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We study spacetimes that lead to a separable Klein-Gordon equation in a general number of dimensions.
We introduce an ansatz for the metric in higher dimensions motivated by analogical work by Carter in four
dimensions and find solutions of the Klein-Gordon equation. For such a metric we solve the Einstein
equations and regain the Kerr–NUT–(A)dS spacetime as one of our results. Other solutions lead to the
Einstein-Kähler metric of a Euclidean signature. Next we investigate a warped geometry of two Klein-
Gordon separable spaces with a properly chosen warped factor. We show that the resulting metric leads
also to a separable Klein-Gordon equation and we find the corresponding solutions. Finally, we solve the
Einstein equations for the warped geometry and obtain new solutions.
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I. INTRODUCTION

The Kerr solution in four dimensions is one of the most
important solutions of the Einstein equations. It allows us
to describe the exterior of a stationary rotating central
source. Although it deals with a rather elementary physical
configuration, it took a significant effort and rather long
time to find it—until 1963, 47 years after the discovery of
the spherical Schwarzschild solution [1].
The Kerr solution is not important only for its astro-

physical applications but it is also exceptional for its
mathematical structure and high symmetry. Geodesic
motion in this spacetime is completely integrable and
the main physical field equations can be solved by
separation of constants. Exactly these properties are the
cornerstones of Carter’s rederivation and generalization of
the Kerr solution in 1968. In his seminal paper [2], cf. also
[3], he studied spaces allowing a separable Hamilton–
Jacobi equation and Klein-Gordon equation (referred to as
the Schrödinger equation by Carter), which satisfy the
Einstein equations. He obtained the Kerr solutions with a
cosmological constant and NUT parameter, and some other
related spaces. The aim of this paper is to follow this route
in a higher-dimensional setting.
Higher dimensional solutions of the Einstein equations

have become popular in recent years due to their signifi-
cance in string theory or in the AdS/CFT context. The study
of general relativity in a general number of dimensions is
interesting also just from the mathematical point of view,
and it can reveal some important properties of various
structures and equations. Similarly to the four dimensions,
finding a solution describing a generally rotating black hole
in higher dimensions was a challenging task. The spheri-
cally symmetric Tangherlini–Schwarzschild solution [4]

was found in the same year as the Kerr solution, in
prehistory of the higher-dimensional studies. The solution
describing a rotating asymptotically flat black hole was
discovered by Myers and Perry [5] in 1986. Generalization
for a nontrivial cosmological constant has been studied on
various levels of generality [6–8] until 2006 when Chen,
Lü, and Pope were able to add also the so-called NUT
parameters and to write down the most general metric,
describing the geometry known today as the Kerr–NUT–
(A)dS spacetime [9,10].
It is remarkable that although the derivation of this

geometry occurred through an unrelated route (the Kerr-
Schild form of the metric), the final form of the metric is a
straightforward generalization of Carter’s four-dimensional
Kerr–NUT–(A)dS metric [2]. It turns out also that most of
the miraculous properties of the Kerr solution survive in
higher dimensions: geodesic motion is completely integrable
[11], Hamilton-Jacobi, Dirac, and Klein-Gordon equations
are separable [12–15], and the geometry possesses a high
degree of symmetry encoded in the existence of a tower of
Killing vectors and tensors [16,17]. These results have
completed a series of previous works on integrability and
separability of the basic physical equations in black hole
spacetimes in particular dimensions and for particular values
of spacetime parameters [18–33]. It turns out that the Kerr–
NUT–(A)dS spacetime is a very prominent example of a
fully integrable and separable system [34,35].
It is interesting that all these properties hold for a wider

class of metrics—the so-called off-shell Kerr–NUT–(A)dS
spaces—obtained by relaxing conditions on some of the
metric functions in the Kerr–NUT–(A)dS solution. It was
shown that this class is uniquely determined by requiring
the existence of a principal closed conformal Killing-Yano
form [36–39].
It is natural to ask if the elegant Carter’s method could be

employed also in higher dimensions and whether it could
not lead to a more general class of solutions. In this paper
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we investigate this possibility. We assume a metric form
motivated by a combination of Carter’s metric in four
dimensions and the Kerr–NUT–(A)dS metric in a general
number of dimensions. We show that such a metric leads to
a separable Klein-Gordon equation and we find the
corresponding solutions. We call this class the Klein-
Gordon simple separable metrics.1 Moreover, according
to [40], it seems that metrics which yield a separable
Hamilton-Jacobi equation should also have this form.
The introduced class generalizes the off-shell Kerr–NUT–

(A)dS metrics by introducing one functional reparametriza-
tion freedom for each latitude and radial coordinate. It is
indeed a wider class, and thus not all Klein-Gordon simple
separable metrics possess the (standard) principal closed
conformal Killing-Yano form; however, they still allow the
tower of Killing tensors and vectors. In fact, the class of
simple separable metrics belongs to a wider class of metrics
admitting a generalized closed conformal Killing-Yano form
with torsion [41], which justifies the exceptional symmetry.
Next, we solve the Einstein equations in the class of

Klein-Gordon simple separable metrics. One family of
solutions contains exactly the on-shell Kerr–NUT–(A)dS
spacetimes. However, we also find another family of
solutions, which are special Einstein-Kähler metrics.
Unfortunately, these metrics necessarily have a Euclidean
signature, which cannot be Wick-rotated to the physical
sector. Probably, for this reason, a similar solution was not
further considered by Carter in four dimensions.
However, in higher dimensions, we have several ways of

building a geometry from smaller blocks. One of such
methods is a warped product of two metrics. We employ
this method and investigate the warped product of two
off-shell Klein-Gordon simple separable metrics. We prove
that, although such a metric does not fit in the Klein-
Gordon simple separable class, it leads again to a separable
Klein-Gordon equation.
For this metric we solve the Einstein equations and prove

that the component of the warped product under the warped
factor must be the on-shell Klein-Gordon simple separable
metric. Since this component must be Euclidean (temporal
direction belongs to the other component), it is either an on-
shell Kerr–NUT–(A)dS Euclidean instanton (a deformed,
twisted sphere, cf. [42]) or the on-shell Klein-Gordon
simple separable Einstein-Kähler metric. The former sol-
ution has been recently obtained as a limit of Kerr–NUT–
(A)dS spacetime where several rotations are sent to zero
with properly scaled coordinates, mass, and NUT charges
[42]. It also has been studied in the context of warped
products of Kerr–NUT–(A)dS spaces [43]. The latter case

is, to our knowledge, a new solution of the Einstein
equations in higher dimensions.
The paper is organized as follows. In Sec. II we introduce

the class of Klein-Gordon simple separable metrics and
discuss some of their properties. In particular, we show
that such a metric possesses Killing vectors and rank-two
Killing tensors, which enable us to solve the Klein-Gordon
equation by separation of variables. Then we solve the
Einstein equations and, thus, obtain the on-shell Klein-
Gordon simple separable spacetimes.
Section III is devoted to the warped spacetimes. We

briefly summarize the main properties of general warped
spaces. Next, we consider a warped geometry of two Klein-
Gordon simple separable metrics with a suitable chosen
warped factor. Finally, adopting the warped metric ansatz,
we find two families of solutions of the Einstein equations.
We conclude with a brief summary in Sec. IV. In

Appendixes A and B, we gather some useful identities
and expressions for the curvature of the studied metrics.
For simplicity, we restrict our discussion to even dimen-

sions. Generalization to odd dimensions is straightforward,
but one has to deal with additional “odd” terms in most
expressions.

II. KLEIN-GORDON SIMPLE
SEPARABLE SPACETIMES

A. Off-shell metric

Consider a metric of even dimension2 D ¼ 2N,

g ¼
X
μ

�
Uμ

Xμ
ðdxμÞ2 þ

Xμ

Uμ

�X
j

AðjÞ
μ dψ j

�
2
�
; ð2:1Þ

where Xμ ¼ XμðxμÞ are arbitrary functions of a single

variable xμ. Functions Uμ and AðiÞ
μ are defined by

Uμ ¼
Y

ν
ν≠μ

ðZν − ZμÞ; AðiÞ
μ ¼

X
ν1 ;…;νiν1<…<νi
νk≠μ

Zν1…Zνi : ð2:2Þ

We set U1 ¼ 1 for N ¼ 1 and Að0Þ
μ ¼ 1. For further

reference, we also define functions

U ¼
Y
μ;ν
μ<ν

ðZμ − ZνÞ; AðiÞ ¼
X
ν1 ;…;νi
ν1<…<νi

Zν1…Zνi ; ð2:3Þ

where we set U ¼ 1 for N ¼ 1 and Að0Þ ¼ 1. Here,
Zμ ¼ ZμðxμÞ are arbitrary functions of a single variable

1The class is specified by the ansatz (2.1) below. Although all
such metrics lead to a separable Klein-Gordon equation, not all
metrics leading to a separable Klein-Gordon equation belong to
this class, as we will observe below.

2In what follows, we do not assume an implicit sum over greek
indices μ; ν;… and latin indices i; j;…. Unless otherwise stated,
indices have ranges μ; ν ¼ 1;…; N and i; j ¼ 0;…; N − 1, re-
spectively. We use here shortened notations

P
μ ≡

P
N
μ¼1,P

i ≡PN−1
i¼0 and

Q
μ ≡QN

μ¼1,
Q

i ≡QN−1
i¼0 .
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xμ. In what follows, we also assume that all functions Zμ are
functionally independent, i.e., Z0

μ ≠ 0. However, some
results can be generalized to the cases when Zμ ¼ rμ,
where rμ are constants satisfying rμ ≠ rν, μ ≠ ν.
Metric (2.1) generalizes the four-dimensional metric

introduced by Carter in [2,3], and since it leads also to
the separable Klein-Gordon equation, we call it the Klein-
Gordon simple separable metric.
It is also clearly motivated by the (off-shell) Kerr–NUT–

(A)dS metric in even dimensions [9,10], which can be
obtained by setting Zμ ¼ x2μ. We could also rewrite the
metric in an alternative form,

g ¼
X
μ

�
Uμ

Yμ
ðdxμÞ2 þ

Xμ

Uμ

�X
j

AðjÞ
μ dψ j

�
2
�
; ð2:4Þ

in which Zμ is eliminated by introducing a new coordinate
xμ given exactly by relation Zμ ¼ x2μ; the freedom in Zμ is
then shifted to a suitable defined new metric function
Yμ ¼ YμðxμÞ. In this form, the metric is clearly of type A
of [41], which admits a generalized principal Killing-
Yano tensor with torsion. The metric (2.4) was also used
in studying a higher-dimensional generalization of the
Wahlquist metric [44].3 In the following, we will use the
original form (2.1) of the metric.
The determinant g of the metric (2.1) in coordinates xμ,

ψk reads

g ¼ U2: ð2:5Þ

We introduce the orthonormal frame eμ; êμ, and dual
covector frame eμ; êμ,

eμ ¼
ffiffiffiffiffiffi
Xμ

Uμ

s
∂
∂xμ

; êμ ¼
ffiffiffiffiffiffi
Uμ

Xμ

s X
k

ð−ZμÞN−1−k

Uμ

∂
∂ψk

;

eμ ¼
ffiffiffiffiffiffi
Uμ

Xμ

s
dxμ; êμ ¼

ffiffiffiffiffiffi
Xμ

Uμ

s X
k

AðkÞ
μ dψk: ð2:6Þ

The Riemann tensor of metric (2.1) is given in (B4) in
Appendix. The Ricci tensor can be written in the form

Ric ¼
X
μ

Tμeμeμ þ
X
μ

�
Tμ þ

1

2

X
ν

ν≠μ

Sν;μ
Z0
μ

Xμ

Uμ

�
êμêμ

þ
X
μ;ν
ν≠μ

1

2

Sμ − Sν
Zμ − Zν

ffiffiffiffiffiffiffiffiffiffiffiffi
Xμ

Uμ

Xν

Uν

s
êμêν; ð2:7Þ

where4

Sμ ¼ Z00
μ þ

X
κ

κ≠μ

Z0
μ
2 − Z0

κ
2

Zμ − Zκ
;

Tμ ¼ −
1

2

X00
μ

Uμ
−
1

2

X
ν

ν≠μ

Sμ;ν
Z0
ν

Xν

Uν

þ 1

2

X
ν

ν≠μ

1

Uμ

�
Z0
μX0

μ − Z00
μXμ

Zμ − Zν
þ Z0

νX0
ν − Z00

νXν

Zν − Zμ

�
: ð2:8Þ

The scalar curvature reads

R ¼ −
X
μ

X00
μ

Uμ
: ð2:9Þ

The metric (2.1) admits a generalized closed conformal
Killing-Yano 2-form with torsion [41]

h ¼
X
μ

ffiffiffiffiffiffi
Zμ

p
eμ∧êμ; ð2:10Þ

which guarantees the existence of hidden symmetries
encoded by rank-two Killing tensors,

ik ¼
X
μ

AðiÞ
μ

�
Xμ

Uμ

�
∂
∂xμ

�
2
þ Uμ

Xμ

�X
k

ð−ZμÞN−1−k

Uμ

∂
∂ψk

�
2
�

¼
X
μ

AðiÞ
μ ðeμeμ þ êμêμÞ: ð2:11Þ

The geometry (2.1) also possesses a set of explicit
symmetries given by the Killing vectors,

il ¼ ∂
∂ψ i

¼
X
μ

ffiffiffiffiffiffi
Xμ

Uμ

s
AðiÞ
μ êμ: ð2:12Þ

Since the operators (2.13) constructed in the next
subsection mutually commute, the corresponding phase-
space observables jkabpapb, klapa (quadratic and linear in
momentum p) must be in involution; for details see [45].
Thus, the geodesic motion is completely integrable and all
Schouten-Nijenhuis brackets of jk and kl must vanish.

B. Separability of the Klein-Gordon equation

We want to demonstrate that the geometry (2.1) enables
us to solve the Klein-Gordon equation by a separation of
variables. We will actually prove the separability for all
operators based on the Killing tensors jk and Killing

3The off-shell Wahlquist metric can be regained from (2.1) by
setting Zμ ¼ 1

β2
sinh2βxμ.

4Despite the zeros in the denominators, some of the following
expressions can be also extended to the Z0

ν ¼ 0 case because

Sμ;ν ¼ − 2Z0
ν

Zμ−Zν
ðZ00

ν − 1
2

Z0
μ
2−Z0

ν
2

Zμ−Zν
Þ.
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vectors jl introduced in (2.11) and (2.12), namely, for
operators

Kj ¼ −∇a
jkab∇b; Lj ¼ −i jla∇a: ð2:13Þ

Operator Kj can be rewritten in coordinates using the fact

that Kj ¼ −g−1
2∂ag

1
2
jkab∂b and employing relation (A7).

Here, ∂ denotes the coordinate derivative with respect to
the coordinates xμ, ψk. The operators Kj and Lj then read5

Kj ¼
X
μ

AðjÞ
μ

Uμ

�
−

∂
∂xμ Xμ

∂
∂xμ þ

1

Xμ

�X
k

ð−ZμÞN−1−kLk

�
2
�
;

Lk ¼ −i
∂

∂ψk
: ð2:14Þ

Following the procedure in [13], we show that these
operators mutually commute. First, the commutators of Lj
among themselves and of Lj and Kk obviously vanish,

½Lj; Lk� ¼ 0; ½Lj;Kk� ¼ 0; ð2:15Þ

and it remains to prove that

½Kj;Kk� ¼ 0: ð2:16Þ

Operators Kj can be written as

Kj ¼
X
μ

AðjÞ
μ

Uμ
Mμ; ð2:17Þ

where

Mμ ¼ −
∂
∂xμ Xμ

∂
∂xμ þ

1

Xμ

�X
k

ð−ZμÞN−1−kLk

�
2

: ð2:18Þ

Operator Mμ depends only on a corresponding coordinate
xμ and contains a derivative ∂

∂xμ. Due to this fact, these

operators commute,

½Mμ;Mν� ¼ 0: ð2:19Þ

Substituting the inverse relation [cf. identities (A1)]

Mμ ¼
X
j

ð−ZμÞN−1−jKj ð2:20Þ

into (2.19), we obtain

X
j;k

ð−ZμÞN−1−jð−ZνÞN−1−k½Kj;Kk� ¼ 0; ð2:21Þ

which leads to (2.16).
Therefore, all operators (2.14) mutually commute and,

thus, they have a common set of eigenfunctions, which
satisfy

Kjϕ ¼ Ξjϕ; Ljϕ ¼ Ψjϕ: ð2:22Þ

Here, Ξj andΨj are corresponding eigenvalues which label
the eigenfunctions.
By employing the identities (A1), we find the solution in

the separated form

ϕ ¼
Y
μ

Rμ

Y
k

exp ðiΨkψkÞ; ð2:23Þ

where Rμ ¼ RμðxμÞ are single-variable functions which
satisfy ordinary differential equations,

ðXμR0
μÞ0 þ

�
Ξ̆μ −

Ψ̆2
μ

Xμ

�
Rμ ¼ 0; ð2:24Þ

where

Ψ̆μ ¼
X
k

Ψkð−ZμÞN−1−k; Ξ̆μ ¼
X
k

Ξkð−ZμÞN−1−k:

ð2:25Þ

C. Solutions of the Einstein equations

In what follows, we find functions Zμ and Xμ for which
the metric (2.1) solves the vacuum Einstein equations
with cosmological constant Λ, which in D ¼ 2N can be
written as

Ric ¼ Λ
N − 1

g; N > 1: ð2:26Þ

We see from (2.7) that we must require

Sμ ¼ Sν ð2:27Þ

to satisfy the off-diagonal part of Einstein equations. In the
four-dimensional case, N ¼ 2, this requirement says that
Z00
μ ¼ 2p, i.e.,

Zμ ¼ px2μ þ qμxμ þ rμ; ð2:28Þ

with p, qμ, and rμ being constants. Assumption Z0
μ ≠ 0

requires that p ≠ 0 or p ¼ 0, qμ ≠ 0.
If N > 2, then (2.27) implies that functions Zμ meet the

condition

5In operator equations, we use the convention that the round
brackets around a derivative end the action of the derivative
to the right; however, the square brackets do not. It means
½∇ala� ¼ la∇a þ ð∇alaÞ. Applying the operator on a scalar ϕ, we
get ½∇ala�ϕ ¼ ð∇aðlaϕÞÞ ¼ lað∇aϕÞ þ ϕð∇alaÞ.
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Z0
μ
2 − Z0

ν
2

Zμ − Zν
¼ Kμ þ Kν þ sμν ð2:29Þ

for the single-variable functions Kμ ¼ KμðxμÞ and con-
stants sμν ¼ sνμ. Indeed, if we differentiate (2.27) with
respect to xκ, where κ ≠ μ; ν, we find out that

�
Z0
μ
2 − Z0

κ
2

Zμ − Zκ

�
; κ

¼ Lκ ð2:30Þ

for the single-variable functions Lκ ¼ LκðxκÞ. Integrating
this equation and using the symmetry of the left-hand side,
we obtain the condition (2.29).
Next, we multiply the relation (2.29) by Zμ − Zν and

differentiate it with respect to both indices, which gives

Z0
μK0

ν ¼ Z0
νK0

μ: ð2:31Þ

This equation is equivalent to

K0
μ

Z0
μ
¼ q; ð2:32Þ

with q being a separation constant. By integrating (2.32),
we obtain

Kμ ¼ qZμ þ pμ; ð2:33Þ

where pμ are arbitrary constants. Substituting (2.33) into
(2.29) yields

Z0
μ
2 − qZ2

μ − ðpμ þ pν þ sμνÞZμ ¼ rμν; μ ≠ ν;

ð2:34Þ

where rμν ¼ rνμ are separation constants. Differentiating
this relation we find that the expressions ðpμ þ pν þ sμνÞ
and rμν do not depend on indices μ, ν. We denote these
constants by 4p and r, respectively, i.e.,

Z0
μ
2 − qZ2

μ − 4pZμ ¼ r: ð2:35Þ

In order to ensure the compatibility with the original
equation (2.27), the constant q must vanish. Thus, the
relation (2.35), finally, takes the form

Z0
μ
2 − 4pZμ ¼ r: ð2:36Þ

Equation (2.36) is satisfied if and only if Zμ has the
form (2.28), where rμ are arbitrary constants. However,
unlike the N ¼ 2 case, the constants qμ must now satisfy

q2μ − 4prμ ¼ r; ð2:37Þ

where p ≠ 0 or p ¼ 0, r ≠ 0.

Let us now turn our attention to the trace of the Einstein
equations,

R ¼ 2NΛ
N − 1

: ð2:38Þ

Substituting (2.9) and applying lemma A.1, we obtain

−X00
μ ¼

2NΛ
N − 1

ð−ZμÞN−1 þ
XN−2

k¼0

akð−ZμÞk; ð2:39Þ

with arbitrary constants ak. Equation (2.39) is a simple
linear differential equation, where the right-hand side is a
polynomial of degree at most 2N in xμ. It has a general
solution,

Xμ ¼ αμxμ þ βμ þ
XNþ1

k¼1

dkð−ZμÞk; ð2:40Þ

where αμ, βμ are arbitrary coefficients of the homogeneous
solution and dk correspond to the particular solution. These
coefficients are determined by the right-hand side of (2.39)
or just replace the arbitrary constants ak,

dNþ1 ¼
�
0 p ≠ 0

− 2
N2−1

Λ
r p ¼ 0; r ≠ 0

;

dN ¼
� 1

ðN−1Þð2N−1Þ
Λ
p p ≠ 0

const: ∈ R p ¼ 0; r ≠ 0
;

dN−1 ¼ const: ∈ R;

..

.

d1 ¼ const: ∈ R: ð2:41Þ

Substituting (2.40) into the full Einstein equations and
employing (A1) and (A2), we find

αμqμ − 2βμp ¼ s; ð2:42Þ

where s is a constant.
Thus, the full Einstein equations are satisfied if and

only if the functions Zμ are given by (2.28), (2.37), and the
functions Xμ by (2.40)–(2.42).
These relations are also valid for N ¼ 2, because the

condition (2.36) is met here anyway; however, here it is
enforced by the diagonal part instead of the off-diagonal
part of the Einstein equations.
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For p ≠ 0, we can introduce the new coordinates

x
̬
μ ¼

ffiffiffiffi
p

p �
xμ þ

qμ
2p

�
;

ψ
̬
j ¼

1ffiffiffiffi
p

p
XN−1−j

k¼0

ðjþ kÞ!
j!

�
−

r
4p

�
k
ψ jþk: ð2:43Þ

In these coordinates, the metric (2.1) takes the form

g ¼
X
μ

�
U
̬
μ

X
̬
μ

ðdx̬ μÞ2 þ
X
̬
μ

U
̬
μ

�X
j

A
̬ ðjÞ
μ dψ

̬
j

�
2
�
; ð2:44Þ

where

Z
̬
μ ¼ x

̬
2
μ; X

̬
μ ¼

XN
k¼0

c
̬
kð−x

̬
2
μÞk þ b

̬

μx
̬
μ: ð2:45Þ

Here, the coefficient of the highest power of xμ is

c
̬
N ¼ Λ

ðN − 1Þð2N − 1Þ ; ð2:46Þ

and the remaining coefficients c
̬
k, b

̬

μ are arbitrary constants
replacing the d’s, α’s, and β’s. This is a standard form of the
Kerr–NUT–(A)dS spacetime [9], and the 2-form (2.10) is a
standard principal conformal Killing-Yano tensor. The
metric is written in a Euclidean form; however, for a
suitable choice of ranges of coordinates, it can be Wick-
rotated to a Lorentzian signature (see [9,42]).
For p ¼ 0 and r ≠ 0, we define other coordinates6

x
̬
μ ¼ �μ

ffiffiffi
r

p
xμ þ rμ; ψ

̬
j ¼

1ffiffiffi
r

p ψ j: ð2:47Þ

In these coordinates, the metric (2.1) takes the form (2.44),
where

Z
̬
μ ¼ x

̬
μ; X

̬
μ ¼

XNþ1

k¼1

c
̬
kð−x

̬
μÞk þ b

̬

μ: ð2:48Þ

Here, the coefficient of the highest power of xμ is

c
̬
Nþ1 ¼ −

2Λ
N2 − 1

; ð2:49Þ

and the remaining coefficients c
̬
k and b

̬

μ are again arbitrary
constants replacing the d’s, α’s, and β’s.
It can be verified that the metric (2.48) is Kähler and the

2-form,

Ω ¼
X
μ

eμ ∧ êμ; ð2:50Þ

is the corresponding Kähler 2-form. This Einstein-
Kähler metric can be also obtained directly from the
even-dimensional Kerr–NUT–(A)dS metric using a par-
ticular scaling limit [46], and it is often used to construct a
one-dimensional higher Sasakian metric.
Another approach of constructing these metrics is by

employing an analog of the Euclidean BPS limit. Even and
odd-dimensional Kerr–NUT–(A)dS spacetime then leads to
Ricci-flat–Kähler and Einstein-Sasakian metrics, respec-
tively, see [9,10].
Unfortunately, the metric (2.48) has a Euclidean signa-

ture and cannot be simply Wick-rotated to a Lorentzian
regime. This is why it was not much studied in D ¼ 4.
For further reference, we briefly discuss the N ¼ 1 case,

when the metric (2.1) takes the form

g ¼ 1

X1

ðdx1Þ2 þ X1ðdψ0Þ2: ð2:51Þ

The corresponding Ricci tensor and scalar curvature are

Ric ¼ −
1

2
X00
1g; R ¼ −X00

1: ð2:52Þ

The closest two-dimensional analog of the Einstein equa-
tions reads [47]

R − Λ ¼ 0: ð2:53Þ
This equation is met if and only if

X1 ¼
Λ
2
ð−x21Þ þ b1x1 þ c0; ð2:54Þ

where b1 and c0 are arbitrary constants.

III. WARPED KLEIN-GORDON
SEPARABLE SPACETIMES

In the previous section we introduced the Klein-Gordon
simple separable metric (2.1) and found two important
solutions of the Einstein equations, (2.45) and (2.48).
Although the former is the Kerr–NUT–(A)dS spacetime,
which has a clear physical significance, the latter cannot
be even simply Wick-rotated to a Lorentzian signature.
However, in higher dimensions, it could be used to
construct physically interesting warped metrics. In addi-
tion, due to the simplicity of warped geometries, such
metrics also could be Klein-Gordon separable.

A. Warped geometry

Consider the direct product M ¼ ~M × M̄ of two mani-
folds with dimensions ~D and D̄, respectively. The warped
space is the manifold M of dimension D ¼ ~Dþ D̄
equipped with the metric6Symbol �μ denotes the sign which depends on index μ.
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g ¼ ~gþ ~w2ḡ; ð3:1Þ

where ~g, ḡ are metrics on the manifolds ~M, M̄, respectively,
and ~w2 is a warped factor. We assume that the tilded and
barred objects depend only on a position in ~M or M̄, and
they are also nontrivial only in tilded or barred directions.
We define torsion-free covariant derivatives ∇, ~∇, and ∇̄

satisfying ∇g ¼ 0, ~∇ ~g ¼ 0, and ∇̄ ḡ ¼ 0, respectively. The
Christofel coefficients with respect to the adjusted coor-
dinates then satisfy the relation

Γc
ab ¼ ~Γc

ab þ Γ̄c
ab þ Λc

ab; ð3:2Þ

where

Λc
ab ¼ 2~λðaδ̄

c
bÞ − ~w2 ~λcḡab ð3:3Þ

with the 1-form ~λ being a logarithmic derivative of a
warped factor,

~λ ¼ d ln ~w; ~λ2 ¼ ~gab ~λa ~λb: ð3:4Þ

The Riemann tensor, Ricci tensor, and scalar curvature
read

Rab
c
d ¼ ~Rab

c
d þ

2

~w
~Hd½aδ̄

c
b� − 2 ~w ~gce ~He½aḡb�d

þ R̄ab
c
d − 2 ~w2 ~λ2δ̄c½aḡb�d;

Ricab ¼ ~Ricab −
D̄
~w
~Hab þ R̄icab

− ~w2

�
~H
~w
þ ðD̄ − 1Þ~λ2

�
ḡab;

R ¼ ~Rþ R̄
~w2

−
2D̄
~w

~H − D̄ðD̄ − 1Þ~λ2: ð3:5Þ

Here, the Hessian tensor ~H and scalar ~H are

~H ¼ ~∇ ~∇ ~w; ~H ¼ ~gab ~Hab: ð3:6Þ

The vacuum Einstein equations Ric ¼ 2Λ
D−2 g split into

two parts,

~Ric ¼ D̄
~w
~H þ 2Λ

D − 2
~g ð3:7Þ

and

R̄ic ¼ ~w2

�
~H
~w
þ ðD̄ − 1Þ~λ2 þ 2Λ

D − 2

�
ḡ: ð3:8Þ

However, the right-hand side of (3.8) should not depend
on the position in ~M, so the coefficient in front of gmust be
constant. We denote this constant by ϒ, i.e.,

ϒ ¼ ~w2

�
~H
~w
þ ðD̄ − 1Þ~λ2 þ 2Λ

D − 2

�
: ð3:9Þ

Assume that ~k and k̄ are rank-2 Killing tensors of
the metrics ~g and ḡ, respectively. Then it was shown in
[43] that

~kþ
~A
~w2

ḡ−1 and k̄ ð3:10Þ

are Killing tensors of the metric g, provided that ~A is a
function on ~M satisfying

~∇a ~A ¼ 2ð ~A~gab − ~kabÞ~λb: ð3:11Þ

B. Off-shell metric

Consider a warped metric (3.1), where both ~g and ḡ
are the off-shell metrics (2.1) of dimensions ~D ¼ 2 ~N and
D̄ ¼ 2N̄, respectively, and the warped function is given by7

~w2 ¼ ~Að ~NÞ ¼ ~Z1… ~Z ~N: ð3:12Þ

The determinant g of this metric in the coordinates ~x ~μ,
~ψ ~k, x̄μ̄, ψ̄ k̄ reads

g ¼ ~w2N̄ ~U2Ū2: ð3:13Þ

The 1-form (3.4) is qiven by

~λ ¼ 1

2

X
~μ

~Z0
~μ

~Z ~μ

d~x ~μ; ~λ2 ¼ 1

4

X
~μ

~Z0
~μ
2

~Z2
~μ

~X ~μ

~U ~μ

: ð3:14Þ

The Hessian tensor and scalar (3.6) read

~H ¼ 1

4

X
~μ;~ν

~w
~Z0
~μ

��
~Z0
~ν
2

~Z ~ν

~X ~ν

~U ~ν

�
; ~μ
~e ~μ ~e ~μ þ

~Z0
~ν
2

~Z ~ν

�
~X ~ν

~U ~ν

�
; ~μ
~̂e~μ ~̂e~μ

�

þ
X
~μ;~ν
~ν≠ ~μ

~w
~Z ~μ − ~Z ~ν

�
~Z0
~ν
2

~Z ~ν

−
~Z0
~μ
2

~Z ~μ

� ffiffiffiffiffiffiffiffiffiffiffiffi
~X ~μ

~U ~μ

~X ~ν

~U ~ν

s
~̂e ~μ ~̂e~ν;

~H ¼ 1

2

X
~μ

~wffiffiffiffiffiffi
~Z ~μ

q � ~Z0
~μffiffiffiffiffiffi
~Z ~μ

q ~X ~μ

�0 1

~Uμ

: ð3:15Þ

7This form ensures the separability of the Klein-Gordon
equation (3.27) below. It is probably not the most general ansatz
with this property; the question of the most general warp factor
admitting the separability remains open.
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The Riemann tensor, Ricci tensor, and scalar curvature can
be then calculated directly by substituting (B4), (2.7), (2.9),
(3.15), and (3.14) into the general expressions (3.5).
Employing (3.10), (3.11), and (A3), it can be easily

verified that

~ik ¼ ~i ~kþ
~Að~iÞ

~w2
ḡ−1; ~Nþīk ¼ īk̄ ð3:16Þ

are rank-2 Killing tensors of the warped metric. Because
the warped function ~w does not depend on the coordinates
~ψ ~j, the Killing vectors remain unchanged, i.e.,

~il ¼ ~i~l; ~Nþīl ¼ ī l̄: ð3:17Þ

Again, since we will show that all operators (3.18) con-
structed below mutually commute, the corresponding phase-
space observables jkabpapb, klapa must be in involution.
Thus, the geodesic motion is completely integrable and all
Schouten-Nijenhuis brackets of jk and kl must vanish.

C. Separability of the Klein-Gordon equation

We again define operators

Kj ¼ −∇a
jkab∇b; Lj ¼ −i jla∇a; ð3:18Þ

based on Killing tensors jk (3.16) and Killing vectors jl
(3.17). Operators (3.18) can be also expressed in coordi-
nates ~x~μ, ~ψ ~k, x̄μ̄, ψ̄ k̄ using Kj ¼ −g−1

2∂ag
1
2
jkab∂b and

employing relation (A7),

K~j ¼
X
~μ

~Að~jÞ
~μ

~U ~μ

�
−

1

~Z
N̄
2

~μ

∂
∂ ~x~μ

~Z
N̄
2

~μ
~X ~μ

∂
∂ ~x~μ

þ 1

~X ~μ

�X
~k

ð− ~Z ~μÞ ~N−1−~kL~k

�
2
�
þ

~Að~jÞ

~Að ~NÞ K ~N;

K ~Nþj̄ ¼
X
μ̄

Āðj̄Þ
μ̄

Ūμ̄

�
−

∂
∂x̄μ̄ X̄μ̄

∂
∂x̄~μ

þ 1

X̄μ̄

�X
k̄

ð−Z̄μ̄ÞN̄−1−k̄L ~Nþk̄

�
2
�
;

L~k ¼ −i
∂

∂ ~ψ ~k

; L ~Nþk̄ ¼ −i
∂

∂ψ̄ k̄
: ð3:19Þ

It can be shown that these operators mutually commute.
Indeed, commutators of Lj among themselves and com-
mutators of Lj and Kk vanish,

½Lj; Lk� ¼ 0; ½Lj;Kk� ¼ 0: ð3:20Þ

Operators Kj have the form

K~j ¼
X
~μ

~Að~jÞ
~μ

~U ~μ

~M ~μ þ
~Að~jÞ

~Að ~NÞ K ~N; K ~Nþj̄ ¼
X
μ̄

Āðj̄Þ
μ̄

Ūμ̄
M̄μ̄;

ð3:21Þ

where

~M ~μ ¼ −
1

~Z
N̄
2

~μ

∂
∂ ~x~μ

~Z
N̄
2

~μ
~X ~μ

∂
∂ ~x ~μ þ

1

~X ~μ

�X
~k

ð− ~Z ~μÞ ~N−1−~kL~k

�
2

;

M̄μ̄ ¼ −
∂
∂x̄μ̄ X̄μ̄

∂
∂x̄μ̄ þ

1

X̄μ̄

�X
k̄

ð−Z̄μ̄ÞN̄−1−k̄L ~Nþk̄

�
2

:

ð3:22Þ

Commutators of ~M ~μ and M̄μ̄ among themselves vanish,

½ ~M ~μ; ~M~ν� ¼ 0; ½M̄μ̄; M̄ν̄� ¼ 0; ð3:23Þ

which, much like in Sec. II B, implies

½K~j;K~k� ¼ 0; ½K ~Nþj̄;K ~Nþk̄� ¼ 0: ð3:24Þ

In the first equation, we have also used the relation

�X
~μ

~Að~jÞ
~μ

~U ~μ

~M ~μ;
~Að~kÞ

~Að ~NÞ K ~N

�
¼
�X

~μ

~Að~kÞ
~μ

~U ~μ

~M ~μ;
~Að~jÞ

~Að ~NÞ K ~N

�
;

ð3:25Þ

which is a consequence of identity (A8). Finally, using the
second equation in (3.24), we can also prove the relation

½K~j;K ~Nþk̄� ¼ 0: ð3:26Þ

We have thus proved that operators (3.19) mutually
commute and, therefore, they have a common set of
eigenfunctions; i.e., they satisfy

Kjϕ ¼ Ξjϕ; Ljϕ ¼ Ψjϕ; ð3:27Þ

where Ξj and Ψj are corresponding eigenvalues.
Employing identities (A1) and (A4), we find the solution

in the separated form,

ϕ ¼
Y
~μ

~R~μ

Y
μ̄

R̄μ̄

Y
~k

exp ðiΨ~k ~ψ ~kÞ
Y
k̄

exp ðiΨ ~Nþk̄ψ̄ k̄Þ;

ð3:28Þ

where ~R~μ ¼ ~R~μð~x~μÞ and R̄μ̄ ¼ R̄μ̄ðx̄μ̄Þ are single-variable
functions which satisfy ordinary differential equations,
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ð ~ZN̄
2

~μ
~X ~μ

~R0
~μÞ0 þ

�
~̆Ξ ~μ −

~̆Ψ
2

~μ

~X ~μ

þ Ξ ~N
~Z ~μ

�
~Z
N̄
2

~μ
~R~μ ¼ 0;

ðX̄μ̄R̄0̄
μÞ0 þ

�
˘̄Ξμ̄ −

˘̄Ψ
2
μ̄

X̄μ̄

�
R̄μ̄ ¼ 0; ð3:29Þ

where

~̆Ξ ~μ ¼
X
~k

Ξ~kð− ~Z ~μÞ ~N−1−~k;

~̆Ψ~μ ¼
X
~k

Ψ~kð− ~Z ~μÞ ~N−1−~k;

˘̄Ξμ̄ ¼
X
k̄

Ξ ~Nþk̄ð−Z̄μ̄ÞN̄−1−k̄;

˘̄Ψμ̄ ¼
X
k̄

Ψ ~Nþk̄ð−Z̄μ̄ÞN̄−1−k̄: ð3:30Þ

D. Solutions of the Einstein equations

In the following, we find functions ~Z ~μ, ~X ~μ, Z̄μ̄, and X̄μ̄

for which the warped metric solves the vacuum Einstein
equations.
We see from the off-diagonal part of (3.7) that

~S ~μ þ N̄
~Z0
~μ
2

~Z ~μ

¼ ~S~ν þ N̄
~Z0
~ν
2

~Z ~ν

: ð3:31Þ

In the ~N ¼ 2 case, this condition says that

~Z00
~μ þ N̄

~Z0
~μ
2

~Z ~μ

¼ 2 ~pð2N̄ þ 1Þ; ð3:32Þ

where ~p is an arbitrary constant.
If ~N > 2, then (3.31) implies

~Z0
~μ
2 − ~q ~Z2

~μ − 4 ~p ~Z ~μ ¼ ~r; ð3:33Þ

similar to the relation between (2.27) and (2.35). However,
in order to satisfy (3.31), the constants ~q and ~rmust vanish.
Thus, the relation (3.33) takes the form

~Z0
~μ
2 − 4 ~p ~Z ~μ ¼ 0; ð3:34Þ

with ~p being a nonzero constant. Equation (3.34) is
satisfied if and only if

~Z ~μ ¼ ~p~x2~μ þ ~q ~μ ~x ~μ þ ~r~μ; ð3:35Þ

where

~q2~μ − 4 ~p~r ~μ ¼ 0: ð3:36Þ

In the ~N ¼ 1, 2 cases, the form of (3.35) with the
condition (3.36) is enforced by the diagonal part of (3.7).
In particular, in the ~N ¼ 1 case, it simply implies condition
(3.34). For ~N ¼ 2, it gives

�
N̄

~Z0
~μ
2

~Z ~μ

þ
~Z0
~μ
2 − ~Z0

~ν
2

~Z ~μ − ~Z ~ν

�
; ~μ
¼ 0: ð3:37Þ

Integrating this equation, multiplying by ~Z ~μ − ~Z ~ν, and
differentiating with respect to ~x ~μ and ~x~ν, we find that

1

~Z0
~μ

� ~Z0
~μ
2

~Z ~μ

�0
¼ ~t~μ; ð3:38Þ

where ~t ~μ is a separation constant. This equation leads to

~Z0
~μ
2 ¼ ~t ~μ ~Z

2
~μ þ ~u ~μ

~Z ~μ; ~Z00
~μ ¼ ~t ~μ ~Z ~μ þ

1

2
~u ~μ; ð3:39Þ

with ~u ~μ being an arbitrary constant. Substituting (3.39) into
(3.32), we determine the constants ~t~μ ¼ 0 and ~u ~μ ¼ 4 ~p
which yields (3.34).
Since ~Z ~μ is a quadratic function (3.35) with ~p ≠ 0, we

can employ the coordinate freedom to transform the tilded
coordinates using transformation (2.43) and drop the caron
sign. This transformation preserves the form of the ortho-
normal frame, and it effectively sets the functions ~Z ~μ to ~x2~μ.
Equation (3.9) can then be rewritten as

X
~μ

1

~U ~μ

� ~X0
~μ

~x ~μ
þ ð2N̄ − 1Þ

~X ~μ

~x2~μ
−
ϒ
~x2~μ

þ Λ
N − 1

ð−~x2~μÞ ~N−1
�
¼ 0:

ð3:40Þ

Substituting (2.9) and applying lemma A.1, we obtain

~x~μ ~X
0
~μ þ ð2N̄ − 1Þ ~X ~μ ¼ ϒþ

X~n−2
~k¼0

~a~k ~x
2ð~kþ1Þ
~μ þ Λ

N − 1
ð−~x2~μÞ ~N:

ð3:41Þ

Equation (3.41) is a simple linear differential equation,
where the right-hand side is a polynomial of degree 2 ~N in
~x~μ. It has a general solution,

~X ~μ ¼
X~N
~k¼0

~c~kð−~x2μÞ~k þ
~b ~μ

~x2N̄−1
~μ

; ð3:42Þ

where
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~c ~N ¼ Λ
ð2N − 1ÞðN − 1Þ ; ~c0 ¼

ϒ
2N̄ − 1

; ð3:43Þ

and coefficients ~b ~μ, ~c~k, ~k ∈ 1;…; ~N − 1 are arbitrary
constants. We thus found metric functions for which the
proportionality factor (3.9) is a constant. Surprisingly,
employing identities (A1), the tilded part (3.7) of the
Einstein equations is already satisfied.
The barred part (3.8) of the Einstein equations leads

to the solutions (2.45) or (2.48) with the cosmological
constant Λ̄ ¼ ðN̄ − 1Þϒ, i.e.,

X̄μ̄¼
XN̄
k̄¼0

c̄k̄ð−x̄2μ̄Þk̄þ b̄μ̄x̄μ̄; c̄N̄ ¼ ϒ
2N̄−1

; ð3:44Þ

where b̄μ̄, c̄k, k̄ ∈ 0;…; N̄ − 1 are arbitrary constants, or

X̄μ̄¼
XN̄þ1

k̄¼1

c̄k̄ð−x̄μ̄Þk̄þ b̄μ̄; c̄N̄þ1¼−
2ϒ
N̄þ1

; ð3:45Þ

where b̄μ̄, c̄k, k̄ ∈ 1;…; N̄ are arbitrary constants.
The warped solution with barred functions (3.44) have

been recently obtained in [42] and, as discussed there, it
also belongs to class of generalized Kerr–NUT–(A)dS
spacetimes [38,39]. The warped metric with barred func-
tions (3.45) constitutes new solutions of the Einstein
equations.

IV. CONCLUSIONS

In this paper we have generalized Carter’s ansatz for the
metric leading to a separable Klein-Gordon equation to
higher dimensions and thus defined the class of Klein-
Gordon simple separable metrics. For these metrics, we
have solved the Klein-Gordon equation by separation of
variables, employing the symmetries encoded in Killing
vectors and rank-two Killing tensors. The class of such
metrics enlarges previously studied off-shell Kerr–NUT–
(A)dS spaces. Solving the Einstein equations in this class,
we have regained the on-shell Kerr–NUT–(A)dS space-
times and the Euclidean Einstein-Kähler metrics which, as
demonstrated in [9,10,46], can be obtained as a particular
limit of the Kerr–NUT–(A)dS spaces as well.
Next, we have studied the warped spaces of the Klein-

Gordon simple separable geometries. In this way we have
constructed a more general metric for which it is also
possible to solve the Klein-Gordon equation by separation
of variables. Although not all of these geometries possesses
the principal closed conformal Killing-Yano form, they are
equipped with the tower of rank-two Killing tensors and
Killing vectors. These symmetry objects allow us to define
phase-space variables, which are in involutions and guar-
antee that geodesic motion is completely integrable. They
also define operators which commute with each other and

the common set of eigenfunctions has been found by
separation of variables.
Finally, we have solved the Einstein equations for the

warped metric. We have recovered the spaces which can be
obtained as a limit of vanishing rotations from the Kerr–
NUT–(A)dS metric [42]. Beside them we have found space-
times for which the metric block under the warp factor is
the Klein-Gordon simple separable Einstein-Kähler metric.
These spacetimes are new solutions in higher dimensions.
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APPENDIX A: USEFUL IDENTITIES

We list here some important identities for functions AðiÞ
μ ,

Uμ which emerge in the definition of metric (2.1):

X
μ

AðiÞ
μ

Uμ
ð−ZμÞN−1−j ¼ δij;

X
i

AðiÞ
μ

Uν
ð−ZνÞN−1−i ¼ δμν; ðA1Þ

1

Uν

X
μ

μ≠ν

1

Zμ − Zν
¼
X

μ
μ≠ν

1

Uμ

1

Zν − Zμ
; ðA2Þ

AðiÞ ¼ AðiÞ
μ þ ZμA

ði−1Þ
μ ; ðA3Þ

X
μ

AðjÞ
μ

ZμUμ
¼ AðjÞ

AðNÞ ; ðA4Þ

Uμ;ν¼δμν
X

α
α≠μ

Z0
μ

Zμ−Zα
Uμþð1−δμνÞ

Z0
ν

Zν−Zμ
Uμ; ðA5Þ

AðiÞ
μ;ν ¼ Z0

ν

Zν − Zμ
ðAðiÞ

μ − AðiÞ
ν Þ; ðA6Þ

�
U
Uμ

�
;μ
¼ 0; ðA7Þ

�
AðiÞ

AðNÞ

�
;μ
¼ −

Z0
μ

Zμ

AðiÞ
μ

AðNÞ : ðA8Þ

We state here an important lemma, which in one
direction is a consequence of identities (A1) and in the
other direction involves more delicate arguments, cf. [48].
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Lemma A.1 Functions Fμ ¼ FμðxμÞ satisfy equation

X
μ

Fμ

Uμ
¼ 0; ðA9Þ

if and only if they are given by

Fμ ¼
XN−2

k¼0

akð−ZμÞk; ðA10Þ

where ak are arbitrary constants.
If the right-hand side of equation (A9) is nontrivial, the

solution of it is given by a homogeneous solution (A10)
plus a nonhomogeneous solution. Two special nonhomo-
geneous solutions, which follow from identities (A1) and
(A4), are

X
μ

ð−ZμÞN−1

Uμ
¼ 1;

X
μ

1

ZμUμ
¼ 1

AðNÞ : ðA11Þ

APPENDIX B: CURVATURE OF THE
KLEIN-GORDON SEPARABLE METRIC

From the first structure equations,

dea þ ωa
b∧eb ¼ 0; ωab þωba ¼ 0; ðB1Þ

and by employing (A5) and (A6), we obtain the connection
1-forms

ωμν ¼ ð1 − δμνÞ
1

2

1

Zν − Zμ

 
Z0
ν

ffiffiffiffiffiffi
Xν

Uν

s
eμ þ Z0

μ

ffiffiffiffiffiffi
Xμ

Uμ

s
eν
!
;

ωμ̂ ν̂ ¼ ð1 − δμνÞ
1

2

1

Zν − Zμ

 
Z0
μ

ffiffiffiffiffiffi
Xν

Uν

s
eμ þ Z0

ν

ffiffiffiffiffiffi
Xμ

Uμ

s
eν
!
;

ωμν̂ ¼ δμν

"
−

 ffiffiffiffiffiffi
Xμ

Uμ

s !
;μ

êμ þ 1

2

X
ρ

ρ≠μ

Z0
μ

Zμ − Zρ

ffiffiffiffiffiffi
Xρ

Uρ

s
êρ
#
þ ð1 − δμνÞ

1

2

Z0
μ

Zμ − Zν

 ffiffiffiffiffiffi
Xν

Uν

s
êμ −

ffiffiffiffiffiffi
Xμ

Uμ

s
êν
!
: ðB2Þ

Straightforward, but very long, calculations of curvature 2-forms Ωa
b from the second structure equations,

Ωa
b ¼ dωa

b þωa
c∧ωc

b; ðB3Þ

lead to the Riemann tensor R ¼ Ωabeaeb,

R ¼
X
μ;ν
ν≠μ

1

4
Vμνðeμ∧eνÞ○∨ ðeμ∧eνÞ þ

X
μ;ν
ν≠μ

1
2
Wμνðeμ∧eνÞ○∨ ðêμ∧êνÞ

þ
X
μ;ν
ν≠μ

1

4

�
Vμν þ

1

4

Sν;μ
Z0
μ

Xμ

Uμ
þ 1
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Here, for two 2-forms, we define α○∨ β ¼ αβþ βα, and
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