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Cracking of general relativistic anisotropic polytropes
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We discuss the effect that small fluctuations of the local anisotropy of pressure and of the energy density
may have on the occurrence of cracking in spherical compact objects, satisfying a polytropic equation of
state. Two different kinds of polytropes are considered. For both, it is shown that departures from
equilibrium may lead to the appearance of cracking, for a wide range of values of the parameters defining
the polytrope. Prospective applications of the obtained results to some astrophysical scenarios are pointed

out.
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I. INTRODUCTION

In recent papers, the general formalism to study poly-
tropes for anisotropic matter has been presented, both in the
Newtonian [1] and in the general relativistic regimes [2,3].
The motivations to undertake such a task were, on the one
hand, the fact that the polytropic equations of state allow us
to deal with a variety of fundamental astrophysical prob-
lems (see Refs. [4-21] and references therein).

On the other hand, the local anisotropy of pressure may be
caused by a large variety of physical phenomena of the kind
we expect to find in compact objects (see Refs. [22-32] and
references therein for an extensive discussion on this point).

Among all possible sources of anisotropy (see Ref. [22]
for a comprehensive discussion on this point), let us
mention two which might be particularly related to our
primary interest. The first one is the intense magnetic field
observed in compact objects such as white dwarfs, neutron
stars, or magnetized strange quark stars (see, for example,
Refs. [33-37] and references therein). Indeed, it is a well-
established fact that a magnetic field acting on a Fermi gas
produces pressure anisotropy (see Refs. [38—41] and
references therein). In some way, the magnetic field can
be addressed as a fluid anisotropy. (However, it should be
observed that for the thermodynamic pressure of degener-
ate particles under the conditions of Landau quantization, it
remains isotropic [42].)

Another source of anisotropy expected to be present in
neutron stars and, in general, in highly dense matter, is the
viscosity (see Refs. [43-50] and references therein). At this
point it is worth noticing that we are not concerned by how
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small the resulting anisotropy produced by the viscosity
might be, since as we shall see below, the occurrence of
crackings may happen even for slight deviations from
isotropy.

An alternative approach to anisotropy comes from
kinetic theory using the spherically symmetric Einstein-
Vlasov equations, which admit a very rich class of static
solutions, none of them isotropic (Refs. [51-53] and
references therein). The advantages or disadvantages of
either approach are related to the specific problem under
consideration.

The theory of polytropes is based on the polytropic
equation of state, which in the Newtonian case reads

P =Kpy=Kpy ", (1)

where P and p, denote the isotropic pressure and the mass
(baryonic) density, respectively. Constants K, y, and n are
usually called the polytropic constant, polytropic exponent,
and polytropic index, respectively.

In the general relativistic anisotropic case, two possible
extensions of the above equation of state are possible,
namely

P, = Kphy=Kpy™'" (2)
P, =Kp' = KpH-l/n’ (3)

where P, and p denote the radial pressure (see below) and
the energy density, respectively.

As should be expected, the assumption of either (2) or (3)
is not enough to integrate completely the field equations,
since the appearance of two principal stresses (instead of
one as in the isotropic case) leads to a system of two
equations for three unknown functions.
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Thus, in order to integrate the obtained system of
equations, we need to provide further information about
the anisotropy, inherent to the problem under consideration.
For doing that, in Ref. [2] a particular ansatz [54] has been
assumed, which allows for specific modeling. This method
links the obtained models continually with the isotropic
case, thereby allowing us to bring out the influence of
anisotropy on the structure of the object, even for very
small anistropies. Here we shall adopt the above mentioned
ansatz. However, it should be stressed that our models are
presented with the sole purpose of illustrating the occur-
rence of cracking; the natural way to obtain models consists
of providing the specific information about the kind of
anisotropy present in each specific problem.

The concept of cracking was introduced to describe the
behavior of a fluid distribution just after its departure from
equilibrium, when total nonvanishing radial forces of
different signs appear within the system [55].

Thus, if we take a snapshot of the system just after
leaving equilibrium (on a time scale smaller than the
hydrostatic time scale), we say that there is a cracking
whenever this radial force is directed inwards in the inner
part of the sphere and reverses its sign beyond some value
of the radial coordinate. In the opposite case, when the
force is directed outwards in the inner part and changes sign
in the outer part, we say that there is an overturning. Further
developments on this issue may be found in Refs. [56-63].
As should be clear at this point, the concept of cracking is
closely related to the problem of structure formation
[64-66].

In the example examined in Ref. [55] it appears that
cracking occurs only in the locally anisotropic case,
whereas in the perfect fluid case, once out of equilibrium,
the configuration tends either to collapse or to expand as a
whole. Furthermore, it has been shown in Ref. [57] that for
a wide range of models, cracking appears only if, in the
process of perturbation leading to departure from equilib-
rium, the local anisotropy is perturbed. This result suggests
that fluctuations of local anisotropy may be the crucial
factor in the occurrence of cracking. Thus, in the case of an
initially locally isotropic configuration, the appearance of
cracking shows that even small deviations from local
isotropy may lead to drastic changes in the evolution of
the system as compared with the purely locally isotropic
case [57].

It is the purpose of this work to study in some detail the
conditions under which cracking appears in anisotropic
polytropes. We shall consider the two possible cases of
anisotropic polytropes mentioned above, and our models
are the same as those considered in Ref. [2].

At this point, we have to make some comments about the
perturbative scheme, leading to departures from equilib-
rium. For the cracking to occur, it is imperative that the
perturbations introduced into the system take it out of
equilibrium. In other words, we shall consider exclusively
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perturbations under which the system is dynamically
unstable. One way to assure this is to assume that the
value of the ratio of specific heats of the fluid is not equal to
the critical value required for marginal (neutral) dynamical
stability. So, under perturbations, the configuration either
collapses or expands. Another completely equivalent way
to achieve this instability consists in assuming that, under
perturbations of density and local anisotropy, the radial
pressure of the system maintains the same radial depend-
ence it had in equilibrium. It is obvious that in this case the
hydrostatic equation will no longer be satisfied.

It should be clear that assuming this lack of response of
the fluid, i.e. the inability to adapt its radial pressure to the
perturbed situation, is equivalent to assuming that the
pressure-density relation (the ratio of specific heats) never
reaches the value required for neutral equilibrium.

In this work, we shall consider two possible ways to
perturb the energy density and the local anisotropy, namely

(1) We shall perturb the parameter K and the parameter

describing the anisotropy.

(2) We shall perturb the parameter n and the parameter

describing the anisotropy.
As we shall see, cracking occurs for a wide range of values
of the parameters.

II. RELEVANT EQUATIONS AND CONVENTIONS
A. The field equations

Even though polytropes are static configurations, we
have to keep in mind that the appearance of cracking occurs
when the system is taken out of equilibrium. Accordingly,
we shall consider spherically symmetric distributions of
collapsing fluid, which we assume to be locally anisotropic,
bounded by a spherical surface . The static limit is trivially
recovered from the equations below.

The line element is given in Schwarzschild-like coor-
dinates by

ds* = e’dr* — e*dr* — r*(d0* + sin’0dg?),  (4)

where v(z, r) and A(z, r) are functions of their arguments.
We number the coordinates x* = £,x! = r,x*> = 6, x> = ¢,
which in our case read [55]

INAEL
et = e () ®)
82T! = (1Y 6
—Oon 1= 2+€ p—'_? ) ()
—8nT§:—8nT§:-%[21”(2—1;)]

-A

)
+eT {21/’4—1/2 —/1’1/—|—2y
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—8xTy = — /—1 (8)
r

where dots and primes stand for partial differentiation with
respect to ¢ and r, respectively.

In order to give physical significance to the 7% compo-
nents, we apply the Bondi approach [67].

Thus, following Bondi, let us introduce purely locally
Minkowski coordinates (z, x, y, 7):

dr = e¥/2dt,
dy = rdé,

dx = eMdr,
dz = rsin@ddg.

Then, denoting the Minkowski components of the
energy tensor by a bar, we have

79 =19,
T3 =12,

T\ =TI, 15 =T3,
To1 = e WHIRT,. )

Next, we suppose that when viewed by an observer moving
relative to these coordinates with proper velocity @ in the
radial direction, the physical content of space consists of an
anisotropic fluid of energy density p, radial pressure P,., and
tangential pressure P, . Thus, when viewed by this moving
observer, the covariant tensor in Minkowski coordinates is

p 0 0 0
0P, 0 0
0 0 P, O
00 0 P,

Then a Lorentz transformation readily shows that

p+ P,w?
T=T="_ (10)
_ P, + pw?
T}:T}:—il_wz , (11)
=T3=T2=T3=-P,, (12)
_ P (v+4)/2
T = V12T = - ot Py Jwe . (13)

1 — w?

Note that the coordinate velocity in the (z, r, 6, ¢) system,
dr/dt, is related to w by

dr
w=—

- e )/2, (14)

Feeding back Egs. (10)—(13) into (5)—(8), we get the field
equations in the form
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p+ P.a* IS B
T - 2 \rr) W)
Po4+po* 1 (1 W
mer 2 ET) (16)

PL=" D i+ (- 0)

-1 X
_eT [21/’—1—1/2 /1’1/—|—2y }, (17)
P (v+1)/2 /1
(p+ P,)we _A (18)

1 — w?

At the outside of the fluid distribution, the spacetime is
that of Schwarzschild, given by

2M dr?
2 _ M\ —
ds‘( r>d (1)

r

— r2(d6? + sin®0d¢?).

(19)

In order to match smoothly the two metrics above on the
boundary surface r = ry(t), we require the continuity of
the first and the second fundamental forms across that
surface.

These last conditions imply

2M
et =1—-—, (20)
I's
2M
et =1-"o, (21)
I's
[Pz =0, (22)

where, from now on, the subscript £ indicates that the
quantity is evaluated at the boundary surface X.
Equations (20), (21), and (22) are the necessary and
sufficient conditions for a smooth matching of the two
metrics (4) and (19) on X.

The energy momentum tensor may be written as

T/w = (,0 + Pl)uﬂuv - PJ_g;w + (Pr - Pl)sﬂsw (23)
where u* denotes the four-velocity of the fluid and s* is a

unit spacelike vector, radially directed. These vectors are
defined by

e—u/2 we?

= [(] S _wz)l/z,o,o}, (24)
we/2 o2

R [ R L NG

Next, it will be useful to calculate the radial component
of the “conservation law”
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Tltj;u =0, (26)

which in the static case becomes

/ 2P, - P
R=pP 2 prp) -2l o )

representing the generalization of the Tolman-
Oppenheimer-Volkof equation for anisotropic fluids [22].
Alternatively, using

vV m+4nP,r
—=— 28
2 r(r—2m) (28)
which follows from (15) and (16) in the static case, we may
write

P ) gy 2P )

where the mass function m(r), as usually, is defined by

et =1-2m/r, m(r) = 47r/rpr2dr. (30)
0

Polytropes are static fluid configurations which satisfy
either of the equations (2) or (3). The full set of equations
describing the structure of these self-gravitating objects, in
both cases, were derived and discussed in Ref. [2].

All the models have to satisfy physical requirements
such as

Py
) —< 1. 31
p p (31)

In what follows, we shall very briefly review the main
equations corresponding to each case.

B. Case I

Assuming Eq. (2), let us introduce the following
variables:

a=P./p., r=EA A =dmp.[a(n+1),
(32)
s = po/poc.  v(&) =m(r)A*/(4zp,),  (33)

where the subscript ¢ indicates that the quantity is evaluated
at the center. At the boundary surface r = ry (£ = &5), we
have Uy(&s) = 0.

Then, the generalized Tolman-Opphenheimer-Volkoff
equation becomes
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52% 1-2(n+ av/é
dé |(1—-na)+ (n+1)a¥,
20T 1 -2a(n+1)v/é
P, .(n+1)[(1=na)+ (n+1)a¥,
where A =P, — P,.

On the other hand, we obtain from the mass function
definition (30) and Eq. (15),

} + v+ a3 Ut

} =0,  (34)

m' = 4nr’p, (35)
or
dv
d_ﬁzg Ui(1 — na+ naly). (36)
In this case, conditions (31) read
na <1, @

’

————<
1 — no + na¥,

3v/8 + alpt!
-1<1. 37
Ue(l — na + naVv,) - (37)

C. Case 11

In this case, the assumed equation of state is (3); then,
introducing

U =p/p., (38)

the generalized Tolman-Opphenheimer-Volkoff equation
becomes

zﬂ 1—2(n—|—1)(1’l]/f 3+l
gdf{ 1 +a¥ Foas

2007 [1=2a(n+ Dv/¢] _
Prc(n+1)[ I +av }_ ’

and from Eq. (35),

Z—g e (40)

In this case, conditions (31) read

3v
p >0, a¥ <1, W—I—a"ﬂ—lﬁl. (41)
Equations (34), (36) or (39), (40) form a system of two
first-order ordinary differential equations for the three
unknown functions: ¥ (), v, A, depending on a duplet
of parameters n,a. Thus, it is obvious that in order to
proceed further with the modeling of a compact object, we
need to provide additional information. Such information,
of course, depends on the specific physical problem under
consideration. Here, we shall further assume the equation
of state used in Refs. [2,54].
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III. PERTURBING THE ANISOTROPIC
POLYTROPE

Let us now consider an anisotropic polytrope satisfying
the equation of hydrostatic equilibrium (27). Furthermore,
our distribution satisfies the equation of state proposed in
Ref. [54], i.e.

4nP,r3
7m+”’r}, (42)

A=C P
(o + r)[ r(r—2m)
where C is a constant, producing

R_dP, {m+4n’rP

S (RN SR

r(r—
with
h=1-2C. (44)

In order to observe an eventual cracking, we have to take
the system out of equilibrium. For doing so, we shall
perturb the energy density and the anisotropy through the
parameters K and h, or alternatively, through the param-
eters n and h. Below we describe this procedure for the
cases I and II.

A. Perturbation in the case I

In this case, the following equations apply:

P, —Kp1+1/” and p= p0+nKp1+1/" (45)

Then, perturbing the energy density and the local
anisotropy via K and #h,

K - K =K+ 5K, (46)
h— h=h+6h, (47)
it follows that
P, = Kpy"'" = pP,. (48)
p = po+nKpy"" = py + npP,. (49)
with
-2, (50)

where the tilde denotes the perturbed quantity.
Introducing the dimensionless variable

A -
dnp?

R=
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we obtain from Egs. (45)—(50)

av,  hy

Cag &
0+ Epalyt!

[1 —2a(n + 1)5/5] )

R= AL —2[(1 = na) + ap(n + 1)¥]

(52)

From the above, it follows that up to first order, we may
write

SR = R(E.1+ 86 h + 6h.v + 6v)

. OR
—R(é,l,h,v)+<8ﬁ> p1
h=nh
D=0
OR OR
+<%> /37:1.51)+<£> /~3=1'5h’ (53)
h=nh h=nh
D=0 D=0
where
R(&1,h,0) =0, (54)

as it must be, since the system is at equilibrium in the
unperturbed state.
Thus, we may write

OR
ok = <3ﬂ>

Sh. (55)

Then, using (52), we obtain

&)

p=1
h=h
D=0
nd\IJO \I,nﬂ

{(n PN+ 280 + BT ) o

1 —=2a(n+1)/é '
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R U (1 = na) +a(n + 1), and
aw)|B=1""2 [ (1=2an+1)0/é)? )
h=h O
~ ov=|— .0p, 60
v=>u Y <5ﬂ>ﬂ=1 / ©0)
x [1+20%(n + 1)&2wet], (57)
2 producing
OR vy
<£)'ﬂ=1 :f—f[(l—na)—i—a(n—i-l)\llo] .
h=h = na(/ 52\I/g+1d§> 5p = naF(£)5p, (61)
D=0v 0
3 n+1
vicaly | (58)  with
1 —2a(n+1)v/¢
Furthermore, we have F(&) = / ¢ EZ\I,SJH dE. (62)
0
|
U =— équn(pOc + nﬁPrc\IJO) 5 (59) . .
Pec From the equations above, we may write
|
av, ha
5R gpn 1 2 3 ‘Ifn+1 \j 3\11n+1 1=
{0+ gl 0+ 28 ) + 80 (1 = )
(1 =na)+a(n+1)¥, e
1+20%(n+ 1)EVFTnF(&)] +6 1-
L) e T 14 2+ )W ()] 6 + (1~ )
v+ .{,‘30{\116’“
HY oh 63
+aln+ 1)¥) [1 “2a(n + /¢ (63)
It would be more convenient to use the variable x, defined by
3 1o rA—
X*Za A*rZAig):a (64)
in terms of which (63) becomes
A o(dU ha - _
SR = Z0 0 _ 1 2A3 B U TN, A3 3P (] —
A{dx +x(Ax—2a(n+l)u)Kn+ )+ 24° Vg ) WA X UG (1 - na)
+ Ax L—na+a(nt )W (1+2a2(n+ D)A22U nF, | 6
Ax—=2a(n+ 1) 0 !
‘I’ v+ A3 3\I/n+l
—(1 - DY) |=————— 65
+Ax( na+a(n+1) O){Ax—2a(n )} (65)
|
Now, for the cracking to occur, once the system has  where
been perturbed, there must be a change of sign in 6R.
More specifically, it should be positive in the inner regions aR £y ok oR R (&)
and negative at the outer ones (in the inverse case, an = |2 77 . (67)
overturning is produced). This last condition implies that ?)_Iif p=1
SR =0 for some value of & in the interval [0, &|, implying V=20

. h=h
1n turn

Another perturbative scheme may be proposed, based on
6h = -I'6p, (66) the perturbation of the energy density and the anisotropy
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through the parameters n and A. In this case, following
the same line of arguments as in the previous scheme, we
have

Py =koy " = ko, (68)
p = po+nP, = po, Vg + nkpy! AT, (69)
n— n=n-+én, (70)
h— h=h+ 6h. (71)

Then, assuming that the radial pressure remains unchanged
under perturbation (what ensures the departure from
equilibrium),

PHYSICAL REVIEW D 93, 024047 (2016)

we have

P, =P, = kpy! /"0, (73)

)5 = pOC‘IIﬁ + ;lPr (74)

Then, replacing terms in the hydrostatic equlibrium
equation, it follows that

R= \Ilgdd\I;O éhz[(] —na)¥i + (i + 1)a¥it]
[ 0+ Ealy™!
(1-2a(n+1)0/&)]

(75)

P, =P, (72) Proceeding exactly as in the previous scheme, we obtain
|
OR = ady (v + Eali ™) ((1 = na) In(¥y) + a¥)
(1= 2a(n + /&) 0 0 0
1 —na+ (1+n)a¥,
14228 (n+ 1)U F, |6
{ 1 —2a(n+1)v/& (14207 (n + )W) Fiy | O
e v+ Ealpt!
— 1= Da¥ oh, 76
g ll-nat(n+l)a O}[I—Za(n—kl)v/.f (76)
or
SR = —— Iy |:(l) + A3V ((1 = na) In(Vy) + aly)
Ax(Ax — 2a(n + 1)v) 0
- [l =na+a(n+1)¥, -
Ax|— 1 +2a? DA22Ut Y Fy, | 6
N x[ Ax =2a(n+ 1) (1420 (n + DAXPUGT ) Fyy | S0
N v+ AUt
—(1- DY) |=————|6h, 77
+Ax( na+aln+1) 0){Ax—2a(n+1)v (77)
with 9R | OR [
r=|%—&_ (80)
3_15 n=n
D=0
£, . h=h
Fi, = EWE(1 — na) In(¥y) + a¥,|dé. (78) -
0
B. Perturbation in the case II
Again, for the cracking to occur, we must have 6R = 0 For this kind of polytrope, we have
for some value of ¢ in the interval [0, &s], implying p
P, = Kp'ti/n, = 81
r P P (1 _|_Kpl/n)n ( )
6h = —TI'én, (79) . .
Then, we shall write for the radial pressure
with P, = Kp.t'/"G, (82)
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GE<£yHT (83)

thereby ensuring that the radial dependence of P, remains
unchanged after perturbation.

We shall now proceed to perturb our polytrope, first
through the parameters K and /. Then, following the same
line of arguments as for case I, we have

with

I;r = kpi+l/nG = ﬂPr’ (84)

'5 _ ,D() _ /00 (85)
(1+Kpy™)" (14 pKpy/™)"

PHYSICAL REVIEW D 93, 024047 (2016)

or, using
- 8,5)
=p+op=p+ = 1) 86
p=p+dp=p (aﬂ . )/ (86)
B=1+3p, (87)
we obtain
p=p+nP.(f-1). (88)

Feeding back the above expressions into (43), we may write

= dv  U"h b+ Eaplt!
R=pV'"—+—(N+a¥|((n+1)f—n —. 89
p R ( [( )b ])(1_2(n+1)au)/cf (89)
Carrying out a procedure similar to the one described in the previous subsection, we obtain
L U (4P ha -
OR =—4{— = Y 1) + A3 (1 2)U
A{dx+x(Ax—2a(n+l)u){ (vln+ 1)+ AL+ aln +2)¥))
. 1+ a¥ . \z v+ A3t
Ax[=———F—— (1 +2 Da?A2> U nF, | +6f +=(1 U) | = h, 90
- x(Ax—2a(n—|—1)v)( +20n+ Da“Ax n 2}}ﬂ+Ax( Ta ){Ax—2a(n+1)v)] (90)
where (64) has been used, and
& -
Fs —/ Entlde, (91)
0
If the perturbation is introduced via the parameter n, then the result is
N ho" - - 14+ a¥ -
OR = — ABal" ) In(V) + Ax | =—i————— (1 +2 Da?A2> WO F,, |6
x(Ax =2a(n + 1)v) {(U+ v JIn(¥) + x(Ax—Za(n—l—l)v)( +2n+ oA JFon |01
gn v +A3x3a\II”+1
+=—0+a¥)|= h, 92
Ax( “ ){Ax—2a(n+ l)v)] 92)
l
with To do that, using a four-order Runge-Kutta method, we
shall integrate Eqgs. (34), (36) and (39), (40) for any duplet
Py = / ¢ In(T) dE. (93) of parameters n,a and n,h for which there exists a
0 boundary surface. Such duplets have been determined in

IV. RESULTS

We shall now proceed to apply the formalism sketched in
the previous section to detect and analyze the occurrence of
cracking in the family of polytropes defined by the equation
of state (42). We shall consider both types of polytropes
(T and IT) and both schemes of perturbation (through K and
h, and through n and h).

Ref. [2] (see Figs. 3 and 4 for case I, and Figs. 8 and 9 for
case II, in that reference). Also, the absolute numerical
values of the perturbations of the parameters were taken of
the order of 107%; the results are not qualitatively sensitive
to changes in some orders of magnitude below or above that
figure. Finally, the integrals (62), (78), (91), (93) were
numerically evaluated by means of the trapezoid rule (see
for example Ref. [68]).
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le-07F A

Se-08 |

038
-5e-08
FIG. 1. SR as a function of xforn =1, h = 1.5, and T = 1.6.
Curves a, b, ¢, and d correspond to @ = 0.83, 0.85, 0.87, and 0.90, 5e-08 |
respectively.

PHYSICAL REVIEW D 93, 024047 (2016)

1.5e-07 -

1e-07 |

5e-08

FIG. 3. SR as a function of x for n = 1.5, @ = 0.390, T = 0.6,
and different values of 4. Curves a, b, c, d, e, and f correspond to

Next, the obtained ¥, ¥, (which of course coincide with h=05,07,009, 1.1, 1.3, and 1.5, respectively.
the results in Ref. [2]) are used to evaluate (65) and (77) for
case I, and (90) and (92) for case II. We have considered the
whole range of values of the parameters leading to bounded
configurations whose physical variables satisfy the physical
requirements (31).

We shall now analyze the obtained results for each

case.
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FIG. 2. SR as a function of x forn =1, h=0.5, and " = 1. FIG. 4. SR as a function of x forn =1, h=1,and T = 1.2.
Curves a, b, c, d, and e correspond to a = 0.80, 0.83, 0.85, 0.87, Curves a, b, c, d, and e correspond to a = 0.80, 0.83, 0.85, 0.87,

and 0.90, respectively.

and 0.90, respectively.
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FIG. 5. SR asafunctionof xforn=1,h=1.5,and T = 1.4. FIG. 7. SR as a function of x forn =1, h = 0.5, and I = 0.8.
Curves a, b, and ¢ correspond to a = 0.85, 0.87, and 0.90, Curves a, b, ¢, d, and e correspond to a = 0.80, 0.83, 0.85, 0.87,
respectively. and 0.90, respectively.
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Curves a, b, c, d, and e correspond to a = 0.80, 0.83, 0.85, 0.87, different values of h. Curves a, b, c, d, e, and f correspond to
and 0.90, respectively. h=0.5,0.7,0.9, 1.1, 1.3, and 1.5, respectively.
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FIG.9. SR asafunctionofxforn =1.5,a =0.84,T = 1.1 and
different values of h. Curves a, b, c, d, e, and f correspond to
h=0.5,0.7,0.9, 1.1, 1.3, and 1.5, respectively.

A. Cracking for polytropes of type I

Figures 1-7 summarize the main results obtained for the
polytropes of type 1. The first four figures correspond to
the case where the perturbation is carried on through the
parameter K, whereas the remaining three figures of this
case describe the behavior of the system which has been
perturbed through the parameter n.

In Fig. 1 we observe the cracking for 4 = 1.5 and the
different values of « indicated in the figure legend. It
appears that the strongest and deepest crackings are
associated with the largest values of a. We also observe
that in the outer regions, the models exhibit overturnings. In
these latter cases, the smallest values of a are associated
with the strongest overturnings.

Figure 2 depicts a similar situation, but for 4 = 0.5.
However, in this case, crackings are stronger and over-
turnings are weaker.

The situation described in Figs. 1 and 2 is representative
for a wide range of the parameters (for which there exist
bounded configurations satisfying the required physical
conditions).

Figure 3 exhibits further the close relationship, existing
between the occurrence of cracking and the type of
anisotropy. Indeed, the smallest values of h correspond

PHYSICAL REVIEW D 93, 024047 (2016)
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FIG. 10. SR as a function of x for n =0.5, h =0.5, and
I'=0.6. Curves a, b, ¢, d, e, and f correspond to a = 0.95, 0.96,
0.97, 0.98, 0.99 and 1.00, respectively.

to the deepest and strongest crackings, and to the weakest
overturnings. Furthermore, for the largest values of h
(curves e and f) there are no crackings at all, only
overturnings.

Finally, Fig. 4 exhibits the occurrence of cracking for
configurations that are locally isotropic before perturbation,
thereby illustrating the fact that even slight deviations from
local isotropy may be sufficient to produce a cracking.

Figures 5-7, which describe the results of perturbation
through the parameter 7, lead to conclusions qualitatively
similar to the ones mentioned above. The strongest and
deepest crackings, and the weakest overturnings, are
associated with the largest values of a.

B. Cracking for polytropes of type II

The results of this case are depicted by Figs. 8—14. The
first four of these correspond to the perturbative scheme
through the parameter K, whereas the last three correspond
to perturbations of n.

Figure 8 describes the situation for different values of 4.
For the choice of parameters in this figure, we observe that
cracking only appears for the smallest value of /&, whereas
for the two largest values, there is only overturning. For
h = 0.7 and 0.9, neither cracking nor overturning occurs.
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FIG. 11. SR as a function of x for n =0.5, h = 1.5, and
I' =0.4. Curves a, b, ¢, d, e, and f correspond to @ = 0.95, 0.96,
0.97, 0.98, 0.99, and 1.00, respectively.
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FIG. 12. SR as a function of x for n=1, h=0.5, and
I'=-0.5. Curves a, b, ¢, and d correspond to a = 1.0, 0.9,
0.8, and 0.7, respectively.
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FIG. 14. 6R as a function of x for n =15, h=1.5, and
I' = -0.5. Curves a, b, c, and d correspond to a = 0.7, 0.8, 0.9,
and 1.0, respectively.
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This behavior is confirmed in Fig. 9. Here we see how
the strongest and deepest crackings are associated with the
smallest values of h. For some minimal value of /4 and
larger, only overturnings are observed. These are strongest
for the largest values of 4.

Figures 10 and 11 also confirm the role of % in the
occurrence (or not) of crackings. In Fig. 10, for 7 = 0.5,
there are only crackings, which are strongest and deepest
for the largest values of a. In contrast, Fig. 11 only depicts
overturnings for 47 = 1.5 and different values of a.

Figures 12, 13, and 14 describe the situation resulting
from the perturbation of n. However, unlike the previous
cases, for these three figures we have assumed negative
values of I'". This explains why they only exhibit over-
turnings, and why these overturnings are stronger for
smaller values of & (just the opposite of the situation
observed for positive values of I).

V. CONCLUSIONS

We have investigated the conditions under which general
relativistic polytropes for anisotropic matter exhibit crack-
ing and/or overturning when submitted to fluctuations of
energy density and anisotropy.

Thus, we have shown that cracking and/or overturning
occur for a wide range of the parameters. For both types of
polytropes, the main conclusions are basically the same;
namely, the strongest and deepest crackings occur for the
smallest values of & and greatest values of a. Also, the
strongest overturnings result from the largest values of /.

A distinct feature of all the models studied here is the fact
that the “core” (the inner part) and the “envelope” (the outer
part) respond differently to different degrees of anisotropy
(different h). This fact was already pointed out in
Refs. [2,69].

It is important to stress that the occurrence of a cracking
has direct implications on the structure and evolution of the
compact object only at time scales that are smaller than, or
at most equal to, the hydrostatic time scale. This is so
because as already mentioned, what we do is to take a

PHYSICAL REVIEW D 93, 024047 (2016)

“snapshot” just after the system leaves the equilibrium. To
find out whether or not the system will return to the state of
equilibrium afterward is out of the scope of our analysis,
and would require an integration of the evolution equations
for a finite period of time greater than the hydrostatic time.

However, all this having been said, it is clear that the
occurrence of cracking would drastically affect the future
structure and evolution of the compact object.

Accordingly, we would like to conclude this work by
speculating about possible scenarios where the occurrence
of cracking might be invoked in order to understand the
related observational data.

One of these situations could be the collapse of a
supermassive star. The occurrence of cracking at the inner
core would certainly change (in some cases, probably
enhance) the conditions for the ejection of the outer mantle
in a supernova event. This will be so for both the “prompt”
[70,71] and the “long term” mechanisms [72-75].

Also, one is tempted to invoke cracking as the possible
origin of quakes in neutron stars [76-78]. In fact, large-
scale crust cracking in neutron stars and their relevance in
the occurrence of glitches and bursts of x rays and gamma
rays have been considered in detail by Ruderman (see
Ref. [79] and references therein).

Evidently, the characteristics of these quakes, and those
of the ensuing glitches, would strongly depend on the depth
at which the cracking occurs. In this respect, it is worth
noticing the already mentioned fact that the depth at which
the cracking may appear is highly dependent on the
parameter s, which measures the anisotropy of the pressure.

However, we would like to emphasize that our aim here
is not to model in detail any of the scenarios mentioned
above, but just to call attention to the possible occurrence of
cracking in such important configurations as those satisfy-
ing a polytropic equation of state and its relationship with
fluctuations of local anisotropy. In other words, whatever
the origin of the anisotropy would be, or how small it is,
cracking may occur, which would drastically affect the
outcome of the evolution of the system.
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