavity? We think this is challenging. Note that the signal
power can be computed from the Poynting vector flux
through an effective “aperture,” i.e., a hole in the cavity
wall of area Aout from which a transversely polarized
signal can be extracted, e.g., a “bung hole” in the barrel.
From Maxwell’s equations with an ohmic current in the
cavity wall, one finds electromagnetic fields that attenuate
over a skin depth δ ∼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maσ=2

p
, and which have a small

nonzero Poynting vector that is reduced by a factor of Q
relative to the cavity energy density. The radiated power out
of the cavity is then

P0
0 ∼

1

Q
E0Aout

V
: ð82Þ

Given these two routes to computing the power, P0 and P0
0,

we can compute the ratio of the aperture area, Aout, to the
surface area, A0, of the cavity in terms of ϵ. We readily find

Aout

A0

≈ ϵ: ð83Þ

If we choose ϵ ¼ 1=2, then Aout=A0 ≈ 0.5 which is large,
and implies that extraction of energy through a physical
aperture is limited, since most of the surface area of
the cavity is in the aperture hole. We can extract signal
through a nonperturbative, small aperture area, of order

Aout ∼ πðλa=4Þ2, i.e., a “quarter-wave aperture.” For the
Poynting vector magnitude Eq. (82) apropos ADMX, we
then have P0

0 ¼ πKðλa=4Þ2 ¼ 2.36 × 10−24η2ðQ=106Þ
watts, and ϵ ¼ 4.7 × 10−3. We would thus take a significant
hit in the output power with a less perturbative aper-
ture size.
Hence, if appropriate impedance matching of the cavity to

an output receiver can be achieved, with ϵ ∼ 1=2, one would
be able to attain power output of the order of ∼10−21 from a
RF cavity. The remaining bottleneck is then probing for a
signal, which requires integrating and analyzing the output
and searching for a signal/noise excess for a given physical
cavity tuning. This can be done on the order of minutes, but
then the cavity must be retuned to a different resonant
frequency and the signal integration process repeated.
The signal fields in a RF cavity are driven by the

particular solution to Maxwell’s equations with the axion,
which induces an oscillating electric field, ~Er ¼ gaθ0 ~B0,
and a vanishing magnetic field ~Br ¼ 0 throughout space,
including within the conducting cavity walls. The particular
solution has vanishing Poynting vector and cannot propa-
gate, since ~Br ¼ 0. The resonance is determined by the
presence of the conducting wall of the cavity. In this wall
the induced electric field gaθ0 ~B0 generates a physical
current. This physical current, in turn, stimulates emission
of radiation into the cavity, with the effect that oscillating
electric and magnetic modes, ~E0

r and ~B0
r, are generated in

the cavity. The net electric field at the wall vanishes,
~ErðRÞ þ ~E0

rðRÞ ¼ 0. At resonance the induced fields are
∝ Q and the signal energy density is ∝ Q2. Finite con-
ductance in the wall causes a slight phase shift of ~E0

r and ~B0
r

away from 90° by an amount ∝ 1=Q, leading to a the
nonzero time-averaged Poynting vector of order Q. This is
what we depend upon for a detectable signal.
Note that the bulk magnetic field, B0, within the internal

volume of the cavity, generates the particular solution there,
but this is playing no role in the physics—only the ~B0 field
in the walls of the cavity is relevant. It would be sufficient
to have the magnetic field localized only on the wall and not
filling the internal volume. Moreover, this means that if we
can apply a large magnetic field in any conducting material
(or dielectric) it will then radiate observable power into the
vacuum. This is the basis of an array radiator we now
discuss below.

B. Electric dipole radiation from magnets

We now turn to the radiation produced by localized
magnetic fields, i.e., induced oscillating dipole moments, in
the cosmic axion field. Using the formula of Eq. (65)
[where we include the factor of

ffiffiffiffiffiffi
4π

p
into μBohr or use the

cgs formula, P ¼ ðgAθ0μBohrm2
aÞ2=3 directly] we can esti-

mate the power emitted by a single electron in free space,
immersed in the cosmic axion field:

3Chou [25] uses ma ¼ 2π × 1.0 × 109 ¼ 6.28 × 109 GHz,
Q ¼ ð1.3Þ × 105, and a magnetic field derived from the total
magnetic field energy, UB ¼ 4 MJ, or B0 ¼ 7.16 tesla, yielding
8.4 × 10−22 watts, consistent with rescaling our above result.
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Pe ∼ 5.192 × 10−82ðηÞ−4 watts: ð84Þ

This follows the dipole distribution of Eq. (64).
While this is infinitesimal power, it will add coherently

for an assemblage of many polarized electrons within the
near zone of the radiation field, e.g., in an approximately
quarter-wavelength volume, ∼ðλa=4Þ3, which we will
define to be a “unit cell.” The unit cell can be viewed as
a Dirac δ-function source, and we can construct an array of
such sources.
For a mole of polarized electrons comprising a unit cell,

within the near zone, the power becomes enhanced to
PFe ¼ N2

AvogadroPe ∼ 1.88 × 10−34ðηÞ−4 watts. More gen-
erally we can assemble many moles of polarized electrons
within the full quarter-wavelength volume to maximize
output power. The quarter-wavelength volume, defined
by the axion wavelength, is V0 ∼ ð5.216η cmÞ3 ¼
1.420 × 102η3 cm3. For iron (Fe), of atomic mass A ¼
56 gm=mole and density ρ ∼ 7 gmFe=cm3, we can there-
fore assemble ρV0=A ¼ 17.74η3 moles within a quarter-
wavelength volume. Assuming one polarized electron per
iron atom, the power emitted by such a magnet is then of
order ðρV0=AÞ2P ¼ 5.93 × 10−32η2 watts. Note the scaling
behavior in η is now controlled by overall the power per
electron, η−4, times the quarter-wave volume squared,
ðη3Þ2, for a net scaling ∝ η2.
Note that the product of the external dipole magnetic

field with approximate volume it occupies, B0V0, can be
used in place of NμBohr in computing the radiation fields.
The Poynting vector is then K ¼ ð12πÞ−1ðgaθ0m2

aB0V0Þ2,
valid up to a V0 of order a quarter wavelength. The results
using this formula are comparable to the coherent multi-
electron calculation.
Neodymium-ferrite magnets can produce fields up to

∼1.4 tesla. A unit cell composed of this material (using
1.4 tesla × V0 in place of μBohrNAvogadroNm in the estimate
for Fe) yields a power of aboutPNd ∼ 1.89 × 10−30η2 watts.
Clearly, there is a significant advantage to larger field
strengths.
Bear in mind that arrays of unit cells spaced external to

the near zone produce a Poynting vector flux that is
enhanced by N2, but this is focused within a solid angle
of ∼1=N; i.e., the net power output is not coherently
enhanced as N2 for larger arrays, but only as N. We can,
nonetheless, use an array of N unit cells to enhance the
overall power output of the array ∝ N and focus the energy
into a small solid angle to a receiver.
We can also consider a “unit slab cell.” This is a plate

made of conducting material lying in the xy plane with a
strong magnetic field that is imbedded and polarized in the
plane of the conductor, e.g., in the ŷ direction. Such a plate
will radiate coherently in the directions normal to the xy
surface, in the ẑ direction, and the radiation will be
electrically polarized in the ŷ direction.

In the Appendix we derive the solution for the radiation
field from Maxwell’s equations. The radiation from the xy
slab into the ẑ zenith direction is ~Er¼−gB0θ0cosðmat−kzÞŷ
and ~Br ¼ gB0θ0 cosðmat − kzÞx̂, and the time averaged
Poynting vector is given by

P0 ¼
1

8π
ðgB0θ0Þ2Aẑ: ð85Þ

HereA is the surface area of the slab and a factor of 1=2 arises
from time averaging the Poynting vector. Given that the
thickness of the conducting surface exceeds the skin depth,
the upward going radiation matches the gB0θ0 particular
solution in the skin of the conductor, which sources the
emitted radiation. Note that here we have assumed a
negligibleB0 above the plane of the radiator. IfB0 is constant
in z above the plane of the radiator, then the radiated power
will acquire an interference term and Eq. (85) will receive an
overall factor of (1 − cosðkzÞ). This oscillatory behavior in
space could prove useful in diagnosing a signal.
Wewill therefore define a “unit slab cell” as a 1 m× 1 m

conducting plate (e.g., copper) with a 1 telsa field in the
plane of the conductor. While this may be an unrealistic
construct experimentally, we can use the result to scale to
other parameters. We thus obtain for the unit slab cell,
Pslab ¼ 8.27 × 10−29 ðB0=1TÞ2ðArea=1 m2Þ watts.
Essentially what we are doing presently is “opening up”

the RF cavity, and creating a simple radiator. We will not be
storing energy in a cavity; hence Q ¼ 1 for us. Instead, by
constructing an array of slab cells we would be exposing
the largest possible conducting surface area and coherently
focusing the axion induced emitted radiation toward a
receiver antenna. which lies at some point in the ẑ direction.
Such a plate may not be easy to construct, but we can

scale in area and field strength to match engineering
constraints. This could be constructed, e.g., by placing
race-track magnetic windings wrapped around the plate in
the x̂ direction; alternatively, the plate could be segmented
into x̂ direction strips spaced by the solenoids aligned in the
ŷ direction. Segmentation of this configuration is tolerable
provided the average large distance (compared to an axion
wavelength) is the regular square.
In summary,

Single electron Pe ∼ 5.192 × 10−82ðηÞ−4 watts

Fe Unit Cell PFe ∼ 1.88 × 10−34ðηÞ−4 watts

1.4T Nd Unit Cell PNd ∼ 1.89 × 10−30η2 watts

1m2 1T slab cell Pslab ¼ 8.27 × 10−29 watts: ð86Þ

For magnets, we expect to encounter complications due
to the conductivity of the material, and the effects of eddy
currents that are generated there. Most high field magnets
are good conductors at GHz frequencies, and one might
expect that the electric field will be nullified by the
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response in the material and hence in the near zone of the
radiation field. However, if one inspects Eq. (56) one sees
that the electric field is vanishing in the near zone, due to a
cancellation of the electric dipole radiation with the
particular solution from the oscillating axion field through-
out space (analogous to the cancellation in the wall of the
RF cavity). The radiation field in the near zone is therefore
predominantly due to the curling magnetic component of
Eqs. (57), (59). Therefore, the emitted power results for
aggregate magnets of order a quarter wavelength in size is a
collective effect and localized eddy currents may not be an
appreciable effect.
One might think that we could simply replace the

cylindrical magnets with small solenoids. Here the prob-
lem arises that the solenoidal B-field itself can only
generate the nonpropagating particular solution in the
vacuum, and we require the interaction of this field in
matter to produce the radiation (this is akin to the RF
cavity case). The solenoidal magnet is clad with the
conducting wire windings. The magnetic field can only
penetrate significantly into this material within the interior
of the solenoid, to generate a small cavity radiation (far
below resonance) within the magnet. The external field is
weak at the conducting material surface and does not tend
to lie within the skin depth of the windings there, and we
do not expect significant radiation to be generated by a
solenoid itself (this is equivalent to the fact that a sealed
RF cavity tends not to radiate externally if the return flux
at the external conducting surface is small). Nonetheless,
we could exploit strong field solenoids by arraying them
in the xy plane with a conducting material strategically
spanning the intermagnet space (e.g., “fins”) in the xy
plane. This will produce a coherent radiation signal in the
z direction, which we discuss below. The number of unit-
cell magnets in the array N then becomes equivalent to the
RF cavity Q.
Given an xy array of magnets with a polarization in the x̂

direction, we can compute the discrete sum to obtain the
array radiation fields and Poynting vector. Alternatively, we
can take a continuous limit and the array becomes equiv-
alent to a slab of conductor with an imbedded magnetic
field in the x̂ direction. We can imagine using race-track
solenoids wound around the slab, with exposed segments
of conductor as the radiation surfaces. Other configurations
can be investigated. In the following we estimate the signal
and integration time necessary to detect in this kind of
general xy array configuration.

C. Axion signal in a 2-D axion → photon antenna

We presently consider a schematic experimental con-
figuration. This is a variation on a scheme proposed by
[10]. The purpose of this is to provide an example of how
one might attempt to exploit axion induced electric dipole
radiation for detection in a broadband antenna. This is a
rough “initial pass,” and we will refine it elsewhere [24].

Consider a smooth surface (a floor) which we define to
be the xy plane. In this plane we assume we have placed a
number N of the unit cells defined in the preceding section.
The power emitted into the ẑ direction is then given by

Pslab ¼
1

8π
ðgaB0θ0Þ2Atotal ð87Þ

where Atotal ¼ NA is the total exposed conducting
surface [and, as discussed above, if B0 is constant above
the plane of the radiator the result becomes Pslab ¼
1
8π ðgaB0θ0Þ2Atotalð1 − cosðkzÞÞ].
Details of geometric focusing to a receiver antenna will

be developed elsewhere. It is not hard to see that the beam
of radiation from the xy array will be coherently focused
into a small solid angle and can be collected by a parabolic
antenna looking down on the array (a variation on this [10]
would be to arrange the slab cells on the surface of a
mathematical sphere of radius R and collect the signal at the
focal point of the sphere; we think it may be advantageous
to use an independent parabolic antenna and a planar
array). The issues of antenna design and optimization are
beyond the scope of our present discussion. Let us crudely
estimate presently the expected signal sensitivity and
baseline requirements.
Quantitatively, for an extremely optimistic “benchmark,”

we will assume B0 ¼ 10 tesla and that we have configured
an array of 10 × 10 slab cells into an effective 10 m×
10 m ¼ 106 cm2 conducting surface. We therefore have an
emitted power of Parray ≈ 8.27 × 10−25 watts that is inde-
pendent of η. This is, as we will see momentarily, more than
adequate for detection in a cryogenic environment, and we
will illustrate the scaling with array area, temperature, and
magnetic field to back down to a more minimal exper-
imental scale.
The signal received in our antenna will be electronically

filtered into a “passband” that we take to be of order∼0.5ma

to ∼1.5ma for a hypothetical ma ¼ 1.46 × 109η−1 Hz. The
passband is subdivided into frequency bins Δf. These bins
are given by the natural linewidth of the axion itself, defined
by the so-called “axionQa.” The axionQa ∼ 106 arises as a
line broadening due tomotionwithin the galactic darkmatter
halo, which generates fluctuations in the axion velocity,
β ∼ 10−3. Hence, our frequency bins are of order
Δf ∼ma × β2 ∼ 103 Hz, and we can select ∼106 such bins
within our passband. The passband signal is recorded by the
radio receiver over a long integration time and fast Fourier
transformed. The experiment can be repeated for other
passbands (other hypothetical ma’s).
The thermal noise power in a bin is given by the (one-

dimensional) Bose-Einstein distribution for thermal pho-
tons incident on the receiver. The noise power in a single
frequency bin is Pn ¼ 2TΔf. We will assume cooling of
the antenna (and other noise sources) to T ¼ 0.1° K
corresponding to Pnoise ¼ 4.02 × 10−21 watts. Hence our
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signal/noise ratio is Parray=Pnoise ¼ 2.06 × 10−4. This is
small, but a signal can be observed with sufficient inte-
gration time to reduce the fluctuations in the noise,
ΔNnoise ¼ ðPnoise=maÞ

ffiffiffiffiffiffiffiffi
Δft

p
, below the number of signal

events, Nsignal ¼ ðP0=maÞt.
This is summarized by the Dicke radiometer formula for t:

t ¼ 2
P2
noise

P2
0Δf:

ð88Þ

If we plug in the results for the minimal array we obtain

t ¼ 9 hours: ð89Þ

We give a tabulation of integration times for various arrays,
each assumed to be 10 m× 10 m (Table II).
For example, we can use fixed field ND magnets, with

magnets spaced a half-wavelength to form a fixed field
array. We also consider 3T solenoids, forming a layer under
a conducting plane, where the return flux lies in the plane
(various other configurations can be considered). Note that
the scaling in each case is

t ∝
�
B0

B

�
4
�
10 m × 10 m

A

�
2
�

T
0.1° K

�
2

: ð90Þ

For example, for a 20 m× 20 m Nd-Fe magnet array we
would have an integration time reduced by 1=ð4Þ2, or
2.4 months. Such an array would require ∼4 × 104 magnets
of order ∼5 cm in scale length spaced by ∼10 cm. Note
that, despite the choice of quarter-wavelength unit cell
magnets and spacing of order λa=2 for some η ∼ 1, the
signal in the ẑ direction is fairly broadband and independent
of η ∼ η0. In the Appendix we describe briefly how the
discrete array power approaches the slab power in the
continuum limit.
Note that if the xy array is a slightly spherical surface,

then dipole radiation will be focused to the focal point,
located at the mathematical center of the sphere. The cells
would be emitting dipole radiation to the focal point in a
common phase (see [10]). The use of a parabolic reflector
over a flab xy planar array has the equivalent common
phase relationship from the flat array at the receiver focal
point. Nonetheless, one might exploit the combination of
spherical array and semiparabolic receiver antenna.

With an observed signal in hand, one would be able to
exploit interference effects such as the ∝ ð1 − cosðkzÞÞ
modulation above the array in aconstant B0 field. It may
also be possible to exploit polarization of the radiation and
multiple receivers to reduce signal to noise and cryogenic
requirements. The signal will be electrically polarized with
the orientation of the magnets or current, while the noise is
unpolarized.
This is a simple radiating system that does not depend

upon a resonance condition and does not require a physical
retuning of the array, and is fairly broadband. A more
detailed discussion of a conceptual array-based axion
search experiment will be given elsewhere [24].

VI. CONCLUSION

Our principal result is that the perturbative interaction
with the cosmic axion, though the anomaly, causes an
electron to acquire an oscillating electric dipole moment.
The result is general: any static magnetic source field in the
presence of the cosmic axion will generate an oscillating
electric field; hence any magnetic moment becomes an
effective electric moment.4

As an explicit example, we demonstrate that classically a
stationary magnetic dipole field radiates as an oscillating
electric dipole field; the near-zone structure is that of a time
dependent “Hertzian” electric dipole source of frequencyma.
Likewise, the electron will have an OEDM that is propor-
tional to its spin, and will experience electric dipole inter-
actions with applied electric fields. In addition we have the
appearance of the nonlocal term, the analogue of the trans-
verse current in radiation gauge. This nonlocal effect is
present in any axion electromagnetic interaction, such as the
case of fields induced by the axion and applied magnetic
fields in RF cavities (see Sec. V). It does not affect the
oscillating electric dipole interaction of the electron with a
source free electric field, i.e., as in radiation or cavity modes.
We have obtained an induced oscillating electric dipole

moment for the electron, proportional to the magnetic
moment, 2gaθ0 cosðmatÞμBohr. The result is quantitatively
≈3.2 × 10−32 × 10−32ðga=10−3Þ cosðmatÞ e-cm. The result
is two orders of magnitude greater than the typical result
expected for the nucleon, dN ∼ 3.67 × 10−35 cosðmatÞ e-cm
[21], about four orders of magnitude from the limit on the
constant electric dipole moment of the electron, de ≤ 8.7 ×
10−29 e-cm [5].
The result is a general low energy theorem and applies to

any static magnetic system. Axion electromagnetic
anomaly effects are essentially local oscillating dual rota-
tions that lead to potentially observable signals. The axion
anomaly perturbs the system by locally producing a

TABLE II Signal integration times for planar arrays of con-
ductors, 10 m × 10 m.

Array B0 (tesla) Power (watts) Time

ND-Fe 1.4 7.6 × 10−27 3.2 years
Solenoids 3 6.8 × 10−26 56 days
10 m × 10 m 10 8.27 × 10−25 9 hours

4As noted in Ref. [1], the converse is not true, i.e., a static
electric field does not become an oscillating magnetic field, a
consequence of the fact that the cosmic axion field effectively
breaks Lorentz invariance.
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physical, infinitesimal, time dependent dual rotation of

δ~E ¼ gaθ0ðtÞ~B, effectively rotating a magnetic moment to
an oscillating electric dipole moment. The duality of axion
electrodynamics also implies the absence of induced
oscillating magnetic moments from static electric dipoles.
The requirement of an explicit appearance of ∂tθðtÞ in

physical quantities is a source of confusion to some people.
This issue is not exclusive to OEDMs, but also arises at the
classical level in well-known solutions to axion-Maxwell’s
equations, such as in conventional RF cavities. As shown in
Sec. V, in a RF cavity with an applied classical constant

background field ~B0, an oscillating electric field develops

that has the form ~E ∝ ~θðtÞ~B0. One does not see the explicit

∂tθðtÞ in the physical ~E, so one might wonder how it turns

off in the ma → 0 limit? The Maxwell equations for ~E and
~B are of the linear, first order, inhomogeneous form, and
must therefore have a boundary condition. If one is careful,
therefore, one finds that the electric field is proportional to

~θðtÞ ¼
Z

t

t0

dτ∂τθðτÞ ¼ θðtÞ − θðt0Þ: ð91Þ

Hence, ~θðtÞ → 0 when ∂tθðtÞ → 0, owing to the boundary

condition. So, when one measures ~EðtÞ in a RF cavity one

is only measuring its value relative to an earlier value ~Eðt0Þ.
In the present case of OEDMs, however, this nonlocality is
more subtle, but in the low energy zero-electron recoil limit
of interest it reduces back to ∝ θðtÞ.
The existence of such phenomena may imply a number

of potentially sensitive experiments. The collective mag-
netization of any substance, e.g., polarized ferromagnets
such as iron or strong rare earth magnets such as neodym-
ium ferrites, will acquire induced oscillating electric dipole
moments that may provide accessible signals.
We have presented estimates for some xy array configu-

rations that probe the coherent radiation generated by an
assemblage of a large number of polarized electrons or
electric currents. Certainly other geometries can be consid-
ered, including 1-D and even 3-D “crystal” arrays. These
configurations can be built out of “unit cells” which are
quarter (axion) wavelength volumes composed of magnetic
materials. We find that reasonable laboratory scale configu-
rations, particularly the 2-D large array, may provide
detectable coherent power outputs in excess of∼10−25watts.
These arrays have signal/noise integration times that shrink
inversely with increasing magnetic field strength as ∝ B−4

and area as ∝ A−2. These arrays seem potentially advanta-
geous in probing the axion “sweet spot” of
1010 ≤ fa ≤ 1012 GeV. These are very preliminary consid-
erations, but appearworthy of further,more detailed analysis.
We note that our present paper and [1] have elicited some

controversy. In part, in some earlier versions we mis-stated
how the decoupling of the axion works for the OEDM in

the Introduction, though the correct form is implicit in the
formal discussion. However, in [26] a calculation was done
in a pure Coulomb potential, which yielded zero and was
used to argue that our overall result is zero. As we have
shown explicitly, the Coulomb potential part of the result is
always a total divergence, and indeed vanishes. The OEDM
is intrinsically time dependent and is nonzero as an action.
The axion decoupling has been thoroughly explored in the
present paper and this issue has now been resolved
favorably for the present work and [1] (see [27]). We have
explicitly addressed the criticism that our result did not
display decoupling in the ma → 0 limit. The decoupling is
present, even in the radiation formula of Eq. (1), but it is not
always manifest, and is subtle in a manner similar to the
anomaly itself, as discussed above in Sec. III.
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APPENDIX: SLAB RADIATOR SOLUTION

Here we give the solution for the electric dipole radiation
from a conducting slab with an imbedded magnetic field.
The power from a slab array can be estimated from the
continuum limit of a discrete array of magnets. The emitted
power from a discrete array of N magnets is of order

P ¼ g2AðμBohrÞ2m4
aθ

2
0N: ðA1Þ

The axion Compton wavelength is ma ∼ ð2π=λÞ. We can
identify the magnetic field in the discrete array with

~B0 ∼ μBohrð2π=λÞ3 ∼ μBohrðmaÞ3 ðA2Þ
and the discrete array power is then

P ∼ g2Að~B0Þ2m−2
a θ20N

∼ g2Að~B0Þ2θ20ðλ=2πÞ2N ∼ g2Að~B0Þ2θ20 × ðareaÞ: ðA3Þ
Let us derive this result carefully from Maxwell’s equa-
tions. The sourced Maxwell equation is

~∇ × ~Br − ∂t
~Er ¼ g~B0∂tθ þ ~J ðA4Þ

where ~B0 is a constant background magnetic field, θ is an
oscillating axion field and ~Er and ~Br are oscillating
response fields.
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We assume we have vacuum for x < 0 and a conducting

medium, such as copper, for x > 0. ~B0 and θ permeate the

vacuum and the conductor. The magnetic field, ~B0 ¼ B0ẑ,
is parallel to the plane of the conductor. We assume Ohm’s
Law in the conductor

~J ¼ −σ ~E: ðA5Þ

We introduce a vector potential in radiation gauge for the
response fields,

~Er ¼ −∂t
~A Br ¼ ~∇ × ~A ~∇ · ~A ¼ 0; ðA6Þ

and hence

∂2
t
~A −∇2 ~A ¼ g~B0∂tθ þ ~J x > 0 ðA7Þ

∂2
t
~A −∇2 ~A ¼ g~B0∂tθ x < 0: ðA8Þ

The axion induced particular solution is

~E0 ¼ −g~B0θ ¼ −∂t
~A0 hence; ∂2

t
~A0 ¼ g~B0∂tθ: ðA9Þ

Note ~∇× ~Er0 ¼ g ~∇× ~B0¼ 0 since ~B0 is assumed constant

(or source free). Hence, ∇2 ~A0 ¼ 0 and ~A0 is nonpropagat-
ing and constant in space (curl free).
It is convenient to complexify the fields and identify

the physical fields with the real parts. We write θ ¼>

θ0 exp ðimatÞ; then g~B0∂tθ ¼ imag~B0θ0 exp ðimatÞ and
~A0 ¼ −ig~B0θ0=ma exp ðimatÞ. The equation of motion
becomes

∂2
t
~A −∇2 ~A ¼ imag~B0θ0 exp ðimatÞ þ σ∂t

~A ðx > 0Þ
∂2
t
~A −∇2 ~A ¼ imag~B0θ0 exp ðimatÞ ðx < 0Þ: ðA10Þ

~A is composed of homogenous propagating and nonpropa-
gating solutions. We define

~A ¼ ~Peimat þ ~Heimatþk0x −
ig~B0θ0
ma

eimat ðx > 0Þ

~A ¼ ~Keimatþkx −
ig~B0θ0
ma

eimat ðx < 0Þ: ðA11Þ

We introduce a parameter γ ¼ ma=σ and wewill work in the
limit of large conductance, γ ≪ 1. Substituting into the
equations of motion we have

−ðm2
a þ im2

a=γÞ~P ¼ g~B0θ0ðma=γÞ
−ðm2

a þ im2
a=γ − k02Þ ~H ¼ 0

−ðm2
a − k2Þ ~K ¼ 0: ðA12Þ

Hence

~P ¼ ig~B0θ0
mað1 − iγÞ

k0 ¼ �ma

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ i=γ

p
k ¼ ma: ðA13Þ

The sign of k0 is determined by the asymptotic boundary

condition that ~H → 0 as x → ∞. The boundary conditions
at x ¼ 0 match the fields and their spatial derivatives on
L and R:

ig~B0θ0
mað1 − iγÞ þ

~H ¼ ~K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ i=γ

p
~H ¼ ~K ðA14Þ

whence

~H ¼ ig~B0θ0
mað1 − iγÞð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ i=γ
p

− 1Þ

≈
ffiffiffi
γ

p ig~B0θ0
ma

e−iπ=4 þ γ
g~B0θ0
ma

~K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ i=γ

p
H ≈

�
ig~B0θ0
ma

þ ffiffiffi
γ

p ig~B0θ0
ma

eiπ=4
�

~P ¼ ig~B0θ0
mað1 − iγÞ ≈

ig~B0θ0
ma

−
γg~B0θ0
ma

: ðA15Þ

We therefore have the resulting solution for small γ ≪ 1:

~A ≈ ð ffiffiffi
γ

p
eiπ=4 þ γÞ g

~B0θ0
ma

e
imatþi maffiffiffi

2γ
p x− maffiffiffi

2γ
p x

− γ
g~B0θ0
ma

eimat ðx > 0Þ

~A ≈
ig~B0θ0
ma

ð1þ ffiffiffi
γ

p
eiπ=4ÞeðimaðtþxÞÞ

−
ig~B0θ0
ma

eðimatÞ ðx < 0Þ: ðA16Þ

We thus see, in the γ → 0 limit, the overall amplitude of
~A → 0 for x > 0, and the propagating component attenuates
into the conductor with a skin depth of 1=

ffiffiffiffiffiffiffiffiffi
maσ

p
. For x < 0,

in the γ → 0 limit, we see that the induced propagating plane
wave has an overall amplitude that has become locked to the
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magnitude of the nonpropagating axion induced particular
solution. For x ¼ 0 we see that the solution approaches the
usual conducting boundary condition, ~Eðx ¼ 0Þ ¼ 0.
The main point is to illustrate that a conductor converts

the nonpropagating particular solution into detectable

radiation. This is how the walls of the RF cavity pump
radiation into the volume. The magnetic field in the empty
volume plays no role; only its permeating the walls induces
the signal. This also illustrates how the slab unit cell acts as
a radiation source.
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