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We discuss the effect that small fluctuations of the local anisotropy of pressure and of the energy density
may have on the occurrence of cracking in spherical compact objects, satisfying a polytropic equation of
state. Two different kinds of polytropes are considered. For both, it is shown that departures from
equilibrium may lead to the appearance of cracking, for a wide range of values of the parameters defining
the polytrope. Prospective applications of the obtained results to some astrophysical scenarios are pointed
out.
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I. INTRODUCTION

In recent papers, the general formalism to study poly-
tropes for anisotropic matter has been presented, both in the
Newtonian [1] and in the general relativistic regimes [2,3].
The motivations to undertake such a task were, on the one
hand, the fact that the polytropic equations of state allow us
to deal with a variety of fundamental astrophysical prob-
lems (see Refs. [4–21] and references therein).
On the other hand, the local anisotropy of pressuremay be

caused by a large variety of physical phenomena of the kind
we expect to find in compact objects (see Refs. [22–32] and
references therein for an extensive discussion on this point).
Among all possible sources of anisotropy (see Ref. [22]

for a comprehensive discussion on this point), let us
mention two which might be particularly related to our
primary interest. The first one is the intense magnetic field
observed in compact objects such as white dwarfs, neutron
stars, or magnetized strange quark stars (see, for example,
Refs. [33–37] and references therein). Indeed, it is a well-
established fact that a magnetic field acting on a Fermi gas
produces pressure anisotropy (see Refs. [38–41] and
references therein). In some way, the magnetic field can
be addressed as a fluid anisotropy. (However, it should be
observed that for the thermodynamic pressure of degener-
ate particles under the conditions of Landau quantization, it
remains isotropic [42].)
Another source of anisotropy expected to be present in

neutron stars and, in general, in highly dense matter, is the
viscosity (see Refs. [43–50] and references therein). At this
point it is worth noticing that we are not concerned by how

small the resulting anisotropy produced by the viscosity
might be, since as we shall see below, the occurrence of
crackings may happen even for slight deviations from
isotropy.
An alternative approach to anisotropy comes from

kinetic theory using the spherically symmetric Einstein-
Vlasov equations, which admit a very rich class of static
solutions, none of them isotropic (Refs. [51–53] and
references therein). The advantages or disadvantages of
either approach are related to the specific problem under
consideration.
The theory of polytropes is based on the polytropic

equation of state, which in the Newtonian case reads

P ¼ Kργ0 ¼ Kρ1þ1=n
0 ; ð1Þ

where P and ρ0 denote the isotropic pressure and the mass
(baryonic) density, respectively. Constants K, γ, and n are
usually called the polytropic constant, polytropic exponent,
and polytropic index, respectively.
In the general relativistic anisotropic case, two possible

extensions of the above equation of state are possible,
namely

Pr ¼ Kργ0 ¼ Kρ1þ1=n
0 ; ð2Þ

Pr ¼ Kργ ¼ Kρ1þ1=n; ð3Þ

where Pr and ρ denote the radial pressure (see below) and
the energy density, respectively.
As should be expected, the assumption of either (2) or (3)

is not enough to integrate completely the field equations,
since the appearance of two principal stresses (instead of
one as in the isotropic case) leads to a system of two
equations for three unknown functions.
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Thus, in order to integrate the obtained system of
equations, we need to provide further information about
the anisotropy, inherent to the problem under consideration.
For doing that, in Ref. [2] a particular ansatz [54] has been
assumed, which allows for specific modeling. This method
links the obtained models continually with the isotropic
case, thereby allowing us to bring out the influence of
anisotropy on the structure of the object, even for very
small anistropies. Here we shall adopt the above mentioned
ansatz. However, it should be stressed that our models are
presented with the sole purpose of illustrating the occur-
rence of cracking; the natural way to obtain models consists
of providing the specific information about the kind of
anisotropy present in each specific problem.
The concept of cracking was introduced to describe the

behavior of a fluid distribution just after its departure from
equilibrium, when total nonvanishing radial forces of
different signs appear within the system [55].
Thus, if we take a snapshot of the system just after

leaving equilibrium (on a time scale smaller than the
hydrostatic time scale), we say that there is a cracking
whenever this radial force is directed inwards in the inner
part of the sphere and reverses its sign beyond some value
of the radial coordinate. In the opposite case, when the
force is directed outwards in the inner part and changes sign
in the outer part, we say that there is an overturning. Further
developments on this issue may be found in Refs. [56–63].
As should be clear at this point, the concept of cracking is
closely related to the problem of structure formation
[64–66].
In the example examined in Ref. [55] it appears that

cracking occurs only in the locally anisotropic case,
whereas in the perfect fluid case, once out of equilibrium,
the configuration tends either to collapse or to expand as a
whole. Furthermore, it has been shown in Ref. [57] that for
a wide range of models, cracking appears only if, in the
process of perturbation leading to departure from equilib-
rium, the local anisotropy is perturbed. This result suggests
that fluctuations of local anisotropy may be the crucial
factor in the occurrence of cracking. Thus, in the case of an
initially locally isotropic configuration, the appearance of
cracking shows that even small deviations from local
isotropy may lead to drastic changes in the evolution of
the system as compared with the purely locally isotropic
case [57].
It is the purpose of this work to study in some detail the

conditions under which cracking appears in anisotropic
polytropes. We shall consider the two possible cases of
anisotropic polytropes mentioned above, and our models
are the same as those considered in Ref. [2].
At this point, we have to make some comments about the

perturbative scheme, leading to departures from equilib-
rium. For the cracking to occur, it is imperative that the
perturbations introduced into the system take it out of
equilibrium. In other words, we shall consider exclusively

perturbations under which the system is dynamically
unstable. One way to assure this is to assume that the
value of the ratio of specific heats of the fluid is not equal to
the critical value required for marginal (neutral) dynamical
stability. So, under perturbations, the configuration either
collapses or expands. Another completely equivalent way
to achieve this instability consists in assuming that, under
perturbations of density and local anisotropy, the radial
pressure of the system maintains the same radial depend-
ence it had in equilibrium. It is obvious that in this case the
hydrostatic equation will no longer be satisfied.
It should be clear that assuming this lack of response of

the fluid, i.e. the inability to adapt its radial pressure to the
perturbed situation, is equivalent to assuming that the
pressure-density relation (the ratio of specific heats) never
reaches the value required for neutral equilibrium.
In this work, we shall consider two possible ways to

perturb the energy density and the local anisotropy, namely
(1) We shall perturb the parameter K and the parameter

describing the anisotropy.
(2) We shall perturb the parameter n and the parameter

describing the anisotropy.
As we shall see, cracking occurs for a wide range of values
of the parameters.

II. RELEVANT EQUATIONS AND CONVENTIONS

A. The field equations

Even though polytropes are static configurations, we
have to keep in mind that the appearance of cracking occurs
when the system is taken out of equilibrium. Accordingly,
we shall consider spherically symmetric distributions of
collapsing fluid, which we assume to be locally anisotropic,
bounded by a spherical surface Σ. The static limit is trivially
recovered from the equations below.
The line element is given in Schwarzschild-like coor-

dinates by

ds2 ¼ eνdt2 − eλdr2 − r2ðdθ2 þ sin2θdϕ2Þ; ð4Þ

where νðt; rÞ and λðt; rÞ are functions of their arguments.
We number the coordinates x0 ¼ t; x1 ¼ r; x2 ¼ θ; x3 ¼ ϕ,
which in our case read [55]

−8πT0
0 ¼ −

1

r2
þ e−λ

�
1

r2
−
λ0

r

�
; ð5Þ

−8πT1
1 ¼ −

1

r2
þ e−λ

�
1

r2
þ ν0

r

�
; ð6Þ

−8πT2
2 ¼ −8πT3

3 ¼ −
e−ν

4
½2 ̈λþ _λð_λ − _νÞ�

þ e−λ

4

�
2ν00 þ ν02 − λ0ν0 þ 2

ν0 − λ0

r

�
; ð7Þ
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−8πT01 ¼ −
_λ

r
; ð8Þ

where dots and primes stand for partial differentiation with
respect to t and r, respectively.
In order to give physical significance to the Tμ

ν compo-
nents, we apply the Bondi approach [67].
Thus, following Bondi, let us introduce purely locally

Minkowski coordinates (τ; x; y; z):

dτ ¼ eν=2dt; dx ¼ eλ=2dr;

dy ¼ rdθ; dz ¼ r sin θdϕ:

Then, denoting the Minkowski components of the
energy tensor by a bar, we have

T̄0
0 ¼ T0

0; T̄1
1 ¼ T1

1; T̄2
2 ¼ T2

2;

T̄3
3 ¼ T3

3; T̄01 ¼ e−ðνþλÞ=2T01: ð9Þ

Next, we suppose that when viewed by an observer moving
relative to these coordinates with proper velocity ω in the
radial direction, the physical content of space consists of an
anisotropic fluid of energy density ρ, radial pressure Pr, and
tangential pressure P⊥. Thus, when viewed by this moving
observer, the covariant tensor in Minkowski coordinates is

0
B@

ρ 0 0 0

0 Pr 0 0

0 0 P⊥ 0

0 0 0 P⊥

1
CA:

Then a Lorentz transformation readily shows that

T0
0 ¼ T̄0

0 ¼
ρþ Prω

2

1 − ω2
; ð10Þ

T1
1 ¼ T̄1

1 ¼ −
Pr þ ρω2

1 − ω2
; ð11Þ

T2
2 ¼ T3

3 ¼ T̄2
2 ¼ T̄3

3 ¼ −P⊥; ð12Þ

T01 ¼ eðνþλÞ=2T̄01 ¼ −
ðρþ PrÞωeðνþλÞ=2

1 − ω2
: ð13Þ

Note that the coordinate velocity in the (t; r; θ;ϕ) system,
dr=dt, is related to ω by

ω ¼ dr
dt

eðλ−νÞ=2: ð14Þ

Feeding back Eqs. (10)–(13) into (5)–(8), we get the field
equations in the form

ρþ Prω
2

1 − ω2
¼ −

1

r2
þ e−λ

�
1

r2
−
λ0

r

�
; ð15Þ

Pr þ ρω2

1 − ω2
¼ 1

r2
− e−λ

�
1

r2
þ ν0

r

�
; ð16Þ

P⊥ ¼ e−ν

4
½2λ̈þ _λð_λ − _νÞ�

−
e−λ

4

�
2ν00 þ ν02 − λ0ν0 þ 2

ν0 − λ0

r

�
; ð17Þ

ðρþ PrÞωeðνþλÞ=2

1 − ω2
¼

_λ

r
: ð18Þ

At the outside of the fluid distribution, the spacetime is
that of Schwarzschild, given by

ds2 ¼
�
1 −

2M
r

�
dt2 −

dr2

ð1 − 2M
r Þ

− r2ðdθ2 þ sin2θdϕ2Þ:

ð19Þ
In order to match smoothly the two metrics above on the

boundary surface r ¼ rΣðtÞ, we require the continuity of
the first and the second fundamental forms across that
surface.
These last conditions imply

eνΣ ¼ 1 −
2M
rΣ

; ð20Þ

e−λΣ ¼ 1 −
2M
rΣ

; ð21Þ

½Pr�Σ ¼ 0; ð22Þ

where, from now on, the subscript Σ indicates that the
quantity is evaluated at the boundary surface Σ.
Equations (20), (21), and (22) are the necessary and
sufficient conditions for a smooth matching of the two
metrics (4) and (19) on Σ.
The energy momentum tensor may be written as

Tμν ¼ ðρþ P⊥Þuμuν − P⊥gμν þ ðPr − P⊥Þsμsν; ð23Þ

where uμ denotes the four-velocity of the fluid and sμ is a
unit spacelike vector, radially directed. These vectors are
defined by

uμ ¼
�

e−ν=2

ð1 − ω2Þ1=2 ;
ωe−λ=2

ð1 − ω2Þ1=2 ; 0; 0
�
; ð24Þ

sμ ¼
�

ωe−ν=2

ð1 − ω2Þ1=2 ;
e−λ=2

ð1 − ω2Þ1=2 ; 0; 0
�
: ð25Þ

Next, it will be useful to calculate the radial component
of the “conservation law”
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Tμ
ν;μ ¼ 0; ð26Þ

which in the static case becomes

R≡ P0
r þ

ν0

2
ðρþ PrÞ −

2ðP⊥ − PrÞ
r

¼ 0; ð27Þ

representing the generalization of the Tolman-
Oppenheimer-Volkof equation for anisotropic fluids [22].
Alternatively, using

ν0

2
¼ mþ 4πPrr3

rðr − 2mÞ ; ð28Þ

which follows from (15) and (16) in the static case, we may
write

P0
r ¼ −

ðmþ 4πPrr3Þ
rðr − 2mÞ ðρþ PrÞ þ

2ðP⊥ − PrÞ
r

; ð29Þ

where the mass function mðrÞ, as usually, is defined by

e−λ ¼ 1 − 2m=r; mðrÞ ¼ 4π

Z
r

0

ρr2dr: ð30Þ

Polytropes are static fluid configurations which satisfy
either of the equations (2) or (3). The full set of equations
describing the structure of these self-gravitating objects, in
both cases, were derived and discussed in Ref. [2].
All the models have to satisfy physical requirements

such as

ρ > 0;
Pr

ρ
≤ 1;

P⊥
ρ

≤ 1: ð31Þ

In what follows, we shall very briefly review the main
equations corresponding to each case.

B. Case I

Assuming Eq. (2), let us introduce the following
variables:

α ¼ Prc=ρc; r ¼ ξ=A; A2 ¼ 4πρc=αðnþ 1Þ;
ð32Þ

Ψn
0 ¼ ρ0=ρ0c; vðξÞ ¼ mðrÞA3=ð4πρcÞ; ð33Þ

where the subscript c indicates that the quantity is evaluated
at the center. At the boundary surface r ¼ rΣ (ξ ¼ ξΣ), we
have Ψ0ðξΣÞ ¼ 0.
Then, the generalized Tolman-Opphenheimer-Volkoff

equation becomes

ξ2
dΨ0

dξ

�
1 − 2ðnþ 1Þαv=ξ

ð1 − nαÞ þ ðnþ 1ÞαΨ0

�
þ vþ αξ3Ψnþ1

0

−
2ΔΨ−n

0 ξ

Prcðnþ 1Þ
�

1 − 2αðnþ 1Þv=ξ
ð1 − nαÞ þ ðnþ 1ÞαΨ0

�
¼ 0; ð34Þ

where Δ ¼ P⊥ − Pr.
On the other hand, we obtain from the mass function

definition (30) and Eq. (15),

m0 ¼ 4πr2ρ; ð35Þ
or

dv
dξ

¼ ξ2Ψn
0ð1 − nαþ nαΨ0Þ: ð36Þ

In this case, conditions (31) read

nα < 1;
αΨ0

1 − nαþ nαΨ0

≤ 1;

3v=ξ3 þ αΨnþ1
0

Ψn
0ð1 − nαþ nαΨoÞ

− 1 ≤ 1: ð37Þ

C. Case II

In this case, the assumed equation of state is (3); then,
introducing

Ψn ¼ ρ=ρc; ð38Þ

the generalized Tolman-Opphenheimer-Volkoff equation
becomes

ξ2
dΨ
dξ

�
1 − 2ðnþ 1Þαv=ξ

1þ αΨ

�
þ vþ αξ3Ψnþ1

−
2ΔΨ−nξ

Prcðnþ 1Þ
�
1 − 2αðnþ 1Þv=ξ

1þ αΨ

�
¼ 0; ð39Þ

and from Eq. (35),

dv
dξ

¼ ξ2Ψn: ð40Þ

In this case, conditions (31) read

ρ > 0; αΨ ≤ 1;
3v

ξ3Ψn þ αΨ − 1 ≤ 1: ð41Þ

Equations (34), (36) or (39), (40) form a system of two
first-order ordinary differential equations for the three
unknown functions: ΨðΨ0Þ; v;Δ, depending on a duplet
of parameters n; α. Thus, it is obvious that in order to
proceed further with the modeling of a compact object, we
need to provide additional information. Such information,
of course, depends on the specific physical problem under
consideration. Here, we shall further assume the equation
of state used in Refs. [2,54].
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III. PERTURBING THE ANISOTROPIC
POLYTROPE

Let us now consider an anisotropic polytrope satisfying
the equation of hydrostatic equilibrium (27). Furthermore,
our distribution satisfies the equation of state proposed in
Ref. [54], i.e.

Δ ¼ Cðρþ PrÞ
�
mþ 4πPrr3

rðr − 2mÞ
�
r; ð42Þ

where C is a constant, producing

R ¼ dPr

dr
þ h

�
mþ 4πr3Pr

rðr − 2mÞ
�
ðρþ PrÞ ¼ 0; ð43Þ

with

h≡ 1 − 2C: ð44Þ

In order to observe an eventual cracking, we have to take
the system out of equilibrium. For doing so, we shall
perturb the energy density and the anisotropy through the
parameters K and h, or alternatively, through the param-
eters n and h. Below we describe this procedure for the
cases I and II.

A. Perturbation in the case I

In this case, the following equations apply:

Pr ¼ Kρ1þ1=n
0 and ρ ¼ ρ0 þ nKρ1þ1=n

0 : ð45Þ

Then, perturbing the energy density and the local
anisotropy via K and h,

K → ~K ¼ K þ δK; ð46Þ

h → ~h ¼ hþ δh; ð47Þ

it follows that

~Pr ¼ ~Kρ1þ1=n
0 ¼ βPr; ð48Þ

~ρ ¼ ρ0 þ n ~Kρ1þ1=n
0 ¼ ρ0 þ nβPr; ð49Þ

with

β ¼
~K
K
; ð50Þ

where the tilde denotes the perturbed quantity.
Introducing the dimensionless variable

~̂R ¼ A
4πρ2c

~R; ð51Þ

we obtain from Eqs. (45)–(50)

~̂R ¼ βΨn
0

dΨ0

dξ
þ

~hΨn
0

ξ2
½ð1 − nαÞ þ αβðnþ 1ÞΨ0�

×

�
~υþ ξ3βαΨnþ1

0

1 − 2αðnþ 1Þ~υ=ξ
�
: ð52Þ

From the above, it follows that up to first order, we may
write

δR̂ ¼ ~̂Rðξ; 1þ δβ; hþ δh; υþ δυÞ

¼ R̂ðξ; 1; h; υÞ þ
�∂ ~̂R
∂β

����� β ¼ 1
~h ¼ h
~υ ¼ υ

:δβ

þ
�∂ ~̂R
∂ ~υ

����� β ¼ 1
~h ¼ h
~υ ¼ υ

:δυþ
�∂ ~̂R
∂ ~h

����� β ¼ 1
~h ¼ h
~υ ¼ υ

:δh; ð53Þ

where

~̂Rðξ; 1; h; υÞ ¼ 0; ð54Þ

as it must be, since the system is at equilibrium in the
unperturbed state.
Thus, we may write

δR̂ ¼
�∂ ~̂R
∂β

����� β ¼ 1
~h ¼ h
~υ ¼ υ

:δβ þ
�∂ ~̂R
∂ ~υ

����� β ¼ 1
~h ¼ h
~υ ¼ υ

:δυ

þ
�∂ ~̂R
∂ ~h

����� β ¼ 1
~h ¼ h
~υ ¼ υ

:δh: ð55Þ

Then, using (52), we obtain

�∂ ~̂R
∂β

����� β ¼ 1
~h ¼ h
~υ ¼ υ

¼ Ψn
0

dΨ0

dξ
þ h

Ψnþ1
0

ξ2
α

×

�ðnþ 1Þðυþ 2ξ3αΨnþ1
0 Þ þ ξ3Ψn

0ð1 − nαÞ
1 − 2αðnþ 1Þυ=ξ

�
; ð56Þ
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�∂ ~̂R
∂ ~υ

����� β ¼ 1
~h ¼ h
~υ ¼ υ

¼ h
Ψn

0

ξ2

�ð1 − nαÞ þ αðnþ 1ÞΨ0

ð1 − 2αðnþ 1Þυ=ξÞ2
�

× ½1þ 2α2ðnþ 1Þξ2Ψnþ1
0 �; ð57Þ

�∂ ~̂R
∂ ~h

����� β ¼ 1
~h ¼ h
~υ ¼ υ

¼ Ψn
0

ξ2
½ð1 − nαÞ þ αðnþ 1ÞΨ0�

×

�
υþ ξ3αΨnþ1

0

1 − 2αðnþ 1Þυ=ξ
�
: ð58Þ

Furthermore, we have

~υ ¼ 1

ρc

Z
ξ

0

ξ̄2Ψn
0ðρ0c þ nβPrcΨ0Þdξ̄ ð59Þ

and

δυ ¼
�∂ ~υ
∂β

�����
β¼1

:δβ; ð60Þ

producing

δυ ¼ nα

�Z
ξ

0

ξ̄2Ψnþ1
0 dξ̄

�
δβ ¼ nαFðξÞδβ; ð61Þ

with

FðξÞ≡
Z

ξ

0

ξ̄2Ψnþ1
0 dξ̄: ð62Þ

From the equations above, we may write

δR̂ ¼ Ψn
0

�
dΨ0

dξ
þ hα
ξ2ð1 − 2αðnþ 1Þυ=ξÞ ½ðnþ 1Þðυþ 2ξ3αΨnþ1

0 ÞΨ0 þ ξ3Ψnþ1
0 ð1 − nαÞ

þ
�ð1 − nαÞ þ αðnþ 1ÞΨ0

1 − 2αðnþ 1Þυ=ξ
�
½1þ 2α2ðnþ 1Þξ2Ψnþ1

0 �nFðξÞ�
�
δβ þΨn

0

ξ2
½ð1 − nαÞ

þ αðnþ 1ÞΨ0�
�

υþ ξ3αΨnþ1
0

1 − 2αðnþ 1Þυ=ξ
�
δh: ð63Þ

It would be more convenient to use the variable x, defined by

x ¼ ξ

Ā
; Ā ¼ rΣA ¼ ξΣ; ð64Þ

in terms of which (63) becomes

δR̂ ¼ Ψn
0

Ā

�
dΨ0

dx
þ hα
xðĀx − 2αðnþ 1ÞυÞ ½ðnþ 1Þðυþ 2Ā3x3αΨnþ1

0 ÞΨ0Ā3x3Ψnþ1
0 ð1 − nαÞ

þ Āx
�
1 − nαþ αðnþ 1ÞΨ0

Āx − 2αðnþ 1Þυ
�
ð1þ 2α2ðnþ 1ÞĀ2x2Ψnþ1

0 ÞnF1

��
δβ

þΨn
0

Āx
ð1 − nαþ αðnþ 1ÞΨ0Þ

�
υþ Ā3x3Ψnþ1

0

Āx − 2αðnþ 1Þυ
�
δh: ð65Þ

Now, for the cracking to occur, once the system has
been perturbed, there must be a change of sign in δR̂.
More specifically, it should be positive in the inner regions
and negative at the outer ones (in the inverse case, an
overturning is produced). This last condition implies that
δR̂¼0 for some value of ξ in the interval ½0; ξΣ�, implying
in turn

δh ¼ −Γδβ; ð66Þ

where

Γ ¼
"∂ ~R
∂β þ ∂ ~R

∂ ~υ FðξÞ
∂ ~R
∂ ~h

#����� β ¼ 1
~υ ¼ υ

~h¼h

: ð67Þ

Another perturbative scheme may be proposed, based on
the perturbation of the energy density and the anisotropy
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through the parameters n and h. In this case, following
the same line of arguments as in the previous scheme, we
have

Pr ¼ kρ1þ1=n
0 ¼ kρ1þ1=n

0c Ψnþ1
0 ; ð68Þ

ρ ¼ ρ0 þ nPr ¼ ρ0cΨn
0 þ nkρ1þ1=n

0c Ψnþ1
0 ; ð69Þ

n → ~n ¼ nþ δn; ð70Þ

h → ~h ¼ hþ δh: ð71Þ
Then, assuming that the radial pressure remains unchanged
under perturbation (what ensures the departure from
equilibrium),

~Pr ¼ Pr; ð72Þ

we have

~Pr ¼ Pr ¼ kρ1þ1=n
0c Ψnþ1; ð73Þ

~ρ ¼ ρ0cΨ ~n þ ~nPr: ð74Þ

Then, replacing terms in the hydrostatic equlibrium
equation, it follows that

~̂R ¼ Ψn
0

dΨ0

dξ
þ

~h
ξ2

½ð1 − nαÞΨ ~n
0 þ ð ~nþ 1ÞαΨnþ1

0 �

×

�
~υþ ξ3αΨnþ1

0

ð1 − 2αðnþ 1Þ~υ=ξÞ
�
: ð75Þ

Proceeding exactly as in the previous scheme, we obtain

δR̂ ¼ hΨn
0

ξ2ð1 − 2αðnþ 1Þυ=ξÞ
�
ðυþ ξ3αΨnþ1

0 Þðð1 − nαÞ lnðΨ0Þ þ αΨ0Þ

þ
�
1 − nαþ ð1þ nÞαΨ0

1 − 2αðnþ 1Þυ=ξ
�
ð1þ 2α2ξ2ðnþ 1ÞΨnþ1

0 ÞF1n

�
δn

þΨn
0

ξ2
½1 − nαþ ðnþ 1ÞαΨ0�

�
υþ ξ3αΨnþ1

0

1 − 2αðnþ 1Þυ=ξ
�
δh; ð76Þ

or

δR̂ ¼ hΨn
0

Āxð ~Ax − 2αðnþ 1ÞυÞ

�
ðυþ Ā3x3αΨnþ1

0 Þðð1 − nαÞ lnðΨ0Þ þ αΨ0Þ

þ Āx

�
1 − nαþ αðnþ 1ÞΨ0

Āx − 2αðnþ 1Þυ
�
ð1þ 2α2ðnþ 1ÞĀ2x2Ψnþ1

0 ÞF1n

�
δn

þΨn
0

Āx
ð1 − nαþ αðnþ 1ÞΨ0Þ

�
υþ Ā3x3αΨnþ1

0

Āx − 2αðnþ 1Þυ
�
δh; ð77Þ

with

F1n ¼
Z

ξ

0

ξ̄2Ψn
0½ð1 − nαÞ lnðΨ0Þ þ αΨ0�dξ̄: ð78Þ

Again, for the cracking to occur, we must have δR̂ ¼ 0
for some value of ξ in the interval ½0; ξΣ�, implying

δh ¼ −Γδn; ð79Þ

with

Γ ¼
"∂ ~R
∂ ~n þ ∂ ~R

∂ ~υ F1n

∂ ~R
∂ ~h

#����� ~n ¼ n
~υ ¼ υ
~h ¼ h:

ð80Þ

B. Perturbation in the case II

For this kind of polytrope, we have

Pr ¼ Kρ1þ1=n; ρ ¼ ρ0
ð1þ Kρ1=nÞn : ð81Þ

Then, we shall write for the radial pressure

Pr ¼ Kρ1þ1=n
c G; ð82Þ
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with

G≡
�
ρ

ρc

�
1þ1=n

; ð83Þ

thereby ensuring that the radial dependence of Pr remains
unchanged after perturbation.
We shall now proceed to perturb our polytrope, first

through the parameters K and h. Then, following the same
line of arguments as for case I, we have

~Pr ¼ ~Kρ1þ1=n
c G ¼ βPr; ð84Þ

~ρ ¼ ρ0

ð1þ ~Kρ1=n0 Þn
¼ ρ0

ð1þ βKρ1=n0 Þn
; ð85Þ

or, using

~ρ ¼ ρþ δρ ¼ ρþ
�∂ ~ρ
∂β

�
β¼1

δβ ð86Þ

β ¼ 1þ δβ; ð87Þ

we obtain

~ρ ¼ ρþ nPrðβ − 1Þ: ð88Þ

Feeding back the above expressions into (43), we may write

~̂R ¼ βΨn dΨ
dξ

þΨn ~h
ξ2

ð1þ αΨ½ðnþ 1Þβ − n�Þ ~υþ ξ3αβΨnþ1

ð1 − 2ðnþ 1Þα~υÞ=ξ : ð89Þ

Carrying out a procedure similar to the one described in the previous subsection, we obtain

δR̂ ¼ Ψn

Ā

�
dΨ
dx

þ hα
xðĀx − 2αðnþ 1ÞυÞ

�
Ψðυðnþ 1Þ þ Ā3x3Ψnð1þ αðnþ 2ÞΨÞÞ

þ Āx
�

1þ αΨ
Āx − 2αðnþ 1Þυ

�
ð1þ 2ðnþ 1Þα2Ā2x2Ψnþ1ÞnF2

��
δβ þΨn

Āx
ð1þ αΨÞ

�
υþ Ā3x3αΨnþ1

Āx − 2αðnþ 1ÞυÞ
�
δh; ð90Þ

where (64) has been used, and

F2 ¼
Z

ξ

0

ξ̄2Ψnþ1dξ̄: ð91Þ

If the perturbation is introduced via the parameter n, then the result is

δR̂ ¼ hΨn

xðĀx − 2αðnþ 1ÞυÞ
�
ðυþ Ā3x3αΨnþ1Þ lnðΨÞ þ Āx

�
1þ αΨ

Āx − 2αðnþ 1Þυ
�
ð1þ 2ðnþ 1Þα2Ā2x2Ψnþ1ÞF2n

�
δn

þΨn

Āx
ð1þ αΨÞ

�
υþ Ā3x3αΨnþ1

Āx − 2αðnþ 1ÞυÞ
�
δh; ð92Þ

with

F2n ¼
Z

ξ

0

lnðΨÞΨndξ̄: ð93Þ

IV. RESULTS

We shall now proceed to apply the formalism sketched in
the previous section to detect and analyze the occurrence of
cracking in the family of polytropes defined by the equation
of state (42). We shall consider both types of polytropes
(I and II) and both schemes of perturbation (through K and
h, and through n and h).

To do that, using a four-order Runge-Kutta method, we
shall integrate Eqs. (34), (36) and (39), (40) for any duplet
of parameters n; α and n; h for which there exists a
boundary surface. Such duplets have been determined in
Ref. [2] (see Figs. 3 and 4 for case I, and Figs. 8 and 9 for
case II, in that reference). Also, the absolute numerical
values of the perturbations of the parameters were taken of
the order of 10−6; the results are not qualitatively sensitive
to changes in some orders of magnitude below or above that
figure. Finally, the integrals (62), (78), (91), (93) were
numerically evaluated by means of the trapezoid rule (see
for example Ref. [68]).
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Next, the obtained Ψ;Ψ0 (which of course coincide with
the results in Ref. [2]) are used to evaluate (65) and (77) for
case I, and (90) and (92) for case II. We have considered the
whole range of values of the parameters leading to bounded
configurations whose physical variables satisfy the physical
requirements (31).
We shall now analyze the obtained results for each

case.
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FIG. 1. δR̂ as a function of x for n ¼ 1, h ¼ 1.5, and Γ ¼ 1.6.
Curves a, b, c, and d correspond to α ¼ 0.83, 0.85, 0.87, and 0.90,
respectively.

10.80.60.40.20

-2e-07

-1e-07

0

1e-07

2e-07

3e-07

4e-07

0.2 0.4 0.6 0.8 1

-2e-09

0

2e-09

a

b
c

d
e

a
b

c
d

e

FIG. 2. δR̂ as a function of x for n ¼ 1, h ¼ 0.5, and Γ ¼ 1.
Curves a, b, c, d, and e correspond to α ¼ 0.80, 0.83, 0.85, 0.87,
and 0.90, respectively.

10.80.60.40.20

-5e-08

0

5e-08

1e-07

1.5e-07
a

b

c

d

e

f

FIG. 3. δR̂ as a function of x for n ¼ 1.5, α ¼ 0.390, Γ ¼ 0.6,
and different values of h. Curves a, b, c, d, e, and f correspond to
h ¼ 0.5, 0.7, 0.9, 1.1, 1.3, and 1.5, respectively.
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FIG. 4. δR̂ as a function of x for n ¼ 1, h ¼ 1, and Γ ¼ 1.2.
Curves a, b, c, d, and e correspond to α ¼ 0.80, 0.83, 0.85, 0.87,
and 0.90, respectively.
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FIG. 5. δR̂ as a function of x for n ¼ 1, h ¼ 1.5, and Γ ¼ 1.4.
Curves a, b, and c correspond to α ¼ 0.85, 0.87, and 0.90,
respectively.
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FIG. 6. δR̂ as a function of x for n ¼ 1, h ¼ 1, and Γ ¼ 0.8.
Curves a, b, c, d, and e correspond to α ¼ 0.80, 0.83, 0.85, 0.87,
and 0.90, respectively.
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FIG. 7. δR̂ as a function of x for n ¼ 1, h ¼ 0.5, and Γ ¼ 0.8.
Curves a, b, c, d, and e correspond to α ¼ 0.80, 0.83, 0.85, 0.87,
and 0.90, respectively.
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FIG. 8. δR̂ as a function of x for n ¼ 0.5, α ¼ 0.98, Γ ¼ 0.6 and
different values of h. Curves a, b, c, d, e, and f correspond to
h ¼ 0.5, 0.7, 0.9, 1.1, 1.3, and 1.5, respectively.
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A. Cracking for polytropes of type I

Figures 1–7 summarize the main results obtained for the
polytropes of type I. The first four figures correspond to
the case where the perturbation is carried on through the
parameter K, whereas the remaining three figures of this
case describe the behavior of the system which has been
perturbed through the parameter n.
In Fig. 1 we observe the cracking for h ¼ 1.5 and the

different values of α indicated in the figure legend. It
appears that the strongest and deepest crackings are
associated with the largest values of α. We also observe
that in the outer regions, the models exhibit overturnings. In
these latter cases, the smallest values of α are associated
with the strongest overturnings.
Figure 2 depicts a similar situation, but for h ¼ 0.5.

However, in this case, crackings are stronger and over-
turnings are weaker.
The situation described in Figs. 1 and 2 is representative

for a wide range of the parameters (for which there exist
bounded configurations satisfying the required physical
conditions).
Figure 3 exhibits further the close relationship, existing

between the occurrence of cracking and the type of
anisotropy. Indeed, the smallest values of h correspond

to the deepest and strongest crackings, and to the weakest
overturnings. Furthermore, for the largest values of h
(curves e and f) there are no crackings at all, only
overturnings.
Finally, Fig. 4 exhibits the occurrence of cracking for

configurations that are locally isotropic before perturbation,
thereby illustrating the fact that even slight deviations from
local isotropy may be sufficient to produce a cracking.
Figures 5–7, which describe the results of perturbation

through the parameter n, lead to conclusions qualitatively
similar to the ones mentioned above. The strongest and
deepest crackings, and the weakest overturnings, are
associated with the largest values of α.

B. Cracking for polytropes of type II

The results of this case are depicted by Figs. 8–14. The
first four of these correspond to the perturbative scheme
through the parameter K, whereas the last three correspond
to perturbations of n.
Figure 8 describes the situation for different values of h.

For the choice of parameters in this figure, we observe that
cracking only appears for the smallest value of h, whereas
for the two largest values, there is only overturning. For
h ¼ 0.7 and 0.9, neither cracking nor overturning occurs.
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FIG. 9. δR̂ as a function of x for n ¼ 1.5, α ¼ 0.84, Γ ¼ 1.1 and
different values of h. Curves a, b, c, d, e, and f correspond to
h ¼ 0.5, 0.7, 0.9, 1.1, 1.3, and 1.5, respectively.
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FIG. 10. δR̂ as a function of x for n ¼ 0.5, h ¼ 0.5, and
Γ ¼ 0.6. Curves a, b, c, d, e, and f correspond to α ¼ 0.95, 0.96,
0.97, 0.98, 0.99 and 1.00, respectively.
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FIG. 11. δR̂ as a function of x for n ¼ 0.5, h ¼ 1.5, and
Γ ¼ 0.4. Curves a, b, c, d, e, and f correspond to α ¼ 0.95, 0.96,
0.97, 0.98, 0.99, and 1.00, respectively.
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FIG. 12. δR̂ as a function of x for n ¼ 1, h ¼ 0.5, and
Γ ¼ −0.5. Curves a, b, c, and d correspond to α ¼ 1.0, 0.9,
0.8, and 0.7, respectively.
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FIG. 13. δR̂ as a function of x for n ¼ 1.5, h ¼ 1, and
Γ ¼ −0.5. Curves a, b, c, and d correspond to α ¼ 0.7, 0.8,
0.9, and 1.0, respectively.
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FIG. 14. δR as a function of x for n ¼ 1.5, h ¼ 1.5, and
Γ ¼ −0.5. Curves a, b, c, and d correspond to α ¼ 0.7, 0.8, 0.9,
and 1.0, respectively.
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This behavior is confirmed in Fig. 9. Here we see how
the strongest and deepest crackings are associated with the
smallest values of h. For some minimal value of h and
larger, only overturnings are observed. These are strongest
for the largest values of h.
Figures 10 and 11 also confirm the role of h in the

occurrence (or not) of crackings. In Fig. 10, for h ¼ 0.5,
there are only crackings, which are strongest and deepest
for the largest values of α. In contrast, Fig. 11 only depicts
overturnings for h ¼ 1.5 and different values of α.
Figures 12, 13, and 14 describe the situation resulting

from the perturbation of n. However, unlike the previous
cases, for these three figures we have assumed negative
values of Γ. This explains why they only exhibit over-
turnings, and why these overturnings are stronger for
smaller values of h (just the opposite of the situation
observed for positive values of Γ).

V. CONCLUSIONS

We have investigated the conditions under which general
relativistic polytropes for anisotropic matter exhibit crack-
ing and/or overturning when submitted to fluctuations of
energy density and anisotropy.
Thus, we have shown that cracking and/or overturning

occur for a wide range of the parameters. For both types of
polytropes, the main conclusions are basically the same;
namely, the strongest and deepest crackings occur for the
smallest values of h and greatest values of α. Also, the
strongest overturnings result from the largest values of h.
A distinct feature of all the models studied here is the fact

that the “core” (the inner part) and the “envelope” (the outer
part) respond differently to different degrees of anisotropy
(different h). This fact was already pointed out in
Refs. [2,69].
It is important to stress that the occurrence of a cracking

has direct implications on the structure and evolution of the
compact object only at time scales that are smaller than, or
at most equal to, the hydrostatic time scale. This is so
because as already mentioned, what we do is to take a

“snapshot” just after the system leaves the equilibrium. To
find out whether or not the system will return to the state of
equilibrium afterward is out of the scope of our analysis,
and would require an integration of the evolution equations
for a finite period of time greater than the hydrostatic time.
However, all this having been said, it is clear that the

occurrence of cracking would drastically affect the future
structure and evolution of the compact object.
Accordingly, we would like to conclude this work by

speculating about possible scenarios where the occurrence
of cracking might be invoked in order to understand the
related observational data.
One of these situations could be the collapse of a

supermassive star. The occurrence of cracking at the inner
core would certainly change (in some cases, probably
enhance) the conditions for the ejection of the outer mantle
in a supernova event. This will be so for both the “prompt”
[70,71] and the “long term” mechanisms [72–75].
Also, one is tempted to invoke cracking as the possible

origin of quakes in neutron stars [76–78]. In fact, large-
scale crust cracking in neutron stars and their relevance in
the occurrence of glitches and bursts of x rays and gamma
rays have been considered in detail by Ruderman (see
Ref. [79] and references therein).
Evidently, the characteristics of these quakes, and those

of the ensuing glitches, would strongly depend on the depth
at which the cracking occurs. In this respect, it is worth
noticing the already mentioned fact that the depth at which
the cracking may appear is highly dependent on the
parameter h, which measures the anisotropy of the pressure.
However, we would like to emphasize that our aim here

is not to model in detail any of the scenarios mentioned
above, but just to call attention to the possible occurrence of
cracking in such important configurations as those satisfy-
ing a polytropic equation of state and its relationship with
fluctuations of local anisotropy. In other words, whatever
the origin of the anisotropy would be, or how small it is,
cracking may occur, which would drastically affect the
outcome of the evolution of the system.
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