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We analyze the late-time decay of scalar perturbations in extremal Reissner-Nordstrom spacetime. We
consider individual spherical-harmonic modes l of a test massless scalar field, restricting our attention to
the initial data of compact support, with generic regular behavior across the horizon. We obtain a decay rate
∝ t−ð2lþ3Þ (just like in Schwarzschild) for incident waves scattered by the black hole. However, for waves
originating at the horizon’s neighborhood, we obtain a slightly slower decay, ∝ t−ð2lþ2Þ. We discuss
relations to previous works.
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I. INTRODUCTION

When a black hole (BH) is perturbed by massless fields
—either gravitational, electromagnetic, or scalar—at late
time the perturbations typically decay as an inverse power
of t (the Schwarzschild time coordinate). This phenomenon
was found by Price [1,2] about four decades ago in the case
of a Schwarzschild BH. The goal of this paper is to extend
the large-t analysis to an extremal Reissner-Nordstrom
(ERN) BH.
For simplicity and concreteness, we shall focus through-

out this paper on the case of a massless, minimally coupled,
test scalar field Φ with compact initial support and with
generic regular behavior across the horizon. In the
Schwarzschild case, Price [1] found a decay rate t−2l−2

when an initial static moment is present and a decay rate
t−2l−3 when the initial data have compact support, where l
denotes the mode’s multipolar number. Soon afterward,
Bičák [3] extended the analysis to the Reissner-Nordstrom
(RN) background. In the nonextremal case, he obtained (for
his choice of generic initial data) the same decay rate t−2l−2

as in Schwarzschild (for the initial static moment).
However, in the case of ERN, Bičák found a much slower
decay rate ∝ t−l−2.
To analyze the scattering problem, it is useful to

introduce the tortoise radial coordinate r� (defined below).
The relevant domain then extends from the horizon
(r� → −∞) to infinity (r≃ r� → ∞). The scattering prob-
lem involves an effective potential, a certain function
Vlðr�Þ. Bičák [3] observed that in the case of ERN, in
both boundaries r� → �∞ this potential has the same
asymptotic behavior Vl ≃ lðlþ 1Þ=r2� (this sharply con-
trasts with the nonextremal case, wherein Vl decays
exponentially in r� on approaching the horizon). Couch
and Torrence [4] later showed that this symmetry applies to
all values of r� (and not only asymptotically); i.e. the
function Vlðr�Þ is symmetric in r�. Further discussions
about this symmetry along with interesting implications of
it can be found in Refs. [5,6]. This surprising mathematical
symmetry connects the scattering dynamics near the
horizon to that at the weak-field region.

This symmetry of the potential was later employed by
Blaksley and Burko [7], who considered two special classes
of initial data: (i) compact initial support which does not
extend up to the horizon, and (ii) initially static multipoles
that extend up to the horizon (and up to future null infinity).
Using the aforementioned symmetry of Vlðr�Þ, Blaksley
and Burko obtained decay rates t−2l−3 and t−2l−2, respec-
tively. Note that this in itself does not conflict with Bičák’s
result (a decay ∝ t−l−2): Bičák obtained his result for the
case of generic initial data, which extend regularly across
the horizon. On the other hand, the special subclasses
considered by Blaksley and Burko are nongeneric and are
both “weaker” than Bičák’s case (in terms of the asymptotic
behavior of the initial data on approaching the horizon).
In this paper we revisit the analysis of the ERN case, for

the generic class of initial data. Namely, we allow the initial
data to approach (and, in fact, to cross) the horizon in a
generic regular manner. We carry out the analysis entirely
in the time domain. We use the following strategy: First, we
use the above mentioned symmetry of Vlðr�Þ to transform
the strong-field near-horizon scattering problem into a new,
weak-field problem at large r. This allows us to employ
certain approximate methods previously developed for
analyzing wave dynamics in weak-field regions [1,8]. As
a result, we get an approximate expression for ϕ (the
inverted field), valid for evaluation points in the domain of
large r and for weak-field initial data. Then, transforming
the resulting ϕ back into the original problem, we obtain an
approximate expression for the original field Φ valid for
near-horizon evaluation points and initial data. In a sub-
sequent paper [9] that I hope to address, we shall employ an
exact result obtained by Aretakis [10], concerning the
behavior of certain derivatives of Φ along the horizon, in
order to verify the validity of our approximations and to
obtain the exact (i.e. for generic compact initial data which
crosses the horizon regularly, not necessarily confined to
the near-horizon region) asymptotic expression for Φ,
although it is still valid only for evaluation points in the
vicinity of the horizon. We will later use the “late-time
expansion” method in order to remove this restriction and
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get the exact large-t asymptotic behavior of Φ at any fixed r
outside the BH. Even though the details of the last two
procedures are postponed to the next paper [9], we will
sketch very briefly the key ingredients and main results of
them in the last section of this paper.
Our final result is given in Eq. (7.6): The field generically

decays at large t as t−2l−2, multiplied by a certain function
of r (corresponding to a static solution).
We note that in the special cases considered by Blaksley

and Burko [7], their results are fully consistent with our
analysis. In particular, when an ingoing wave packet is
scattered off the BH (namely, no initial support at the
horizon), the decay rate will be t−2l−3. Our analysis is also
fully consistentwith the results obtainedbyLucietti et al. [5],
who numerically found decay rates ∝ t−2l−2 for l ¼ 0, 1, 2.

II. FIELD EQUATION AND INITIAL-VALUE
SETUP

A. Background metric

The ERN geometry is given in Schwarzschild coordi-
nates by the line element

ds2 ¼ −ð1 −M=rÞ2dt2 þ ð1 −M=rÞ−2dr2 þ r2dΩ2;

where M is the BH mass, and dΩ2 ≡ dθ2 þ sin2 θdφ2. We
focus here on the external domain, r > M. The tortoise
coordinate r�ðrÞ is defined by dr=dr� ¼ ð1 −M=rÞ2.
Fixing the integration constant by setting r�ð2MÞ ¼ 0
(for later convenience), we get

r� ¼ r −M −
M2

r −M
þ 2M lnðr=M − 1Þ: ð2:1Þ

This function diverges to þ∞ at r → ∞ and to −∞ at
r → M, and vanishes at r ¼ 2M. We also define the two
null coordinates ðu; vÞ by setting t ¼ vþ u and r� ¼ v − u,
namely:

v ¼ ðtþ r�Þ=2; u ¼ ðt − r�Þ=2: ð2:2Þ

B. Field equation

We consider a massless scalar field Φ satisfying the
standard wave equation

□Φ≡ Φ;α
;α ¼ 0: ð2:3Þ

We decompose Φ into spherical harmonics Ylmðθ;φÞ in the
usual way,

Φ ¼ r−1
X

lm

ψ lðr; tÞYlmðθ;φÞ:

The field equation (2.3) then reduces to a certain hyperbolic
equation for each l:

ψ 00
l − ψ̈ l ¼ VlðrÞψ l; ð2:4Þ

where the prime and overdot, respectively, denote partial
derivatives with respect to r� and t, and the effective
potential VlðrÞ takes the form1

VlðrÞ ¼
�
1 −

M
r

�
2
�
2M
r3

�
1 −

M
r

�
þ lðlþ 1Þ

r2

�
: ð2:5Þ

Our goal in the rest of the paper will be to analyze the
asymptotic behavior of the fields ψ l at large t, for
appropriate initial conditions.

C. Characteristic initial-value problem

Wenowset thecharacteristic initial-valueproblem,wherein
the initial value ofψ l is specified along two intersecting radial
null rays, u ¼ const and v ¼ const. For convenience we
choose the vertex of these two rays to be at r� ¼ 0 (but none
of our conclusions should depend on the vertex location).
Without loss of generality we also place the vertex at t ¼ 0,
placing the two initial null rays atu ¼ 0 andv ¼ 0. The initial
data are thus composed of the two initial functions ψvðvÞ≡
ψ lðu ¼ 0; vÞ and ψuðuÞ≡ ψ lðu; v ¼ 0Þ.2
Note that u → ∞ and v → ∞ correspond to the horizon

and to future null infinity (FNI), respectively. Since we only
consider here wave dynamics outside the BH, we shall only
be concerned with the domain 0 ≤ u, v < ∞.
We shall only be interested in initial data of compact

support; that is, ψvðvÞ vanishes beyond a certain value of v.
Furthermore, on physical grounds we shall restrict our
attention to initial data which are perfectly regular at the
horizon (later we shall be more specific about this aspect).
Each such set of initial data may be expressed as a
superposition of two components3:

(I) “Off-horizon compact initial data”—namely, ψuðuÞ
(like ψv) is only supported at a certain finite range of
u (implying that the initial support of ψ l is well
separated from the horizon).

(II) “Horizon-based initial data”—namely, ψvðvÞ van-
ishes, and ψuðuÞ is only supported in the range
u ≥ w, for a certain w > 0.

Note that a localized wave packet incident from infinity
(and subsequently scattered or absorbed by the BH) may be
represented by initial data of type I, whereas perturbations

1r is to be regarded here as an implicit function of r�.
2We have omitted here the index l from ψu and ψv for brevity,

and we do so for a few other quantities defined below.
3To this end, one may choose any two parameters u1, u2

satisfying 0 < u1 < u2, and then choose any smooth (say C∞)
“transition function” zðuÞ at u ≥ 0 which satisfies z ¼ 1 at 0 ≤
u ≤ u1 and z ¼ 0 at u ≥ u2. Given any original initial-value set
(ψuðuÞ, ψvðvÞ), one then decomposes it into a type-I component
(zðuÞψuðuÞ, ψvðvÞ) and a type-II component (½1 − zðuÞ�ψuðuÞ,
ψv ¼ 0). These two components will indeed fail to be analytic at
u ¼ u1;2, but this will not pose any problem because we only
assume analyticity of initial conditions at the horizon.
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initiated at the horizon’s neighborhood (or during the
collapse) are represented by type II. Owing to the super-
position principle, it will be sufficient to consider these two
scattering problems (type I and type II) separately. As
discussion below, initial data of type I yield a conventional
late-time behavior (as far as the large-t decay at r > M is
concerned), qualitatively the same as in the Schwarzschild
case. On the other hand, type-II initial data lead to a slower
late-time decay, and hence will generically dominate at late
time—a phenomenon special to the ERN case. It is there-
fore the second type—namely horizon-based initial data—
that will mostly concern us here (though later we shall also
comment on the generic situation, which is a superposition
of I and II).

D. Asymptotic behavior at the horizon

As was already mentioned above, we consider here
initial data which are perfectly regular at the horizon. For
simplicity, we shall actually assume that the initial data are
analytic across the horizon. This means that for any
monotonic parameter λðuÞ which regularly parametrizes
the null ray v ¼ 0, ψuðλÞ≡ ψuðuðλÞÞ will be analytic as λ
crosses the horizon (namely as u → ∞). A convenient
choice of such a parameter is the area coordinate r, which is
a monotonically decreasing function of u along any v ¼
const ray [dr=du ¼ −ð1 −M=rÞ2 < 0]. Furthermore, the
perfect regularity of the “ingoing Eddington” coordinate
system (v; r; θ;φ) at the horizon indicates the regularity of r
as a parameter, on crossing the horizon.
Thus, to address the regularity of ψuðuÞ at the horizon,

we express it as a function of the parameter r. Analyticity of
the initial function ψu implies that this function admits a
Taylor expansion in r in the neighborhood of r ¼ M. We
cast this expansion in the form

ψuðuÞ¼ c0þc1ðr=M−1Þþc2ðr=M−1Þ2þ��� ð2:6Þ
wherein, recall, r is to be regarded as a function of u,
evaluated along the ray v ¼ 0 [namely r ¼ rðr� ¼ −uÞ;
Note that we have replaced the original Taylor’s expansion
parameter r −M by its dimensionless counterpart r=M − 1
for later convenience—this merely amounts to absorbing a
factor Mk in the coefficient ck.]
Our goal in this paper is thus to analyze the late-time

behavior of the field ψ lðu; vÞ which evolves from regular
“horizon-based” initial data—namely, ψvðvÞ ¼ 0, and
ψuðuÞ which vanishes at u < w, and which on approaching
the horizon admits the regular expansion (2.6). To this end,
we shall next introduce a transformation which mathemati-
cally maps our near-horizon strong-field problem to a new,
more convenient problem in weak field.

III. INVERSION TRANSFORMATION

The ERN spacetime admits a conformal transformation
[4] which maps the horizon to infinity and vice versa. This

inversion transformation maps r� to −r�, which also
corresponds to the transformation

r →
Mr

r −M
≡ TðrÞ: ð3:1Þ

The action of this inversion on the various independent
variables used below may be summarized by

Tðr�Þ ¼ −r�; TðtÞ ¼ t; TðuÞ ¼ v; TðvÞ ¼ u:

ð3:2Þ
The crucial observation is that the effective potential is

invariant under this inversion, namely VlðTðrÞÞ ¼ VlðrÞ.
Therefore, given any solution ψ lðr; tÞ of the field
equation (2.4), the inversion transformation produces a
new solution T̂ðψ lðr�; tÞÞ≡ ψ lð−r�; tÞ. In terms of other
choices of the independent variables, the map T̂ also takes
the forms T̂ðψ lðr; tÞÞ≡ ψ lðTðrÞ; tÞ, and T̂ðψ lðu; vÞÞ≡
ψ lðv; uÞ (namely, the arguments u, v are simply inter-
changed). Further discussions about this conformal trans-
formation along with interesting implications of it can be
found in Refs. [5,6].
We use this inversion to map our original problem

(horizon-based perturbations) into a more familiar one,
in which the perturbations are based in the large-r region.
Thus, we define

Ψlðu; vÞ≡ T̂ðψ lðu; vÞÞ ¼ ψ lðv; uÞ:
The inverted field Ψl satisfies the same field equation (2.4)
and (2.5) as the original field ψ l, namely

Ψ00
l − Ψ̈l ¼ VlðrÞΨl:

The corresponding initial functions ΨvðvÞ≡Ψlðu ¼ 0; vÞ
and ΨuðuÞ≡Ψlðu; v ¼ 0Þ are immediately obtained from
ψu,ψv through Ψvðv ¼ pÞ ¼ ψuðu ¼ pÞ and Ψuðu ¼
pÞ ¼ ψvðv ¼ pÞ (for any p ≥ 0).

A. Asymptotic behavior of inverted initial data

As mentioned above, the T-inversion maps the horizon
to FNI and vice versa. The asymptotic behavior of the
inverted initial function Ψv on approaching FNI (v → ∞)
will thus be dictated by the horizon-regularity requirement
(2.6) on ψu. The small near-horizon expansion parameter
r=M − 1 is T-mapped into the small near-FNI parameter

ε≡ TðrÞ
M

− 1 ¼ M
r −M

: ð3:3Þ

Thus, our inverted problem involves initial data

ΨuðuÞ ¼ 0 ð3:4Þ
and ΨvðvÞ which vanishes at v < w, and which, on
approaching FNI, behaves as
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Ψv ¼ c0 þ c1εþ c2ε2 þ � � �

[wherein r is to be regarded as a function of v, evaluated
along u ¼ 0—namely, r ¼ rðr� ¼ vÞ]. However, since ε ¼
M=rþ ðM=rÞ2 þ � � � is itself a regular function of 1=r, Ψv
actually admits a regular expansion at FNI in powers of
1=r:

Ψv ¼ ĉ0 þ ĉ1ðM=rÞ þ ĉ2ðM=rÞ2 þ � � �

where ĉj are dimensionless coefficients which are obtained
from cj in a straightforward manner: for example, ĉ0 ¼ c0,
ĉ1 ¼ c1, ĉ2 ¼ ðc2 þ c1Þ, etc.
Now, it is convenient for later purposes to insert a global

scale parameter into the initial function Ψv. In order to do
so, we redefine the initial function in the following way:
ΨvðrÞ → ΨvðMR rÞ where here Ψv is regarded as a function
of r, and R is the desired scale parameter. Moreover, we set
the original w to be equal to M, such that the w of the new
initial function is equal to R.4 The asymptotic expansion at
FNI of the new initial function takes the form

Ψv ¼ ĉ0 þ ĉ1ðR=rÞ þ ĉ2ðR=rÞ2 þ � � � : ð3:5Þ

We deliberately chose the scale parameter to be a free
parameter R rather than just the mass M, because later we
shall need the freedom to scale these two parameters
differently. In particular, the weak-field limit—a crucial
ingredient in the analysis below—will be conveniently (and
uniformly) achieved by setting R ≫ M (and correspond-
ingly w ≫ M, as noted above).
Owing to the superposition principle, it will of course be

sufficient to analyze the contribution emerging from the
individual inverse powers of r in Eq. (3.5). However, at
this stage we still keep the entire Taylor expansion (3.5) as
initial data.
Summarizing, we are considering the following initial-

value problem for the inverted field Ψl: ΨuðuÞ entirely
vanishes, and ΨvðvÞ is only supported at v ≥ w and
behaves at large v as a regular Taylor expansion in R=r,
as described in Eq. (3.5).

IV. WEAK-FIELD ANALYSIS

We shall now focus our attention on the case w ≫ M,5

wherein the initial data for the inverted field Ψl are

contained in the domain r ≫ M. This will allow us to
employ weak-field methods, which remarkably simplify
the analysis.
Note that in terms of the original field ψ l, this

assumption amounts to assuming that the initial data along
the incoming ray v ¼ 0 are confined to a narrow domain in
the neighborhood of the horizon, a domain characterized by
r −M ≪ M. However, throughout this and the next two
sections we are concerned with the inverted field Ψl—for
which our assumptionw ≫ M amounts to weak-field initial
data (only later, in section VII, we transform our results
back to the original field ψ l).
In the analogous Schwarzschild problem, it was noticed

long time ago [1] that the inverse-power late time tails are
dictated by the weak-field dynamics, namely by scatterings
at r ≫ M. We shall proceed now to extend this approach to
ERN. To this end one first need to obtain the large-r
asymptotic behavior of rðr�Þ and the effective potential Vl.

6

At r ≫ M, the function rðr�Þ takes the asymptotic form

r ¼ r� − 2M lnðr�=MÞ þOðr0�Þ: ð4:1Þ
The effective potential is dominated at large r by the
centrifugal term lðlþ 1Þ=r2, and hence takes the asymp-
totic form

Vlðr�Þ ¼
lðlþ 1Þ

r2�
þ 4Mlðlþ 1Þ lnðr�=MÞ

r3�
þOðr−3� Þ:

ð4:2Þ
One can easily notice that this asymptotic expression, like
Eq. (4.1), is independent of the BH charge; hence, it is
common to the Schwarzschild and ERN cases.
In the analysis of the Schwarzschild case, Price [1]

realized that the asymptotic form (4.2) of the potential is
sufficient to determine the late-time decay of the scalar
perturbation, regardless of the detailed form of VlðrÞ at
smaller r values. We shall see below that this is also the
case in ERN, though with one important difference:
Whereas in the Schwarzschild case the curvature-induced
term ∝ M lnðr�=MÞr−3� is crucial for the tail formation, in
our case the tails are already formed at (and thus dominated
by) the leading-order, flat-space term ∝ lðlþ 1Þr−2� (this
results from the difference in the type of initial data along
u ¼ 0, namely compact versus noncompact support, as we
discuss below.) In this sense, the effectiveness of the weak-
field approach is much more dramatic in the ERN case.

A. Iterative expansion

The large-r asymptotic form (4.2) motivates an iterative
analysis of the evolution of Ψl. This approach was initiated

4Note, however, that even though now w ¼ R, we may refer to
this quantity in different places along the paper as either w or R.
This is mainly because in some places we want to emphasize that
we use this quantity to represent the edge of the support of the
initial function (along the initial ray), while in other places we
want to emphasize that we use it to represent the scale parameter.
Note also that the parameter w1 (introduced below) is scaled too,
similar to R.

5Note that w ≫ M is implemented by choosing the scale
parameter R such that R ≫ M.

6Recall that in the field equation (2.4) the effective potential at
the right-hand side is to be considered as a function of r�, through
the implicit function rðr�Þ.
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by Price [1], and proved to be extremely useful in the
Schwarzschild case. Specifically, we adopt here a slightly
modified variant of this iterative scheme, developed by
Barack’s [8], and extend it to our situation of inverse-power
initial data on FNI approach. In this method one first
decomposes Vlðr�Þ into the flat-space centrifugal potential

V0ðr�Þ ¼
lðlþ 1Þ

r2�
ð4:3Þ

and a residue

δVðr�Þ≡ Vl − V0 ¼ 4Mlðlþ 1Þ lnðr�=MÞ
r3�

þOðr−3� Þ:
ð4:4Þ

We rewrite it as

δVðr�Þ ≅ 4ηV0ðr�Þ; ð4:5Þ

where

η≡M
r�

ln
r�
M

: ð4:6Þ

Note that η is a small factor in weak field: it is of order—or
smaller than—

ηw ≡ ðM=wÞ lnðw=MÞ ≪ 1: ð4:7Þ

Exploiting the smallness of δV, we now formally
decompose Ψl as

Ψl ¼ Ψð0Þ þΨð1Þ þΨð2Þ þ � � � ;

where the terms ΨðnÞ are defined as follows: Ψð0Þ satisfies
the flat-space l-mode wave equation

Ψ00
ð0Þ − Ψ̈ð0Þ − V0ðr�ÞΨð0Þ ¼ 0 ð4:8Þ

(with standard flat-space regularity conditions at r� ¼ 0).
In turn the fields Ψðn>0Þ satisfy a hierarchy of similar wave
equations, but with a source term emerging from ∝ δV:

Ψ00
ðnÞ − Ψ̈ðnÞ −V0ðr�ÞΨðnÞ ¼ δVðr�ÞΨðn−1Þðn > 0Þ: ð4:9Þ

At this point, a technical remark should be made about
the above decomposition of Vl into V0 and δV: We have
treated here (and similarly in few other places later in this
section) the quantity lnðr�=MÞ, which is indeed
> lnðw=MÞ, as a large number, thereby neglecting terms
Oðr−3� Þ (with no logarithmic enhancement) compared to
those kept in δV. This setup is in principle fine, and it is
indeed sufficient for our purposes here (as we focus later on
Ψð0Þ only). However, if one’s goal is to obtain the actual

leading mass-induced corrections to the tail amplitudes of
Ψl in ERN, this specific expansion scheme turns out to be
insufficient. Instead, one has to include all the nonlogar-
ithmic Oðr−3� Þ terms as well in δV (namely, the right-hand
side of Eq. (4.4) should take the form ½a lnðr�=MÞ þ b�r−3� ,
with the appropriate coefficients a, b). The inclusion of
these nonlogarithmic Oðr−3� Þ terms in δV is necessary for
the following reason: When one calculates the M-induced
corrections to the tails at the anticipated leading order
ðM=RÞ lnðR=MÞ, one eventually finds that these correc-
tions cancel out. Instead, the actual leading-order M-
induced corrections to the tails only appear at nonlogar-
ithmic order OðM=RÞ. However, in order to obtain the full
tail corrections at order M=R, one must include all Oðr−3� Þ
terms in δV, not only the logarithmic-enhanced ones.7

Here, however, our goal is merely to obtain the leading-
order late-time tails—which (in the ERN case, and assum-
ing w ≫ M) emerge from Ψð0Þ, at order ðM=RÞ0. The
exposition of δV was only made here for the conceptual
presentation of the iterative scheme, but we do not need to
calculate Ψð1Þ—with or without the nonlogarithmic terms.

B. Initial data for the iteration fields

We still need to specify the initial data for the various
ΨðnÞ fields. We choose here the simplest approach: We
adopt ΨvðvÞ as the initial function for Ψð0Þ (along u ¼ 0),
while setting vanishing initial data for all other Ψðn>0Þ.
At this point we must address a subtlety which has a

profound effect on the mathematical nature of the initial-
value problem for the iteration fields: The potential
V0 ∝ r−2� , designed for weak-field analysis, is singular at
r� ¼ 0. This is to be contrasted with the full effective
potential Vlðr�Þ, which is perfectly regular at r� ¼ 0 (and
actually everywhere). Obviously the singularity of V0 leads
to a similar singularity in δV, again at r� ¼ 0. This
singularity is problematic, as it may potentially cause
undesired singularities in the iterative fields ΨðnÞ, an issue
which must be addressed.
Consider first the evolution of Ψð0Þ. Here it turns out that

the singularity problem is naturally cured, yet it has an
important impact on the nature of the initial-value problem:
For any initial data along (the section v ≥ 0 of) the u ¼ 0
ray, which satisfy appropriate regularity conditions as
v → 0, there exists a unique regular (at r� ¼ 0) solution
of the field equation (4.8) throughout the domain v ≥ u ≥ 0
(namely, the portion r� ≥ 0 of v ≥ 0). As a consequence,
the original characteristic initial-value problem, which
required initial data (for Ψl) along two crossing null rays
u ¼ 0 and v ¼ 0, is actually replaced now by a mixed

7It is interesting to note, however, that in the analogous
problem of Schwarzschild’s late-time tails, the status of those
nonlogarithmic terms is different: In that case, the dominant tails
emerge from Ψð1Þ (rather than Ψð0Þ), but the nonlogarithmic
Oðr−3� Þ terms in δV do not contribute at leading order.
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boundary/initial value problem: One should only specify
initial data forΨð0Þ along a single null ray u ¼ 0 (at v ≥ 0),
and in addition demand regularity along the timelike line
r� ¼ 0. This will uniquely determine Ψð0Þ in the afore-
mentioned trianglelike domain (v ≥ u ≥ 0). Stated in other

words, the initial function Ψð0Þ
v ðvÞ≡Ψð0Þðv; u ¼ 0Þ is

sufficient, and no analogous function of u is required as
initial data for Ψð0Þ.

8

The situation with Ψðn≥1Þ is more delicate. Since we
approximate δV by its leading-order term ∝ r−3� lnðr�=MÞ
(for the sake of simplifying the weak-field analysis), this
expression for δV is even more singular than V0 at r� → 0.
As a consequence, the fieldsΨðn≥1Þmight become singular at
r� ¼ 0 for a sufficiently large n. Note, however, that this
divergence is merely an artifact resulting from our large-r�
approximation for δV, Eq. (4.4). This is a useful approxi-
mation in the region mostly relevant to our analysis (namely
the weak-field domain), but it causes an undesired artifact at
small r�. A natural way to avoid this problem is to simply
chop the expression (4.4) for δV at a certain small r� value
which we denote rshell� . This leads to the “shell model”
introduced and analyzed inRef. [8] (where rshell� was taken to
be of order M). This procedure led to a well-defined
expression (independent of rshell� ) for the late-time tail
associatedwithΨð1Þ (and an analysis regarding the smallness
of the contributions coming from Ψðn>1Þ was carried out).
As we already mentioned, the divergence of V0 at r� ¼ 0

changes the nature of the initial-value problem forΨð0Þ. The
same applies to all iteration fieldsΨðnÞ: We only need initial
conditions forΨðnÞ along the outgoing ray u ¼ 0 (which we
simply take to be Ψðn>0Þ ¼ 0)—and require regularity of
ΨðnÞ at r� ¼ 0.

C. The flat-space limit

We are focusing here on the case w ≫ M (i.e.
M=R ≪ 1). This limit may be achieved by either increasing
w (by increasing R), or by decreasing M (fixing M or w,
respectively). Both procedures are equivalent, they yield
essentially the same evolving field Ψl. In the following
discussion we shall take the view-point that the initial
function ΨvðvÞ is held fixed (in particular w and R are
fixed), and we are considering the limit of decreasing M.
In this limiting process, Ψð0Þ remains fixed, as both its

field equation and its initial data are essentially independent
of M.9

In order to figure out the behavior of Ψðn>0Þ in this
limiting process, we follow the lines of Ref. [8] (where the
Schwarzschild case was considered). First, we notice that
the value of ΨðnÞ is determined by the values of δVΨðn−1Þ
taken in the domain (i.e. the support) of the Green’s
function (constructed relatively to the chosen evaluation
point) of the operator of the left-hand side of Eq. (4.8). The
support of this Green’s function is not limited only to the
weak-field domain, but also reaches to the strong-field
domain (and in particular reaches to r� ¼ 0), as shown and
explained in detail in [8]. This means that ΨðnÞ will be
influenced by sources located at any value of r�, and not
only by large-r� sources. However, in [8], Barack shows
that (in Schwarzschild) the dominant (i.e. leading order in
M=u≲M=R ≪ 1) contribution to ΨðnÞ at FNI is only due
to sources located at large r� (i.e. r� ≫ M). As a result, he
shows that in the case M=R ≪ 1, (i) the iterative series
converges at null infinity at late time and (ii) the dominating
term of the expansion is the one of lowest possible n.
Specifically, Barack shows that Ψðnþ1Þ=ΨðnÞ ∝ M=R
(potentially with logarithmic factors) at FNI.
Similarly, in ERN (which has the same asymptotic

structure as Schwarzschild at r� ≫ M) we will regard
the fields ΨðnÞ evaluated in the vicinity of FNI (late times
and r� ≫ M) as originating from sources located at large
r�. As a result, Ψð1Þ decreases in the limit M=R ≪ 1, as we
regard its source as coming from the weak-field domain and
as this source term is proportional to δV, which in turn is
∝ η≲ ηw ≪ 1, cf. Eqs. (4.9), (4.5), and (4.7). This argu-
ment applies to higher-order iterations as well (like in
Schwarzschild), suggesting that as M decreases, ΨðnÞ
should decrease as ðηwÞn (or roughly as ðM=RÞn). We
may therefore naturally expect that at the limit M ≪ R,
the late-time tails will be dominated by the lowest possible
n—namely by the flat-space field Ψð0Þ (remember, though,
that this approximation for Ψl is only valid for evaluation
points in the vicinity of FNI, i.e. at late times and in the
domain r� ≫ M).
At this point it is instructive to compare our present

situation to the standard problem of late-time tails in
Schwarzschild. In that case too, for weak-field initial data,
the late-time tails are dominated by the minimal possible
iteration order n. However, in the Schwarzschild case,
considering compact initial support (the case of greatest
physical motivation), it turns out that Ψð0Þ yields no
contribution to the late-time field. This is directly related
to the compact support of the initial data.10 In our problem,
however—the inverted field Ψl on the ERN background—
the initial data is noncompactly supported, resulting in a

8Recall that this behavior of Ψð0Þ—namely, the existence of
unique regular solutions, and also the need for characteristic
initial data only on a single null ray—is a well-known feature of
the standard flat-space wave equation for a multipole l of
massless scalar field. [To verify the connection, one should just
view the spatial variable “r�” in Eq. (4.8) as the standard radial
coordinate “r” in a fiducial flat space.]

9The dependence of vðrÞ (along the ray u ¼ 0) onM fades out
as M → 0.

10In the other case of initial static moment, the initial data are
not compactly supported. Nevertheless, for the specific initial
function characterizing the initial static moment, it turns out that
againΨð0Þ has no contribution to the late-time field. This situation
changes when the initial function Ψv is noncompactly supported
and decays as v−k (for a range of k values), as we discuss.
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nonvanishing tail contribution already for n ¼ 0, as we
soon show. Correspondingly, in our problem it will be Ψð0Þ
(rater than Ψð1Þ) which dominates the late-time tails. For
this reason we shall devote the next two sections to study
the evolution of Ψð0Þ and its late-time tail.
It should be pointed out already at this stage that there is

a potential loophole in the above reasoning, concerning the
dominance of Ψð0Þ in the late-time tail: It is not difficult to
imagine a situation in which Ψð1Þ is indeed suppressed
globally as M=w (or ηw), and yet it may decay slower than
Ψð0Þ at large t. However, there is evidence that this is not the
case, which we discuss in Sec. VII. The first evidence is
that Ψð1Þ decays with the same inverse power of t as Ψð0Þ,
yet its overall amplitude is suppressed by the small
parameter ∼M=w. The second and much stronger evidence
emerges from the horizon’s exact conserved quantities
(discussed in the summary in Sec. VII) and suggests that
the mere effect of the higher-order iteration fields Ψðn>0Þ is
to modify the value of the constant prefactor in the resulting
expression for Ψð0Þ. We address this issue further in
Sec. VII.
Therefore, in the case w ≫ M considered here, it is

indeed possible to obtain the leading-order (in ∼M=w) of
the late-time tails from the flat-space field Ψð0Þ. This is the
strategy that we shall use in the rest of this paper.

V. ANALYSIS OF THE FLAT-SPACE FIELD Ψ ð0Þ
We turn now to analyze the evolution of Ψð0Þ, governed

by Eq. (4.8). In several occasions it will be useful to
interpret this equation as that of a standard scalar field ~Φ,
related to Ψð0Þ through

~Φ≡Ψð0ÞYlmðθ;φÞ=r�; ð5:1Þ

which lives in a fiducial 3þ 1 flat background with
standard Minkowski spherical coordinates (t, r�, θ, φ).
(Here r� serves as the standard radial coordinate in this
fiducial flat spacetime; note that in Minkowski r� ¼ r.) The
standard wave equation □ ~Φ ¼ 0 then reduces to Eq. (4.8).
For later convenience we also express the wave

equation (4.8) in terms of the null coordinates u, v:

Ψð0Þ;uv ¼ −
lðlþ 1Þ
ðv − uÞ2 Ψð0Þ: ð5:2Þ

A. The general solution

The general solution of this equation is known explicitly.
It involves two arbitrary functions gðuÞ and hðvÞ, and it
takes the form

Ψ0ðu; vÞ ¼
Xl

n¼0

Al
n
gðnÞðuÞ þ ð−1ÞnhðnÞðvÞ

ðv − uÞl−n ; ð5:3Þ

where the upper index “ðnÞ” denotes nth-order derivative of
the function with respect to its argument, and where Al

n are
coefficients given by

Al
n ¼

ð2l − nÞ!
n!ðl − nÞ! : ð5:4Þ

If characteristic initial data for Ψ0 were given in a local
“diamond” which does not extend to r� ¼ 0, the two
functions gðuÞ and hðvÞ could be chosen arbitrarily and
independently. However, when the domain of dependence
contains the line r� ¼ 0 (which is the case in our problem),
for an arbitrary choice of gðuÞ and hðvÞ the solution (5.3)
generically diverges at r� ¼ 0, owing to the factor ðv −
uÞl−n in the denominator.11 The most singular contribution,
proportional to ðv − uÞ−l, emerges solely from the n ¼ 0
term. In that term the numerator reads gðuÞ þ hðvÞ. The
only way to avoid this divergence is to have the two
functions gðuÞ and hðvÞ cancel each other along the line
v ¼ u. This cancellation occurs if and only if gðuÞ and
hðvÞ have the same functional form, that is, gðxÞ ¼
−hðxÞ≡ fðxÞ. Thus, the general solution regular at r� ¼
0 takes the form

Ψ0ðu; vÞ ¼
Xl

n¼0

Al
n
fðnÞðuÞ − ð−1ÞnfðnÞðvÞ

ðv − uÞl−n : ð5:5Þ

We shall refer to the function fðxÞ, which underlies the
expression in the right-hand side (through substitutions
x → u and x → v), as the “generating function.” Also, we
shall denote the differential operator at the right-hand side,
acting on the function f, by ΔðfÞ.
Since the form of the general solution for Ψ0ðu; vÞ is

known, the remaining challenge is to find the function f
which corresponds to the specified initial function ΨvðvÞ.
Namely, we seek the function f satisfying

ΔðfÞðu ¼ 0; vÞ ¼ ΨvðvÞ: ð5:6Þ
In the following subsections we shall proceed to construct
the solution(s) of this equation. To this end, we shall first
discuss several properties of the generating function f and
of the differential operator Δ.

B. General properties of the generating function f

Wewould first like to explore the space of homogeneous
solutions of Eq. (5.6), namely the functions f satisfying
ΔðfÞðu ¼ 0; vÞ ¼ 0. Note that ΨvðvÞ ¼ 0 implies the
vanishing of Ψ0ðu; vÞ due to uniqueness (and vice versa
—the vanishing of Ψ0ðu; vÞ trivially implies ΨvðvÞ ¼ 0);
hence, these are the functions f generating a trivial
field Ψ0ðu; vÞ ¼ 0.

11In the special case l ¼ 0, Ψ0 itself is finite, yet ~Φ ¼ Ψð0Þ=r�
generically diverges.
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We shall therefore focus on the projection of Eq. (5.5) to
u ¼ 0:

ΨvðvÞ ¼
Xl

n¼0

Al
n
fðnÞð0Þ − ð−1ÞnfðnÞðvÞ

vl−n
≡ Δ0ðfðvÞÞ;

ð5:7Þ
which defines the differential operator Δ0 acting on
functions fðvÞ. Here fðnÞð0Þ means fðnÞðvÞ evaluated
at v ¼ 0.
Yet another relevant differential operator is the restriction

of Δ0 to its local piece:

D0ðfðvÞÞ≡
Xl

n¼0

ð−1Þnþ1Al
nvn−lfðnÞðvÞ; ð5:8Þ

such that

ΨvðvÞ ¼ Δ0ðfðvÞÞ ¼ D0ðfðvÞÞ þ
Xl

n¼0

Al
nvn−lfðnÞðv ¼ 0Þ:

ð5:9Þ
Recall the difference between these three linear operators:
Δ is a partial differential operator, Δ0 is an ordinary
differential operator, but yet a nonlocal one (it involves
the values of fðnÞ at v ¼ 0), but D0 is a more standard,
local, ordinary differential operator.
The space of homogeneous solutions of these differential

operators was analyzed in Ref. [8]. Here we merely
mention the results:

(I) The basis of homogeneous solutions of D0 is

vj; lþ 1 ≤ j ≤ 2l: ð5:10Þ

(II) The basis of homogeneous solutions of Δ0 (or,
equivalently, Δ) is larger:

vj; 0 ≤ j ≤ 2l: ð5:11Þ
Recall that D0 is a rather standard (i.e. local)
lth-order differential operator; hence, it must
admit l-independent homogeneous solutions, as in
Eq. (5.10). It is a bit surprising that the set (5.11) is
larger, including 2lþ 1 independent functions, even
though Δ0 too is an lth-order differential operator.
This abnormally large basis is only possible due to the
nonlocal nature of the operator Δ0.

This somewhat confusing structure of the space
of homogeneous solutions associated with Δ0 and D0

is most easily illustrated in the l ¼ 0 case. In that
case, Ψ0ðu; vÞ ¼ fðuÞ − fðvÞ≡ ΔðfÞ, then ΨvðvÞ ¼
fðv ¼ 0Þ − fðvÞ≡ Δ0ðfÞ, and D0ðfÞ ¼ −fðvÞ is a
trivial (i.e. zero-order) differential operator. Obviously

D0 has no (nonvanishing) homogeneous solutions,
yet Δ0 does have one nonvanishing homogeneous
solution: fðvÞ ¼ const. For this choice, Ψ0ðu; vÞ ¼
fðuÞ − fðvÞ indeed vanishes.

Notealso that everyhomogeneoussolutionofD0must
also be a homogeneous solution ofΔ0, as can be seen by
comparing the two bases (5.10) and (5.11). This must
indeed be the case, by virtue of Eq. (5.9), because for any
member of the smaller basis (5.10), all functions fðnÞðvÞ
with 0 ≤ n ≤ l vanish at v ¼ 0.

1. Representative generating function

For a given initial function ΨvðvÞ, the general solution
of the inhomogeneous equation Δ0ðfðvÞÞ ¼ ΨvðvÞ, for
fðvÞ, is any specific inhomogeneous solution, plus any
homogeneous solution. This is an infinite set, a 2lþ 1-
parameter family of solutions. We shall prescribe here the
construction of a single solution fðvÞ, for a given function
ΨvðvÞ—which we shall call the “representative solution.”
We shall assume that ΨvðvÞ vanishes as v → 0. This is

trivially satisfied by the initial functions considered here,
because they were chosen to vanish at v < w. We note,
however, that even without this choice of restricted support,
Ψvðv → 0Þ should vanish in order for ~Φ ∝ Ψð0Þ=r� to be
bounded at u ¼ v ¼ 0.
We define our representative solution fðvÞ as follows: It

is the solution of the lth order ODE,

D0ðfðvÞÞ ¼ ΨvðvÞ; ð5:12Þ
subject to the initial conditions

fðnÞðv ¼ 0Þ ¼ 0; 0 ≤ n ≤ l − 1: ð5:13Þ
Notice that by virtue of these two equations, fðlÞ vanishes at
v ¼ 0. Therefore, each of the terms in the sum in the right-
hand side of Eq. (5.9) vanishes, yielding the required
relation Δ0ðfðvÞÞ ¼ ΨvðvÞ. We shall denote this represen-
tative generating function by frðvÞ.
For the class of initial functions ΨvðvÞ considered here,

which vanish at v < w, frðvÞ too will vanish at v < w.
Therefore, the representative solution will take the form

frðvÞ ¼ Θðv − wÞfwðvÞ; ð5:14Þ
where Θ denotes the standard step function, and fwðvÞ is
defined to be the solution of the ODE (5.12) with the
appropriate initial conditions at v ¼ w:

fðnÞðv ¼ wÞ ¼ 0; 0 ≤ n ≤ l − 1: ð5:15Þ

2. Compactly supported initial data

Although in our (inverted) ERN case the function ΨvðvÞ
is of noncompact support, it will be useful to consider here
the other case, in which the initial function ΨvðvÞ is of
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compact support. Let us assume thus that the support of
ΨvðvÞ is restricted to the range12

w < v < vmax: ð5:16Þ

Consider now the expression (5.14) for frðvÞ. Since Ψv
vanishes at v > vmax, throughout this domain frðvÞ ¼
fwðvÞ will be a certain homogeneous solution, which we
denote fhomðvÞ; namely, it satisfies D0ðfhomðvÞÞ ¼ 0. We
can therefore express frðvÞ as

frðvÞ ¼ Θðvmax − vÞ½Θðv − wÞfwðvÞ�
þ Θðv − vmaxÞfhomðvÞ: ð5:17Þ

By virtue of Eq. (5.10), fhom must be a superposition of the
form

fhomðvÞ ¼
X2l

j¼lþ1

ajvj ð5:18Þ

with certain coefficients aj (whose values will not concern
us). From Eq. (5.11), such a superposition also satis-
fies ΔðfhomÞðu; vÞ ¼ 0.
Consider now the behavior ofΨ0 in the portion u > vmax

of r� > 0. Any point in this domain satisfies vmax < u < v.
Therefore, in the right-hand side of Eq. (5.5), the functions
fðnÞðuÞ and fðnÞðvÞ may all be replaced, respectively, by
fðnÞhomðuÞ and fðnÞhomðvÞ, implying that

Ψ0ðu; vÞ ¼ ΔðfhomÞðu; vÞ ¼ 0 ðv > u > vmaxÞ:
ð5:19Þ

We conclude that if the initial function ΨvðvÞ is of compact
support, restricted to v ≤ vmax, then Ψ0 strictly vanishes
throughout the domain u > vmax (of r� > 0). In particular,
in this case Ψ0 will have no contribution whatsoever to the
late-time tails—either at future null infinity or along
r ¼ const.
Note that this is precisely the reason why in the usual

Schwarzschild problem, with compactly-supported initial
data, no late-time contribution emerges from Ψ0, hence the
dominant contribution to the late-time tails emerges from
Ψð1Þ (however, in our inverted ERN problem, the situation
is different due to the noncompactness of the initial
support).

VI. CONSTRUCTION OF Ψ 0 FOR INVERSE-
POWER INITIAL DATA

A. Simplifying the initial-value setup

The initial conditions for Ψ0, the function ΨvðvÞ, was
given in Eq. (3.5). We shall now proceed to simplify our
initial-value setup, as we now describe.
Recall that we have assumed analyticity of ψuðrÞ across

the horizon, which in turn implies that the inverted field Ψv
is analytic in 1=r for a sufficiently large r. In particular, the
series (3.5) converges at a sufficiently large r. However, we
have also assumed that ΨvðvÞ vanishes at v ≤ w (for some
w > 0). In fact this implies that ΨvðvÞ is not everywhere
analytic (neither in v nor in r). But nevertheless we assume
that it is everywhere Cð∞Þ.
Thus, our initial function ΨvðvÞ presumably admits the

following properties: (i) it is Cð∞Þ everywhere (in r and,
hence, in v too), (ii) it vanishes at v ≤ w, and (iii) through-
out v ≥ w1 (for a certain w1 ≥ w), it is given by the
convergent series (3.5).
To simplify the initial-value setup, we first note that

owing to the superposition principle, it will be sufficient to
consider the contributions emerging from individual terms
ĉkðR=rÞk separately. Thus, we shall be concerned with an
initial function which at v ≥ w1 takes the form

Ψk
v ¼ ĉkðR=rÞk: ð6:1Þ

In addition, Ψk
v is assumed to vanish at v ≤ w; this implies

that in the domain w ≤ v ≤ w1, Ψk
v will inevitably deviate

from Eq. (6.1); i.e., it is not analytic. We shall assume that
Ψk

v is Cð∞Þ.13

Next, to further simplify the analysis, we shall approxi-
mate r in Eq. (6.1) by r�. This simplification is justified by
our weak-field approximation. Recall that the relative
difference between r and r� is ∝ M=r (setting aside
logarithmic corrections), which is negligible in the relevant
domain (r≳ R ≫ M).
We are thus led to consider the initial functions Ψ̂k

vðvÞ
(for all integers k ≥ 0), which are presumably Cð∞Þ,
supported at v ≥ w only, and which satisfy Ψ̂k

v ¼
ĉkðR=r�Þk at v ≥ w1, namely

12The restriction v > w can be relaxed if we assume the
regularity condition Ψvðv → 0Þ ¼ 0.

13It is not difficult to construct such aCð∞Þ extension of (6.1) to
the domain v ≤ w1, as follows: First, choose a parameterw ≤ ~w <
w1 such that thesum(3.5)still converges toΨv atw ¼ ~w.LetpðrÞbe
any smooth transition function, that is, a monotonically increasing
Cð∞Þ functionsatisfyingp ¼ 0atv ≤ ~wandp ¼ 1atv ≥ w1.Letus
define ~Ψv ¼

P
kĉkðRp=rÞk andΔΨv ¼ Ψv − ~Ψv.Notice thatΔΨv

is Cð∞Þ and is only supported at w ≤ v ≤ w1. We now define
Ψk

v ¼ ĉkðRp=rÞk þ ~ckΔΨv, where ~ck ¼ ĉkðR=r1Þk=Ψvðv ¼ w1Þ
and r1 ≡ rðv ¼ w1Þ ¼ rðr� ¼ w1Þ. Note that

P
k ~ck ¼ 1. It is not

difficult to show that (i) Ψk
v vanishes at v ≤ w, (ii) it coincides

with Eq. (6.1) at v ≥ w1; (iii) it is Cð∞Þ everywhere, and
(iv)

P
kΨ

k
v ¼ Ψv.
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Ψ̂k
vðvÞ ¼ ĉkðR=vÞk ð6:2Þ

at v ≥ w1.
14

B. Generating function for inverse-power initial data

In order to analyze theΨð0Þ field evolving from the above
initial function Ψ̂k

vðvÞ, we first construct the corresponding
representative generating function frðvÞ, which satisfies
the inhomogeneous ODE D0ðfrðvÞÞ ¼ Ψ̂k

vðvÞ with the
initial conditions (5.13). Since the space of homogeneous
solutions is known, Eq. (5.10), all we need at this stage is to
construct a single inhomogeneous solution, which we
denote finhðvÞ. As we explain in the next subsection, the
late-time behavior of the field Ψð0Þ depends only on the
values that frðvÞ takes in the range v ≥ w1. Therefore, we
shall focus on finding finhðvÞ [and frðvÞ] in that range
(where Ψ̂k

vðvÞ ¼ ĉkðR=vÞk). The structure (5.8) of the
operator D0 immediately suggests the existence of a
specific solution of the form finhðvÞ ¼ const · vl−k (in
v ≥ w1). A direct substitution yields

finhðvÞ ¼ ðαĉkRkÞvl−k ðv ≥ w1Þ; ð6:3Þ

where α≡ αðl; kÞ is defined by

1=α ¼
Xl

n¼0

ð−1Þnþ1Al
n

Yn−1

j¼0

ðl − k − jÞ

¼ −
Xl

n¼0

Al
n

Yn−1

j¼0

ðjþ k − lÞ:

Using MATHEMATICA, one can easily find the more explicit
expression

α ¼ −
k!

ðkþ lÞ! : ð6:4Þ

Once the specific inhomogeneous solution is known, the
general solution of the ODE (5.12) is obtained by adding a
general homogeneous solution of the form (5.18).
Therefore, the representative generating function (in the
range v ≥ w1) takes the form

frðvÞ ¼ ðαĉkRkÞvl−k þ
Xl

j¼1

cjvlþj ðv ≥ w1Þ; ð6:5Þ

with certain coefficients cj. These coefficients are in
principle determined by integrating the ODE (5.12) with

the initial conditions (5.13), hence they depend on the
specific form of Ψ̂k

vðvÞ at v < w1. However, for the analysis
below we shall not need these coefficients.

C. Late-time behavior of Ψ 0

1. General expression

Consider now the behavior of Ψ0 in the range
v > u ≥ w1. From the form (5.5) of the general solution,
it is obvious that only the behavior of the generating
function at v ≥ w1 is relevant. Since the homogeneous
piece

P
cjvlþj yields no contribution toΨ0 [cf. Eq. (5.11)],

the late-time behavior of Ψ0 is (precisely)

Ψ0ðu; vÞ ¼ ðαĉkRkÞΔðxl−kÞ ðv > u ≥ w1Þ; ð6:6Þ

where, recall,

Δðxl−kÞ

≡Xl

n¼0

Al
n

�
dn

dun
ðul−kÞ − ð−1Þn dn

dvn
ðvl−kÞ

�
ðv − uÞn−l:

ð6:7Þ

As was discussed in the previous section, ΔðxjÞ vanishes
for all 0 ≤ j ≤ 2l, cf. Eq. (5.11). It immediately follows that
at late time (namely, u ≥ w1),Ψ0 vanishes for any k ≤ l. We
only need to consider the contributions from k > l.
This last result—the strict vanishing of late-time

Ψ0ðu; vÞ for all k ≤ l—involves a subtlety: If Ψ0 vanishes,
why is Ψ̂k

vðvÞ nonvanishing? To address this question we
must distinguish between two different situations: (i) In the
situation described above, the initial function Ψ̂k

vðvÞ is ∝
v−k only at v ≥ w1 (for some w1 > 0). In that case,Ψ0ðu; vÞ
vanishes at v > u ≥ w1, but not necessarily in the domain
w1 > u > 0. This allows continuity of Ψ0 on approaching
u ¼ 0. (ii) The more subtle case is the one in which
w1 → 0, namely, Ψ̂k

v ∝ v−k on the entire (portion v > 0 of
the) ray u ¼ 0. In that case, the above result would mean
that Ψ0ðu; vÞ ¼ 0 on the entire (portion r� > 0 of the)
domain u ≥ 0—which would conflict with the nonvanish-
ing value of Ψ̂k

v at u ¼ 0. The resolution of this conflict is a
bit tricky: In this situation of Ψ̂k

v ∝ v−k extending all the
way to v ¼ 0, Ψ̂k

v ¼ Ψ0ðu ¼ 0Þ diverges at the origin
(u ¼ v ¼ 0). This divergence violates the regularity con-
dition that we have imposed along the central worldline
r� ¼ 0. Thus, in this case there is a conflict between (I) the
form of the initial function at v → 0, (II) the assumed
regularity condition at r� ¼ 0, and (III) the assumption of
continuity of Ψ0ðu; vÞ on approaching u → 0. The above
construction of Ψ0ðu; vÞ was based on Eq. (5.5), which in
turn was based on the assumption of regularity at r� ¼ 0,
hence continuity at u → 0 has been sacrificed.

14The difference between Ψ̂k
v ∝ ðR=r�Þk and the “true” initial

data Ψk
v ∝ ðR=rÞk, being proportional to M=R (aside from

logarithmic corrections), should naturally be considered as a
seed for Ψð1Þ. Here, however, we are only concerned with Ψð0Þ;
hence, this difference between Ψ̂k

v and Ψk
v will not concern us.
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2. Decay rate along future null infinity

Consider next the behavior of Ψ0 at the limit v → ∞ (at
fixed u ≥ w1), which characterizes the approach to future
null infinity (FNI). In the v-derivatives term in the squared
brackets in Eq. (6.7), for each n the dominant contribution
(in terms of expansion in 1=v) is ∝ v−k and will hence
vanish at FNI (recall that the relevant values of k are k > l).
In the u-derivatives term, the dominant contribution of the
nth term is ∝ vn−l, which vanishes for all n < l. The only
nonvanishing contribution to Δðxl−kÞ at FNI is thus the
n ¼ l term, which—since Al

l ¼ 1—is just ðd=duÞlðul−kÞ. It
immediately follows that Δðxl−kÞ vanishes for any
0 < k ≤ l. Calculation yields

Δðxl−kÞ ¼ dl

dul
ðul−kÞ ¼ pku−k ðv → ∞; u ≥ w1Þ;

ð6:8Þ
where

pk ¼ ð−1Þl
Yl−1

j¼0

ðjþ k − lÞ ¼ ð−1Þl
Yl

j¼1

ðk − jÞ: ð6:9Þ

The last expression shows at once that pk vanishes for any
0 < k ≤ l. This again demonstrates that—at least at FNI
—Ψ0 vanishes throughout u ≥ w1 for any 0 < k ≤ l. It
confirms the more general observation made above, that the
late-time contributions to Ψ0 emerge only from k > l
terms.15 Noting this range of k values, it will be more
convenient to express pk as

pk ¼ ð−1Þl ðk − 1Þ!
ðk − l − 1Þ! ðk > lÞ: ð6:10Þ

Substituting back in Eqs. (6.8) and (6.6), we find (for k > l
only)

Ψ0ðu; vÞ ¼ ðβĉkRkÞu−k ðv → ∞; u ≥ w1Þ; ð6:11Þ

where β≡ βðl; kÞ is given by

β ¼ ð−1Þlþ1
ðk − 1Þ!

ðk − l − 1Þ!
k!

ðkþ lÞ!

¼ ð−1Þlþ1
k½ðk − 1Þ!�2

ðk − l − 1Þ!ðkþ lÞ! :

While the specific value of the coefficient β is not so
crucial, the important observation is that for any k > l this
coefficient is nonvanishing. Recalling the vanishing of all
k ≤ l contributions, we conclude that the late-time field at

FNI is dominated by the k ¼ lþ 1 tail, and it hence decays
as u−l−1.
To summarize this subsection, we want to write the

dominant late-time tail (k ¼ lþ 1) at FNI explicitly. In
order to do so, we first calculate the relevant β,

βlþ1 ≡ βðl; k ¼ lþ 1Þ ¼ ð−1Þlþ1
ðlþ 1Þðl!Þ2
ð2lþ 1Þ!

¼ ð−1Þlþ1
2½ðlþ 1Þ!�2
ð2lþ 2Þ! ;

and then obtain [using Eq. (6.11)]

Ψk¼lþ1
0 ðu; vÞ ¼ ĉlþ1Rlþ1ð−1Þlþ1

2½ðlþ 1Þ!�2
ð2lþ 2Þ! u−ðlþ1Þ

ðv → ∞; u ≥ w1Þ: ð6:12Þ

3. Decay rate at fixed r�
Once the behavior of Ψ0 along FNI is known, we can

analyzeΨ0ðu; vÞ throughout the domain u ≥ w1 and obtain
its decay rate along lines of constant r� > 0.
This problem is simplified by the fact that throughout the

relevant domain v > u ≥ w1, the only relevant piece of the
initial null ray u ¼ 0 is v ≥ w1, wherein Ψ̂

k
vðvÞ is an inverse

power. Recalling Eqs. (6.6) and (6.7), it is straightforward
to show that Ψ0ðu; vÞ must take the form u−kFlkðu=vÞ,
where Flk is a certain function of its argument. The problem
of determining Ψ0ðu; vÞ then reduces to that of obtaining
the function Flkðu=vÞ. This, in turn, is achieved by
recalling that this function must satisfy a certain ODE,
obtained by substituting the above expression for Ψ0ðu; vÞ
in the field equation. Solving this ODE, and matching to a
regularity condition at r� ¼ 0 (namely u=v ¼ 1) as well as
to the known boundary condition at FNI (i.e. u=v ¼ 0), will
fully determine Flk and hence also Ψ0ðu; vÞ.
The aforementioned ODE is simplified if we change its

independent variable from u=v to 1 − u=v≡ y. Thus, we
write

Ψ0ðu; vÞ ¼ u−kGðyÞ ðv > u ≥ w1Þ; ð6:13Þ

where G is a yet unknown function of its argument. The
field equation (5.2) then reduces to the ODE:

G00ðyÞ ¼ 1 − k
1 − y

G0ðyÞ þ lðlþ 1Þ
ð1 − yÞy2GðyÞ: ð6:14Þ

This equation is solvable for each l, k. However, we shall
not need the explicit solution here, and a general discussion
of the properties of GðyÞ will suffice (below, however, we
shall consider in more detail the explicit solution in the
important case k ¼ lþ 1).

15The k ¼ 0 case requires a special treatment. (Nevertheless,
the vanishing of the k ¼ 0 contribution at u ≥ w1 follows from
the more general observation which we have just mentioned.)
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The limit y → 0 corresponds to r� ¼ 0. The asymptotic
behavior at this limit can be easily analyzed. The right-hand
side of the above ODE reduces to

ð1 − kÞG0ðyÞ þ lðlþ 1Þ
y2

GðyÞ:

The term ∝ G0ðyÞ becomes unimportant at this limit, and
we obtain the two usual spherical-harmonic asymptotic
solutions: a regular solution G≃ ylþ1 and a singular
solution G≃ y−l.16 The regularity condition at r� ¼ 0 then
selects the regular solution, yielding

GðyÞ ¼ g0ylþ1 þOðylþ2Þ ðy ≪ 1Þ: ð6:15Þ

The coefficient g0 is to be determined by matching to FNI,
but we shall not need it here.
Consider now the behavior ofΨ0 along a line of constant

r�, at very late time (t ≫ r�). Since t=r� ¼ 2=y − 1, the
inequality t ≫ r� corresponds to y ≪ 1; hence,

Ψ0ðu; vÞ ¼ g0u−k½ylþ1 þOðylþ2Þ� ðt ≫ r�Þ:

Noting that y ¼ 2r�=ðr� þ tÞ ≅ 2r�=t, we obtain

Ψ0 ¼ ~g0rlþ1� t−ðkþlþ1Þ½1þOðr�=tÞ� ðt ≫ r�Þ; ð6:16Þ

where ~g0 ≡ 2kþlþ1g0.
We see that the asymptotic behavior at large t is ∝ t−l−k−1

and is hence dominated by the smallest possible k.
However, we already know that for any k ≤ l the field
Ψ0 vanishes throughout the domain—namely, at any fixed
r� > 0 it vanishes for sufficiently large t (stated in other
words, the prefactor g0 vanishes for any k ≤ l). We there-
fore conclude that the late-time decay of Ψ0 along lines of
fixed r� is dominated (like that at FNI) by the k ¼ lþ 1
term, and decays as ∝ t−ð2lþ2Þ.
Let us consider in more detail the dominant contribution

k ¼ lþ 1. In this case, the regular solution of Eq. (6.14) is
exactly GðyÞ ¼ gðlþ1Þ

0 ylþ1 (where gðlþ1Þ
0 is the constant g0

for the case k ¼ lþ 1); hence,

Ψk¼lþ1
0 ðu; vÞ ¼ gðlþ1Þ

0 ðy=uÞlþ1 ¼ gðlþ1Þ
0

�
1

u
−
1

v

�
lþ1

ðv > u ≥ w1Þ: ð6:17Þ

Note the regularity of this expression at r� ¼ 0. Also, at
FNI it becomes gðlþ1Þ

0 u−ðlþ1Þ, which allows us to obtain
gðlþ1Þ
0 by matching to Eq. (6.12):

gðlþ1Þ
0 ¼ ĉlþ1Rlþ1βlþ1 ¼ ĉlþ1Rlþ1ð−1Þlþ1

2½ðlþ 1Þ!�2
ð2lþ 2Þ! :

To find the asymptotic behavior at t ≫ r�, recall that

1

u
−
1

v
¼ r�

uv
≅
4r�
t2

;

hence,

Ψk¼lþ1
0 ≅gðlþ1Þ

0 ð4r�Þlþ1t−ð2lþ2Þ½1þOðr�=tÞ� ðt≫r�Þ:
ð6:18Þ

Note that this result [Eq. (6.18)] is in complete corre-
spondence with the one obtained above for general
k [Eq. (6.16)].

VII. BACK TO THE ORIGINAL FIELD ψ l
AND SUMMARY

So far we have analyzed the late-time tail associated with
Ψð0Þ. One may wonder what would be the contribution to
the tail from the higher-order moments Ψðn>0Þ. For exam-
ple, as noted in the final part of subsection IVC, one may
worry that some Ψðn>0Þ would decay at late times slower
than Ψð0Þ (even though its amplitude is smaller when
R ≫ M). To this end one may extend the procedure of
[8] (the “shell toy-model”) from the Schwarzschild case to
our problem. Within that context, it was found by A. Ori
[11] that the tail contribution from Ψðn¼1Þ (in the domain
r� ≫ M) again decays as Ψð0Þ, though with a coefficient
which scales asM=R. There is evidence (emerging from the
horizon’s exact conserved quantities discussed below)
suggesting that the mere effect of the n > 0 term would
be to replace the coefficient gðlþ1Þ

0 in Eqs. (6.18) and (6.17)
by another coefficient ĝ. Note that ĝ ≅ gðlþ1Þ

0 as long as
R ≫ M, but in the case of “strong initial data,” namely
R ∼M, one expects that ĝ will involve significant con-
tributions from n > 0. We shall probably treat this issue
further in a subsequent paper [9] that I hope to address.
Noting that (i) in the case R ≫ M considered here and

for evaluation points in the vicinity of FNI (i.e. at late times
and in the domain r� ≫ M), Ψl should be well approxi-
mated by Ψ0 and that (ii) the late-time decay of Ψ0 along
lines of fixed r� is dominated (like that at FNI) by the
k ¼ lþ 1 term, we can write the following expression for
the field Ψl [using Eq. (6.18)]:

Ψl≅ ĝð4r�Þlþ1t−ð2lþ2Þ½1þOðr�=tÞ� ðt≫r�≳R≫MÞ;
ð7:1Þ

or [using Eq. (6.17)]

Ψl ≅ ĝ

�
1

u
−
1

v

�
lþ1

ðv ≫ u ≫ w1Þ; ð7:2Þ
16In both solutions, the additional ∝ G0ðyÞ term, and also the

factor 1 − y in the denominators in Eq. (6.14), only affect higher-
order terms in the expansion in y.

ORR SELA PHYSICAL REVIEW D 93, 024054 (2016)

024054-12



where ĝ ≅ gðlþ1Þ
0 (presumably with corrections of

order M=R).
We can now reinvert Ψl back to the original ψ l, using

ψ l ¼ T̂ðΨlÞ, recovering our original problem of a horizon-
based initial perturbation. Recall that in this transformation
—which switches between the horizon and FNI—t is
preserved, r� changes its sign, and u, v interchange. The
initial-data support is now restricted to the domain u > w
along the ingoing initial ray (v ¼ 0). This corresponds to
−r� > w and in terms of r to r ≤ M þ δR, where δR is
given by δR ¼ rðr� ¼ −wÞ −M and at the limit R ≫ M by
δR ¼ M2=R. The weak-field condition R ≫ M is now
mapped into δR ≪ M, to which we may refer as the
“inverted weak-field” condition. Therefore, inverting
Eqs. (7.1) and (7.2), we get

ψ l≅ ĝð−4r�Þlþ1t−ð2lþ2Þ½1þOðr�=tÞ� ðt≫−r�≳R≫MÞ;
ð7:3Þ

and

ψ l ≅ ĝ

�
1

v
−
1

u

�
lþ1

¼ ð−1Þlþ1ĝ

�
1

u
−
1

v

�
lþ1

ðu ≫ v ≫ w1Þ:
ð7:4Þ

Note that it is easy to see from Eq. (7.4) that along the
horizon (u → ∞), ψ l decays as v−l−1.
So far, our analysis of ψ l was restricted to evaluation

points in the domain of large −r�=M (and large r�=M for
the inverted field Ψl) and to the case of weak field initial
data (for Ψl. In the case of ψ l, the condition is the “inverted
weak-field” one), i.e. R ≫ M (or δR ≪ M for ψ l). In the
next paper [9], we would relax this restrictions and derive
an expression for the late-time tail of the field ψ l to the
leading order in jr�j=t, at any r� and for general horizon-
based initial data (finite δR=M). In what follows, we only
sketch very briefly the key ingredients and main results and
discuss the case of general initial data and relations to
previous works.
We begin with the “inverted weak-field” restriction

δR ≪ M. We would like to relax this assumption and to
achieve better control on the contribution of higher-order
terms in the iteration scheme (which presumably yields
contributions ∝ ðδR=MÞn to ĝ). As was mentioned above,
an analysis of the n ¼ 1 term was already carried out (in the
Ψl context), indicating that the effect of this term is to
merely modify the coefficient gðlþ1Þ

0 , by an amount ∝ M=R.
We would like in addition (i) to verify that this behavior
indeed extends to higher-n terms as well and (ii) to obtain
the explicit expression for ĝ, for finite δR=M, which
incorporates the overall contributions of all n.
To achieve these goals we exploit the conserved quan-

tities found by Aretakis [10]. He analyzed the evolution of
certain derivatives of ψ l along the horizon of extremal RN,
and obtained interesting exact results, which are easiest to

express in ingoing-Eddington (v, r) coordinates. Following
are the results which are most relevant to our analysis:
(i) The quantity Al ¼ dlðψ lÞ, where dl is the differential
operator ð∂=∂rÞlþ1 þ ðl=MÞð∂=∂rÞl evaluated at the hori-
zon, is exactly conserved (i.e. independent of v), and (ii) for
all j ≤ l, ð∂=∂rÞjψ l decays to zero as v → ∞. (Note that
(ii) also implies that ð∂=∂rÞlþ1ψ l asymptotically
approaches Al at v → ∞.)
By applying the operator dl to the original initial data

(2.6) (i.e. before the inversion and the insertion of the scale
parameter R) and to Eq. (7.4), one verifies the consistency
of the latter asymptotic expression, and furthermore obtains
the exact coefficient ĝ:

ĝ ¼ Mlþ1ð−1Þlþ1
2½ðlþ 1Þ!�2
ð2lþ 2Þ!

�
clþ1 þ

l
lþ 1

cl

�

¼ Mlþ1βlþ1

�
clþ1 þ

l
lþ 1

cl

�
: ð7:5Þ

Note that this is an exact expression, not restricted to the
“inverted weak-field” case.
We now turn to discuss the second restriction, according

to which our calculation of ψ l is a good approximation only
for evaluation points in the domain of large −r�=M. One
might suspect that once −r� increase and becomes com-
parable to (or smaller than) M—and obviously when r�
becomes positive—this approximation would break down.
In the subsequent paper [9] we shall show, however, that in
fact the validity of the late-time behavior t−ð2lþ2Þ is not
restricted to the domainM ≪ −r�. Rather, it holds through-
out the domain t ≫ jr�j. The only thing which changes
when−r� becomes comparable to (or smaller than)M is the
dependence on r�: The power law ð−r�Þlþ1 is replaced by a
static solution of the field equation.
In order to obtain this result, we employ the so-called late-

time expansion, presented for example in Refs. [12,13]. In
this procedure, we assume that ψ lðr; tÞ admits a large-t
asymptotic behavior of the form

P∞
j¼0HjðrÞðt=MÞ−m−j,

with a certain leading power m and certain functions
HjðrÞ. Substituting this expression in the field equation,
onefirst finds thatHj¼0ðrÞmustbeastatic solution(regularat
r → ∞), namely αðr=MÞðr=M − 1Þ−l−1, where α is a con-
stant. In addition, one obtains a hierarchy of ODEs for the
various functionsHj>0ðr�Þ (whose formswill not concern us
here). To obtain the leading power m (along with α), one
matches the near-horizon asymptotic form of the dominant
term j ¼ 0—namely αð−r�=MÞlþ1ðt=MÞ−m—to the large-t
asymptotic form of ψ l obtained in Eq. (7.3). The matching
zone is t ≫ −r� ≫ M.One then easily finds thatm ¼ 2lþ 2
and α ¼ 4lþ1M−ðlþ1Þĝ. Therefore, the final result is

ψ lðr; tÞ ≅ 4lþ1ĝMlþ1ðr=MÞðr=M − 1Þ−l−1t−2l−2
ðt ≫ jr�jÞ:

ð7:6Þ
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Note that ĝ contains a factor of Mlþ1 and is therefore
dimensionful [see Eq. (7.5)].
So far we have addressed the case of horizon-based

initial data. In the other case of off-horizon compact initial
data (case I in the classification above), all coefficients ck
vanish, and so does ĝ. The decay rate will then be faster
than t−2l−2. A prototype of that case is the situation of a
(compact-support) pulse incident from large r towards the
BH. In this case the classic analysis by Price [1] should
apply. This analysis (like subsequent variants [8,13])
demonstrates that the Schwarzschild’s large-t tail is pre-
dominantly a weak-field phenomenon—that is, a scattering
of a certain ingoing field off a weak-field curvature
potential. The latter is ∝ M and is insensitive to Q (which
only affects the curvature at the next-to-leading order).
Thus, in the case of off-horizon compact initial data we
expect a large-t tail∝ t−2l−3—and an FNI tail∝ u−l−2—just
like in Schwarzschild. Note, however, that since ingoing
perturbations will usually cross the horizon, due to the
presence of centrifugal-like potential there, a scattering
dynamics will take place near the horizon as well (similar to
that at large r), and will lead to an inverse-power decay
along the horizon, as v−l−2. This also follows quite
immediately from the fact that the notion of “off-horizon
compact initial data” is invariant under T-inversion, and the
latter maps the standard ∝ u−l−2 decay at FNI to a ∝ v−l−2

decay at the horizon.
As was mentioned above, a generic compact-support

initial data may be represented as a superposition of the two
types, namely “off-horizon” and “horizon-based” initial-
data sets. The late-time decay will then be dominated by the
above “horizon-based” contribution: Decay rates like u−l−1

at FNI, like v−l−1 along the horizon, and like t−2l−2 at large t
(namely t ≫ jr�j), according to Eq. (7.6), along with (7.5)
and (7.4).
In Ref. [3], Bičák obtained a large-t asymptotic behavior

which involves the same function of r as in (7.6), but with a
different inverse power t−l−2. For l ≠ 0, his result is
inconsistent with our analysis. Furthermore, one can use
Bičák’s expression as a seed of a large-t expansion,
constructing the corresponding ψ l (with m ¼ lþ 2 rather

than 2lþ 2) [9], and when dl is applied to this ψ l, one finds
that Al actually diverges, which is inconsistent with regular
initial data. The numerical results [5] for l ¼ 1, 2 also
excludes the inverse power t−l−2 and support our analytical
result t−2l−2. It remains unclear where for l ≠ 0 the problem
in [3] arose.
More generally, by combining the large-t expansion and

the conservation of Al, one can show that for generic
regular initial data, the only consistent inverse power is
m ¼ 2lþ 2 [9]: Al diverges for any m ≤ 2lþ 1, and
vanishes for any m ≥ 2lþ 3 (which would be inconsistent
with generic regular initial data, wherein ĝ ≠ 0).
In Ref. [7], Blaksley and Burko investigated two special

cases of initial data: (i) initial static moment that extends up
to the horizon, and (ii) the case of “off-horizon compact
initial support” (in our terminology). In both cases, all the
coefficients ck<l in the initial-data horizon expansion (2.6)
vanish. Obviously, analyzing such a subclass of initial data
is inadequate for testing Bičák’s claim, especially because
a-priori one might naturally expect that the smallest-k terms
would dominate the late-time tail. When restricted to that
subclass, our results are consistent with those of Blaksley
and Burko. In particular, for an initial static moment at the
horizon, one finds that clþ1, cl ≠ 0 (and all other ck vanish),
yielding ĝ ≠ 0 and hence a late-time decay ∝ t−2l−2.
It may be interesting to extend this analysis to coupled

gravitational and electromagnetic perturbations on
extremal RN. In Ref. [14], Bičák employed his results
from [15] and showed that the scalar-field perturbations
serve as a prototype for these coupled perturbations; he
then used his results from Ref. [3] to deduce the late-time
behavior of them. It will therefore be interesting to revisit
his analysis in [14] and obtain the late-time behavior of
coupled perturbations (on ERN) using the results of the
present paper.
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