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We study flat Friedmann-Lemaître-Robertson-Walker cosmological models for a scalar field coupled
nonminimally to teleparallel gravity with generic coupling and potential functions. The goal in this paper is
to determine the conditions under which cosmological evolution tends to the limit where the variation of the
gravitational “constant” ceases and the system evolves close to general relativity (GR). These conditions
can be read off from the approximate analytical solutions describing the process in matter and potential
domination eras. Only those models where the GR limit exists and is an attractor can be considered viable.
We expect the results to hold in the original “pure tetrad” formulation as well as in the recently suggested
covariant formulation of the teleparallel theory. In the former case the GR attractor simultaneously provides
a mechanism for how cosmological evolution suppresses the problematic degrees of freedom stemming
from the lack of local Lorentz invariance.
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I. INTRODUCTION

Theories with a scalar field nonminimally coupled to
gravity as represented by curvature tensor R have a long
history and multiple motivations; they arise naturally from
compactifications of higher dimensions, in endeavors to
build a theory that incorporates the Mach principle or is
fundamentally scale free, or by taking into account quantum
corrections to a scalar field minimally coupled to gravity. In
recent years such extensions of general relativity (GR) have
received a lot of attention by providing viable models for
inflation and dark energy (for a review, see e.g. Refs. [1]). In
the setup where freely falling test particles follow geodesics
(the Jordan frame), nonminimal coupling manifests itself by
making the Newtonian gravitational constant dependent on
the value of the dynamical scalar field. However, astrophysi-
cal and cosmological observations put a strong limit on the
variation of the gravitational constant, e.g., since the recom-
bination era jGrec−Gnowj

Gnow
< 5 × 10−2 [2].

It was noted by Damour and Nordtvedt [3] that a large
class of nonminimally coupled theories possess an attractor
mechanism which during the cosmological evolution
makes the solutions converge to a regime, where the scalar
field relaxes around a fixed value, gravitational constant
stabilizes, and the theory starts to behave rather like general
relativity. This mechanism simultaneously ensures that the
stringent constraints from motions in the Solar System are
also met. A method to check whether a nonminimally
coupled model spontaneously converges to GR, along with
finding the approximate solutions in the vicinity of this
limit, was developed and applied in Refs. [4], and was

subsequently generalized for arbitrary parametrization of
the theory [5].
The same issue must also be addressed in theories with a

scalar field nonminimally coupled to gravity as represented
by torsion tensor T in the framework of teleparallel gravity,
which is a possible extension of teleparallel equivalent of
general relativity (TEGR) [6].1 TEGR originates from a
theory proposed by Einstein back in 1928 [8]. Instead of a
Levi-Civita connection (implying zero torsion and non-zero
curvature) it uses a Weitzenböck connection [9] (with zero
curvature and nonzero torsion), while the description of
gravity is based on the tetrad components. Although
conceptually different, the equations of motion and physi-
cal predictions of TEGR are identical to GR, so TEGR can
be considered a reformulation of GR [10]. But the
equations of the extensions of TEGR turn out to be different
from their GR counterparts, i.e. fðTÞ gravity from fðRÞ
gravity [11], or a scalar field nonminimally coupled to
torsion from a scalar field nonminimally coupled to
curvature [6]. This fact makes the study of TEGR exten-
sions worthwhile, as we are exploring completely new
ground in the domain of theories.
In the present paper we consider a nonminimally coupled

scalar field in a gravity theory on a manifold with a
Weitzenböck connection, also called scalar-torsion gravity
[6]. For specific coupling functions and potentials its flat
Friedmann-Lemaître-Robertson-Walker (FLRW) cosmol-
ogy has been scrutinized by phase space analysis [12–15],
while some analytic solutions were found under particular
Ansätze [16,17] or by employing the Noether symmetry
method [18]. Other studies discuss parameter fit with
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1A similar construction arises in de Sitter–Cartan geometry
with a cosmological function [7].
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cosmological observations [19], growth of density perturba-
tions [20], energy conditions [21], and the possibility of
singularities [22].
We apply the approach of Refs. [4] to examine flat FLRW

cosmologies near the (TE)GR limit whereG is constant and
the system behaves like in general relativity. In comparison
with the usual method of phase-space variables rescaled by
theHubble parameterH, this approach has some advantages.
First, it does not require fixing the form of the coupling
function f or the potential V, but can treat the completely
generic case. Second, it focuses upon the most relevant
regime from the phenomenological point of view where the
variation of the gravitational constant G is nearly absent.
Third, it allows us to find approximate analytic solutions for
the expansion H and scalar field ϕ, which are sometimes
more amenable for comparison with observations than the
rescaled variables. This approach will miss out on the
attractors corresponding to evolving ϕ (and G), but on the
other hand it registers fixed points that correspond to the
regime where the rescaled variables diverge.
A problem with the actions of straightforward “pure

tetrad” TEGR extensions is that they are not invariant under
local Lorentz transformations of the tetrad [23], an indi-
cation of preferred frames and extra degrees of freedom
which potentially lead to superluminal effects and acau-
sality [24,25]. As we notice, in the GR limit the terms
violating local Lorentz invariance also vanish in the general
field equations, so in the models where GR is an attractor,
the problematic degrees of freedom get dynamically sup-
pressed by the cosmological evolution. A very recent
proposal to recover local Lorentz invariance is to formulate
the theory in a covariant way [26] by including purely
inertial spin connection (still leading to zero curvature),
carefully delineating the effects of gravitation and inertia
[27]. Since the flat FLRW tetrad in Cartesian coordinates is
already “proper” [26], we can expect the ensuing cosmo-
logical equations not to get additional spin connection
contributions, and our results will still be valid in the
putative covariant formulation of scalar-torsion gravity.
The plan of the paper is as follows. In Sec. II we briefly

recall the foundations of scalar-torsion theory and the
equations of motion in flat FLRW cosmology. Next, the
GR limit of the cosmological equations of motion is
discussed in Sec. III. Thereafter we consider two particular
situations and study the problem of reaching the GR limit
during a cosmological evolution: Sec. IV is devoted to the
matter-dominated case, and Sec. V to the scalar-field
potential-dominated case. A further class of solutions,
existing in the potential-domination case and giving de
Sitter solutions, are considered separately in Sec. VI.
Finally, Sec.VII provides a discussionof the results obtained.

II. SCALAR-TORSION COSMOLOGY

Scalar-torsion gravity [6] extends the teleparallel equiv-
alent of general relativity by introducing a scalar field Φ

nonminimally coupled to torsion, in a manner analogous to
how scalar-tensor gravity extends general relativity.
Assuming no extra coupling between the scalar and regular
matter fields, a generic action of scalar-torsion theory is
endowed with three arbitrary functions (compare with
Refs. [28], and also [25])

S¼
Z

d4xe

�
FðΦÞ T

2κ2
þZðΦÞ∂μϕ∂μϕ−VðΦÞþLm

�
: ð1Þ

Here κ2 ¼ 8πG sets the bare gravitational constant, Lm is
the Lagrangian density of the matter fields, and VðΦÞ is the
scalar potential, while FðΦÞ couples the scalar to gravity as
described by the torsion scalar T.
The basic geometrical variables of the theory are the

tetrad fields which in a coordinate basis can be expressed as
eA ¼ eμA∂μ.

2 The tetrads at each spacetime point form an
orthonormal basis for the tangent space; they are related to
the metric tensor through

gμν ¼ ηABeAμeBν ; ð2Þ
where ηAB ¼ diagð1;−1;−1;−1Þ. The invariant volume
element is given by e ¼ detðeAμ Þ ¼ ffiffiffiffiffiffi−gp

. Assuming the

Weitzenböck connection Γ
wλ

νμ ≡ eλA∂μeAν [9] yields zero
curvature but nonzero torsion. The gravitational field is
described by the torsion tensor

Tλ
μν ¼ Γ

wλ

νμ − Γ
wλ

μν ¼ eλAð∂μeAν − ∂νeAμ Þ; ð3Þ
which enters the action as a combination of contractions,

T ≡ 1

4
TρμνTρμν þ

1

2
TρμνTνμρ − Tρμ

ρTνμ
ν: ð4Þ

The action (1) is invariant under scalar-field reparamet-
rization, ϕ ¼ ϕðΦÞ; thus, for convenience we can adopt a
parametrization where one of the functions is a constant.
Let us redefine the scalar field so that its kinetic term is
canonical,3 ZðϕÞ ¼ 1, and split FðϕÞ ¼ 1þ κ2fðϕÞ, so that
fðϕÞ separates out the dynamical part of the gravitational
“constant.” This gives the action [14,15]

S ¼
Z

d4xe

�
T
2κ2

þ fðϕÞT
2
þ 1

2
∂μϕ∂μϕ − VðϕÞ þ Lm

�
:

ð5Þ
To study the cosmological solutions corresponding to the

flat FLRW spacetime

2Greek indices (μ, ν, etc.) run over coordinate spacetime, while
capital Latin indices (A, B, etc.) span the tangent spacetime.

3In the special case ZðΦÞ ¼ 0 the action (1) is equivalent to the
action of FðTÞ gravity [25]. We leave this case out of consid-
eration here.
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ds2 ¼ dt2 − a2ðtÞδijdxidxj; ð6Þ

we impose the tetrad Ansatz

eAμ ¼ diagð1; aðtÞ; aðtÞ; aðtÞÞ; ð7Þ

where aðtÞ is the scale factor. We also assume that matter is
given by a perfect fluid with energy density ρm and pressure
pm, respectively, related by an equation-of-state parameter
wm ≡ pm=ρm. Substituting the tetrad and matter content
into the equations of motion gives rise to the modified
Friedmann equations [14,15]

3H2 ¼ κ2

1þ κ2fðϕÞ
�
_ϕ2

2
þ VðϕÞ þ ρm

�
; ð8Þ

2 _H ¼ −
κ2

1þ κ2fðϕÞ ½
_ϕ2 þ 2Hf0ðϕÞ _ϕþ ρmð1þ wmÞ�; ð9Þ

where H ¼ _a=a is the Hubble function, dots ( :) denote
differentiation with respect to the cosmological time t, and
prime marks ( 0) differentiation with respect to the scalar
field ϕ. The scalar-field equation of motion is given by

ϕ̈ ¼ −3H _ϕ − 3H2f0ðϕÞ − V 0ðϕÞ: ð10Þ

Given that the FLRW tetrad (7) provides a “proper tetrad”
[26], i.e. it does not need the inclusion of nonzero spin
connection coefficients to cancel out inertial effects, we can
assume that the cosmological equations (8)–(10) hold also
in the covariant formulation of scalar-torsion gravity.
Inspection of the Friedmann equation (8) reveals that if we

assume positive definite potential and matter energy density,
VðϕÞ ≥ 0 and ρm ≥ 0, there are real solutions only if

κ2fðϕÞ > −1: ð11Þ

Reaching this bound dynamically would trigger a spacetime
singularity, as in the examples studied in Ref. [22].

III. GENERAL RELATIVITY LIMIT

If the theory allows the scalar field to take a value ϕ⋆ such
that

f0ðϕ⋆Þ ¼ f0⋆ ¼ 0; V 0ðϕ⋆Þ ¼ V 0⋆ ¼ 0; ð12Þ

then Eqs. (8)–(10) admit a solution ϕ ¼ ϕ⋆, _ϕ ¼ 0, where
the cosmological dynamics corresponds to that of (the
teleparallel equivalent of) general relativity with matter
and cosmological constant set by Vðϕ⋆Þ ¼ V⋆. Here the
value 1

8π
κ2

1þκ2f⋆
plays the role of gravitational constantG in the

cosmological context, as well as in the parametrized post-
Newtonian approximation for, e.g., the Solar System [29].
The scalar field ϕ being constant also makes the problematic

terms which are not invariant under local Lorentz trans-
formations of the tetrad vanish in the general field equation
(Einstein’s equation) [25], while f0 ¼ 0 makes the patho-
logical degrees of freedom disappear in an explicit example
of nonuniqueness of time evolution [25].
The aim of the present paper is to assess the stability of

these solutions, i.e. to determine whether the value ϕ⋆
functions as an attractor or not. Let us follow the approach
and notation of Refs. [4] and expand

ϕðtÞ ¼ ϕ⋆ þ xðtÞ; HðtÞ ¼ H⋆ðtÞ þ hðtÞ; ð13Þ

where ϕ⋆ is the constant value defined by the condition (12)
and H⋆ðtÞ is the Hubble function corresponding to the
cosmological evolution with ϕ⋆, while xðtÞ and hðtÞ are
small perturbations. It follows that the derivatives are

_ϕðtÞ ¼ _xðtÞ; _HðtÞ ¼ _H⋆ðtÞ þ _hðtÞ: ð14Þ

In the following we are going to apply the expansion (13)
to get approximate field equations which can be solved
analytically. Towards this end, recalling the condition (12),
the functions characterizing the theory get the lowest order
contributions as

fðϕðtÞÞ ¼ f⋆ þ
1

2
f00⋆xðtÞ2; ð15Þ

f0ðϕðtÞÞ ¼ f00⋆xðtÞ þ
1

2
f000⋆ xðtÞ2; ð16Þ

VðϕðtÞÞ ¼ V⋆ þ
1

2
V 00⋆xðtÞ2; ð17Þ

V 0ðϕðtÞÞ ¼ V 00⋆xðtÞ þ
1

2
V 000⋆ xðtÞ2; ð18Þ

where the subscript ⋆ denotes the value computed at ϕ⋆.
We assume the derivatives in the expansions above do not
diverge at ϕ⋆.

IV. MATTER-DOMINATION CASE

Let us first consider the case when matter energy density
dominates over the potential, ρm ≫ VðϕÞ, so that we can
neglect VðϕÞ in Eq. (8). We can use Eq. (8) to eliminate ρm
in Eq. (9); the result is

2 _H þ 3ð1þ wmÞH2

¼ −
κ2

1þ κ2fðϕÞ
�
ð1 − wmÞ

_ϕ2

2
þ 2Hf0ðϕÞ _ϕ

�
: ð19Þ

To recover approximate dynamics near the general rela-
tivity limit, let us substitute the expansions (13)–(18) into
the previous equation and keep terms up to second order
small,
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2ð _H⋆ þ _hÞ þ 3ð1þ wmÞðH⋆ þ hÞ2

¼ −
κ2

1þ κ2f⋆

�
ð1 − wmÞ

_x2

2
þ 2H⋆f00⋆x_x

�
: ð20Þ

To the lowest order this reduces to

2 _H⋆ þ 3ð1þ wmÞH2⋆ ¼ 0; ð21Þ

which is solved by

H⋆ðtÞ ¼
2

3ð1þ wmÞðt − tsÞ
; ð22Þ

where ts is a constant of integration that we neglect in the
following calculations, ts ¼ 0. The solution (22) corre-
sponds to the expansion induced by matter with barotropic
index wm in general relativity, as expected.
Substituting the solution (22) back into Eq. (20) and

dropping the terms quadratic in x and _x gives the equation
for the first-order correction to the Hubble parameter. It
turns out to be simply

_h ¼ −
2h
t
; ð23Þ

which is solved by

hðtÞ ¼ hst−2; ð24Þ

where hs is a constant of integration. For any matter
barotropic index the cosmological expansion gets asymp-
totically more close to the one expected in general
relativity, as the deviation hðtÞ decays over time.
The scalar field equation (10) can be treated in a similar

manner; we substitute in the expansions (13)–(18) and the
solution (22) that provides the reference expansion.
Keeping only the first-order small terms proportional to
x, _x yields an equation of the Bessel type,

ẍ ¼ −
2

ð1þ wmÞt
_x −

4f00⋆
ð1þ wmÞt2

x − V 00⋆x: ð25Þ

Let us first assume the expansion is around the minimum
of the potential, V 00⋆ > 0. Then, if the order

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

�
1 − wm

1þ wm

�
2

−
4

3

f00⋆
ð1þ wmÞ2

s
ð26Þ

is real, the solutions of Eq. (25) are

xðtÞ ¼ t−
1
2
ð1−wm
1þwm

Þðc1Jνð
ffiffiffiffiffiffi
V 00⋆

p
tÞ þ c2Yνð

ffiffiffiffiffiffi
V 00⋆

p
tÞÞ; ð27Þ

given in terms of the Bessel functions of the first and
second kind, Jν and Yν respectively, while c1 and c2 are the

integration constants. If the order (26) is imaginary the
solutions are still real but are given by [30]

xðtÞ ¼ t−
1
2
ð1−wm
1þwm

Þsech
πνi
2

ðc1Re½Jνð
ffiffiffiffiffiffi
V 00⋆

p
tÞ�

þ c2Re½Yνð
ffiffiffiffiffiffi
V 00⋆

p
tÞ�Þ: ð28Þ

The Bessel functions describe oscillations with slowly
decreasing amplitude in time, while the prefactor sup-
presses the oscillations as a power law when wm > −1.
This becomes even more transparent when we focus upon
late times t → ∞. Then the Bessel functions admit an
asymptotic expansion, allowing us to write the approximate
solutions as [30]

xðtÞ ¼ t−
1

1þwm

ffiffiffi
2

p
ffiffiffi
π

p ffiffiffi
4

p
V 00⋆

�
c1 cos

� ffiffiffiffiffiffi
V 00⋆

p
t −

πν

2
−
π

4

�

þ c2 sin

� ffiffiffiffiffiffi
V 00⋆

p
t −

πν

2
−
π

4

��
ð29Þ

for real orders, and

xðtÞ ¼ t−
1

1þwm

ffiffiffi
2

p
ffiffiffi
π

p ffiffiffi
4

p
V 00⋆

�
c1 cos

� ffiffiffiffiffiffi
V 00⋆

p
t −

π

4

�

þ c2 sin

� ffiffiffiffiffiffi
V 00⋆

p
t −

π

4

��
ð30Þ

for imaginary orders. So we can conclude that if the matter
is not phantom and V 00⋆ > 0, then the GR limit acts as an
attractor for the solutions near it, since deviations from ϕ⋆
also vanish over time.
In the case of no potential or at least when V 00⋆ is zero, the

solutions to (25) are simpler, namely

xðtÞ ¼ t−
1
2
ð1−wm
1þwm

Þðc1tν þ c2t−νÞ; ð31Þ

for real orders ν, and

xðtÞ ¼ t−
1
2
ð1−wm
1þwm

Þðc1 sinð−iν ln tÞ þ c2 cosð−iν ln tÞÞ ð32Þ

for imaginary orders ν (while −iν is real). Again, for
imaginary orders the solutions of matter with wm > −1
converge to the GR limit. For real orders the solution
consists of two power-law modes, which are both decaying
if the matter is not phantom and f00⋆ > 0. Otherwise one of
the power-law terms grows in time and the perturbation xðtÞ
does not tend to zero. The latter will eventually invalidate
the approximation (13), and the generic result that the
perturbation of the Hubble function hðtÞ converges will not
necessarily hold any more. This is exemplified by the
analytic solutions in Refs. [16,22] for quadratic coupling
with dust matter and radiation.
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In the special case when V 00⋆ and f00⋆ are both zero, the
first-order equation (25) is left with only a friction term. In
order to correctly capture the asymptotic dynamics one has
to take into account the leading-order force term in the
expansion, i.e. the lowest nonzero derivative of the poten-
tial or coupling function at ϕ⋆.
Finally, if the expansion (13)–(18) is carried out around

the maximum of the potential, V 00⋆ < 0, then the solutions of
Eq. (25) are instead given in terms of the modified Bessel
functions of the first and second kind, Iν and Kν. For real
orders (26) the solutions read [30]

xðtÞ ¼ t−
1
2
ð1−wm
1þwm

Þ
�
c1Iν

� ffiffiffiffiffiffiffiffiffi
−V 00⋆

p
t
�
þ c2Kν

� ffiffiffiffiffiffiffiffiffi
−V 00⋆

p
t
��

; ð33Þ

while for imaginary orders

xðtÞ ¼ t−
1
2
ð1−wm
1þwm

Þ
�
c1Re

h
Iν
� ffiffiffiffiffiffiffiffiffi

−V 00⋆
p

t
�i

þ c2Re
h
Kν

� ffiffiffiffiffiffiffiffiffi
−V 00⋆

p
t
�i�

: ð34Þ

The modified Bessel function of the first kind diverges
asymptotically as IνðtÞ ∼ etffiffiffiffiffi

2πt
p , therefore, in the case of

V 00⋆ < 0, the GR limit acts as a repeller for all nearby
solutions.
To recap, in the matter-dominated case [ρm ≫ VðϕÞ] and

for a nonphantom equation of state (wm > −1), the
solutions spontaneously converge towards the GR values
ϕ⋆ and H⋆ either if the GR limit corresponds to the
minimum of the potential V 00⋆ > 0 or for vanishing V 00⋆ to
the minimum of the scalar-torsion coupling, f00⋆ > 0.

V. POTENTIAL-DOMINATION CASE

Let us now consider the case when the scalar potential
dominates over the matter energy density, VðϕÞ ≫ ρm.
Then the Friedmann equation (8) in the lowest order yields
a de Sitter background,

H⋆ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2V⋆
3ð1þ κ2f⋆Þ

s
; ð35Þ

while in the next order we see that the deviation hðtÞ ¼ 0.
Expanding the ϕ equation (10) around the general relativity
limit (12) and substituting (35) gives to first order

ẍ ¼ −3H⋆ _x − 3H2⋆f00⋆x − V 00⋆x: ð36Þ

Its solution, given in terms of the constant

v⋆ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4f00⋆
3

−
4ð1þ κ2f⋆ÞV 00⋆

3κ2V⋆

s
; ð37Þ

is

xðtÞ ¼ e−
3H⋆ t
2

�
c1e

3H⋆v⋆ t
2 þ c2e−

3H⋆v⋆ t
2

�
ð38Þ

for real v⋆, and

xðtÞ ¼ e−
3H⋆t
2

�
c1 sin

3H⋆iv⋆t
2

þ c2 cos
3H⋆iv⋆t

2

�
ð39Þ

for imaginary v⋆. The solution for the deviations xðtÞ
decays asymptotically to zero if

f00⋆ þ
ð1þ κ2f⋆ÞV 00⋆

κ2V⋆
> 0: ð40Þ

Therefore, the minimum of the potential, V00⋆ > 0, coincid-
ing with the minimum of the scalar-torsion coupling,
f00⋆ > 0, guarantees convergence to general relativity; how-
ever, Eq. (40) also allows for the possibility that only one of
these functions is at its minimum there. [The constant
ð1þκ2f⋆Þ
κ2V⋆

is positive, cf. Eqs. (11) and (35).] The fixed point J

in Ref. [13] in the case of quadratic coupling and constant
potential is a particular example of this class of solutions.
For mathematical completeness let us note that if ρm ≡ 0

and V⋆ ¼ 0 the reference background is equivalent to
Minkowski, H⋆ ¼ 0. The first-order expansion of the
Friedmann equation (8) vanishes identically, while in
second order it gives

hðtÞ2 ¼ κ2

6ð1þ κ2f⋆Þ
ð_x2 þ V 00⋆x2Þ: ð41Þ

The first two orders in the expansion of the equation for the
scalar field (10) read

ẍ ¼ −3h_x − V 00⋆x −
1

2
V 000⋆ x2: ð42Þ

If V 00⋆ ≠ 0 the force term proportional to x dominates, while
the friction term proportional to h_x is subdominant.
Therefore in the leading approximation we get oscillating
solutions for V 00⋆ > 0,

xðtÞ ¼ c1 sin
� ffiffiffiffiffiffi

V 00⋆
p

t
�
þ c2 cos

� ffiffiffiffiffiffi
V 00⋆

p
t
�
; ð43Þ

or exponentially diverging solutions for V 00⋆ < 0,

xðtÞ ¼ c1e
ffiffiffiffiffiffiffi
−V 00⋆

p
t þ c2e

−
ffiffiffiffiffiffiffi
−V 00⋆

p
t: ð44Þ

This result must be taken with caution, however, since the
subleading Hubble friction term will also have an effect on
the oscillations (43) in the long run. Such an effect was first
described for a minimally coupled scalar field with quad-
ratic potential, V ¼ V0ϕ

2, in general relativity [31]. In fact,
since the contribution from nonminimal coupling, f00⋆, is of
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even lower order and does not occur in Eq. (42), the
situation here is exactly like in Ref. [31], where a WKB
approximation was used to establish

xt→∞ ∼
sin

ffiffiffiffiffiffiffiffi
2V0

p
tffiffiffiffiffiffiffiffi

2V0

p
t

: ð45Þ

Also note that if V > 0 around V⋆, the Hubble parameter h
will not change its sign due to Eq. (8). Therefore in an
expanding universe (h > 0) the friction term has the correct
sign, the oscillations will gradually decrease as described
above, and the system relaxes to Minkowski, while for a
contracting universe (h < 0) the friction term has an
opposite sign, causing instead an amplification of the
oscillations until the approximation scheme breaks down.
In the case when V 00⋆ ¼ 0 also, all first-order terms vanish in
Eq. (42) and further analysis is needed to understand the
dynamics.

VI. BALANCED SOLUTIONS IN THE
POTENTIAL-DOMINATION CASE

It is interesting to notice that in the case when the matter
density can be neglected in the equations, there is another
possibility to have a static solution for the scalar field in
Eqs. (8) and (10), namely, if the theory allows for the
existence of such ϕ� that satisfies the condition of balance

−κ2V�f0� − V 0�ð1þ κ2f�Þ ¼ 0; ð46Þ

where V� ¼ Vðϕ�Þ etc. Then _ϕ� ¼ 0 and the system
conforms with general relativity, while the background is
again de Sitter with

H� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2V�
3ð1þ κ2f�Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
−

V 0�
3f0�

s
: ð47Þ

Note that this de Sitter solution is not “encoded” into the
initial Lagrangian of the theory because this ϕ� in general
does not correspond to a minimal value of either the
potential or the coupling function. The cosmological
constant associated with this solution is an effective one,
appearing due to an interplay between the scalar field
potential and the nonminimal coupling.
Expanding Eqs. (8) and (10) around this value, ϕðtÞ ¼

ϕ� þ xðtÞ, HðtÞ ¼ H� þ hðtÞ, and taking into account the
condition (46) gives for the small deviations

hðtÞ ¼ κV 0�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3V�ð1þ κ2f�Þ

p xðtÞ ð48Þ

and

ẍ ¼ −3H� _x − 3H2�f00�x − V00�x −
2f0�V 0�
1þ κ2f�

x: ð49Þ

The latter is solved in terms of the constant

v� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4f00�
3

−
4

3

ð1þ κ2f�ÞV 00�
κ2V�

−
8

3

f0�V 0�
V�

s
ð50Þ

by

xðtÞ ¼ e−
3H�t
2

�
c1e

3H�v�t
2 þ c2e−

3H�v�t
2

�
ð51Þ

for real v�, and by

xðtÞ ¼ e−
3H�t
2

�
c1 sin

3H�iv�t
2

þ c2 cos
3H�iv�t

2

�
ð52Þ

for imaginary v�. Hence, if the scalar-torsion theory under
consideration admits such ϕ� which satisfies the condition
(46), then ϕ� acts as an attractor for the nearby solutions
and the system converges to general relativity if

f00� þ
ð1þ κ2f�ÞV 00�

κ2V�
þ 2f0�V 0�

V�
> 0: ð53Þ

These results generalize the de Sitter fixed points described
for power-law scalar-torsion couplings and exponential
potentials [12–14], as well as power-law potentials [12,15].
Finally, let us note that in the absence of matter it is

mathematically possible to solve the condition (46) also by
V� ¼ 0, V 0� ¼ 0. Then the reference background is
Minkowski, H� ¼ 0, and the approximate equation (49)
coincides with Eq. (42) considered before.

VII. DISCUSSION

In this paper we considered flat FLRW cosmologies in
generic scalar-torsion gravity, with focus upon the limit
where the variation of the gravitational constant ceases and
the system behaves akin to general relativity. Comparing
with the usual cosmological phase-space analysis in terms
of the variables rescaled by the Hubble parameter, our
method nicely reproduces the fixed points (and their
properties) which correspond to a constant value ϕ⋆ of
the scalar field, while those fixed points which correspond
to running scalar field (e.g. ϕ tending to infinity) are not
seen in our analysis by construction. On the other hand, our
method is able to find and treat the fixed points where
H⋆ ¼ 0 and the rescaled variables diverge. By employing a
Taylor expansion near a fixed point, our method proceeds
without assuming a fixed form of the coupling function f
and potential V; hence, our results generalize the earlier
studies [12–15]. Still, as we considered mostly the first
order in the expansion, some potentially interesting models
where the lower derivatives of the coupling function and
potential vanish at the fixed point (like ϕ4 at ϕ⋆ ¼ 0) were
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left out of our present inquiry. These can be treated by
going to higher orders in the expansion.
Motivated by the cosmological limits on the variation of

the gravitational constant G, our goal was to determine the
conditions under which a model under investigation is
endowed with general relativity as an attractor. A viable
model should have a constant scalar field value ϕ⋆ which
maintains its attractive character though radiation, dust
matter, and potential domination eras. The respective
conditions turn out to be quite natural. The existence of
ϕ⋆ is given by the coinciding extrema of the coupling and
potential functions, f0⋆ ¼ V 0⋆ ¼ 0. The property of attrac-
tion to GR for the nonphantom matter-domination era
(wm > −1) is ensured if V 00⋆ > 0, or if V 00⋆ ¼ 0 then at least
f00⋆ > 0. For the (positive definite) potential-domination era

the attraction is provided by f00⋆ þ ð1þκ2f⋆ÞV 00⋆
κ2V⋆

> 0, or if V⋆ ¼
0 then by V 00⋆ > 0. Therefore a sufficient condition for
attraction is that both the coupling and potential functions
have a minimum there, although in principle it is possible to
also achieve attraction when the coupling function has its
maximum but the minimum of the potential is “stronger”
(in the sense of the conditions above).
We may assess the viability of some typical couplings

and potentials popular in the literature. For instance an
outcome of this analysis is that with exponential potential
functions it is not very easy to construct viable models, as
these foster a GR limit only in the potential-dominated era
(the balanced case at ϕ�). If in the matter-dominated era we
may neglect all effects from the exponential potential and
have a GR regime at ϕ⋆ due to suitable (e.g. power-law)
coupling, then the observational restrictions on the vari-
ability of G mean that ϕ⋆ and ϕ� must be rather close to
each other, which puts a constraint on the allowed values of
the model parameters.
From constant or power-law coupling f ¼ ξϕN and

potential V ¼ V0ϕ
n, however, we can expect GR-like

behavior near ϕ⋆ ¼ 0, for N, n > 2. There are various
combinations for how the GR limit can be an attractor
through all the eras. For a vanishing or positive constant
potential, a quadratic coupling function with a positive
parameter ξ leads to and keeps the system near the GR
limit, while a negative ξ makes the GR limit unstable.
Nonnegative quadratic potential (V0 > 0) ensures that the
GR limit is an attractor irrespective of the power index and
sign of the coupling f. So, a small negative ξ in quadratic
coupling, which seems to be favored by observations [19],
is consistent with GR attractor behavior if the potential has
a quadratic term, i.e. the scalar field has a mass. Higher
powers in the coupling and potential need further

examination, since one has to go to higher orders in the
Taylor expansion.
As mentioned in the Introduction, adding a scalar field

nonminimally coupled to teleparallel gravity in the pure
tetrad formulation makes the action lose invariance under
local Lorentz transformations of the tetrad, indicating that
the tetrad fields incorporate additional and possibly prob-
lematic degrees of freedom, in addition to the usual metric
ones [23–25]. As anticipated, these extra degrees of free-
dom do not manifest themselves at the level of FLRW
background solution [6]. Here we note that in the GR limit,
where the scalar field tends to a constant value, the Lorentz-
invariance-violating terms disappear also in the full equa-
tions of motion. Therefore viable models where GR is an
attractor are automatically equipped with a dynamical
mechanism whereby cosmological evolution suppresses
the problematic nonmetric degrees of freedom.
In the very recently proposed covariant formulation of

TEGR extensions [26], the pure tetrad approach is aug-
mented by including possibly nonzero spin connection
which removes the spurious inertial effects and restores
local Lorentz invariance. Since the flat FLRW tetrad is
already “proper” [26] and the respective cosmological
equations do not acquire corrections from including the
spin connection, we can expect the results of our analysis to
remain valid in the covariant formulation of scalar-torsion
gravity.
In the literature there are several proposals to modify

scalar-torsion gravity: making the scalar field tachyonic
[32], coupling the scalar field nonminimally to FðTÞ
gravity [33], coupling torsion to the scalar kinetic term
[34], introducing a boundary term [35], or combinations
that make the theory conformally invariant [36]. We expect
our method and reasoning to also work in these models,
although the precise results should depend on the particular
theory under consideration.
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