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In this paper we explore the advantage of using the Kerr-Schild Ansatz in the search for analytic
configurations to bigravity. It turns out that it plays a crucial role by providing means to straightforwardly
calculate the square root matrix encoding the interaction terms between both gravities. In this spirit, we
rederive the Babichev-Fabbri family of asymptotically flat rotating black holes with the aid of an emerging
circularity theorem. Taking into account that the interaction terms contain by default two cosmological
constants, we repeat our approach starting from the more natural seeds for the Kerr-Schild Ansatz in this
context: the (A)dS spacetimes. As a result, we show that a couple of Kerr–(A)dS black holes constitute an
exact solution to ghost-free bigravity. Similar to the asymptotically flat case, these black holes share the
same angular momentum and (A)dS radius, but their masses are not constrained to be equal.
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I. INTRODUCTION

Almost five years ago, de Rham, Gabadadze, and Tolley
proposed a ghost-free and consistent interaction potential
for massive gravity [1], giving rise to what is now known
as the dRGT theory. One of the distinctive characteristics
of their construction of massive gravity is the need for a
reference metric, due to the impossibility of constructing
nonderivative self-interactions with the dynamical metric
only. Later, Hassan and Rosen [2] showed that this arbitrary
metric can be promoted to be dynamical too, and the
resulting theory would still be free of the Boulware-Deser
ghost [3], propagating a total of 5þ 2 degrees of freedom;
this theory became what is now called bigravity.
Thanks to overcoming the theoretical difficulties mani-

fest in theories including massive gravitons (see e.g. [4,5]
for complete reviews on the subject), the interest of the
community in these models has increased in recent years,
resulting in numerous studies on a wide variety of topics.
For example, effort has been made to construct cosmo-
logical models that can explain the accelerated expansion
of the Universe as a natural consequence of regarding the
interaction of gravity through a massive boson, although
no viable and stable cosmological solutions have been
reported so far [6–11]. Another important branch of interest
lies in finding exact configurations supporting the massive
generalization of the gravitational equations. In this cat-
egory, black hole solutions [12–20] play an important role
since, due to the new degrees of freedom, their stability
properties are notably different from those characterizing
the final state of the gravitational collapse in general

relativity. See Ref. [21] for a complete review of the
plethora of such solutions to massive (bi)gravity.
Recently, the first rotating black hole solutions in

massive gravity were presented by Babichev and Fabbri
[22]; they showed the Kerr spacetime [23] is a solution to
the dRGT theory with a flat reference metric if a precise
relation between the coupling constants of the theory holds.
This result is also true for bigravity. In this case, the
solution consists of two copies of the Kerr black hole with
the same angular momenta but not necessarily equal
masses. It is also possible to charge the solution through
a coupling between the electric field to only one of the
metrics without adding undesirable degrees of freedom.
The finding by Babichev and Fabbri of rotating configu-

rations in bigravity is a major step in the comprehension of
the dynamics of this theory due to the great difficulty
involved in the calculation of the ghost-free interaction
terms between the involved metrics. However, the fact that
the interaction terms naturally include cosmological con-
stants for each metric makes it more expected that the
resulting configurations be asymptotically (Anti-)de Sitter
[(A)dS] instead of the asymptotically flat behavior unveiled
byBabichev and Fabbri. In the presentwork, we aim to build
this generalization by deriving a class of asymptotically (A)
dS rotating black holes which are analogue to that originally
found by Carter in [24]. We will take advantage of the
generalized Kerr-Schild Ansatz to integrate the field equa-
tions of bigravity, making transparent how both Kerr–(A)dS
black holes appear.
In Sec. II we briefly introduce our framework which

corresponds to the Hassan-Rosen bigravity [2] with the
coupling parameters left free up to the Fierz-Pauli limit.
Next, the asymptotically flat solution of Babichev and
Fabbri [22] will be rederived to illustrate our procedure. We
start in Sec. III by considering one metric as a Kerr-Schild
transformation and the other as proportional to a Kerr-
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Schild transformation, both starting from Minkowski
spacetime and possessing different profile functions. We
show how easy it is to calculate the interaction terms with
the help of this Ansatz. As the direct integration of the
involved profiles is far from straightforward, a geometrical
approach proving the circularity of these stationary axi-
symmetric configurations is developed in Sec. IV, which
will result extremely useful by fixing the angular depend-
ence of the profiles and making straightforward the
integration of the remaining bigravity equations. In Sec. V
we will follow an analogue procedure but replace the
Minkowski spacetime with the (A)dS one as the starting
seed of the generalized Kerr-Schild transformation. Using
similar circularity arguments, we prove that two Kerr–
(anti)-de Sitter black holes with the same (A)dS radii and
angular momenta but arbitrary masses are solutions of
bigravity up to three constraints in the coupling constants of
the theory, which generalize the constraints previously
found by Babichev and Fabbri. A discussion of the results
and the difficulties involved in their generalization is
included in Sec. VI.

II. GHOST-FREE BIGRAVITY

Bigravity as formulated by Hassan and Rosen [2] is a
four-dimensional ghost-free theory describing two metric
fields gμν and fμν interacting via a nonderivative potential.
One of these fields is massive and the other is not; hence,
the theory propagates a total of 5þ 2 degrees of freedom.
The interaction is encoded through scalar quantities com-
puted from a matrix defined by the following quadratic
relation:

ðγ2Þμν ¼ γμαγ
α
ν ≡ gμαfαν: ð1Þ

The bigravity defining action is

S½g; f� ¼ 1

2κg

Z
d4x

ffiffiffiffiffiffi
−g

p
R½g� þ 1

2κf

Z
d4x

ffiffiffiffiffiffi
−f

p
R½f�

−
m2

κ

Z
d4x

ffiffiffiffiffiffi
−g

p
U½g; f�; ð2aÞ

where R½g� and R½f� are the Ricci scalars for each metric,
κg and κf are the corresponding Einstein constants, κ is a
function of κg and κf with the same dimensions, and m is
the graviton mass. The interaction between the metrics is
mediated by the potential

U½g; f� ¼
X4
k¼0

bkUkðγÞ; ð2bÞ

where bk are coupling constants and the interaction terms
are defined by

U0ðγÞ ¼ 1;

U1ðγÞ ¼
X
A

λA ¼ ½γ�;

U2ðγÞ ¼
X
A<B

λAλB ¼ 1

2!
ð½γ�2 − ½γ2�Þ;

U3ðγÞ ¼
X

A<B<C

λAλBλC ¼ 1

3!
ð½γ�3 − 3½γ�½γ2� þ 2½γ3�Þ;

U4ðγÞ ¼ λ0λ1λ2λ3 ¼
1

4!
ð½γ�4 − 6½γ�2½γ2� þ 8½γ�½γ3�

þ 3½γ2�2 − 6½γ4�Þ: ð2cÞ

Here λAðA ¼ 0; 1; 2; 3Þ are the eigenvalues of γμν, and we
understand the square bracket notation as ½γk�≡ trðγkÞ.
The variation of action (2) gives the bigravity field

equations,

Gμ
ν ¼

m2κg
κ

Vμ
ν; Gμ

ν ¼
m2κf
κ

Vμ
ν; ð3Þ

where Gμ
ν and Gμ

ν are the Einstein tensors for gμν and fμν,
respectively, and the interaction contributions are given by

Vμ
ν ≡ 2gμαffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

UÞ
δgαν

¼ τμν − Uδμν; ð4aÞ

Vμ
ν ≡ 2fμαffiffiffiffiffiffi

−f
p δð ffiffiffiffiffiffi−gp

UÞ
δfαν

¼ −
ffiffiffiffiffiffi−gp
ffiffiffiffiffiffi
−f

p τμν; ð4bÞ

with

τμν ¼ ðb1U0 þ b2U1 þ b3U2 þ b4U3Þγμν
− ðb2U0 þ b3U1 þ b4U2Þðγ2Þμν
þ ðb3U0 þ b4U1Þðγ3Þμν − b4U0ðγ4Þμν: ð5Þ

An alternative way to write the interaction potential is in
terms of the matrix Kμ

ν ¼ δμν − γμν, giving

U½g; f� ¼
X4
k¼0

ckUkðKÞ; ð6Þ

where the interaction terms UkðKÞ are again defined as in
(2c) after the replacement γ → K, and both sets of coupling
constants bk and ck are linearly related. It is desirable to
exactly reproduce the Fierz-Pauli mass term in the weak
field limit, which is expressed by means of the matrix K as

þm2
FP

2
ð½K�2 − ½K2�Þ: ð7Þ

Hence, it can be tracked down directly from the quadratic
contribution of the potential in the K formulation just by
choosing c2 ¼ −1 and κ ¼ κg, which makes the parameter
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m2 in action (2a) become precisely the Fierz-Pauli mass in
flat spacetime. In other words, one of the coupling con-
stants is not free since it is chosen a priori as the Fierz-Pauli
mass. Returning to the γ formulation, this implies

−1 ¼ c2 ¼ b2 þ 2b3 þ b4 ⇒ b2 ¼ −1 − 2b3 − b4: ð8Þ

We will use this normalization of the couplings throughout
our work, so the constant b2 will not appear as it is replaced
in favor of b3 and b4.

III. KERR-SCHILD ANSATZ IN BIGRAVITY

The first nontrivial rotating solution in bigravity was
found by Babichev and Fabbri [22]; it consists of a pair of
Kerr black holes with different masses but rotating with
the same angular momenta. In the following section, we
present a rederivation of this solution following a different
approach. It is done to illustrate the procedure that will
prove useful later in deducing the rotating solutions with
the cosmological constant.
The nonlinearity of Einstein field equations makes

difficult any attempt to find general solutions to a theory
of gravity. However, there are many strategies that can be
followed to reduce the level of complexity, and one of them
is to start with an educated Ansatz. For instance, almost all
known black holes can be written as so-called Kerr-Schild
transformations from the spacetime defining their asymp-
totic behavior [25]. The simplification of this Ansatz in
standard gravity lies in the fact that the field equations
become linearized exactly, i.e., without approximations.
Because in bigravity we have two sets of Einstein field

equations (3) coupled by an interaction potential (2b),
we can expect a similar simplification for such kinds of
Ansätze. Concretely, we will assume the first metric as a
Kerr-Schild transformation from Minkowski spacetime and
the second one as being proportional to a different Kerr-
Schild transformation also from Minkowski spacetime,

ds2g ¼ gμνdxμdxν ¼ ds2M þ 2S1l ⊗ l; ð9aÞ

ds2f ¼ fμνdxμdxν ¼ C2ðds2M þ 2S2l ⊗ lÞ; ð9bÞ

where ds2M is the Minkowski metric, l is the tangent
vector to a null, geodesic, and shear-free congruence on
Minkowski spacetime, S1 and S2 are a pair of scalar
profiles, and C is a dimensionless proportionality constant.
We are interested in describing stationary and axisymmetric
spacetimes with these Ansätze. Hence, the above ingre-
dients must be compatible with these symmetries, and this
is best realized in the so-called “ellipsoidal coordinates”
[26], where the Minkowski metric is written as

ds2M ¼ −dt2 þ ðr2 þ a2Þsin2θdϕ2 þ Σ
r2 þ a2

dr2 þ Σdθ2;

ð10Þ

with Σ ¼ r2 þ a2 cos2 θ. These coordinates are understood
if the Cartesian spatial slices of Minkowski spacetime are
foliated by ellipsoids of revolution,

x2 þ y2

r2 þ a2
þ z2

r2
¼ 1; ð11Þ

rather than standard spheres. Notice that the spheres are
recovered for a ¼ 0; consequently, the parameter a denotes
the departure from sphericity of the ellipsoids. The coor-
dinate r labels each ellipsoid and the angular coordinates θ
and ϕ parametrize the ellipsoids as is easily inferred from
Eq. (11). The stationary and axisymmetric isometries are
represented in this coordinates by the Killing vectors
k ¼ ∂t and m ¼ ∂ϕ, respectively. The relevance of these
coordinates lies in the fact that it is possible to prove that in
Minkowski spacetime there exists only one congruence of
shearfree null geodesics that is at the same time stationary
and axisymmetric [27]; these coordinates define a para-
metrization where the related tangent vector can be
expressed in closed form as

l ¼ dt − asin2θdϕþ Σ
r2 þ a2

dr: ð12Þ

Finally, in order to respect the stationary and axisymmetric
isometries, the profiles must be independent of the coor-
dinates t and ϕ, i.e., S1 ¼ S1ðr; θÞ and S2 ¼ S2ðr; θÞ.
All these ingredients completely determine a stationary
and axisymmetric Kerr-Schild transformation from flat
spacetime.
Let us compute now the square of the matrix γ according

to its definition (1) by taking the product

ðγ2Þμν ¼ ðημα − 2S1lμlαÞC2ðηαν þ 2S2lαlνÞ
¼ C2½δμν − 2ðS1 − S2Þlμlν�: ð13Þ

It is precisely here where the utility of the Kerr-Schild
Ansatz becomes manifest, since, independently of the seed
metric, the null character of the involved vector field makes
its contribution to the matrices nilpotent, which leads to a
truncation of the matrix power expansion for the square
root. Hence, it is straightforward to find a closed form for
the square root matrix using the Kerr-Schild Ansätze:

γμν ¼ C½δμν − ðS1 − S2Þlμlν�: ð14Þ

Now we may proceed to write down the interaction
terms (4), supported by the previously mentioned nilpotent
property which allows us to build any power of the square
root matrix as
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ðγnÞμν ¼ Cn½δμν − nðS1 − S2Þlμlν�; ð15Þ

arriving at these particularly simple expressions,

Vμ
ν ¼ P1δ

μ
ν − CP0ðS1 − S2Þlμlν; ð16aÞ

Vμ
ν ¼

P2

C3
δμν −

P0

C3
ðS1 − S2Þlμlν; ð16bÞ

where the coefficients are linear combinations of the
coupling constants:

P0 ≡ −2Cb4 þ CðC − 4Þb3 þ b1 − 2C; ð17aÞ

P1 ≡ 3C2b4 − C2ðC − 6Þb3 − 3Cb1 − b0 þ 3C2; ð17bÞ

P2 ≡ −CðC2 − 3Þb4 − 3CðC − 2Þb3 − b1 þ 3C: ð17cÞ

In the following section, we use these expressions to prove
a circularity theorem, which is the basis of the integration
procedure allowing us to obtain rotating solutions from the
Kerr-Schild Ansatz [27].

IV. A CIRCULARITY THEOREM

We start by recalling that for any stationary axisymmetric
spacetime with commuting Killing vector fields k ¼ ∂t and
m ¼ ∂ϕ, the following geometrical identities hold [28]:

Ck ≡ d � ðk∧m∧ dkÞ − 2 � ðk∧m∧RðkÞÞ ¼ 0; ð18aÞ

Cm ≡ d � ðk∧m∧dmÞ − 2 � ðk∧m∧RðmÞÞ ¼ 0: ð18bÞ

Here the Killing fields are understood as one-forms, k ¼
gμνkνdxμ and m ¼ gμνmνdxν, while the Ricci one-forms
amount to RðkÞ ¼ Rμνkνdxμ and RðmÞ ¼ Rμνmνdxμ. These
identities are the basis of the so-called “circularity theorem”
in general relativity; in vacuum they imply that the
functions under the differential are constants, which in
turn must vanish at the symmetry axis where m ¼ 0;
consequently,

k∧m∧dk ¼ 0 ¼ k∧m∧dm: ð19Þ

These are the Frobenius integrability conditions defining
circularity; i.e., the planes orthogonal to the Killing vectors
at any point are integrable to surfaces orthogonal to the
Killing fields in the whole spacetime. Choosing coordinates
along Killing fields and on their orthogonal surfaces, the
circular metric becomes block diagonal; the iconic example
are the well-known Boyer-Lindquist coordinates [29] of the
Kerr black hole [23].
The standard circularity argument of general relativity

for stationary and axisymmetric configurations cannot be
straightforwardly extended to bigravity due to the non-
trivial interaction terms (4). However, for the Kerr-Schild

Ansätze (9), which are not circular by construction, we will
establish a circularity theorem. This result will fix the
angular dependencies of the involved profiles, imposing at
the same time a constraint between the coupling constants.
This theorem reduces each Einstein equation to a single
independent equation that we easily integrate in the rest of
the section.
We start by calculating the following quantities, using

the Kerr-Schild Ansatz (9a) in both the definition of the
Killing one-forms and the interaction term (16a),

�ðk∧m∧dkÞ
lt

¼�ðk∧m∧dmÞ
lϕ

¼−
2lt sinθ

Σ
∂θðΣS1Þ; ð20Þ

�ðk∧m∧VðkÞÞ
lt

¼ �ðk∧m∧VðmÞÞ
lϕ

¼ −CP0ðS1 − S2Þ � ðk∧m∧lÞ; ð21Þ

where the interaction one-forms are defined analogously
to the Ricci one-forms as VðkÞ ¼ Vμνkνdxμ and VðmÞ ¼
Vμνmνdxμ. Using Einstein equations for the metric gμν in
the identities (18) and taking into account the explicit
expressions of the above quantities, we arrive at the
following identity,

lϕ
lt
Ck − Cm ¼ − � ðk∧m∧dkÞd

�
lϕ
lt

�
¼ 0; ð22Þ

which implies the circularity conditions (19). Using the
explicit expressions (20), the circularity automatically
fixes the angular dependence of the profile. Additionally,
taking into account the circularity in the identities (18)
together with the Einstein equations necessarily implies
that the expressions (21) must also be identically zero. This
imposes a constraint between the coupling constants for the
nontrivial case of the different profiles. Exactly the same
can be concluded for the second metric; we can repeat the
same arguments for the equations analogous to (18)–(22)
built from fμν. Hence, we establish a circularity theorem for
both metrics which has as its consequences

Siðr; θÞ ¼
rMiðrÞ

Σ
; P0 ¼ 0; i ¼ 1; 2: ð23Þ

Now the integration of the remaining Einstein equations
is straightforward. Bearing in mind the circularity restric-
tions, the interaction terms (16) reduce to the diagonal form

Vμ
ν ¼ P1δ

μ
ν; Vμ

ν ¼
P2

C3
δμν; ð24Þ

and the only independent equations for each Einstein set are
the following combinations:
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2rM1

Δ1

�
Gr

t þ
a

r2 þ a2
Gr

ϕ

�
−
�
Gr

r −
m2κg
κ

Vr
r

�

¼ 2r2

Σ2
M0

1 þ
m2κg
κ

P1 ¼ 0; ð25aÞ

2C2rM2

Δ2

�
Gr

t þ
a

r2 þ a2
Gr

ϕ

�
− C2

�
Gr

r −
m2κf
κ

Vr
r

�

¼ 2r2

Σ2
M0

2 þ
m2κf
κ

P2

C
¼ 0; ð25bÞ

with Δi ¼ r2 þ a2 − 2rMiðrÞ, i ¼ 1, 2. Because Σ carries
the only θ dependence on the right-hand side, the only
way to fulfill these equations is if each term independently
vanishes, implying M1ðrÞ ¼ m1, M2ðrÞ ¼ m2, and
P1 ¼ 0 ¼ P2, with m1 and m2 being independent integra-
tion constants. The rest of the Einstein equations are
automatically satisfied. Finally, the most general family
of stationary axisymmetric Kerr-Schild transformations
from flat spacetime solving the bigravity equations is

ds2g ¼ ds2M þ 2m1r
Σ

l ⊗ l; ð26aÞ

ds2f ¼ C2

�
ds2M þ 2m2r

Σ
l ⊗ l

�
; ð26bÞ

P0 ¼ P1 ¼ P2 ¼ 0; ð26cÞ

where the Minkowski metric and the null vector l written in
ellipsoidal coordinates are given by (10) and (12), respec-
tively. Additionally, the constraints between the coupling
constants (26c) are read from definitions (17) and are not
satisfied for C ¼ 1, which justify the use of the proportion-
ality constant. This solution corresponds to a pair of Kerr
black holes [23] with the same angular momenta but
different masses. It was originally obtained in [22] by
direct substitution. The link between the coupling constants
used in their work and ours is the following,

b0 ¼ −
3αþ β − Λg þ 3

1 − κ̄Λf
; b1 ¼

2αþ β þ 1

1 − κ̄Λf
;

b3 ¼
β

1 − κ̄Λf
; b4 ¼

α − β þ κ̄Λf − 1

1 − κ̄Λf
;

κg
κ
m2 ¼ ð1 − κ̄ΛfÞm̄2; ð27aÞ

where in Ref. [22], m̄ is the mass, κ̄ is the ratio of Einstein
constants for both metrics, and Λg;f are the dimensionless
cosmological constants.
It is worth noting that although the circularity theorem

applies to both metrics, one could find the Boyer-Lindquist
coordinates to block-diagonalize one of them, but since
the masses are not equal, those coordinates are not suitable

to diagonalize simultaneously the second metric, a fact
already noticed by Babichev and Fabbri [22].

V. KERR–(A)DS BLACK HOLES IN BIGRAVITY

The rotating solutions found by Babichev and Fabbri in
[22] are without doubt an interesting and nontrivial result
extending the scope of the physics of black holes that can
be understood under a ghost-free dynamics. At the same
time, it is a little surprising to find just asymptotically flat
configurations since the coupling constants b0 and b4 in
action (2) play the role of cosmological constants for each
metric. This suggests the possibility that rotating configu-
rations can be generalized to include asymptotic behaviors
with nontrivial constant curvature. These spacetimes are
very well known in general relativity in the presence of a
cosmological constant and correspond to the Kerr–(A)dS
black hole originally discovered by Carter in [24]. The
possibility of their inclusion within the bigravity vacua was
also discussed in Ref. [22]; they use rotating generaliza-
tions of the Eddington-Finkelstein null coordinates that
they intend to generalize in the presence of a cosmological
constant. As we identify in the previous section, the success
in the absence of a cosmological constant is due more to the
underling Kerr-Schild structure. Fortunately, Carter himself
presented the Kerr–(A)dS black holes in a generalized
Kerr-Schild form starting from the (anti)–de Sitter space-
time [30], and this form has even been amenable to higher-
dimensional extensions [26]. This will be precisely our
starting point in the search for a generalization of the
solutions [22]. We use the fact that the Kerr-Schild Ansätze
(9) can be generalized by taking as the seed the (A)dS
spacetime instead of the flat one,

ds2g ¼ gμνdxμdxν ¼ ds20 þ 2S1l ⊗ l; ð28aÞ

ds2f ¼ fμνdxμdxν ¼ C2ðds20 þ 2S2l ⊗ lÞ; ð28bÞ

where, in the conventions of [26], the (A)dS metric in
ellipsoidal coordinates is

ds20 ¼ −
ð1 − λr2ÞΔθ

1þ λa2
dt2 þ ðr2 þ a2Þsin2θ

1þ λa2
dϕ2

þ Σ
ð1 − λr2Þðr2 þ a2Þ dr

2 þ Σ
Δθ

dθ2: ð29Þ

Here, Δθ ¼ 1þ λa2 cos2 θ, again Σ ¼ r2 þ a2 cos2 θ, and
the constant curvature is fixed by the scalar R ¼ 12λ, which
determines the effective cosmological constant Λeff ¼ 3λ,
with λ ¼ �1=l2 being the inverse of the square (A)dS
radius. The null, geodesic, and shear-free vector field on
(A)dS is [26]
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l ¼ Δθ

1þ λa2
dt −

asin2θ
1þ λa2

dϕþ Σ
ð1 − λr2Þðr2 þ a2Þ dr:

ð30Þ

In these coordinates, again the stationary and axisymmetric
isometries are manifest if the scalar profiles are also
invariant along the Killing fields k ¼ ∂t and m ¼ ∂ϕ by
choosing S1 ¼ S1ðr; θÞ and S2 ¼ S2ðr; θÞ. The Minkowski
limit of Sec. III is consistently recovered for the vanishing
curvature, λ ¼ 0.
The key to success in the Kerr-Schild transformations is

that the form of the square root matrix (14) is unaltered by
the replacement in the Ansatz described before; this implies
that the interaction terms remain the same as in (16),
so the procedure will closely resemble the one where the
Minkowski spacetime is chosen as the seed. In fact, the
circularity theorem of Sec. IV applies unchanged since
Eqs. (20)–(22) look exactly the same for λ ≠ 0. As a
consequence, one arrives again at the circular profiles and
the same constraint (23). As we have seen, the circularity
implies the diagonalization of the interaction terms (16),
and the fact that there is only one independent equation for
each Einstein system,

2rM1

Δr
1

�
1

1 − λr2
Gr

t þ
a

r2 þ a2
Gr

ϕ

�
−
�
Gr

r −
m2κg
κ

Vr
r

�

¼ 2r2M0
1

Σ2
þm2κgP1

κ
þ 3λ ¼ 0; ð31aÞ

2C2rM2

Δr
2

�
1

1 − λr2
Gr

t þ
a

r2 þ a2
Gr

ϕ

�

− C2

�
Gr

r −
m2κf
κ

Vr
r

�
¼ 2r2M0

2

Σ2
þm2κfP2

κC
þ 3λ ¼ 0;

ð31bÞ

where Δr
i ¼ r2 þ a2 − 2rMiðrÞ − λr2ðr2 þ a2Þ. Again

the dependence in θ is fixed, and the above equations
are only satisfied if each functionally independent term
on θ vanishes separately, which means M1ðrÞ ¼ m1 and
M2ðrÞ ¼ m2, with m1 and m2 arbitrary and independent
integration constants, and new constraints on the coupling
constants. Hence, we can write the new solution as

ds2g ¼ ds20 þ
2m1r
Σ

l ⊗ l; ð32aÞ

ds2f ¼ C2

�
ds20 þ

2m2r
Σ

l ⊗ l
�
; ð32bÞ

P0 ¼ 0; κgP1 ¼
κfP2

C
¼ −

3λκ

m2
; ð32cÞ

where the (A)dS metric, ds20, in ellipsoidal coordinates is
given in (29), their null vector l is (30), and definitions (17)
determine the new constraints (32c) for the coupling
constants, allowing the single effective cosmological con-
stant Λeff ¼ 3λ. This solution corresponds to a family of
stationary-axisymmetric Kerr-Schild transformations from
(anti–)de Sitter spacetime which describes two Kerr–(A)dS
black holes with the same angular momenta and (A)dS radii
but independently defined masses.
Now it is possible to have a trivial proportionality

constant, C ¼ 1, but at the cost of constraining the effective
cosmological constant as Λeff ¼ 3λ ¼ −ðκf=κÞm2 (notice
that m2 is no longer the mass square in this context;
hence, it is just a no necessarily positive coupling constant).
Additionally, just as in the asymptotically flat problem,
both metrics are circular, but it is not possible to diago-
nalize them together through the same Boyer-Lindquist-
like transformation.

VI. DISCUSSION

In this paper we have explored the consequences of using
Kerr-Schild transformations for the dynamics of ghost-free
bigravity. The first case studied corresponded to rotating
asymptotically flat spacetimes producing the solution of two
Kerr black holes with different masses already reported by
Babichev and Fabbri [22]. We managed to advance a little
further in the comprehension of how this configuration
appears since our Ansätze were not the Kerr black holes
themselves but rather the most general stationary-axisym-
metricKerr-Schild transformations from flat spacetime [27].
It is particulary simple to calculate the interaction terms in
this case; the null character of the Kerr-Schild vector gives
rise to a nilpotent contribution; consequently, any matrix
power series is necessarily truncated, especially the one
defining the square root matrix encoding the interactions.
This allowsus to find that thedynamicsof the theory imposes
a circularity theorem applicable to both metrics. As a
consequence, the resulting profiles necessarily have to be
those of the Kerr spacetime, but for independent masses. No
other rotating solution of massive (bi)gravity with a flat
asymptotic can be constructed in this manner.
Of course, the existence of more general rotating sol-

utions, whose integration is tackled by different procedures,
remains an open problem. For example, an interesting
question is if it is possible to have solutions not only with
different masses but also with different angular momenta.
This question was already posed in Ref. [22], where no
definite answer was given due to the manifest difficulty of
the involved calculations. A starting point to explore this
question is to consider the slight modification of the Kerr-
Schild Ansätze (9), in which the seed flat spacetimes of each
metric are foliated by revolution ellipsoids (11) with differ-
ent ellipticity parameters a1 and a2. The shear-free null
geodesics of each differently foliated flat spacetime will be
accordingly parametrized, and unfortunately the nilpotent
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property giving rise to the simple expression (14) for the
square root matrix will no longer apply. However, in this
case, the square rootmatrix can still be calculated bygoing to
the tetrad formalism, where the chosen tetrads must satisfy
the so-called symmetrization condition which warrants their
equivalence to the metric formulation [31,32]. It is possible
to show that the symmetrization condition necessarily
requires that a1 ¼ a2, which returns us to the setting
analyzed in our paper. This points to a possible obstruction
to the existence of two ghost-free interacting metrics with
different angular momenta. Interestingly, this would have
the advantage that both metrics become singular exactly at
the same spacetime locus: the famous ringlike singularity
of the Kerr black hole [corresponding to Σ ¼ 0, or, equiv-
alently, the interception of the plane z ¼ 0 with the r ¼ 0
revolution ellipsoid (11)]. In other words, two different
angular momenta would suppose the existence of two
ringlike singularities, making evenmore complex the causal
structure of a rotating bigravity spacetime.
Another generalization also discussed in Ref. [22] is the

possibility of having asymptotically (A)dS rotating space-
times. Their strategy, based on the use of rotating gener-
alizations of the Eddington-Finkelstein null coordinates,
ends up being too difficult to apply in the presence of a
cosmological constant. However, once one identifies that
the fundamental underlying null structure is the one
associated with a Kerr-Schild transformation, the generali-
zation to include an asymptotic cosmological constant is
straightforward. This is the focus of the second case under
study, where we manage to repeat the arguments and find a
new rotating solution to the bigravity equations consisting
of two Kerr-(A)dS black holes sharing the same angular
momentum and (A)dS radius but having independent
masses. Three constraints between the coupling constants
and the proportionality constant defining the second metric
are needed in order to allow this configuration. The first one
is a result of the circularity of these backgrounds and is
independent of the existence of an effective cosmological
constant. The other two constraints define the same
effective cosmological constant for each metric. Thanks
to the nontrivial character of this effective cosmological
constant, the bigravity interaction potential is no longer
vanishing, which means these black holes are not
decoupled as in the asymptotically flat case. Seemingly,
one could think of generalizing this result by considering

two different (A)dS radii λ1 and λ2 for each metric in the
Ansätze (28). This consideration would spoil, of course, the
simplifications in finding the square root matrix brought by
the Kerr-Schild Ansatz, but we could switch to the tetrad
formalism and go forward. What we found is that even
letting the angular momenta and cosmological constants be
unconstrained, the same symmetrization condition as in the
asymptotically flat case requires both angular momenta and
both cosmological constants to be equal, making our
consideration in this sense the most general.
Finally, with our approach, it is very easy to charge one

of the two asymptotically (A)dS black holes by coupling
the Maxwell field to the corresponding metric, let us say
gμν. This was first shown in the asymptotically flat case by
Babichev and Fabbri [22]. The Kerr-Schild Ansatz is
extended to the charged case by choosing the vector
potential as proportional to the null vector l, which in
(A)dS is (30). It is an easy task to solve the Maxwell
equations guided by the circularity that must satisfy a
stationary axisymmetric electromagnetic field [28]; the
result is A ¼ qrl=Σ where q is the electric charge.
Consequently, the profiles are again the circular ones
and only the first of them becomes modified since now
M1ðrÞ ¼ m1 − q2=2r, giving a Kerr-Newmann-(A)dS
black hole coupled to a Kerr-(A)dS one with the same
properties and constraints as before. One can also ask what
kind of rotating configurations could lead to coupling the
Maxwell field nonminimally via the effective metric
that has been intensely analyzed recently in the literature
[33]. It is possible to show that our approach is incom-
patible with this nonminimal coupling and, therefore, to
favor only the minimal coupling to a single metric, as we
just described.

ACKNOWLEDGMENTS

This work has been funded by Grants No. 175993,
No. 178346, No. 243342, and No. 243377 from CONACyT,
together with Grants No. 1121031, No. 1130423, and
No. 1141073 from FONDECYT. E. A. B. was partially sup-
ported by the “Programa Atracción de Capital Humano
Avanzado del Extranjero, MEC” from CONICYT. D. H. B.
and J. A.M. Z. were supported by the “Programa de Becas
Mixtas” from CONACyT.

[1] C. de Rham, G. Gabadadze, and A. J. Tolley, Phys. Rev.
Lett. 106, 231101 (2011).

[2] S. F. Hassan and R. A. Rosen, J. High Energy Phys. 02
(2012) 126.

[3] D. G. Boulware and S. Deser, Phys. Rev. D 6, 3368 (1972).

[4] K. Hinterbichler, Rev. Mod. Phys. 84, 671 (2012).
[5] C. de Rham, Living Rev. Relativity 17, 7 (2014).
[6] C. de Rham and L. Heisenberg, Phys. Rev. D 84, 043503

(2011).
[7] M. S. Volkov, J. High Energy Phys. 01 (2012) 035.

ROTATING (A)DS BLACK HOLES IN BIGRAVITY PHYSICAL REVIEW D 93, 024049 (2016)

024049-7

http://dx.doi.org/10.1103/PhysRevLett.106.231101
http://dx.doi.org/10.1103/PhysRevLett.106.231101
http://dx.doi.org/10.1007/JHEP02(2012)126
http://dx.doi.org/10.1007/JHEP02(2012)126
http://dx.doi.org/10.1103/PhysRevD.6.3368
http://dx.doi.org/10.1103/RevModPhys.84.671
http://dx.doi.org/10.12942/lrr-2014-7
http://dx.doi.org/10.1103/PhysRevD.84.043503
http://dx.doi.org/10.1103/PhysRevD.84.043503
http://dx.doi.org/10.1007/JHEP01(2012)035


[8] M. von Strauss, A. Schmidt-May, J. Enander, E. Mortsell,
and S. F. Hassan, J. Cosmol. Astropart. Phys. 03 (2012) 042.

[9] M. S. Volkov, Phys. Rev. D 86, 061502 (2012).
[10] Y. Akrami, T. S. Koivisto, and M. Sandstad, J. High Energy

Phys. 03 (2013) 099.
[11] F. Koennig, A. Patil, and L. Amendola, J. Cosmol.

Astropart. Phys. 02 (2014) 029.
[12] K. Koyama, G. Niz, and G. Tasinato, Phys. Rev. Lett. 107,

131101 (2011); Phys. Rev. D 84, 064033 (2011).
[13] D. Comelli, M. Crisostomi, F. Nesti, and L. Pilo, Phys. Rev.

D 85, 024044 (2012).
[14] T. M. Nieuwenhuizen, Phys. Rev. D 84, 024038 (2011).
[15] L. Berezhiani, G. Chkareuli, C. de Rham, G. Gabadadze,

and A. J. Tolley, Phys. Rev. D 85, 044024 (2012).
[16] M. S. Volkov, Phys. Rev. D 85, 124043 (2012).
[17] R. Brito, V. Cardoso, and P. Pani, Phys. Rev. D 88, 064006

(2013).
[18] E. Babichev and A. Fabbri, J. High Energy Phys. 07 (2014)

016.
[19] J. Enander and E. Mörtsell, J. Cosmol. Astropart. Phys. 11

(2015) 023.
[20] A. J. Tolley, D.-J. Wu and S.-Y. Zhou, Phys. Rev. D 92,

124063 (2015).

[21] E. Babichev and R. Brito, Classical Quantum Gravity 32,
154001 (2015).

[22] E. Babichev and A. Fabbri, Phys. Rev. D 90, 084019 (2014).
[23] R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).
[24] B. Carter, Commun. Math. Phys. 10, 280 (1968).
[25] R. P. Kerr and A. Schild, Proc. Symp. App. Math. 17, 199

(1965).
[26] G.W. Gibbons, H. Lu, D. N. Page, and C. N. Pope, J. Geom.

Phys. 53, 49 (2005).
[27] E. Ayón-Beato, M. Hassaïne, and D. Higuita-Borja,

arXiv:1512.06870.
[28] M. Heusler, Black Hole Uniqueness Theorems, (Cambridge

University Press, Cambridge, England, 1996).
[29] R. H. Boyer and R.W. Lindquist, J. Math. Phys. (N.Y.) 8,

265 (1967).
[30] B. Carter, Black Holes (Les Houches Lectures), edited by

B. S. DeWitt and C. DeWitt (Gordon and Breach,
New York, 1972); Gen. Relativ. Gravit. 41, 2873 (2009).

[31] K. Hinterbichler and R. A. Rosen, J. High Energy Phys. 07
(2012) 047.

[32] M. S. Volkov, Phys. Rev. D 86, 104022 (2012).
[33] C. de Rham, L. Heisenberg, and R. H. Ribeiro, Classical

Quantum Gravity 32, 035022 (2015).

ELOY AYÓN-BEATO et al. PHYSICAL REVIEW D 93, 024049 (2016)

024049-8

http://dx.doi.org/10.1088/1475-7516/2012/03/042
http://dx.doi.org/10.1103/PhysRevD.86.061502
http://dx.doi.org/10.1007/JHEP03(2013)099
http://dx.doi.org/10.1007/JHEP03(2013)099
http://dx.doi.org/10.1103/PhysRevLett.107.131101
http://dx.doi.org/10.1103/PhysRevLett.107.131101
http://dx.doi.org/10.1103/PhysRevD.84.064033
http://dx.doi.org/10.1103/PhysRevD.85.024044
http://dx.doi.org/10.1103/PhysRevD.85.024044
http://dx.doi.org/10.1103/PhysRevD.84.024038
http://dx.doi.org/10.1103/PhysRevD.85.044024
http://dx.doi.org/10.1103/PhysRevD.85.124043
http://dx.doi.org/10.1103/PhysRevD.88.064006
http://dx.doi.org/10.1103/PhysRevD.88.064006
http://dx.doi.org/10.1007/JHEP07(2014)016
http://dx.doi.org/10.1007/JHEP07(2014)016
http://dx.doi.org/10.1088/1475-7516/2015/11/023
http://dx.doi.org/10.1088/1475-7516/2015/11/023
http://dx.doi.org/10.1103/PhysRevD.92.124063
http://dx.doi.org/10.1103/PhysRevD.92.124063
http://dx.doi.org/10.1088/0264-9381/32/15/154001
http://dx.doi.org/10.1088/0264-9381/32/15/154001
http://dx.doi.org/10.1103/PhysRevD.90.084019
http://dx.doi.org/10.1103/PhysRevLett.11.237
http://dx.doi.org/10.1090/psapm/017/0216846
http://dx.doi.org/10.1090/psapm/017/0216846
http://dx.doi.org/10.1016/j.geomphys.2004.05.001
http://dx.doi.org/10.1016/j.geomphys.2004.05.001
http://arXiv.org/abs/1512.06870
http://dx.doi.org/10.1063/1.1705193
http://dx.doi.org/10.1063/1.1705193
http://dx.doi.org/10.1007/s10714-009-0888-5
http://dx.doi.org/10.1007/JHEP07(2012)047
http://dx.doi.org/10.1007/JHEP07(2012)047
http://dx.doi.org/10.1103/PhysRevD.86.104022
http://dx.doi.org/10.1088/0264-9381/32/3/035022
http://dx.doi.org/10.1088/0264-9381/32/3/035022

