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We show that supercritically charged black holes with a Newman–Unti–Tamburino (NUT) parameter
provide a new setting for traversable wormholes. This does not require exotic matter, but there is a price—
the Misner string singularities. Without assuming time periodicity to make Misner strings unobservable, we
show that, contrary to expectations, geodesics do not stop there. Moreover, since there is no central
singularity, the spacetime turns out to be geodesically complete. Another unpleasant feature of spacetimes
with NUTs is the presence of regions where the azimuthal angle φ becomes timelike, signalling the
appearance of closed timelike curves (CTCs). We show that among them there are no closed timelike or
null geodesics, so the freely falling observers should not encounter causality violations. Considering
worldlines of charged particles, we find that, although these can become closed in the vicinity of the
wormhole throat for large enough charge-to-mass ratio, the noncausal orbits are still disconnected from the
distant zones. Integrating the geodesic equations completely, we demonstrate the existence of timelike and
null geodesics connecting two asymptotic regions of the wormhole, such that the tidal forces in the throat
are reasonably small. We also discuss bounds on the NUT charge which follow from the Schwinger pair
creation and ionization thresholds.
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I. INTRODUCTION

In this paper we would like to explore a novel aspect of
nonvacuum spacetimes endowed with a Newman–
Unti–Tamburino (NUT) parameter. Recall that the vacuum
Taub solution was first presented as an anisotropic cos-
mological solution [1] and later rediscovered by Newman,
Tamburino and Unti [2] as a static black hole (for more
details see [3]). This latter solution has a unique event
horizon of the Schwarzschild type, the corresponding
internal metric being just the original Taub cosmology.
Soon after Brill presented a corresponding pair for the
Einstein-Maxwell system [4], its black hole face is com-
monly called the Reissner-Nordström-NUT (RN-NUT)
solution. Depending on the relative values of parameters,
it can have two horizons, one degenerate horizon, or no
horizon. The cosmological Brill solution corresponds to the
region between two horizons in the first case. Here we
investigate the third case of no horizon, which surprisingly

was not discussed in the literature so far. It corresponds to a
Lorentzian wormhole connecting two asymptotically
locally flat spaces. Because it is free of a central singularity,
there is no place for a mass or charge, so that the Brill
wormhole is a realization of Wheeler’s “charge without
charge” and “mass without mass” [5].
An astonishing feature of this “NUTwormhole” is that it

does not demand an exotic matter violating the null energy
condition (NEC), or the averaged NEC (ANEC), crucial for
the existence of spherical [6–8] or nonspherical [9] asymp-
totically flat wormholes. Indeed, it is supported by a
Maxwell field which is not exotic. But the price for that
is the presence of a metric singularity on the polar axis
known as the Misner string, which is analogous to the Dirac
string of the magnetic monopole in electrodynamics. To
make the string unobservable, Misner suggested to impose
periodicity of the time coordinate [10], which entails
quantization of the energy of matter fields [11,12] similar
to Dirac charge quantization. This, however, leads to
violation of causality throughout the spacetime, so it can
hardly be considered as a physically acceptable condition.
In the black hole case, another problem is that analytic
continuation cannot be consistently carried out through
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both horizons, so that the resulting spacetime is geodesi-
cally incomplete. In the wormhole case there are no
horizons and analytic continuation just reduces to the
extension of the semiaxis or the radial variable r to
the whole axis. So in the case of the Misner interpreta-
tion, the wormhole RN-NUT spacetime is geodesically
complete.
In an alternative interpretation of the Misner string

suggested by Bonnor [13] (see also [14]), the time
periodicity condition is abandoned and the polar axis is
treated as a kind of topological defect with its proper matter
source. We will assume this viewpoint here. Since the polar
axis is now an unremovable singularity of spacetime, it was
expected so far that geodesics will stop here. Recently, we
have shown [15] that it is not true for the pure Taub-NUT
metric. Here we extend this proof to the Brill charged
solution as well. Our proof is independent on whether one
assumes the Misner or Bonnor interpretation of the space-
time. In the wormhole case, the spacetime structure is
particularly simple, and since there is no singularity other
than the polar axis this means that the Brill spacetime is
geodesically complete.
Also, in the Bonnor interpretation, there is a region

around the Misner string where closed timelike curves
(CTCs) exist. Recently, we have shown that in the case of
the Taub-NUT spacetime these CTCs are not geodesic for a
suitable choice of a parameter fixing the position of the
Misner string. Thus, a freely falling observer will not be
confronted with causality violation. Here we extend the
proof to the Brill solution too. Since we deal with charged
wormholes, it is natural to consider also the worldlines of
charged particles. We show that a circular worldline lying at
the throat of a massless magnetically charged wormhole
can be causality violating for large enough charge-to-mass
ratio and a certain sign of the charge. At the same time, we
show that all the wordlines extending to large distances
from the throat are causal. Together with the proof of
geodesic completeness, this makes us believe that NUT
wormholes are free from traditional objections against
solutions with NUTs.
Passing to the analysis of the physical features of the

solutions, we first demonstrate the existence of timelike
and null geodesics connecting two asymptotic zones.
Then we investigate the tidal forces in the vicinity of the
throat and show that these may be reasonably small
for a large NUT charge. More restrictive bounds on this
parameter are obtained by demanding that the electric
field in the throat is lower than the Schwinger pair
creation or the matter destruction characteristic fields. We
concludewith some suggestions for further theoreticalwork.

II. THE BRILL SOLUTION

The solution of the Einstein-Maxwell system of
equations found by Brill in 1964 [4] soon after the
discovery of Newman, Tamburino and Unti [2] reads

ds2 ¼ −fðdt − 2nðcos θ þ CÞdφÞ2 þ f−1dr2

þ ðr2 þ n2Þðdθ2 þ sin2θdφ2Þ;
A ¼ Φðdt − 2nðcos θ þ CÞdφÞ; ð2:1Þ

with

f ¼ ðr −mÞ2 þ b2

r2 þ n2
; Φ ¼ qrþ pðr2 − n2Þ=2n

r2 þ n2
;

ðb2 ¼ q2 þ p2 −m2 − n2Þ: ð2:2Þ
The metric depends only on the combination e2 ¼ q2 þ p2

of the electric (q) and magnetic (p) charges. For e ¼ 0
(b2 ¼ −ðm2 þ n2Þ), the solution reduces to the Taub-NUT
solution. For n ¼ 0 (b2 ¼ e2 −m2), it reduces to the dyonic
Reissner-Nordström solution. It is particularly simple in the
massless case m ¼ 0 for the charges satisfying e2 ¼ 2n2

(b2 ¼ n2), then the gravistatic potential fðrÞ ¼ 1, and the
solution looks like a “pure” NUT. Finally, for q2 þ p2 ¼
m2 þ n2 (b ¼ 0), the solution is a special case of the Israel–
Wilson–Perjès (IWP) solution:

ds2 ¼−fðdtþ ~A:d~xÞ2þf−1d~x2; A¼Φðdtþ ~A:d~xÞ;
f−1 ¼ 1þ2σ cosαþσ2; ∇∧ ~A¼ 2sinα∇σ;
Φ¼ f−1

2sinα
½sinβþ2σ sinðαþβÞþσ2 sinð2αþβÞ�; ð2:3Þ

where σð~xÞ a harmonic function.
The value of the parameter C introduced above can be

modified by a “large” coordinate transformation:

t → tþ 2nðC − C0Þφ: ð2:4Þ
Such a transformation will generically lead to an intrinsi-
cally different spacetime. Thus, Eq. (2.1) actually defines a
one-parameter family of spacetimes, to which we will refer
collectively as “the Brill spacetime.” We will keep this
parameter C free until Sec. VI.
In the case of a nonvanishing NUT charge, n ≠ 0, the

Brill solution (2.1) is not singular at r ¼ 0, as can be
checked by computing the quadratic curvature invariants,

RμνRμν ¼
4e4

ðr2 þ n2Þ4 ; ð2:5Þ

RμνρσRμνρσ ¼
8e4

ðr2þn2Þ4þ
48

ðr2þn2Þ6
×fðm2−n2Þ½r6−15n2r4þ15n4r2−n6�
−2mr½ðe2−6n2Þr4− ð10e2−20n2Þn2r2
þð5e2−6n2Þn4�þe2½ðe2−10n2Þr4
−2ð3e2−10n2Þn2r2þðe2−2n2Þn4�g: ð2:6Þ
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The Kretschmann scalar (2.6) (where the first and second
terms are, respectively, the Ricci square and Weyl square
contributions) reduces to that of the Reissner-Nordström
solution [16] for n2 ¼ 0, and to that of the Schwarzschild-
NUT solution [17] for e2 ¼ 0. In view of its nonsingularity,
the Brill solution can be considered as a regularization of
the Reissner-Nordström solution. For b2 < 0 it has, just
as the RN solution, two horizons. For b2 ¼ 0, it has, just as
the extreme RN solution, a double horizon. However, for
b2 > 0, contrary to the RN solution, it is not singular, but
has the (Lorentzian) wormhole topology, the coordinate r
varying in the whole real axis, with two asymptotic regions
r ¼ �∞. As r > 0 decreases, 2-spheres r ¼ constant
shrink until a minimal sphere of area 4πn2 (the wormhole
neck) for r ¼ 0, and then expand as r < 0 continues to
decrease. Because of the absence of a point singularity,
there is no source for the various (gravi)electric and
(gravi)magnetic fluxes, and thus this solution realizes the
Wheeler program [5] of mass without mass, charge without
charge, etc. For a more recent discussion, see [18]. Note
also that (as in the Taub-NUT case e ¼ 0), the mass
parameter m is not positive definite, as the reflection
r → −r changes its sign and that of the electric charge q.
The price to pay for this regularization of the RN point

singularity is the introduction of the Misner string singu-
larity. The Misner string (which coincides with the Dirac
string for p ≠ 0) consists of two disconnected infinite
components, the North string piercing the North poles
θ ¼ 0 of all the spheres r ¼ constant (r ∈ R) and its
counterpart, the South string for θ ¼ π, except in the
special gauges C ¼∓1, where only one component
(South or North) is singular. The Misner string singularity
can be transformed away altogether if the time coordinate t
is periodically identified with period 8nπ. However, there is
also a price to pay for this. First, there are closed timelike
curves (CTC) everywhere in all the Brill spacetimes.
Second, in the case b2 ≤ 0, the Kruskal continuation cannot
be consistently carried out with this periodical identifica-
tion, so that the black hole Brill spacetimes are not
geodesically complete [3,19], i.e. the Misner string singu-
larity has been traded for a singular horizon.
So let us keep the usual real time axis, thereby retaining

also the Misner string. In this case it has been argued [19]
(in the case of the Taub-NUT black hole spacetime, but
exactly the same argument could be formulated in the
general Brill case) that geodesics must terminate at the
Misner string singularity, just because this is a metric
singularity. Actually, geodesic motion does not depend on
the metric itself, but only on the connections, so a metric
singularity does not necessarily imply geodesic termina-
tion. Geodesics do indeed terminate at a conical singularity
(the analogy made in [19]), but not at the metric singularity
r ¼ 0 of the plane with metric dl2 ¼ dr2 þ r2dθ2. The
investigation of geodesic motion in the metric (2.1), carried
out in the next section, will show (1) that all geodesics

which hit the Misner string cross it smoothy, so that all the
Brill spacetimes with n2 ≠ 0 are geodesically complete,
and (2) that if furthermore b2 > 0, the resulting Lorentzian
wormholes are traversable.

III. GEODESICS: ANGULAR
AND TEMPORAL MOTION

The partially integrated geodesic equations for the metric
(2.1) are [20]

fðrÞð_t − 2nðcos θ þ CÞ _φÞ ¼ E; ð3:1Þ

_φ ¼ LzðθÞ
ðr2 þ n2Þsin2θ ; ð3:2Þ

½ðr2 þ n2Þ_θ�· ¼ ðr2 þ n2Þ sinθ cosθ _φ2 − 2nE sinθ _φ; ð3:3Þ

fðrÞ−1ð_r2 − E2Þ þ ðr2 þ n2Þð_θ2 þ sin2 θ _φ2Þ ¼ ε; ð3:4Þ

where · ¼ d=dτ, with τ an affine parameter,

LzðθÞ ¼ Jz − 2nE cos θ; ð3:5Þ

and E and Jz are the constants of the motion associated with
the cyclic variables t and φ (see Appendix A). In the
following we assume without loss of generality that for
timelike and null geodesics E > 0, thereby defining the
orientation of time, and n > 0, the sign of Jz remaining
arbitrary. Equation (3.4) is ds2 ¼ εdτ2, with ε ¼ −1, 0 or 1
for timelike, null or spacelike geodesics, respectively.
The analysis of geodesic motion in the Brill metric

parallels that of a charged particle in the field of a magnetic
monopole [20]. Similarly to the case of the Taub-NUT
metric, the metric (2.1) admits four Killing vectors, one
(K0) generating time translations, and three (Ki) generating
the rotation group Oð3Þ. Due to this spherical symmetry,
the angular components of the geodesic equations can be
first integrated by

~Lþ ~S ¼ ~J; ð3:6Þ

where ~J is a constant vector, the total angular momentum,

which is the sum of an orbital angular momentum ~L and a

“spin” angular momentum ~S. The components of ~L and ~S
are given in [20], where it is shown that

~L ¼ ðr2 þ n2Þr̂ ∧ _̂r; ~S ¼ 2nEr̂; ð3:7Þ

where

r̂ ¼ ðsin θ cosφ; sin θ sinφ; cos θÞ ð3:8Þ

is a unit vector normal to the two-sphere.
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It follows from the orthogonality of ~L and ~S that

~J · r̂ ¼ 2nE: ð3:9Þ

In the magnetic monopole case, such a first integral means
that the trajectory of the charged particle lies on the surface
of a cone with axis ~J originating from the magnetic
monopole source r ¼ 0. However the Taub-NUT or Brill
gravitational field has no source, i.e. no apex for the “cone.”
Actually, the content of (3.9) is that the geodesic intersects
all the two-spheres of radius r on the same small circle, or
parallel, C with polar axis ~J. Squaring (3.6) leads to

~J2 ¼ ~L2 þ 4n2E2; ð3:10Þ

which can be rewritten as

ðr2 þ n2Þ2½_θ2 þ sin2θ _φ2� ¼ l2; ð3:11Þ

with l2 ¼ J2 − 4n2E2 (J2 ¼ ~J2). Insertion into (3.4) leads
to the effective radial equation

_r2 þ fðrÞ
h l2

r2 þ n2
− ε
i
¼ E2; ð3:12Þ

which is identical to the equation for radial motion in the
equatorial plane for the metric (2.1) without the term
−2n cos θdφ, i.e. for b2 > 0 motion in a static spherically
symmetric wormhole geometry of the Ellis type [21] (the
m ¼ 0 symmetrical Ellis wormhole [22] for fðrÞ ¼ 1).

A. Angular motion

Knowing (in principle) the solution to (3.12), one can
insert it in (3.11), where _φ can be eliminated by using (3.2)
to yield a first-order differential equation for θðτÞ. Then the
solution can be used to obtain φðτÞ and tðτÞ by integrating
(3.2) and (3.1). The Misner string singularities θ ¼ 0, π do
not seem to play any role in the complete integration thus
carried out. To check this, we follow [19] and replace the
affine parameter τ with the new variable λ defined by

dτ ¼ ðr2 þ n2Þdλ; ð3:13Þ

which increases monotonously with τ. Putting

ξ ¼ cos θ; ð3:14Þ

the differential equation for θðλÞ reads�
dξ
dλ

�
2

¼ −J2ξ2 þ 4nEJzξþ ðl2 − J2zÞ: ð3:15Þ

Assuming J2 ≠ 0 (J2 ¼ 0 implies from (3.10) E ¼ 0 and
l ¼ 0), Eq. (3.15) is solved (up to an additive constant to λ)
by [19]

cos θ ¼ J−2½2nEJz þ lJ⊥ cosðJλÞ�; ð3:16Þ

where

J2⊥ ¼ J2 − J2z : ð3:17Þ

Because the constants of the motion occurring in (3.16) are

related by the two Pythagorean decompositions of ~J2 (3.10)
and (3.17), it will be useful to trade them for the two angles
η and ψ defined by

2nE ¼ J cos η; l ¼ J sin η;

Jz ¼ J cosψ ; J⊥ ¼ J sinψ ; ð3:18Þ

with 0 ≤ η ≤ π=2 and 0 ≤ ψ ≤ π. Then (3.16) reads

cos θ ¼ cosψ cos ηþ sinψ sin η cosðJλÞ: ð3:19Þ

Equation (3.15) has two turning points θ� such that

cos θ� ¼ J−2ð2nEJz � lJ⊥Þ ¼ cosðψ ∓ ηÞ: ð3:20Þ

These can be rewritten as

θþ ¼
����ψ − η if ψ ≥ η

−ψ þ η if ψ ≤ η
;

θ− ¼
����ψ þ η if ψ ≤ π − η

−ψ − ηþ 2π if ψ ≥ π − η
: ð3:21Þ

It follows that the trajectory crosses periodically the Misner
string, and cos θ� ¼ �1 only if

ψ ¼ ηðJz ¼ 2nEÞ or ψ ¼ π − ηðJz ¼ −2nEÞ: ð3:22Þ

The only geodesics which can cross both components
of the Misner string are those with η ¼ π=2 (E ¼ Jz ¼ 0),
leading to _t ¼ _φ ¼ 0; according to (3.12), in the
stationary sector (fðrÞ > 0) these can only be spacelike
geodesics. The trajectory can also stay on the Misner string
component θ ¼ 0 or π if (3.22) is satisfied with η ¼
0 (2nE ¼ J).
The differential equation (3.2) for φ can be rewritten as

dφ
dλ

¼ 1

2

�
Jz − 2nE

1 − cos θðλÞ þ
Jz þ 2nE

1þ cos θðλÞ
�
; ð3:23Þ

with cos θðλÞ given by (3.16). This is solved by [19]

φ − φ0 ¼ arctan

�
cosψ − cos η
1 − cosðψ − ηÞ tan

Jλ
2

�

þ arctan

�
cosψ þ cos η
1þ cosðψ − ηÞ tan

Jλ
2

�
; ð3:24Þ
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with φ0 an integration constant. This can be simplified to

φ − φ0 ¼ arctan

�
2 sin η tanðJλ=2Þ

sinðη − ψÞ − sinðηþ ψÞtan2ðJλ=2Þ
�
:

ð3:25Þ
For trajectories crossing the North Misner string, with
ψ ¼ η (Jz ¼ 2nE), this reduces to

φ − φ1 ¼ arctan

�
cos η tan

�
Jλ
2

��
; ð3:26Þ

with φ1 ¼ φ0 − sgnðtanðJλ=2ÞÞπ=2. A similar formula
applies in the case of the South Misner string, with η
replaced by π − η and Jλ replaced by Jλ − π (note that
according to (3.16) the North Misner string is crossed for
λ ¼ 2kπ=J, while the South Misner string is crossed for
λ ¼ ð2kþ 1Þπ=J, k integer). In the case e.g. of the North
Misner string, this gives, on account of (3.16),

cosðφ − φ1Þ ¼
Jz
J⊥

tan

�
θ

2

�
; ð3:27Þ

consistent with (3.9) [the choice φ1 ¼ 0 in (3.27) corre-

sponds to the choice ~J ¼ ðJ⊥; 0; JzÞ in (3.9)]. Clearly, the
Misner string is completely transparent to the geodesic
motion.
When the parameter λ varies over a period, e.g.

λ ∈ ½−π=J; π=J�, the argument of the first or second arctan
in (3.24) varies from −∞ to þ∞ for Jz ∓ 2nE > 0, and
fromþ∞ to −∞ for Jz ∓ 2nE < 0. It is identically zero for
Jz ∓ 2nE ¼ 0. Accordingly, the variation of φ over a
period is

Δφ ¼ π½sgnðJz − 2nEÞ þ sgnðJz þ 2nEÞ�: ð3:28Þ

This means that for J2z > 4n2E2 (jΔφj ¼ 2π) the parallel C
circles the North-South polar axis, i.e. the Misner string.
For J2z < 4n2E2, (jΔφj ¼ 0) C does not circle the Misner
string. And for Jz ¼ �2nE (jΔφj ¼ π), C goes through the
North or South pole, as discussed above.
The two turning points (3.21) coincide if either ψ ¼ 0

or η ¼ 0:
(a) ψ ¼ 0 or π. The constant vector ~J is aligned with the z

axis, on which the parallel C is centered:

θ ¼ η or π − η; φ − φ0 ¼ �Jλ: ð3:29Þ

As discussed in [20], the solution (3.16), (3.25) can
always be rotated to this case, the Misner string being
then rotated away from the z axis.

(b) η ¼ 0. The orbital angular momentum vanishes, l ¼ 0,
and the motion is purely radial,

θ ¼ ψ ; φ − φ0 ¼ 0: ð3:30Þ
This will be further discussed in Sec. IV.

B. Temporal motion

After transforming to the geodesic variable τ by (3.13),
the solution to (3.1) can be written as the sum

tðλÞ ¼ trðλÞ þ tθðλÞ; ð3:31Þ

where the radial and angular contributions to tðλÞ solve the
equations

dtr
dλ

¼ E
r2 þ n2

fðrÞ ; ð3:32Þ

dtθ
dλ

¼ 2nðcos θ þ CÞðJz − 2nE cos θÞ
sin2θ

: ð3:33Þ

The solution to equation (3.32) depends on the solution of
the equation for radial motion (3.12). We consider here
equation (3.33). This can be rewritten as

dtθ
dλ

¼ 4n2Eþn

�ðCþ 1ÞðJz− 2nEÞ
1− cosθðλÞ þ ðC− 1ÞðJzþ 2nEÞ

1þ cosθðλÞ
�
;

ð3:34Þ

with cos θðλÞ given by (3.16). The explicit solution to
equation (3.34) is [19]

tθðλÞ ¼ t̄θðλÞ

¼ 4n2Eλþ 2nðCþ 1Þ arctan
�
cosψ − cos η
1 − cosðψ − ηÞ tan

Jλ
2

�

þ 2nðC − 1Þ arctan
�
cosψ þ cos η
1þ cosðψ − ηÞ tan

Jλ
2

�
;

ð3:35Þ

in the interval −π=J < λ < π=J. The resulting variation of
tθ over a period 2π=J of λ is

Δtθ ¼ 2πn

�
4nE
J

þ ðCþ 1ÞsgnðJz − 2nEÞ

þ ðC − 1ÞsgnðJz þ 2nEÞ
�
; ð3:36Þ

so that the solution for generic values of λ is

tθðλÞ ¼ t̄θðλÞ þ
�
Δtθ −

8πn2E
J

�
E

�
Jλ
2π

þ 1

2

�
: ð3:37Þ

For parallels C which do not circle the Misner string
(J2z < 4n2E2), Δtθ is negative and independent of the value
of C, Δtθ ¼ −4πnð1 − cos ηÞ. In the limit when such
parallels contract to a point, the motion becomes purely
radial (2nE ¼ J) and the angular contribution tθ vanishes.
Let us recall here that, while the solution for the spatial

components of the geodesic (the orbit) can be rotated to a
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frame in which the z axis points along the total angular
momentum vector ~J, this is not the case for the time
coordinate tðλÞ. The correct equation for the time evolution
in this rotated frame is given (for the choice C ¼ 0) in
[20], Eq. (24a).

IV. GEODESICS: THE COMPLETE ORBITS

A. The radial potential

The radial equation (3.12) can be written in the familiar
form �

dr
dτ

�
2

þUðrÞ ¼ E2 þ ε; ð4:1Þ

with the effective potential

UðrÞ ¼ ε
2mrþ n2 − α2

ρ2
þ l2½ðr −mÞ2 þ b2�

ρ4
; ð4:2Þ

with α2 ¼ b2 þm2 ¼ e2 − n2. Its derivative generically
can be presented as U0 ¼ P4ðrÞ=ρ6, where P4ðrÞ is a
polynomial of fourth order in r, which, depending on
the parameter values, may have four real roots or two real
roots. In the cases m ¼ 0 or ε ¼ 0, P4ðrÞ degenerates to a
polynomial of third order with three or one real roots.
In the case of timelike geodesics (ε ¼ −1), form ≠ 0 the

potential is asymmetric under reflection r → −r. We will
assume m > 0 which corresponds to a positive mass from
the point of view of an observer at r ¼ þ∞ and negative
mass for an observer at r ¼ −∞. In the generic case one
maximum is at negative r while at r > 0 there are two
minima with a local maximum between, or only one
minimum. A typical potential with four extrema is shown
in Figs. 1–2. The case with only two extrema is illustrated

in Fig. 3. Remarkably, the potential for zero orbital
momentum l ¼ 0 generically has two extrema: a minimum
at r ¼ rþ and a maximum at r ¼ r− (see Fig. 4),

r� ¼ e2 − 2n2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4 − 4n2b2

p

2m
; ð4:3Þ

corresponding to stable or unstable equilibrium positions.
The potential for the massless wormhole m ¼ 0 is sym-
metric under reflection r → −r, and so has an extremum at
r ¼ 0, and two other extrema at r ¼ �r0:

r20 ¼
ð2b2 − n2Þl2 þ n2ðb2 − n2Þ

n2 − b2 − l2
; ð4:4Þ

provided 0<n2−b2 < l2 and l2 ≤ n2ðn2 − b2Þ=ð2b2 − n2Þ
(if 4b2 > n2=2).

FIG. 1. Radial potential corresponding to n ¼ 1, m ¼ :4,
l ¼ 2.8, b ¼ :3 with two maxima and two minima. The rightmost
one at r ¼ 16.23395,U ¼ −0.2383e − 1, not seen in this scale, is
shown separately in Fig. 2.

FIG. 2. The Newtonian potential well region of the potential
Fig. 1 with higher resolution.

FIG. 3. The potential with two extrema for nonzero orbital
momentum (n ¼ m ¼ l ¼ 1, b ¼ :3).
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The potential for null geodesics ε ¼ 0 is positive definite
(Figs. 8–10). It has either one or three extrema. In the
massless case m ¼ 0, there is an extremum at r ¼ 0, and
two other extrema at r ¼ �r1 with

r21 ¼ n2 − 2b2; ð4:5Þ

provided n2 > 2b2. In this case there is a stable circular
photon orbit at the wormhole throat r ¼ 0, with areal radius
n, and unstable photon orbits at r ¼ �r1. The purely radial
motion (l ¼ 0) of the photons is free.
By following the procedure of [19], exact solutions for

rðλÞ can be obtained in terms of Weirstrass elliptic
functions. Here we will only discuss the qualitative radial
motion for timelike or null geodesics sampling the worm-
hole (b2 > 0) geometry and consider special limiting cases
of interest. We shall work in the rotated coordinate frame in
which the z axis is along ~J, so that the polar angle θ is
constant.

B. Timelike geodesics (ε ¼ −1)

1. Scattering states

The effective potential is for m > 0 negative for large
positive r and positive for large negative r, and so presents
at least a maximum and a minimum, with rmin > rmax, and
possibly also a secondary maximum and a secondary
minimum. A test particle coming from infinity with
E2 ≥ 1 will first be accelerated in the potential well around
rmin, before either being reflected (scattered) by the
potential barrier or, if its energy is high enough, being
transmitted through the wormhole neck r ¼ rmax to the
second asymptotic sheet r → −∞.
Combining this radial motion with the angular motion

previously discussed leads to a trajectory which spirals

around the polar axis ~J at a constant angular velocity J with
respect to λ. The definition (3.13) of λ together with (4.1)
leads to the relation

dλ ¼ dr

ðr2 þ n2Þ½E2 − 1 −UðrÞ�1=2 : ð4:6Þ

Putting β2 ¼ E2 − 1, it follows that the geodesic range of λ
is given by the finite integrals,

Δλrefl ¼ 2

Z
∞

r0

dr

ðr2 þ n2Þ½β2 −UðrÞ�1=2 ; ð4:7Þ

in the case of reflection (with r0 the turning point,
Uðr0Þ ¼ β2), or

Δλtrans ¼
Z

∞

−∞

dr

ðr2 þ n2Þ½β2 − UðrÞ�1=2 ð4:8Þ

in the case of transmission (if β2 > β20 ¼ Umax). Defining
as usual the impact parameter by a ¼ l=β, the cross section
for transmission is

σtrans ¼ πa20 ¼
πl2

Umax
: ð4:9Þ

In the limiting intermediate case β2 ¼ β20, the integral (4.7)
with the lower bound rmax is logarithmically divergent, and
the trajectory, attracted by the unstable circular orbit
r ¼ rmax, spirals indefinitely towards the wormhole neck.
In the present paper, we will only evaluate these integrals
for two special cases of interest: the nonrelativistic limit and
the small-NUT limit.
The nonrelativistic limit is defined by m ¼ 0 and

b2 ¼ n2 (so that fðrÞ ¼ 1) and β2 ≪ 1. In this case,

UðrÞ ¼ l2=ðr2 þ n2Þ ð4:10Þ

leads to r20 ¼ a2 − n2, with

Δλrefl ¼
2

β

Z
∞

r0

dr

½ðr2þn2Þðr2− r20Þ�1=2
¼ 2

l
K

�
n
a

�
; ð4:11Þ

where K is the complete elliptic integral of the first kind.
In the frame ψ ¼ 0, the corresponding total angular
variation is

Δφrefl ¼ JΔλrefl ≃ 2

sin θ
K

�
β

2
cot θ

�
; ð4:12Þ

where we have used E≃ 1 for small β. If l≃ 2n tan θ is
held fixed in the nonrelativistic limit (corresponding to
large impact parameters a), Eq. (4.12) reduces (using
Kð0Þ ¼ π=2) to the finite result Δφrefl ≃ π= sin θ. If, on
the other hand, the impact parameter a is held fixed (of the

FIG. 4. The potential for zero orbital momentum l ¼ 0 and
n ¼ 1, m ¼ :4, b ¼ :5. For l ¼ 0 the extrema can be found
analytically by solving a quadratic equation.
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order of n), then the cone angle θ goes to zero, and the test
particle spirals around the polar axis many times before
being scattered back to infinity.
Similarly, in the case of transmission through the worm-

hole (a < a0 ¼ n),

Δλtrans ¼
2

β

Z
∞

0

dr

½ðr2 þ n2Þðr2 þ n2 − a2Þ�1=2

¼ 2

βn
K

�
a
n

�
: ð4:13Þ

Again, if β ≪ 1 the cone angle θ≃ βa=2n is very small,
and the test particle makes a finite but large number of turns

Δφtrans

2π
≃ 2

πβ
K

�
a
n

�
ð4:14Þ

along its path through the wormhole.
Remarkably, the number of turns remains large,

Δφtrans

2π
≃ 1

β
ð4:15Þ

in the limit of a purely radial trajectory, l ¼ 0 (a ¼ 0). This
fact, which results from the conservation of total angular
momentum (3.6) (~J ¼ ~S in the case of purely radial motion,
~L ¼ 0), is of course not possible for a classical point test
particle, but makes sense if one considers rather a small
extended solid test body. For instance, (4.15) means that a
tennis ball, of radius small before the wormhole throat
radius n, will spin around, with an angular velocity

dφ
dτ

¼ 2nE
r2 þ n2

; ð4:16Þ

which is maximum at the wormhole throat r ¼ 0, making
β−1 turns while going straight through the wormhole from
r ¼ þ∞ to r ¼ −∞.
Let us emphasize that this uniform rotation of an

extended test body in free radial fall does not depend on
the direction of this radial motion, which generically does
not coincide with that of the Misner string. From (3.19) and
(3.25), the angular motion along a parallel C is a uniform
rotation, with proper angular velocity J=ðr2 þ n2Þ. In the
limit of a purely radial motion, l → 0, the parallel C
contracts to a point θ ¼ constant, φ ¼ constant, while
the uniform rotation velocity retains the finite value
2nE=ðr2 þ n2Þ.
The small-NUT limit is motivated by the nonobservation

of NUT charge in nature. It is defined by n2 ≪ m2 and
n2 ≪ b2, so that α2 ≃ e2. In this limit the effective potential
(4.2) can be approximated by

UðrÞ≃ −2mr3 þ ðe2 þ l2Þr2 − 2ml2rþ e2l2

ðr2 þ n2Þ2 ; ð4:17Þ

and its derivative by

U0ðrÞ≃ 2r½mr3 − ðe2 þ l2Þr2 þ 3ml2r − 2e2l2�
ðr2 þ n2Þ3 : ð4:18Þ

Obviously r ¼ 0 is a maximum of UðrÞ, and an absolute
maximum because Uð0Þ −UðrÞ ≥ 0 in the small NUT
limit:

β20 ¼ Umax ≃Uð0Þ≃
�����
e2l2

n4 ðl ≠ 0Þ;
e2

n2 ðl ¼ 0Þ:
ð4:19Þ

We first consider the case of reflection (β2 < β20), which we
will discuss only in the small-velocity limit (β → 0). In this
limit l ¼ βa can be neglected (purely radial motion), so that

β2 − U ≃ −U ≃ 2mr − e2

r2 þ n2
; ð4:20Þ

with r0 ≃ e2=2m. The evaluation of the integral (4.7) yields
a small, but nonvanishing

Δφrefl

2π
≃ 2n

e
: ð4:21Þ

Transmission through the wormhole neck occurs if
β2 > β20, i.e. in the extreme-relativistic case. The cone
angle is given in this case by tan θ≃ a=2n < n=2e. In the
extreme-relativistic limit, we can approximate

β2 −U ≃ β2 −
β20n

4

ðr2 þ n2Þ2 ¼ β2
�
1 −

e2a2

ðr2 þ n2Þ2
�
: ð4:22Þ

The evaluation of the integral (4.8) yields

Δφtrans ≃ 4nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ ea

p K

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ea

n2 þ ea

r �
: ð4:23Þ

For very small impact parameters (corresponding to finite
anglar momenta l ¼ βa) a ≪ n2=e, (4.23) reduces to the
finite result Δφtrans ≃ 2π. Again, this remains valid in the
limit of a purely radial trajectory, so that a small extended
test body falling straight through the wormhole will at the
same time spin around (at a maximum proper angular
velocity dφ=dτ≃ 2β=n), making exactly one turn while
going from r ¼ þ∞ to r ¼ −∞.

2. Bound states

Bound states in the wormhole Brill geometry have some
unusual features with respect to the typical black hole
situation. The generic potential (Fig. 1) for massive
particles has two potential wells: one is at negative U in
the far region with small binding energies (nonrelativistic
Newtonian orbits) shown in Fig. 2. Another, relativistic
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potential well closer to the throat, extends to positive
energies, being separated from escape by a potential barrier
(Fig. 1) with larger binding energies. One has, therefore,
oscillating bound orbits between the two turning points of
two types: Newtonian and relativistic. At the corresponding
minima, one has two stable circular orbits. If two roots of
the equation U0ðrÞ ¼ 0 are complex, the potential has a
simpler shape with only two extrema, Fig. 3, the minimum
(potential well) being in the r > 0 region, and the maxi-
mum at some r < 0. As it is seen from this figure, the
potential well is deep and relativistic, the Newtonian well
being absent in this case.
For zero orbital momentum l ¼ 0, the potential reduces

to the simple form

UðrÞ ¼ ðr −mÞ2 þ b2

ρ2
− 1; ð4:24Þ

with a minimum and a maximum given by Eq. (4.3). One
can observe that the shape of the potential for l ¼ 0 (Fig. 3)
is qualitatively similar to that for l ≠ 0 with two extrema
(Fig. 4). Indeed, for l ¼ 0 we still have a nonzero total
angular momentum J ¼ 2nE. The bound orbits are oscil-
lating between two turning points with relativistic veloc-
ities. The test particle can remain at rest at the minimum at
r ¼ rþ provided its squared energy,

E2
0 ¼

e2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4 − 4n2b2

p

2n2
; ð4:25Þ

is positive, i.e. if b2 > 0. However for n ≠ 0, a small test
body at the equilibrium position r ¼ r0 will spin around
with angular velocity ω0 ¼ 2nE0=ðr20 þ n2Þ. In the small-
NUT limit, these l ¼ 0 equilibrium values reduce to

r0 ≃ e2

m
; E0 ≃ b

e
; ω0 ≃ 2nbm2

e5
: ð4:26Þ

The potential is particularly simple and reflection-sym-
metric in the case of the massless wormhole m ¼ 0.
Depending on the parameter values, there could be three
different cases: a potential well centered at the throat
extending to positive energy values and separated from
the scattering region by potential barriers (Fig. 5), a pure
potential barrier centered at the throat (Fig. 6) and a purely
negative potential well at the throat (Fig. 7). In the first and
the last cases one thus has stable bound orbits oscillating
around the throat, including circular ones located exactly at
the throat.
Another simple case is the near-extreme limit b2 ≪ m2.

The effective potential (4.2) has its absolute minimum at
r ¼ m (the extreme RN horizon radius) for b2 ¼ 0
(e2 ¼ m2 þ n2). So for b2 small and positive, there are
stable circular orbits at r ¼ mþ Oðb2Þ, with energy El and
proper angular velocity ωl ¼ dφ=dτ:

E2
l ≃ b2

e2 þ l2

e4
; ωl ≃ l

e2
: ð4:27Þ

C. Null geodesics (ε ¼ 0)

The effective potential for null geodesics,

UðrÞ ¼ l2½ðr −mÞ2 þ b2�
ðr2 þ n2Þ2 ; ð4:28Þ

is shown in Figs. 8–10. The discussion of the scattering of
light parallels that for timelike geodesics. Of special interest
is the scattering angle Δφrefl ¼ JΔλrefl, where Δλrefl is
given by (4.7) with β ¼ E, and J2 ¼ ð4n2 þ a2ÞE2. This
can be computed analytically in the special case m ¼ 0,
with the result

FIG. 5. The generic potential for zero mass m ¼ 0 with three
extrema and n ¼ 1, l ¼ 1, b ¼ :2.

FIG. 6. Massless wormhole potential with one maximum
(m ¼ 0, l ¼ 0.1, n ¼ 1, b ¼ 1.3).

NUT WORMHOLES PHYSICAL REVIEW D 93, 024048 (2016)

024048-9



Δφrefl ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2 þ a2

α2

s
K

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r20
α2

s !
for a2 >

n4

b2
;

Δφrefl ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2 þ a2

r20

s
K

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

α2

r20

s !
for n2 > 2b2

and 4ðn2 − b2Þ < a2 <
n4

b2
; ð4:29Þ

with

α4 ¼ a2½a2 þ 4ðb2 − n2Þ�;

r20 ¼
α2 þ a2 − 2n2

2
: ð4:30Þ

In the nonrelativistic case b2 ¼ n2, this reduces for a > n to

Δφrefl ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4n2

a2

s
K
�
n
a

�
¼ 2

sin θ
K
�
1

2
cot θ

�
; ð4:31Þ

where tan θ > 1=2, while light rays with small impact
parameters a < n (tan θ < 1=2) end up in the second
asymptotic sheet (r → −∞) with

Δφtrans ¼
4

cos θ
Kð2 tan θÞ: ð4:32Þ

Let us also note the existence, in the near-extreme limit
b2 ≪ m2, of circular null orbits at r≃m (as in the case of
massive particles) with energy

E2
l ≃ b2

l2

e4
: ð4:33Þ

FIG. 8. Generic potential for null geodesics with three extrema
(n ¼ 1, m ¼ 1=2, l ¼ 2, b ¼ :2).

FIG. 9. Massless wormhole potential for null geodesics with
one maximum (m ¼ 0, l ¼ 0.1, n ¼ 1, b ¼ 1.3).

FIG. 7. Massless wormhole potential with one minimum
(m ¼ 0, l ¼ :1, n ¼ 1, b ¼ 0.1.

FIG. 10. Massless wormhole potential for null geodesics with
three extrema (m ¼ 0, l ¼ :1, n ¼ 1, b ¼ 0.1).
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V. CHARGED PARTICLE MOTION

Consider now the nongeodesic motion of a charged
particle with mass mc and charge qc. It is convenient to
work with the covariant Lorentz equations of motion,

ð_xνgμνÞ· −
1

2
∂μgνλ _xν _xλ ¼ κFμν _xν; ð5:1Þ

where κ ¼ qc=mc. Since Aμ has only μ ¼ a ¼ ðt;φÞ
components depending only on r, θ, one has for μ ¼ a

Faν _xν ¼ − _Aa; ð5:2Þ

while for the remaining μ ¼ i ¼ ðr; θÞ components,

Fiν _xν ¼ ∂iAa _xa: ð5:3Þ

The equations of motion thus split into two groups. The
first group of equations do not contain the metric derivative
term and combine to a total derivative

ð_xνgaν þ κAaÞ· ¼ 0; ð5:4Þ

which can be integrated as before by introducing two
integrals of motion E; Jz

fðrÞð_t − 2nðcos θ þ CÞ _φÞ − κΦðrÞ ¼ E; ð5:5Þ

_xνgφν þ κAφ ¼ Jz þ 2nC; ð5:6Þ

the second one being equivalent to (3.2). In the second
group, it is enough to consider only the θ component,
taking the normalization condition (3.4) as a constraint. The
i ¼ θ component reads

½ðr2 þ n2Þ_θ�· ¼ 1

2
gab;θ _xa _xb þ κAa;θ _xa

¼ gtφ;θ_t _φþ 1

2
gφφ;θ _φ2 þ κAφ;θ _φ: ð5:7Þ

Eliminating _t from (5.5), we find that the κ terms cancel,
and we are left precisely with the equation

½ðr2þn2Þ_θ�· ¼ðr2þn2Þsinθcosθ _φ2−2nEsinθ _φ; ð5:8Þ

identical to (3.3). So the angular equations of motion are
the same as in the case of a neutral particle, leading to orbits
which lie on a “cone” of half-angle arctanð2nE=lÞ (with l
the orbital angular momentum), while in the equation for
the time evolution (3.1) and in the radial equation (3.12) the
constant E must be replaced by Eþ κΦðrÞ, leading to

_r2 þ fðrÞ
�

l2

r2 þ n2
þ 1

�
¼ ðEþ κΦðrÞÞ2; ð5:9Þ

where we took ε ¼ −1 for massive, charged particles. This
can be rewritten as

_r2 þWðrÞ ¼ 0; where

WðrÞ ¼ fðrÞ
�

l2

r2 þ n2
þ 1

�
− ðEþ κΦðrÞÞ2: ð5:10Þ

The quantity WðrÞ, however, is not convenient for the role
of the effective radial potential since it depends quadrati-
cally on E and contains unphysical negative energies. To
correctly introduce the radial potential, we have to present
this equation in the factorized form,

_r2 ¼ ðE − VþðrÞÞðE − V−ðrÞÞ; ð5:11Þ

where

V�ðrÞ ¼ −κΦ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

�
1þ l2

r2 þ n2

�s
; ð5:12Þ

so that for a particle at rest _r ¼ 0, the correct branch is1

E ¼ Vþ. Moreover, the quantity Eþ κΦðrÞ is equal to the
kinetic energy, so it has therefore to be strictly positive
(recall that f > 0 everywhere for the wormhole):

Eþ κΦðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ fðrÞ

�
l2

r2 þ n2
þ 1

�s
> 0: ð5:13Þ

It follows that E > V− always, so the particle’s motion
corresponds to E > Vþ. Also, the conditions for circular
orbits W ¼ 0 ¼ W0 are implied by the more physical
conditions Vþ ¼ Vþ0 ¼ 0 which do not contain unphysical
negative energies. So we can consider Vþ as a correct radial
potential.
To compare with the results of [23] for the motion of

charged particles in the dyonic Reissner-Nordström space-
time, one must first gauge transform our potential ΦðrÞ to a
potential vanishing at infinity Φ0ðrÞ. This transformation
and the associated shift in the integration constant E are

ΦðrÞ ¼ Φ0ðrÞ þ
p
2n

; E ¼ E0 −
κp
2n

: ð5:14Þ

Taking the NUT charge to zero, we find that the orbit of a
charged particle in the dyonic Reissner-Nordström space-
time lies on a cone of half-angle arctanðκp=lÞ, in agreement
with the results of [23].

1Recall that in special relativity the total energy of a charge in
the potential φ (note that Φ is defined with an opposite sign to φ)
satisfying ðE − eφÞ2 ¼ m2 þ p2 has to be solved with the sign
plus: E ¼ eφþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
. In our case the mass is absorbed by

the affine parameter on the worldline, so m ¼ 1.
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A. Motion in the case f ¼ 1

We restrict to the particularly simple case of the massless
wormhole with only magnetic and NUT charges related so
that fðrÞ ¼ 1,

m ¼ 0; q ¼ 0; p ¼
ffiffiffi
2

p
n; ð5:15Þ

leading to

Vþ ¼ −
κffiffiffi
2

p r2 − n2

r2 þ n2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

r2 þ n2

s
: ð5:16Þ

The potential Vþ is symmetrical under reflection r → −r.
For κ > 0 it is maximum at the wormhole throat r ¼ 0 and
monotonically decreases with growing jrj (Fig. 11). The
maximal value depends on the orbital momentum as
follows:

V0 ≡ Vþð0Þ ¼
κffiffiffi
2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

n2

r
: ð5:17Þ

For κ < 0 the shape of the potential is more diverse, as
shown in Fig. 12. In the region I,

l2

n2
< 2

ffiffiffi
2

p
jκj; ð5:18Þ

the potential has a local minimum at r ¼ 0. With growing
l2, the local minimum goes up and in the region II,

2
ffiffiffi
2

p
jκj < l2

n2
< 4κ2 þ 2jκj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 2κ2Þ

q
; ð5:19Þ

local maxima develop on both sides of the throat, with the
positions

r� ¼ �n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8κ2n2ðn2 þ l2Þ − l4

l4 − 8κ2n4

s
: ð5:20Þ

Finally, in the region III,

l2

n2
>
�
4κ2 þ 2jκj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 2κ2Þ

q 	
; ð5:21Þ

the two local maxima at r ¼ r� disappear, while the local
minimum at r ¼ 0 turns into an absolute maximum.
With the potentials shown in Figs. 11 and 12, one

deduces the following characterization of the orbits. For
κ > 0, one has orbits traversing the wormhole throat for
E > V0 corresponding to the top of the potential barrier in
Fig. 11. The orbits with E < V0 correspond to scattering on
the wormhole. For κ < 0 in the parameter region III, the
situation is the same. In region II, one has in addition bound

states between the turning points inside the potential well
between the local maxima. The same energies correspond
to scattering orbits reflected on the exterior sides of the
barriers. The region I contains bound orbits inside the well
and traversing orbits for the energies above the wells. These
can be analyzed in analogy with Sec. IV, which we leave for
future work.
The circular orbits at the throat r ¼ 0 (with areal radius

n) exist for both signs of κ. These will be interesting for
analysis of noncausality in the next section. They are
unstable for positive κ and negative κ in the region III, but
stable for negative κ in the regions I and II. The corre-
sponding gauged energy E0 ¼ Vþð0Þ þ κ=

ffiffiffi
2

p
is positive

for positive κ, but it is negative for negative κ if

FIG. 11. Radial potential for charged particle motion in the
wormhole with m ¼ 0, q ¼ 0, p2 ¼ 2n2 in the case of positive κ
for different angular momenta l2 (κ ¼ ffiffiffi

2
p

, l2 ¼ 19, 12, 6, 0
decreasing from top to bottom).

FIG. 12. Radial potential for negative κð¼ −
ffiffiffi
2

p Þ and the same
values of l2 from top to bottom.
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l2

n2
< 2κ2 − 1 ðjκj > 1=

ffiffiffi
2

p
Þ: ð5:22Þ

In the case of negative κ, two other unstable circular orbits
exist in region II at r ¼ r� corresponding to the kinetic
energy,

Eþ κΦðr�Þ ¼
l2

2
ffiffiffi
2

p jκjn2 ; ð5:23Þ

and positive total energy,

E ¼ jκjffiffiffi
2

p
�

l2

4κ2n2
þ 1þ 2n2

l2

�
: ð5:24Þ

VI. CAUSALITY

The ADM form of the metric (2.1) is

ds2 ¼ −
fðr2 þ n2Þsin2θ

Σ
dt2 þ f−1dr2 þ ðr2 þ n2Þdθ2

þ Σ
�
dφþ 2nfðcos θ þ CÞ

Σ
dt

�
2

; ð6:1Þ

with

Σðr; θÞ ¼ ðr2 þ n2Þ sin2 θ − 4n2fðcos θ þ CÞ2: ð6:2Þ

For fðrÞ > 0 (which is always the case for the wormhole
Brill solution with b2 > 0), Σ becomes negative, and closed
timelike curves (CTCs) appear, in the neighborhood of the
Misner string given by Σðr; θÞ < 0. The surface Σðr; θÞ ¼ 0
bounding this CTC neighborhood is a causal singularity of
the spacetime, where the signature of the spacetime
changes from ð−þþþÞ outside to ðþ þ þ−Þ inside.
This singularity is, just as the Misner string itself, com-
pletely transparent to geodesic motion. Nevertheless, the
occurrence of CTCs in a spacetime is usually considered to
violate causality [3,24]. An observer traveling around such
a CTC would eventually return to his original spacetime
position after a finite proper time lapse, thus opening the
possibility for time travel. However, unless this observer is
freely falling, such a CTC travel would necessarily involve
accelerations generated e.g. by rocket engines. One can
argue that the back-reaction of these matter accelerations on
the spacetime geometry will deform it in such a way that
chronology will ultimately be preserved. If this reasoning is
correct, in vacuum gravity causality violation can only
occur in spacetimes with closed timelike geodesics (CTGs),
or possibly closed null geodesics (CNGs). However, we
deal here with a charged solution, so we must also consider
the worldlines of charged particles.

A. No closed timelike or null geodesics

We now show that there are no closed timelike or null
geodesics in the Brill spacetimes with jCj ≤ 1. Closed
geodesics (or self-intersecting geodesics) occur if after a
finite lapse of affine parameter τ or of Mino time λ, all the
coordinates take again the same values (modulo 2π for the
azimuthal angle). So the perimeter of the geodesic must be
an integer multiple of the λ-period 2π=J of the angular
motion. From (3.36), during this period,

Δtθ ≥ 4πn

�
2nE
J

− 1

�
ð6:3Þ

for jCj ≤ 1. Also, from (3.32) and (3.12),

dtr
dλ

¼ Eðr2 þ n2Þ
fðrÞ ≥ E−1½l2 − εðr2 þ n2Þ�

≥ E−1½l2 − εn2�; ð6:4Þ

leading to

Δtr ≥
2π

EJ
½l2 − εn2�; ð6:5Þ

over the same period. Adding the two together, we obtain

Δt ¼ Δtr þ Δtθ ≥
2π

E
½J − 2nE − εn2=J�: ð6:6Þ

For ε ¼ −1 this is clearly positive definite. For ε ¼ 0, this
can vanish only for 2nE ¼ J (l ¼ 0). But in this case
Δtθ ≥ 0, while dtr=dλ, and thus also Δtr, is positive
definite. Thus, for jCj ≤ 1 all timelike or null geodesics
are causal (future directed).
The situation for jCj > 1 is less obvious. We shall only

discuss the case of null geodesics. As we shall show,
(1) there are always CNGs in any given Brill spacetime if
jCj is large enough, and (2) for any given value of jCj > 1,
there are Brill spacetimes with CNGs.
First, we observe that for C > 1,

Δtθ ¼ 4πn

�
2nE
J

− jCj
�
; ð6:7Þ

for orbits which circle the South Misner string
(Jz < −2nE). The same relation (6.7) holds for C < −1
in the case of orbits which circle the North Misner string
(Jz > 2nE). We wish to show that, if the orbit is closed, this
negative angular contribution (2nE < J) can be exactly
balanced by the positive radial contribution, leading to
Δt ¼ 0 and thus to a closed geodesic. Depending on the
values of the model parameters, two situations can lead to
closed orbits with ε ¼ 0. Either UðrÞ has a local minimum
Umin > 0 between two local maxima, and there are bound
states in the resulting potential well, leading to closed orbits
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if the periods of the radial and angular motion are
commensurate (i.e. for a dense set of values of the energy).
OrUðrÞ has only a maximum, corresponding to an unstable
circular orbit. Let us discuss these two cases separately.
In the first case, from (3.32) and (3.12),

dtr
dλ

¼ l2
E

UðrÞ ≤ l2
E

Umin
: ð6:8Þ

It then follows that, over an angular period,

Δt ≤ 4πn

��
1þ l2

4n2Umin

�
2nE
J

− jCj
�

< 4πn
�
1þ l2

4n2Umin
− jCj

�
; ð6:9Þ

vanishing for jCj ¼ 1þ l2=4n2Umin [which depends only
on the wormhole parameters ðm; n; bÞ]. For higher values
of jCj, the bound state null geodesics will be past directed.
In the case of a circular orbit of radius r0 and energy

E0 ¼ Uðr0Þ (circling the North or South Misner string as
above),

dtr
dλ

¼ l2

E0

¼ J2 − 4n2E2
0

E0

; ð6:10Þ

leading to

Δt ¼ 2π

E0

½J − 2nE0jCj�; ð6:11Þ

which vanishes for

jCj ¼ J
2nE0

¼
�
1þ l2

4n2Uðr0Þ
�

1=2

ð6:12Þ

(value depending only on the wormhole parameters). So
again in this case, for any given set of Brill parameters
ðm; n; bÞ, there will be CNGs for large enough jCj.
We now formulate the converse, and stronger, proposi-

tion: that for any given jCj > 1, one can find a set ðm; n; bÞ
such that there are CNGs. Presumably this also extends to
CTGs. Actually this proposition is easy to prove in the
small NUT limit. There is an unstable circular orbit at
r≃ 0, of energy E0 ≃ l2e2=n4 for l ≠ 0. From the above,
there is a family of corresponding closed null geodesics for

jCj≃
�
1þ n2

4e2

�
1=2

⇒ jCj≃ 1þ n2=8e2; ð6:13Þ

which proves the proposition.

B. Closed charged worldlines

Since we deal with a charged solution, it is natural to also
consider the worldlines of charged particles. In this case we
have

Δtr ≥
2π

Jf
ðEþ κΦÞðr2 þ n2Þ; ð6:14Þ

which is positive as in the geodesic case by virtue of (5.13).
The angular contribution Δtθ still satisfies Eq. (6.3)
(restricting to jCj ≤ 1) and can be negative. Consider
circular orbits at the wormhole throat r ¼ 0 in the case
fðrÞ ¼ 1, q ¼ 0, p ¼ ffiffiffi

2
p

n. From (5.13), Δtr ¼ 2πnγ=J,
with γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ n2

p
, so that the total Δt is equal to

Δt ¼ 2πn
J

ðγ þ 4nE − 2JÞ; ð6:15Þ

with J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2E2 þ γ2 − n2

p
. Denoting Δ ¼ ðγ þ 4nEÞ2 −

4J2 and using E ¼ Vþð0Þ given by (5.17), we obtain

Δ ¼ 5ðγ − γ−Þðγ − γ−þÞ;

γ� ¼ −
2
ffiffiffi
2

p
κn

5

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

5

2κ2

r �
: ð6:16Þ

Since γ must satisfy γ > 1, we find that Δ is nonpositive for

κ < −
9

4
ffiffiffi
2

p ; γ− ≤ γ ≤ γþ: ð6:17Þ

Note that the upper bound (6.17) is smaller than
4
ffiffiffi
2

p jκjn=5, leading to l2=n2 < 32κ2=25, which is much
lower than the upper bound (5.19) of region II, so that the
circular worldlines r ¼ 0 satisfying (6.17) are stable. We
expect that nearby bound worldlines in the potential well
above r ¼ 0 will similarly violate causality. However, such
worldlines are confined to a narrow region around the
wormhole throat, so that these causality violations are
actually unobservable, for an observer initially living at a
large distance r1 from the wormhole.
Now let us argue that all the worldlines which can be

followed by such an observer returning to his starting point
are causal. The negative angular contribution to the total
round trip time lapse Δttot is given by the contribution (6.3)
during one period multiplied by a finite number of periods
proportional to

Δλrefl ¼ 2

Z
r1

r0

dr

ðr2 þ n2Þ½ðE − V þ ðrÞÞðE − V−ðrÞÞ�1=2
:

ð6:18Þ

This will be easily balanced by the positive radial con-
tribution which is proportional to the distance between the
turning point r0 and r1, so that the worldline will remain
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causal in the large. The observer travelling in a charged
rocket and returning to his starting point will not meet his
younger self.
However, this reasoning fails if, for a given value of the

orbital angular momentum l, the traveler’s energy is just a
bit below the maximum of VþðrÞ. The number of λ periods
(6.18) diverges logarithmically for r0 ¼ rmax so that, for r0
close to rmax, the charged particle makes many turns around
the wormhole throat before returning towards infinity.
Then, the angular time lapse could be very large (and
negative), and the worldline could possibly self-intersect at
multiple radii r ¼ ri, if the attractor unstable worldline at
r ¼ rmax was closed. But we have shown above that the
wordlines at r ¼ 0 can be closed only if they are stable. In
the region II parameter range (5.19), there are unstable
circular orbits at r ¼ r�. During a period, the total Δt is

Δt ¼ 2π

J

h
ðr2� þ n2ÞðEþ κΦðr�ÞÞ

þ 4n2E − 2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2E2 þ l2

p i
; ð6:19Þ

where r� is given by (5.20), Eþ κΦðr�Þ by (5.23) and E
by (5.24). To see whether the square root term may
dominate, we calculate the difference of the squared
quantities,

½ðr2�þn2ÞðEþ κΦðr�ÞÞþ4n2E�2−4n2ð4n2E2þ l2Þ

¼ 8κ2n4l2

ðl4−8κ2n4Þ2 ½l
6þ2ðl2þ4n2Þðl4−8κ2n4Þ�; ð6:20Þ

which is positive by virtue of Eq. (5.19), so that these
unstable circular wordlines are causal. So, while this does
not constitute a rigorous proof, we believe that there are no
closed charged wordlines extending to spacelike infinity.
The case of wormhole parameters more generic than those
(5.15) considered here should similarly be investigated.

VII. PHYSICAL ASPECTS

A. Tidal accelerations and traversability

In order to be traversable, macroscopic Lorentzian
wormholes should not only be geodesically complete, with
a class of timelike or null geodesics connecting the two
asymptotic regions, but they should also be such that the
tidal gravitational forces exerted on an observer travelling
through remain reasonably small [6]. We will discuss here
only the case of radial geodesics (l ¼ 0). In the non-
relativistic case (fðrÞ ¼ 1), the radial velocity is constant,
so the longitudinal tidal force will vanish. However, we
have noted previously that an extended object falling
radially through the wormhole will rotate at a uniform
proper angular velocity,

ωðrÞ ¼ 2nE
r2 þ n2

; ð7:1Þ

which should generate a centrifugal acceleration að~rÞ. In
flat space, this would be given in cylindrical coordinates
ðρ; zÞ by

aflat ¼ ρ̈ ¼ ω2ðzÞρ≃ 4n2

ðr2 þ n2Þ2 ρ; ð7:2Þ

where we have assumed for simplicity that the direction of
motion is along the z axis, approximated r≃ z (the radius
of the object should be small before the wormhole throat
radius n), and E≃ 1 (nonrelativistic limit). Taking as in [6]
the reference values ρmax ¼ 2 m for the radius of the object
and amax ¼ g ¼ 9.8 ms−2 (Earth gravity), we arrive at the
rough estimate at the throat r ¼ 0,

ρ̈

ρ
ð0Þ≃ 4

n2
∼
amax

ρmax
∼ 5 s−2; ð7:3Þ

leading to a NUT charge n ∼ 1 s, corresponding to a
wormhole throat radius n ∼ 3.108 m (or in mass units,
n ∼ 105M⊙).
To improve on this flat-space estimate, we must compute

the tidal acceleration between two neighboring points of the
freely falling test body with purely spatial separation δx in
the comoving frame [6], i.e. such that

uμδxμ ¼ 0: ð7:4Þ

This tidal acceleration is given by the geodesic deviation
equation [25]

δẍμ ≡ D2

dτ2
δxμ ¼ −Rμ

ρνσuρδxνuσ: ð7:5Þ

Before proceeding, we note that in the nonrelativistic case
the length scale is set by the sole NUT parameter n, so that
the Riemann tensor components at the throat, and hence the
relative tidal accelerations, must be of order n−2, as in our
flat-spacet estimate.
In the case of radial geodesics the four-velocity uμ ¼ _xμ

has only two nonvanishing components u0 and u1, so that
the condition (7.4) reduces to

ðg00δtþ g03δφÞu0 þ g11δru1 ¼ 0; ð7:6Þ

which may be used to eliminate δt from the right-hand side
of (7.5). Taking into account the nonvanishing values of the
Riemann tensor components listed in Appendix A, we thus
obtain for the longitudinal and transverse accelerations,
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δ̈r ¼ −½Rr
ttrδtu0u1 þ Rr

trtδrðu1Þ2 þ Rr
tφrδφu0u1�

¼ ðf − 1Þð3r2 − n2Þ þ 4mr
ðr2 þ n2Þ2 δr; ð7:7Þ

δθ̈ ¼ −½Rθ
tθtðu0Þ2 þ Rθ

rθrðu1Þ2�δθ

¼ rðr −mÞ − ðr2 − n2Þf
ðr2 þ n2Þ2 δθ; ð7:8Þ

and a similar equation for δφ̈. In the nonrelativistic case
f ¼ 1 (implyingm ¼ 0), the longitudinal acceleration (7.7)
vanishes identically, while the transverse acceleration takes
the value at the wormhole throat r ¼ 0:

δθ̈ð0Þ ¼ 1

n2
δθ: ð7:9Þ

This is precisely one fourth of the flat space estimate (7.3),
meaning that our traversability estimate for the NUT charge
should be halved, n ∼ 0.5 s ∼ 1.5 × 108 m. At present we
have no simple explanation for this factor 1=4.
For generic wormhole parameters, the longitudinal and

transverse accelerations at the wormhole throat take the
values

δ̈rð0Þ ¼ −
e2 − 2n2

n4
δr;

δθ̈ð0Þ ¼ e2 − n2

n4
δθ: ð7:10Þ

The transverse (centrifugal) acceleration is always positive
(e2 − n2 > m2), while the longitudinal acceleration can
have either sign. In the small-NUT limit, the two accel-
erations become large (of order e2=n4) and opposite in sign,
so that they work together to compress the test body along
the direction of infall.

B. Electromagnetic fields

In the present case, the Lorentzian wormhole geometry is
generated by electric and/or magnetic fields which will
become large near the wormhole throat. For simplicity we
discuss only the case of purely electric or purely magnetic
monopole fields. In Gaussian units these fields are given by

E ¼ F01 ¼ q
r2 − n2

ðr2 þ n2Þ2 ðp ¼ 0Þ;

B ¼ 1ffiffiffiffiffijgjp F23 ¼ p
r2 − n2

ðr2 þ n2Þ2 ðq ¼ 0Þ; ð7:11Þ

with e2 ¼ q2 þ p2 > n2 þm2 for NUT wormholes. We
first consider a purely electric field, in which case q > n, so
that the maximal field is Emax > n−1. A first constraint to be
satisfied for the validity of the classical approximation
which we have used is that the Schwinger pair creation

should be unobservable. In flat space, the Schwinger
critical field in ℏ ¼ c ¼ 1 units reads ESch ¼ μ2e=e0, where
μe, e0 are the mass and the charge of the electron. The ratio
can be put into the following form,

Emax

ESch
¼ e0

M⊙
n

mPl

M⊙

�
mPl

μe

�
2

; ð7:12Þ

where mPl is the Planck mass. Inserting here mPl=M⊙ ¼
1.1 × 10−38,mPl=μe ¼ 2.4×1022, e0 ¼ 137−1=2 one obtains

Emax

ESch
¼ 0.54 × 106

M⊙
n

: ð7:13Þ

Thus, in the purely electric case, the classical picture is
valid if n≳ 5 × 105M⊙ (which is of the order of the
geometric radius of the Sun R⊙ ∼ 7 × 108 m). This lower
bound for n, which should be improved by considering pair
creation in the wormhole spacetime metric is only six times
larger than our traversability estimate.
We should also consider the effect of large electric fields

on infalling test bodies. While ordinary matter is electri-
cally neutral, so that its motion is not affected by electro-
magnetic fields, it is made up of charged atomic nuclei and
electrons, which are sensitive to these fields. For a space-
ship to go through the wormhole without damage, the
electric field at the throat should be smaller than the
ionization threshold. One can take as the relevant electric
field the Coulomb field of the electron at the Bohr radius:

Ei ¼
e0
r2B

; rB ¼ 1

μee20
: ð7:14Þ

One finds in the same units:

Ei

ESch
¼ e60 ¼ 137−3 ¼ 0.4 × 10−6: ð7:15Þ

Therefore, the threshold for traversability of an electric
wormhole by an unmanned spaceship is n≳ 1012M⊙∼
1015 m ∼ 0.1 lt-yr. Traversability by a manned spaceship
would impose even more drastic constraints. For instance,
molecular air is ionized by a constant electric field
E ∼ 3 × 106 Vm−1 ∼ 10−6 Ei; to avoid this the throat
radius n should be at least equal to 105 lt-yr, of the order
of the radius of our Galaxy, which seems totally unrealistic.
In the case of a purely magnetic wormhole no pair

creation occurs, but above the Schwinger threshold one can
expect phenomena of superstrong magnetic field such as
in certain neutron stars. For the wormhole radius value n ∼
1.5 × 108 m derived in the previous subsection, the worm-
hole-throat field values would be Bð0Þ ∼ 3.3 × 1010 T. For
comparison, human exposure to a constant magnetic field
of up to B ∼ 8 T can be tolerated [26]. Taking the latter
(magnetic) value as reference would lead to the lower
limit for the wormhole radius n > 6 × 1017m ∼ 60 lt-yr,
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corresponding to a huge NUT charge, larger than our
previous tidal force estimate by 9 orders of magnitude.
However, traversability of a purely magnetic NUT worm-
hole by an unmanned spaceship would seem to be feasible
for not too large wormhole radii.

VIII. OUTLOOK

In this paper we have suggested a novel type of worm-
hole without exotic matter. These wormholes are supported
by matter sources satisfying the NEC condition and evade
the NEC-violation theorem due to the presence of a
nondiagonal (t, φ) component of the stress tensor, asso-
ciated with a NUT charge. The price to pay for this is that
the spacetime is not strictly asymptotically flat, but only
locally asymptotically flat, and presents a Misner string
singularity. The particular realization described here is
supported by a Maxwell field and corresponds to a super-
critically charged RN-NUT solution without a central
singularity or horizons. Extending the results of [15], we
have analyzed in detail the geodesic motion and shown that
the Misner string is transparent for geodesic motion without
periodic identification of time, so that the spacetime is
geodesically complete. This result is independent of the
actual form of the gravitational potential fðrÞ and holds
also for the black hole and extreme black hole RN-NUT
solutions. A curious effect of the NUT charge is that small
freely falling test bodies are endowed with a proper angular
momentum or spin, which is aligned with the direction of
infall and is independent of that of the Misner string.
Even without periodic identification of time, the

RN-NUT spacetimes contain regions with closed timelike
curves. We have shown, however, that for some subfamily
of these spacetimes there are no closed timelike or null
geodesics, so that freely falling observers should not
encounter causality violations. On the other hand, the
analysis of the motion of charged test particles has
revealed that there are wordlines which can be closed
or become past directed if their charge-to-mass ratio is
large enough. This was found, however, for orbits thread-
ing the throat and not reaching asymptotic regions of
spacetime, so the existence of observable manifestations
of noncausality still remains open.
We have also investigated under what conditions these

RN-NUT wormholes are macroscopically traversable, and
shown that the gravitational tidal forces at the throat could
be kept reasonably small for a reasonably small NUT
charge. However, the electromagnetic forces acting on
ordinary matter under the same conditions would be
extremely large, and could be kept under control only in
the case of huge NUT charges.
This work could be extended in several directions. First,

our analysis was purely classical. One should explore
propagation of waves and quantum implications of
NUT wormholes, as well as their stability [27]. Also,
similar NUT wormhole solutions could presumably be

constructed in other gravitating field theories. One such
solution was found recently in the Einstein-Skyrme theory
[28] after our paper was completed. Five-dimensional
vacuum gravity is known to admit NUTless Lorentzian
wormhole solutions [29], which are however not travers-
able [30]. We suggest that the possible existence of
geodesically complete and traversable NUTty wormhole
solutions to this theory be investigated. Other five-
dimensional theories, such as five-dimensional minimal
supergravity (which can be consistently truncated to the
four-dimensional Einstein-Maxwell theory [31]), should
also presumably admit such solutions.
Moreover, by superposing NUT–anti-NUT configura-

tions one could try to construct asymptotically flat worm-
hole spacetimes. In the extreme black hole case (b2 ¼ 0),
one can construct stationary Israel–Wilson–Perjès NUT–
anti-NUT superpositions. These are singular if time is
periodically identified [32], but can be regular (with only a
Misner string connecting the two event horizons) if it is not.
From the present analysis, they should be geodesically
complete. It would be interesting to extend this to the
construction of slowly orbiting NUT-anti-NUT wormhole
dynamical solutions in the near-extreme case, i.e. for small
b2 > 0. These should be asymptotically flat, with only a
noncontractible Misner string loop threading the two
wormhole throats. If the parameters could be arranged
so that this two-wormhole configuration with two regions
at spacelike infinity presented a high degree of symmetry,
we speculate that it might be possible to identify these two
asymptotically flat regions [33–35] to yield a traversable
Wheeler-Misner wormhole [36] connecting two distant
parts of a spacetime with only one region at infinity.
We conclude with some astrophysical speculations.

Recently, it was suggested that wormholes could exist in
the galactic centers [37,38] or in the outer regions of halos
[39,40]. The option to have a wormhole without exotic
matter seems attractive: its mass and NUT charge could be
reasonably of the scale of the mass concentration in the
galactic centers (108–109M⊙), in which case it would not
be destroyed by quantum effects. However, crucial for this
wormhole is the supercritical electric or magnetic charge,
whose origin in astrophysical conditions is unclear for the
moment. Nevertheless we think that further study of new
realizations of gravitational fields with NUTs may be useful
for future astrophysical applications.
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APPENDIX A: SYMMETRIES

The metric (2.1) has the following four Killing vectors
KðaÞ; a ¼ x; y; z; t:

KðxÞ ¼ −
2nð1þC cosθÞcosφ

sinθ
∂t − sinφ∂θ − cosφ cotθ∂φ;

KðyÞ ¼ −
2nð1þC cosθÞ sinφ

sinθ
∂t þ cosφ∂θ − sinφ cotθ∂φ;

KðzÞ ¼ ∂φ þ 2nC∂t;

KðtÞ ¼ ∂t; ðA1Þ

with the first three forming the algebra soð3Þ. These
formulas extend previously known ones [10–12] to an
arbitrary C parameter. Note that the presence of ∂t terms in
the soð3Þ subalgebra reflects the necessity of a compensat-
ing time-shift while performing spatial rotations. The
algebra soð3Þ can not be integrated to the group SOð3Þ,
but leads to the unitary representation of the group SUð2Þ,
provided periodic identification of time according to
Misner is performed. This is similar to the case of the
magnetic monopole [41], for further references see [11].
The vector potential one-form A ¼ Φðdt − 2nðcos θ þ

CÞdφÞ is also symmetric under the action of these four
isometries, and the Lie derivatives are zero for all a:

LKðaÞA ¼ 0 ¼ KðaÞνAμ;ν þ Kν
ðaÞ;μAν:

These symmetries generate four conserved quantities,

Ia ¼ Kμ
ðaÞð_xνgμν þ κAμÞ; ðA2Þ

which read explicitly

IðxÞ ¼ 2nEðsin θÞ−1 cosφ − sin θ _θ2ρ2

− cot θ cosφðρ2sin2θ _φþ 2nE cos θÞ;
IðyÞ ¼ 2nEðsin θÞ−1 sinφþ cos θ _θ2ρ2

− cot θ sinφðρ2sin2θ _φþ 2nE cos θÞ; ðA3Þ

IðzÞ ¼ ρ2sin2θ _φþ 2nE cos θ;

IðtÞ ¼ E: ðA4Þ

They do not depend on the vector potential.

APPENDIX B: RIEMANN

Here we present the Newman-Penrose invariant projec-
tions of the Ricci and Weyl tensor for the metric (2.1).
Choosing the null tetrad as

lμ ¼ 1ffiffiffi
2

p
�

1ffiffiffi
f

p ;
ffiffiffi
f

p
; 0; 0

�
;

nμ ¼ 1ffiffiffi
2

p
�

1ffiffiffi
f

p ;−
ffiffiffi
f

p
; 0; 0

�
;

mμ ¼
� ffiffiffi

2
p

n cot θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ n2

p ; 0;
iffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ n2
p ;

1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ n2

p
�
;

m̄μ ¼
� ffiffiffi

2
p

n cot θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ n2

p ; 0;
−iffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ n2
p ;

1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ n2

p
�

ðB1Þ

we have one nonzero projection of the Ricci tensor,

Φ11 ¼
1

4
Rμνðlμnν þmμm̄νÞ ¼ 1

2

e2

ðr2 þ n2Þ2 ; ðB2Þ

and one projection of the Weyl tensor,

Ψ2 ¼Cμνλτlμmνm̄λnτ

¼ðm2þb2Þðr2−n2Þþn2rð3m−2rÞ
ðr2þn2Þ3

þ i
2nrðm2þb2Þðr2þn2Þþnr4ðr−3mÞþn5ðr−mÞ

ðr2þn2Þ4 :

ðB3Þ

These do not depend on the polar angles. The components
of the Riemann tensor can be read off easily. We give
explicitly the ones used in Sec. VII:

Rr
ttr ¼ −f

ðf − 1Þð3r2 − n2Þ þ 4mr
ðr2 þ n2Þ2 ;

Rr
trφ ¼ Rr

φrt

¼ −2nðcos θ þ CÞf ðf − 1Þð3r2 − n2Þ þ 4mr
ðr2 þ n2Þ2 ;

Rθ
ttθ ¼ Rφ

ttφ ¼ −f
rðr −mÞ − ðr2 − n2Þf

ðr2 þ n2Þ2 ;

Rθ
rrθ ¼ Rφ

rrφ ¼ rðr −mÞ − ðr2 − n2Þf
fðr2 þ n2Þ2 : ðB4Þ
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