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We investigate axial quasinormal modes of realistic neutron stars in Einstein-Gauss-Bonnet-dilaton
gravity. We consider eight realistic equations of state containing nuclear, hyperonic, and hybrid matter. We
focus on the fundamental curvature mode and compare the results with those of pure Einstein theory. We
observe that the frequency of the modes is increased by the presence of the Gauss-Bonnet-dilaton, while the
impact on the damping time is typically smaller. Interestingly, we obtain that universal relations valid in
pure Einstein theory still hold for Einstein-Gauss-Bonnet-dilaton gravity, and we propose a method to use
these phenomenological relations to constrain the value of the Gauss-Bonnet coupling.
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I. INTRODUCTION

Neutron stars can be used as laboratories for testing
gravity and matter in the strong energy regime. In particu-
lar, neutron stars provide information about the structure of
matter at high energies, they are sources of gravitational
waves, and they also allow us to test modifications of
Einstein gravity [1].
Regarding the properties of matter, the equation of state

(EOS) of nuclear matter beyond nuclear density
(1015 g=cm3) is not known, since Earth-based laboratories
cannot achieve these energies yet. But these densities are
present in the inner regions of neutron stars, and hence
observations of neutron stars and their properties can shed
light into the behavior of matter at high energy. Most
models of neutron stars predict a layer structure, essentially
a crust (where the EOS is better understood and matter has
a solid crystalline structure similar to a metal) enveloping
the core [2]. Typically the models for the EOS at the core
can include plain nuclear matter, hyperonic matter, quark
condensates, or a mixture of these possible states. Different
EOSs predict different properties of the neutron stars. For
example, depending on the stiffness of the EOS, different
mass-radius relations are obtained. Nowadays, the two
most massive pulsars measured are PSR J1614-2230, with
a mass of 1.97� 0.04M⊙ [3], and PSR J0348þ 0432, with
a mass of 2.01� 0.04M⊙ [4]. These observations constrain
the possible EOS. The EOS also modifies the spectrum of
resonant frequencies from gravitational wave emission.
Hence the importance of considering a realistic EOS for the
composition of the neutron star.
On the other hand, neutron stars are among major

candidates as sources of gravitational waves. The typical
frequencies of these objects lie inside the range of detect-
ability of current large-scale interferometric gravitational

wave detectors like LIGO, VIRGO and KAGRA [5]. The
resonant frequencies and damping times of gravitational
waves produced by a compact object can be studied using
the quasinormal mode (QNM) formalism [6–8]. The eigen-
frequencies are given by a complex number, where the real
part gives us the frequency of the resonance, and the
imaginary part gives us the inverse of the damping time.
The quasinormal mode spectrum is composed of different
families: axial modes only couple to space-time oscilla-
tions, while polar modes can couple to matter perturba-
tions. Quasinormal modes carry information about the
composition of the neutron star. But even more, the
spectrum could also contain information about possible
modifications of Einstein theory of gravity.
A full theory of gravity should be compatible with

quantum theory. Hence, General Relativity is expected to
be modified at some scale, in particular, around the space-
time of compact objects such as neutron stars and black
holes. One of the most promising unified theories is string
theory. Because of the complexity of studying the full string
theory, analysis is often made in the low-energy regime. A
simple particular case is Einstein-Gauss-Bonnet-dilaton
(EGBd) theory in four dimensions, obtained from the
low-energy regime of heterotic string theory. The action
of this effective theory contains, in addition to the scalar of
curvature, a Gauss-Bonnet modification of the action
coupled to a real scalar field: the dilaton [9]. The EGBd
theory has nice features: for example, it does not present
ghosts, the equations of motion are still second order, and
wormholes without exotic fields can be produced [10,11].
Astrophysically relevant objects have been recently

studied in EGBd theory, as well as similar modified gravity
theories [12]. Static dilatonic black holes in EGBd theory
were first studied in [13]. Slowly rotating black holes were
considered in [14,15], axial QNM in EGBd black holes
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were obtained in [14], and generalizations of the Kerr black
holes in EGBd theory were studied in [16,17].
Neutron stars in modified theories of gravity have been

studied extensively. In EGBd gravity, neutron stars in the
slow rotation approximation were studied in [18], while the
multipole structure of fast rotating neutron stars was
recently investigated in [17].
In the context of neutrons stars, several universal

relations between different parameters of the stars were
recently found. For rotating neutrons stars in Einstein
theory, I-Love-Q relations between the moment of inertia,
Love numbers and quadrupole moment were extensively
studied [19]. In [17] it was indicated that these I-Q relations
also hold in EGBd theory.
Phenomenological relations between mass, radius and

QNM spectrum were also studied in Einstein theory
[20,21], and more recently in [22,23]. It is interesting to
investigate whether the universal relations still hold in
EGBd theory, and to find the possible implications once
gravitational waves are detected.
In this paper we consider for the first time quasinormal

modes of realistic neutron stars in EGBd theory. We
perform the analysis for eight realistic state-of-the-art
EOSs, continuing with the analysis performed for
Einstein theory in [22,23]. We consider two EOSs for
nuclear matter (SLy and APR4), three for hyperonic matter
(WCS1-2 and BHZBM), and another three for hybrid
matter (ALF4, WSPHS3 and BS4). We calculate the
spectrum of axial curvature modes for a large value of
the GB coupling [24]. We compare the impact of the GBd
term with the pure Einstein case, and look for observational
implications.
In Sec. II we briefly present the general formalism for

neutron stars in EGBd theory. In Sec. III we present the
QNM formalism for neutron stars in EGBd theory, we
present the equations for axial perturbations, and we briefly
introduce the numerical method used to calculate the modes
for realistic EOSs. In Sec. IV we discuss the numerical
results comparing EGBd with Einstein gravity, and we
present new universal relations for EGBd. Finally in Sec. V
we present a summary and an outlook.
Let us start by introducing briefly the general theory of

neutron stars in EGBd gravity.

II. NEUTRON STARS IN EINSTEIN-GAUSS-
BONNET THEORY

A. General theory

Einstein-Gauss-Bonnet-dilaton theory in four dimen-
sions is described by the following action [16,17]:

I ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p

×

�
R −

1

2
ð∂μΦÞ2 þ αe−βΦR2

GB þ Lmatter

�
; ð1Þ

where α is the Gauss-Bonnet coupling constant, β is the
dilaton coupling constant, R is the curvature scalar, Φ is the
dilaton field, and R2

GB is the Gauss-Bonnet term

R2
GB ¼ RαβγδRαβγδ − 4RαβRαβ þ R2: ð2Þ

The field equations are obtained from variations of this
action and yield the modified Einstein equations

Gμν ¼
1

2

�
∇μΦ∇νΦ −

1

2
gμν∇αΦ∇αΦ

�

− αe−βΦ
�
Hμν þ 4ðβ2∇αΦ∇βΦ − β∇αΦ∇βΦÞPμανβ

�
þ 8πTμν; ð3Þ

where Gμν is the Einstein tensor and

Hμν ¼ 2ðRRμν − 2RμαRα
ν − 2RμαβνRαβ þ RμαβδRν

αβδÞ

−
1

2
gμνR2

GB; ð4Þ

Pαβγδ ¼ Rαβδγ þ gαγRδβ − gαδRγβ þ gβδRγα − gβγRδα

þ 1

2
Rgαδgγβ −

1

2
Rgαγgδβ: ð5Þ

In four dimensions the Hμν tensor vanishes.
The matter inside the star is considered to be a perfect

fluid with stress-energy tensor

Tμν ¼ ðpþ ρÞuμuν − pgμν; ð6Þ

where p is the pressure, ρ is the energy density and u is the
4-velocity.
In addition we obtain the dilaton field equation

∇2Φ ¼ αβe−βΦR2
GB: ð7Þ

Note that the value of the dilaton coupling constant
obtained from string theory is β ¼ 1.

B. Static and spherically symmetric neutron stars

We consider static neutron stars described by a static and
spherically symmetric space-time with metric ansatz

ds2 ¼ gð0Þμν dxμdxν ¼ e2νdt2 − e2λdr2

− r2ðdθ2 þ sin2θdφ2Þ; ð8Þ

where the functions ν and λ are just functions of the radial
coordinate r. The dilaton field is described by the function
Φ ¼ ΦðrÞ. The mass function m is defined as e−2λ¼1− 2m

r .
The resulting generalized Tolman-Oppenheimer-Volkoff

(TOV) equations in EGBd theory can be written as [18]
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dν
dr

¼ 1

8

reβΦ½r2ðdΦdrÞ2ðr − 2mÞ þ 8mþ 32πr3p�
ðr − 2mÞ½4αβ dΦ

dr ð3m − rÞ þ eβΦr2� ; ð9Þ

dp
dr

¼ −
dν
dr

ðρþ pÞ; ð10Þ

dm
dr

¼
�
32πρr5eβΦ − ðr − 2mÞ

�
dΦ
dr

�
2

ð32αβ2mr − eβΦr4Þ

þ 32αβrm
d2Φ
dr2

ðr − 2mÞ þ 32αβm
dΦ
dr

ð3m − rÞ
�

×
�
8r
�
4αβ

dΦ
dr

ð3m − rÞ þ eβΦr2
��

−1
: ð11Þ

They reduce to the usual TOV equations when α ¼ β ¼ 0.
For the dilaton field we obtain the following

equation:

d2Φ
dr2

eβΦr4ðr − 2mÞ − dΦ
dr

eβΦr3
�
3m − 2rþ r

dm
dr

− rðr − 2mÞ dν
dr

�
−
d2ν
dr2

16αβmrðr − 2mÞ − dν
dr

16αβ

×

�
rmðr − 2mÞ dν

dr
− rð3m − rÞ dm

dr
þmð3m − rÞ

�
¼ 0:

ð12Þ

The space-time of a neutron star is described by two
different regions. Inside the neutron star we have a non-
vanishing pressure p and density ρ, related by some
equation of state. These functions become null at some
r ¼ R, where R is the radius of the neutron star. For r > R
we have vanishing pressure and energy density.
Regularity at the origin requires

p ¼ pc þOðr2Þ; ν ¼ νc þOðr2Þ;
m ¼ Oðr3Þ; Φ ¼ Φc þOðr2Þ: ð13Þ

Asymptotic flatness requires

ν ¼ Oðr−1Þ; m ¼ M þOðr−1Þ; Φ ¼ Oðr−1Þ; ð14Þ

where M is the total mass of the star, and in EGBd, does not
coincide with mðRÞ, since the dilaton does not vanish
for r > R.

III. NONRADIAL PERTURBATIONS FOR
EINSTEIN-GAUSS-BONNET-DILATON

NEUTRON STARS

A. General formalism

Following [25,26], we consider linear nonradial pertur-
bations to the metric and fluid, but now allowing also for
possible perturbations of the dilaton field:

gμν ¼ gð0Þμν þ ϵhμν ð15Þ

p ¼ pð0Þ þ ϵδp ð16Þ

ρ ¼ ρð0Þ þ ϵδρ ð17Þ

uμ ¼ uð0Þμ þ ϵδuμ ð18Þ

Φ ¼ Φð0Þ þ ϵδΦ; ð19Þ

where ϵ ≪ 1 is the perturbation parameter. At zeroth order
we have the static and spherical solution given by the metric

gð0Þμν , the pressure pð0Þ, the density ρð0Þ, the fluid 4-velocity

uð0Þμ , and the dilaton field Φð0Þ. These functions satisfy
equations (9)–(12). At first order in the perturbation param-
eter ϵ in general we have the perturbation to the metric hμν,
pressure δp, density δρ, 4-velocity δuμ and dilaton δΦ.
In general the perturbations depend nontrivially on all

the coordinates. For the temporal dependence, it is con-
venient to simplify the temporal dependence by performing
a Laplace transformation. For the angular part, we can
expand in tensorial spherical harmonics [27], introducing
the rotational numbers l; m. Then the perturbations split
into two decoupled channels: axial and polar perturbations.
The axial perturbations transform as ð−1Þlþ1 under

reflections of the angular coordinates, and do not couple
to scalar perturbations. They are described by the metric
perturbation

hðaxialÞμν ¼
X
l;m

Z
dω

2
6666664

0 0 h0
1

sin θ
∂
∂ϕYlm h0 sin θ

∂
∂θ Ylm

0 0 0 h1 sin θ ∂
∂θ Ylm

h0
1

sin θ
∂
∂ϕYlm 0 0 0

h0 sin θ ∂
∂θ Ylm h1 sin θ ∂

∂θ Ylm 0 0

3
7777775
e−iωt: ð20Þ

We also have to consider the axial component of the 4-velocity perturbation

δuðaxialÞμ ¼
X
l;m

Z
dω

w2

sin2θ

�
0; 0; sin θ

∂
∂ϕYlm;−

∂
∂θ Ylm

�
e−iωt: ð21Þ
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The perturbation functions ðh0; h1; w2Þ depend in general on the radial coordinate r, numbers l, m and ω.
The axial channel does not introduce perturbations to the pressure, energy density or dilaton. This only happens in the

polar channel, which transforms as ð−1Þl. The perturbations of the metric are then described by

hðpolarÞμν ¼
X
l;m

Z
dω

2
6664
2Ne2ν −H1 0 0

−H1 −2Le2λ 0 0

0 0 −2Te2λ 0

0 0 0 −2Te2λ

3
7775Ylme−iωt: ð22Þ

The polar component of the 4-velocity perturbation is

δuðpolarÞμ ¼
X
l;m

Z
dω

�
0;WYl;m; V

∂
∂θ Ylm;

1

sin2θ
V

∂
∂ϕYlm

�
e−iωt: ð23Þ

The pressure, energy density and dilaton perturbations are
just

δpðpolarÞ ¼
X
l;m

Z
dωp1Yl;me−iωt; ð24Þ

δρðpolarÞ ¼
X
l;m

Z
dωρ1Yl;me−iωt; ð25Þ

δΦðpolarÞ ¼
X
l;m

Z
dωΦ1Yl;me−iωt: ð26Þ

Again the perturbation functions ðN;L; T;H1; V;W; p1;
ρ1;Φ1Þ depend only on the radial coordinate r, numbers l,
m and ω.
In the following we will restrict to axial perturbations.

B. Axial perturbations

Introducing the axial perturbations into the field equa-
tions, one can obtain a set of differential and algebraic
relations for the three perturbation functions. The minimal
system of differential equations is given by

dh1
dr

¼ iω
F1

e2νD1

h0 −
F2

rD1

h1; ð27Þ

dh0
dr

¼ 2

r
h0 þ

�
ðl − 1Þðlþ 2Þ iF3

2ωD2

− iω

�
h1; ð28Þ

and the relation

w2 ¼
2iðρþ pÞ

ωr2
h0: ð29Þ

The functions F1, F2, F3, D1 and D2 are presented in
Appendix A.
This system of equations can be rewritten as a second

order ordinary differential equation for h1 ¼ reλ−νZ:

d2Z
dr2

¼ A
dZ
dr

þ ðBω2 þ CÞZ; ð30Þ

the generalized Regge-Wheeler equation for EGBd neutron
stars [25]. The functions A, B and C are given in terms of
the previous functions and derivatives, and can be found in
Appendix A.
In the limit when α ¼ β ¼ 0, the classical Regge-Wheeler

equation for Einstein neutron stars is obtained. In the limit
when p ¼ ρ ¼ 0, the equations for axial perturbations of
static EGBd black holes are reobtained [14].
This is essentially a Schrödinger equation where the

eigenvalue ω ¼ ωℜ þ iωℑ is a complex number. We
consider perturbations exponentially damped with time.
We require the perturbation to be regular at every point,

in particular at the origin. This requires the Regge-Wheeler
function to behave as

Z ¼ Zlþ1rlþ1 þOðrlþ3Þ; ð31Þ

for both the Einstein and EGBd cases.
We are interested in the resonant frequencies and damp-

ing times of gravitational waves coming out from the
neutron star. Hence we require the wave to behave as a
purely outgoing wave at radial infinity. But in general a
solution of the Regge-Wheeler equation will be given by
a superposition of incoming signal Zin and outgoing Zout.
Each component behaves like

lim
r→∞

Zin ∼ eiωr; lim
r→∞

Zout ∼ e−iωr: ð32Þ

Note that, while the real part of ω determines the oscillation
frequency of the wave, the imaginary part of the eigenvalue
determines the asymptotic behavior of the quasinormal
mode: If we call τ ¼ 1=ωℑ, and if we ignore the oscillating
part of the function, the ingoing and outgoing modes
behave as
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lim
r→∞

Zin ∼ e−r=τ; lim
r→∞

Zout ∼ er=τ; ð33Þ

Outgoing quasinormal modes are divergent at radial infin-
ity, while ingoing ones tend exponentially to zero as the
radius grows.

C. Brief description of the numerical method

The divergent behavior of the purely outgoing wave is
problematic from a numerical point of view. In principle, the
purely outgoing quasinormal mode condition could be
imposed at a very distant point, but because of the
exponential decay of the ingoing signal at radial infinity,
every small numerical error in the imposition of this behavior
will be amplified as we approach the border of the star,
resulting in a mixture of outgoing with ingoing waves.
To deal with this problem we use the method developed

for Einstein theory in [22,23]. Essentially, we integrate the
full set of equations for the static configuration (9)–(12)
using a monotonic Hermite interpolation of several realistic
tabulated EOS. We impose regularity conditions at the
origin (13), and the correct asymptotic behavior at infinity
(14). Once we have the static configuration, we generate
two independent solutions for the interior part of the
Regge-Wheeler equation (30), imposing the regularity
condition (31). For the exterior part of the solution, we
integrate the phase function, defined as g ¼ 1

Z
dZ
dr, using the

exterior complex scaling method to guarantee that the
solutions are outgoing waves [22,23]. See Appendix B for a
more detailed explanation of the method.
For the numerical integration of the differential equations

at each stage, we use COLSYS [28], a package which
implements a collocation method for boundary-value
ordinary differential equations, equipped with an adaptive
mesh selection procedure. Typically the precision required
to the solutions is better than 10−4, with meshes bigger than
100 points.
Once we have these solutions for the perturbation, we

have to study the matching conditions. In general, a
quasinormal mode will satisfy the usual junction conditions
at the border of the star. This means that, in the absence of
any surface energy density, the Regge-Wheeler function
and its derivative must be continuous [29]. These con-
ditions are satisfied only if ω is a quasinormal mode of the
static configuration. As shown in Appendix B, the junction
conditions can be rewritten as a matrix, and continuity
implies that the determinant of this matrix is zero. Once we
fix the parameters of the theory (α and β), the static
configuration (the mass M), and the angular l number,
this determinant is only a function of ω. The quasinormal
modes are found by studying the zeros of this determinant.

IV. RESULTS

In Table I we present the eight realistic EOS considered
in this paper. We consider two EOSs for nuclear matter

(SLy and APR4), three for hyperonic matter (WCS1-2 and
BHZBM), and another three for hybrid quark-nuclear
matter (ALF4, WSPHS3 and BS4).
In Fig. 1 we plot the mass-radius diagram for these

EOSs, using pure Einstein theory, and EGBd theory with
GB coupling αc ¼ 0.141αY , where

ffiffiffiffiffiffiffiffijαY j
p ¼ 1.9 × 105 cm,

the astrophysical constraint for the GB coupling as defined
by Yagi. This constraint was obtained in [24] studying the
orbital decay rate of black holes in low-mass x-ray binaries.
In addition, we consider the string theory value of the
dilaton coupling β ¼ 1.
SLy,APR4andALF4 are the softest EOSs considered,with

radius between 10–12 km. The other EOSs are stiffer, with
radii that go up to 14 km. In the case of the WCS1 and
BHZBM, the EOSs become softer at higher densities. This
causes the M-R curve of these two EOSs to flatten near the
maximummass, decreasing the radius of these configurations.
Using the method previously discussed, we have studied

axial quasinormal modes of realistic neutron stars. In
particular we have restricted to the l ¼ 2 fundamental
curvature mode, and we will refer to it as wI mode
[6,38,39]. This is the standard family of pure space-time
modes [40]. They were calculated for the first time for
neutron stars in [41].

A. Results for l ¼ 2 fundamental wI mode

In Fig. 2 we show the frequency of the fundamental
curvature modes versus the total mass. These frequencies
are found in between 6 and 9 kHz. For the stiffest EOS, the
frequency is around 6.5–7.5 kHz, while for the softest EOS,
the frequencies increase up to 9 kHz for the 1M⊙ stars.
The effect of the Gauss-Bonnet-dilaton term is always

the same: the frequency increases with respect to a
configuration of similar mass in Einstein theory. For the
stiffest EOSs, the effect is around 3%–6%, while for the
softest it can go up to 10% for the low mass stars.
Note that for the BHZBM and the WCS1 EOSs, the

frequency increases for configurations between 1.6M⊙ and
2M⊙ masses. This effect is a manifestation of the softening
of these EOSs at higher densities. The softening causes the
radius of the maximum mass configurations to decrease as
the mass approaches the maximum value, increasing the
value of the frequency.
We present the same plot for the damping time τ in

Fig. 3. The damping time grows with the mass. The GBd
term increases the damping time, but the effect is irrelevant
for masses below 1.8M⊙. It becomes more important close
to the maximum mass, and specially, for EOSs that become
softer close to the maximum mass: for SLy, APR4,
BHZBM and WC2, the increase in the damping time
can be of 10%.
In the spirit of Refs. [20,21,42–44], we study approxi-

mate universal relations of rescaled quantities. It is inter-
esting to study if the introduction of the GBd term has some
impact on the empirical relations valid for Einstein theory.
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In Figs. 4 and 5 we plot the scaled frequency and damping
time versus the compactness. The frequency of the funda-
mental wI mode is given by the inverse of the radius, with
some additional quadratic dependence with the compact-
ness. The inverse of the damping time is proportional to the
inverse of the mass, with some additional quadratic
dependence with the compactness. The phenomenological
relations are

ωðkhzÞ ¼ 1

RðkmÞ
�
ð−517.4� 55.0Þ

�
M
R

�
2

þ ð82.2� 22.6ÞM
R
þ ð96.18� 2.19Þ

�
; ð34Þ

103

τðμsÞ ¼
1

MðM⊙Þ
�
ð−1213.02� 39.14Þ

�
M
R

�
2

þ ð369.517� 16.09ÞM
R
þ ð19.132� 1.557Þ�:

ð35Þ

They hold approximately for every EOS, even in the
presence of the GBd term.
In [22,23] it was shown that another interesting universal

relation could be obtained if the central pressure is used as
scaling factor, instead of global parameters like the radius

TABLE I. Equations of state considered in this paper. We have studied two nuclear matter EOSs, three hyperonic matter EOSs, and
another three hybrid matter EOSs.

Model EOS Description

Nuclear SLy Plain npeμ matter (potential method) [30].
matter APR4 Plain npeμ matter (variational method) [31].

Hyperon
BHZBM

Nucleons and hyperons with a mixed phase
(nonlinear relativistic mean field method). Includes a first order
phase transition that softens the EOS [32].

matter WCS1 “σωρϕ” model for high densities.
WCS2 The symmetric and antisymmetric coupling ratios are

αν ¼ 1 and αν ¼ 0.2 respectively [33,34].

Hybrid

ALF4
Nuclear and quark matter, described by mixing
the APR nuclear EOS with the CFL model of quark matter [35].

BS4

Hyperons and quark matter with a Maxwell phase transition.
Hypernuclear density functional combined with effective

matter NJL model of quantum chromodynamics. The parameters considered are
GV=GS ¼ 0.6, ρtr=ρ0 ¼ 4 [36].

WSPHS3 Quark and hadronic matter with a Gibbs transition. MIT bag method
mixed with NL3 relativistic mean field hadronic EOS with B1=4

eff ¼ 140 MeV, a4 ¼ 0.5 [37].
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FIG. 1. Mass vs radius relation for the EOS considered,
for pure Einstein and Einstein-Gauss-Bonnet with αc
and β ¼ 1.
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FIG. 2. Frequency vs mass for the l ¼ 2 fundamental wI mode
for neutron stars between one solar mass and maximum mass.
Note that the Gauss-Bonnet dilaton, with αc and β ¼ 1, increases
the value of the frequency up to 10%.
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or the total mass. We show the effect of the GBd term in this
alternative scaling in Fig. 6. A quadratic relation between
the scaled imaginary part and the scaled real part is
obtained:

ωℑffiffiffiffiffi
pc

p ¼ ð−1.45� 0.16Þ þ ð0.405� 0.022Þ ωℜffiffiffiffiffi
pc

p

þ ð0.0214� 0.0006Þ
�

ωℜffiffiffiffiffi
pc

p
�

2

: ð36Þ

This universal relation is also approximately indepen-
dent of the EOS and valid for both Einstein and EGBd
gravity.
Hence we conclude that, since the effect of the EGBd

theory on the phenomenological relations is very small,
these empirical formulas could also be used in the study of
EGBd gravity. On the other hand, frequencies in EGBd
gravity are sensitively bigger than the frequency of the
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Einstein gravity modes. This could have some observa-
tional implications, as we consider in the next section.

B. Possible application of the universal
relation to a detection

These universal relations can be used to estimate some
parameters of the star, and in some cases further constrain
the valid equations of state or GBd coupling parameters.
Let us consider two examples.
Consider a possible gravitational wave detected from a

neutron star with 1.8M⊙. In detection 1, the frequency of
the fundamental wI mode is determined to be 6.6 kHz with
a damping time of 40 μs. Assuming a 1% error, we plot this
detection as a red square in Fig. 7. This detection would
constrain the possible matter constitution to the EOS
WCS2, WSPHS3 in Einstein theory, or EOS BS4 with a
nonvanishing GBd coupling. This detection would draw a
line in the central pressure scaled plot (see red line in
Fig. 8). The crossing point with the universal relation (36)
determines a central pressure (pc ¼ 1.17 × 1035 dyn=cm2).
With this estimation we can mark the configuration in
Fig. 9, where we plot the total mass versus the central
pressure. In this case, the three EOSs are still compatible
with the central pressure estimation, and the phenomeno-
logical relation does not give us more information about the
theory or matter constitution.
Now consider an alternative scenario, detection 2, where

the frequency of the fundamental wI mode is determined to
be 6.75 kHz with a similar damping time of 40 μs. This is
marked in Fig. 7 as the blue dot. In this case the detection

would be compatible with Einstein theory with EOS
WCS1, or EGBd theory with EOS WCS2, BS4 or
WSPHS3. With this information we can use the phenom-
enological relation (36) to estimate the central pressure. We
draw a blue line in Fig. 8, and the estimated central pressure
is pc ¼ 1.31 × 1035 dyn=cm2 in this case. If we mark this
configuration in Fig. 9 (blue dot), we can see that the only
EOSs compatible with this estimated central pressure are
reduced to two cases: Einstein theory with WCS1 or EGBd
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theory with WCS2 EOS. In this case, assuming that the
phenomenological relation holds and the precision of the
detection is good enough, we are able to further constrain
the equation of state and coupling parameters of the theory.
The two arbitrary scenarios presented show us how the

phenomenological relation (36) could be used in a future
true detection. Although in some cases the phenomeno-
logical relation does not give us more information about the
structure of the star, as shown in the example we called
detection 1, we have shown that there are some favorable
cases, as shown in the example detection 2, where these
phenomenological relations could be used to further con-
strain the composition or the theory describing the neu-
tron star.

V. CONCLUSIONS

We have considered axial quasinormal modes of realistic
neutron stars in Einstein-Gauss-Bonnet-dilaton gravity. We
have focused the study on the fundamental space-time
curvature mode (wI mode) for eight different realistic
equations of state.
The general equations for axial quasinormal modes of

neutron stars have been derived, and we have developed a
method to obtain the spectrum of QNM using realistic
tabulated EOSs. The EOSs considered include plain
nuclear matter, hyperon matter, and hybrid matter.
We have analyzed the effect of the GBd terms on the

QNM by comparing with similar modes of configurations
in pure Einstein gravity. We have found that the GBd term
increases the frequency of the modes, which can go up to
10% for a large Gauss-Bonnet coupling, while the effect on
the damping time is typically smaller.
Interestingly, we have found that the universal relations

valid in Einstein theory for curvature modes, still hold in
EGBd gravity, for relations scaling to global parameters as
mass and radius, or the central pressure.
We have shown that in some cases, these universal

relations, together with the fact that the frequency of the wI
mode is increased in a EGBd star compared with a star of
similar mass in Einstein gravity, could be used to constrain
the equations of state and possible GBd coupling of the
theory.
Although in this paper we have focused on the funda-

mental wI mode, a possible next step is the study of
interface modes and higher excitations of the curvature
modes, although more precision and calculation time will
be required.
The next step is the study of polar QNM for realistic

neutron stars in EGBd theory. For this, the calculation of
the equations for polar perturbations is necessary. Polar
modes in general include the families of pressure modes,
the fundamental mode, as well as another branch of
curvature modes. Since polar modes allow for scalar
perturbations, they are more sensitive to the matter com-
position of the neutron star. But note that in EGBd theory,

polar perturbations would allow for oscillations of the
dilaton field. It will be interesting to study the possible
effect of the dilaton on the polar modes, and to see whether
new families of modes not present in Einstein gravity could
be present in EGBd theory.
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APPENDIX A: EQUATIONS FOR THE AXIAL
PERTURBATIONS

The equations describing the axial perturbations are

dh1
dr

¼ iω
F1

e2νD1

h0 −
F2

rD1

h1; ðA1Þ

dh0
dr

¼ 2

r
h0 þ

�
ðl − 1Þðlþ 2Þ iF3

2ωD2

− iω

�
h1; ðA2Þ

w2 ¼
2iðρþ pÞ

ωr2
h0; ðA3Þ

where the functions F1, F2, F3,D1 andD2 are given by the
static solution, and can be written as

F1 ¼ 4αβrðr − 2mÞ
�
β

�
dΦ
dr

�
2

−
d2Φ
dr2

�

þ 4αβ
dΦ
dr

�
r
dm
dr

−m

�
þ eβΦr2; ðA4Þ

F2 ¼ 4αβ½4mrðm − rÞ þ r3�
�
d2Φ
dr2

dν
dr

þ d2ν
dr2

dΦ
dr

þ dΦ
dr

�
dν
dr

�
2

− β
dν
dr

�
dΦ
dr

�
2
�

þ 12αβ
dΦ
dr

dν
dr

�
mðr − 2mÞ þ ð2mr − r2Þ dm

dr

�

þ reβΦ
�
r
dν
dr

ð2m − rÞ þ r
dm
dr

−m

�
; ðA5Þ

F3 ¼ eβΦþ2ν

�
2r2eβΦ − αβr2

�
dΦ
dr

�
3

ðr − 2mÞ

−8
dΦ
dr

αβððr − 2mÞ þ 4πpr3Þ
�
; ðA6Þ

D1 ¼ ð2m − rÞ
�
4αβ

dΦ
dr

dν
dr

ð2m − rÞ þ eβΦr

�
; ðA7Þ

AXIAL QUASINORMAL MODES OF EINSTEIN-GAUSS- … PHYSICAL REVIEW D 93, 024052 (2016)

024052-9



D2 ¼
�
4αβ

dΦ
dr

ð3m − rÞ þ eβΦr2
�

×

�
4αβ

dΦ
dr

ð2m − rÞ þ eβΦr2
�
: ðA8Þ

The generalized Regge-Wheeler equation for EGBd
neutron stars is obtained substituting h1 ¼ reλ−νZ:

d2Z
dr2

¼ A
dZ
dr

þ ðBω2 þ CÞZ; ðA9Þ

where the functions A, B and C are given in terms of the
previous functions and derivatives and can be written as

A ¼ d
dr

ln

�
F1

D1

�
−

F2

rD1

− 2
dλ
dr

; ðA10Þ

B ¼ e−2ν
F1

D1

; ðA11Þ

C ¼ 2

r2
− e−2ν

lðlþ 1Þ
2

F1F3

D1D2

þ d2ν
dr2

−
d2λ
dr2

þ
�
dν
dr

�
2

−
�
dλ
dr

�
2

þ 1

r
d
dr

ln

�
F1

D1

�
þ F2

rF1D1

dF1

dr
−

1

rD1

dF2

dr

þ e−2ν
F1F3

D1D2

þ 2
F2

r2D1

þ
�
d
dr

ln

�
F1

D1

�
−

F2

rD1

�
dλ
dr

−
�
d
dr

ln

�
F1

D1

�
þ F2

rD1

þ 2

r

�
dν
dr

: ðA12Þ

APPENDIX B: EXTERIOR COMPLEX SCALING
AND JUNCTION CONDITIONS

The first step of our method is the integration of the
interior part of the Regge-Wheeler solution. We generate
two linearly independent solutions of the Regge-Wheeler

equation, Zðs1Þ
in and Zðs2Þ

in , with two different complex values

at the border of the star Zðs1Þ
in ðRÞ ¼ Zðs1Þ

in;ℜðRÞ þ iZðs1Þ
in;ℜðRÞ

and Zðs2ÞðRÞ ¼ Zðs2Þ
in;ℜðRÞ þ iZðs2Þ

in;ℜðRÞ. Both solutions sat-
isfy the regularity condition at the origin.
The next step is to calculate the exterior part of the

solution requiring the outgoing wave behavior. We choose
to integrate the phase function defined as g ¼ 1

Z
dZ
dr, rewrit-

ing the Regge-Wheeler equation as

dg
dr

¼ −g2 þ Agþ Bω2 þ C: ðB1Þ

At radial infinity the phase function of a mixture of ingoing
and outgoing wave takes the value gð∞Þ ¼ −iω. To
remove the ingoing wave part, we use the standard exterior

complex scaling method. We change to a complex radial
coordinate r ¼ Rþ yeia0 , where a0 satisfies

ωℜ sin a0 þ ωℑ cos a0 < 0: ðB2Þ

Now by requiring the boundary condition gð∞Þ ¼ −iω, we
grant that the exterior part of the solution has no ingoing
wave contamination.
Once we have these solutions for the perturbation, we

have to study the matching conditions. In general, a
quasinormal mode will satisfy the usual junction conditions
at the border of the star. In the absence of a surface energy
density at the border of the star, the junction conditions are
given by the continuity of the first and second fundamental
forms defined on the surface of the star [29]. This implies
that the Regge-Wheeler function and its derivative must be
continuous at the border:

ZoutðRÞ ¼ ZinðRÞ; ðB3Þ

d
dr

ZoutðRÞ ¼
d
dr

ZinðRÞ: ðB4Þ

These conditions are satisfied only if ω is a quasinormal
mode of the static configuration. Since we have two
independent solutions inside the star, and the phase outside,
we can impose the continuity of the function for both
solutions. This means we have two independent values of
the derivative of the Regge-Wheeler function outside
the star:

d
dr

Zðs1Þ
out ðRÞ ¼ Zðs1Þ

in ðRÞgðRÞ; ðB5Þ

d
dr

Zðs2Þ
out ðRÞ ¼ Zðs2Þ

in ðRÞgðRÞ: ðB6Þ

For some values of the parameters of the solution, we will
have that a linear combination of the two solutions s1 and
s2 satisfies the continuity requirement. Hence, we can
rewrite the junction conditions (B3) and (B4) as

K1Z
ðs1Þ
in ðRÞ þ K2Z

ðs2Þ
in ðRÞ ¼ K1Z

ðs1Þ
out ðRÞ þ K2Z

ðs2Þ
out ðRÞ;

ðB7Þ

K1

d
dr

Zðs1Þ
in ðRÞ þ K2

d
dr

Zðs2Þ
in ðRÞ

¼ K1

d
dr

Zðs1Þ
out ðRÞ þ K2

d
dr

Zðs2Þ
out ðRÞ: ðB8Þ

The first condition (B7) is trivially satisfied since each
particular solution is continuous. But the continuity of the
first derivative (B8) can be rewritten in matrix form:
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M̂

�
K1

K2

�
¼

"
d
dr Z

ðs1Þ
out;ℜðRÞ − d

dr Z
ðs1Þ
in;ℜðRÞ d

dr Z
ðs2Þ
out;ℜðRÞ − d

dr Z
ðs2Þ
in;ℜðRÞ

d
dr Z

ðs1Þ
out;ℑðRÞ − d

dr Z
ðs1Þ
in;ℑðRÞ d

dr Z
ðs2Þ
out;ℑðRÞ − d

dr Z
ðs2Þ
in;ℑðRÞ

#�
K1

K2

�
¼ 0: ðB9Þ

The quasinormal modes are found when the determinant of the M̂ matrix is zero. This determinant is only a function ofω,
once we have fixed the theory (α and β), the static configuration (the mass M), and the l number.
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