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We consider an extension of Wheeler-DeWitt minisuperpace cosmology with additional interaction
terms that preserve the linear structure of the theory. General perturbative methods are developed and
applied to known semiclassical solutions for a closed Universe filled with a massless scalar. The exact
Feynman propagator of the free theory is derived by means of a conformal transformation in minisuper-
space. As an example, a stochastic interaction term is considered, and first order perturbative corrections are
computed. It is argued that such an interaction can be used to describe the interaction of the cosmological
background with the microscopic d.o.f. of the gravitational field. A Helmoltz-like equation is considered
for the case of interactions that do not depend on the internal time, and the corresponding Green’s kernel is
obtained exactly. The possibility of linking this approach to fundamental theories of quantum gravity is
investigated.
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I. INTRODUCTION

The Wheeler-DeWitt (WDW) equation represents the
starting point of the canonical quantization program, also
known as geometrodynamics. It was originally derived by
applying Dirac’s quantization scheme to Einstein’s theory
of gravity, formulated in Arnowitt-Deser-Misner variables.
It has the peculiar form of a timeless Schrödinger equation,
the solutions of which are functions defined on the space of
three-dimensional geometries

Hψ ¼ 0: ð1Þ

The equation is a constraint imposed on physical states,
encoding the invariance of the theory under reparametriza-
tion of the time variable. Together with the (spatial)
diffeomorphism constraint, it expresses the principle of
general covariance at the quantum level. This approach has,
however, several limitations that prevented it from being
accepted as a fully satisfactory theory of quantum gravity in
its original formulation.1 Nonetheless, some of the issues it
raises, as for instance the problem of time (i.e. the lack of a
universal parameter used to describe the evolution of the
gravitational field), are actually problems encountered by
all fundamental (nonperturbative) approaches to quantum
gravity. Others stem instead from the dubious mathematical
structure of the theory. Among the most essential ones in
the latter category, we mention the factor ordering problem

in the Hamiltonian constraint and the construction of a
physical Hilbert space.
Despite its limitations, WDW was proved to be a

valuable instrument in cases where the number of degrees
of freedom is restricted a priori, i.e. in minisuperspace and
midisuperspace models. In particular, its application to
cosmological settings has been extremely useful to gain
insight into some of the deep questions raised by a quantum
theory of the gravitational field, such as the problem of time
[2] and the occurrence of stable macroscopic branches for
the state of the Universe (as in the consistent histories
approach [3]).
One of the fundamental aspects of WDW is its linearity.

This is indeed a consequence of the Dirac quantization
procedure and a property of any first-quantized theory. One
can nonetheless find in the literature several proposals for
nonlinear extensions of the geometrodynamics equation.
They are in general motivated by an interpretation of ψ in
Eq. (1) as a field operator (rather than a function) defined
on the space of geometries. This idea has been applied to
cosmology and found concrete realization in the old baby
universes approach [4]. More recently, a model motivated
by Group Field Theory (GFT) (see Ref. [5] for a recent
outline) has been proposed in Ref. [6] that retains the same
spirit, taking loop quantum cosmology (LQC) [7] as a
starting point.2

It is worthwhile stressing that the WDW theory can be
recovered in the continuum limit (see Ref. [9] for details)
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1For a general account of the WDW theory and the problems it

encounters, see e.g. Ref. [1].

2Yet another interpretation of the dynamical equation on
minisuperspace has been recently advocated in Ref. [8]. Accord-
ing to this point of view, it should rather be interpreted as some
analog of a (nonlinear) hydrodynamical equation, for which the
superposition principle does not hold in general.
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from a more fundamental theory such as LQC. In this sense
it can be interpreted as an effective theory of quantum
cosmology, valid at scales such that the fundamentally
discrete structure of spacetime cannot be probed.
Therefore, WDW, far from being of mere historical
relevance, is rather to be considered as an important tool
to extract predictions from cosmological models when a
continuum, semiclassical behavior is to be expected.
In what follows we consider as a starting point the

Hamiltonian constraint of LQC, leading to the free evolu-
tion of the Universe, as discussed in the GFT-inspired
model [6]. Nonlinear terms are allowed, which can be
interpreted as interactions between disconnected homo-
geneous components of an isotropic Universe (scattering
processes describe topology change). Instead of resorting to
a third quantized formalism built on minisuperspace
models, we follow a rather conservative approach which
does not postulate the existence of universes disconnected
from ours. We therefore only take into account linear
modifications of the theory, so as to guarantee that the
superposition principle remains satisfied. Hence, these
extra terms can be interpreted as self-interactions of the
Universe, as well as violations of the Hamiltonian
constraint.
We aim at studying the dynamics in a regime such that

the free LQC dynamics (given by finite difference equa-
tion) can be approximately described in terms of differ-
ential equations. In this regime, the dynamics is given by a
modified WDW equation. Since WDW is obtained in the
limit of large volumes, it is clear that this effective theory
cannot be used to study the dynamics of the Universe near
the big bang or big crunch singularities. The additional
interactions should be such that deviations from the
Friedmann equation are small and will therefore be treated
as small perturbations.
We consider a closed Friedmann-Lemaître-Robertson-

Walker (FLRW) Universe, for which semiclassical solu-
tions are known explicitly [10]. Corrections to the solutions
arising from the extra linear interactions are obtained
perturbatively. Of particular interest is the case in which
the perturbation is represented by white noise. In fact, this
could be a way to model the effect of the discrete structure
underlying spacetime on the evolution of the macroscop-
ically relevant degrees of freedom. It should therefore be
possible to make contact, at least qualitatively, between the
usual quantum cosmology and the GFT cosmology,
according to which the dynamics of the Universe is that
of a condensate of elementary spacetime constituents.
Considering a white noise term amounts to treating the
vacuum fluctuations of the gravitational field as a stochastic
process, an approach motivated by an analogy with
stochastic electrodynamics (SED) [11–14]. This will be
done is Sec. VI. The analogy with SED has of course its
limitations, since in the case at hand there is no knowledge
about the dynamics of the vacuum, which should instead

come from a full theory of quantum gravity. In spite of this
limitation, the methods developed here are fully general, so
as to allow for a perturbative analysis of the solutions of the
linearly modified WDW equation for any possible form of
the additional interactions.
In the present work, we restrict to a closed Universe, for

which wave packet solutions were constructed in Ref. [10].
In the same work, it was shown that it is possible to
construct a quantum state whose evolution mimics a
solution of the classical Friedmann equation and is given
by a quantum superposition of two Gaussian wave packets
(one for each of the two phases of the Universe, expanding
and contracting) centered on the classical trajectory. We
build on the results of Ref. [10], considering the new
interaction term as a perturbation and thus determining the
corrections to the motion of the wave packets.
The rest of the paper is organized as follows. In Sec. II,

we show how our model is motivated by LQC- and GFT-
inspired cosmology [6] in the continuum limit (large
volumes). In Sec. III, we review the construction of the
wave packet solutions done in Ref. [10]. These solutions
will be used in the subsequent sections as the unperturbed
states describing the evolution of a semiclassical Universe.
In Sec. IV, using the scalar field to define an internal time,
we develop a framework for time-independent perturbation
theory. The inverse of the Helmoltz operator corresponding
to the free theory is computed exactly and turns out to
depend on a real parameter, linked to the choice of the
boundary conditions at the singularity. An analog of
Ehrenfest’s theorem for the evolution equation of the
expectation values of observables is then given. In
Sec. V, the Feynman propagator of the WDW free field
operator is evaluated exactly. This is accomplished by using
a conformal map in minisuperspace, which reduces the
problem to that of finding the Klein-Gordon propagator in a
planar region with a boundary. In Sec. VI, we consider the
case in which the additional interaction is given by white
noise and discuss the implications for semiclassicality and
the arrow of time. Finally, we review our results and their
physical implications in Sec. VII.

II. FROM THE LQC FREE THEORY TO WDW

Let us briefly show how the WDWequation is recovered
from the Hamiltonian constraint of LQC following
Ref. [9].3 For our purposes it is convenient to consider a
massless scalar field ϕ, minimally coupled to the gravita-
tional field. This choice has the advantage of allowing for a
straightforward deparametrization of the theory, thus defin-
ing a clock. The Hamiltonian constraint has the general
structure [6,9]

3The actual way in which WDW represents a large volume
limit of LQC is put in clear mathematical terms in Refs. [15,16],
where the analysis is based on a special class of solvable models
(sLQC).
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K̂ψðν;ϕÞ≡ −BðνÞðΘþ ∂2
ϕÞψðν;ϕÞ ¼ 0; ð2Þ

where ψ is a wave function on configuration space, Θ is a
finite difference operator acting on the gravitational sector
in the kinetic Hilbert space of the theoryHg

kin, and ν denotes
the generic eigenvalue of the volume operator. The dis-
creteness introduced by the LQC formulation does not
affect the matter sector, which is still the same as in the
continuum WDW quantum theory. The gravitational sector
of the Hamiltonian constraint operator of LQC in
“improved dynamics”4; reads

−BðνÞΘψðν;ϕÞ≡ AðνÞψðνþ ν0;ϕÞ þ CðνÞψðν;ϕÞ
þDðνÞψðν − ν0;ϕÞ; ð3Þ

where the finite increment ν0 represents an elementary
volume unit and A; B;C;D are functions which depend on
the chosen quantization scheme. In order to guarantee that
Θ is symmetric5 in ν, the coefficients must satisfy the
DðνÞ ¼ Aðν − ν0Þ condition [6]; it holds in both the k ¼ 0
and the k ¼ 1 case.
It is a general result of LQC that WDW can be recovered

in the continuum (i.e. large volume) limit [15]. In particular,
it was shown in Ref. [9] that for k ¼ 1 one recovers the
Hamiltonian constraint of Ref. [10]. In fact it turns out that
Θ can be expressed as the sum of the operator (Θ0) relative
to the k ¼ 0 case and a ϕ-independent potential term (i.e.
diagonal in the ν basis) as

Θ ¼ Θ0 þ
πGl20γ

2

3K4=3 jνj4=3: ð4Þ

In the above expression K ¼ 2
ffiffi
2

p

3
ffiffiffiffiffiffiffi
3
ffiffi
3

pp , γ is the Barbero-

Immirzi parameter of loop quantum gravity, G is the
gravitational constant, and l0 is the cube root of the fiducial
volume of the fiducial cell on the spatial manifold in the
k ¼ 1 model. The latter can be formally sent to zero in
order to recover the k ¼ 0 case.
Restricting to wave functions ψðνÞwhich are smooth and

slowly varying in ν, we obtain the WDW limit of the
Hamiltonian constraint

Θ0ψðν;ϕÞ ¼ −12πGðν∂νÞ2ψðν;ϕÞ; ð5Þ

which is exactly the same constraint one obtains in WDW
theory. Thus, LQC naturally recovers the factor ordering
(also called covariant factor ordering, in the sense that the
quantum constraint operator is of the form GAB∇A∇B,
where GAB is the inverse WDW metric and ∇A denotes the
covariant derivative associated with GAB) which was
obtained in Ref. [2] under the requirement of field
reparametrization invariance of the minisuperspace path
integral. Since ν represents a proper volume, it is propor-
tional to the volume of a comoving cell with linear
dimension equal to the scale factor a,

ν ∝ a3: ð6Þ

Introducing the variable α ¼ log a, we rewrite the con-
straint operator K̂ as

K̂ ¼ e−3α
� ∂2

∂α2 −
∂2

∂ϕ2
− e4α

�
: ð7Þ

Let us consider a modified dynamical equation of the form

K̂ψðν;ϕÞ þ
X
ν0

Z
dϕ0gðν; ν0;ϕ;ϕ0Þψðν0;ϕ0Þ ¼ 0; ð8Þ

which, in the continuum limit ν ≫ ν0, leads to� ∂2

∂α2 −
∂2

∂ϕ2
− e4α

�
ψ ¼ −e3α

Z
dα0dϕ0dν

dα

����
α0
gψ : ð9Þ

We will assume for simplicity that the interaction g is
local in minisuperspace, i.e. gðν; ν0;ϕ;ϕ0Þ ¼ gðν;ϕÞδðν−
ν0Þδðϕ − ϕ0Þ. Given the properties of the Dirac delta
function

δðν − ν0Þ ¼ δðα − α0Þ
dν
dα jα0

; ð10Þ

Eq. (9) reduces to a Klein-Gordon equation with space- and
time-dependent potential e3αgðα;ϕÞ; note that g is kept
completely general.
It should be pointed out that more general interaction

terms than the ones considered in (8) can in principle be
conceived. In fact, from the point of view of a third
quantized theory of gravity, the most general equation of
motion would involve nonlinear terms. However, the
methods developed in this work are completely general,
and their application to the study of nonlinearities in
perturbation theory is straightforward, following the analo-
gous well-known procedure in perturbative Relativistic
Quantum Field Theory (RQFT). The main ingredient for
such calculations is given by the Green’s function, together
with the Feynman rules for the vertices associated with the

4In the framework of LQC, the Hamiltonian constraint con-
tains the gravitational connection c. However, only the holon-
omies of the connections are well-defined operators, and hence to
quantize the theory, we replace c by sin μ̄c=μ̄, where μ̄ represents
the “length” of the line segment along which the holonomy is
evaluated. Originally μ̄ was set to a constant μ0, related to the area
gap. To cure severe issues in the ultraviolet and infrared regimes
which plague the μ0 quantization, a new scheme called “im-
proved dynamics” was proposed [17]. In the latter, the dimen-
sionless length of the smallest plaquette is μ̄.

5In the large volume limit, it will be formally self-adjoint with
respect to the measure BðνÞdν.
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various interactions. A perturbative study of the WDW
equation with an additional linear term can therefore be
seen as the starting point for a more general study. Note
that, even though such a generalization may seem more
natural from a merely formal point of view, it makes the
physical interpretation of the theory even more problem-
atic. A linear term instead, as we will show with the
example in Sec, VI, can be used to model the interaction of
the degree of freedom represented by the scale factor with
other microscopic degrees of freedom of the gravitational
field without having to change the interpretation of ψ .
Since the interaction term represented by the rhs of

Eq. (9) is unknown, we cannot determine an exact solution
of the equation without resorting to a case by case analysis.
However, since the solutions of the WDW equation in the
absence of a potential are known explicitly, we will adopt a
perturbative approach. The method we develop is fully
general and can thus be applied for any possible choice of
the function g.
We formally expand the wave function and the WDW

operator in terms of a dimensionless parameter λ (that
serves bookkeeping purposes and will be eventually set
equal to 1),

ψ ¼ ψ ð0Þ þ λψ ð1Þ þ…; ð11Þ

and T̂ ¼ T̂0 þ λe3α
Z

g; ð12Þ

with the definitions

T̂0 ≡
� ∂2

∂α2 −
∂2

∂ϕ2
− e4α

�
: ð13Þ

We therefore have

T̂0ψ
ð0Þ ¼ 0; ð14Þ

T̂0ψ
ð1Þ ¼ −e3αgψ ð0Þ: ð15Þ

The zeroth order term ψ ð0Þ is a solution of the wave
equation with an exponential potential, which was obtained
in Ref. [10] and will be reviewed in the next section. If we
were able to invert T̂0, we would get the wave function
corrected to first order. However, finding the Green’s
function is not straightforward in this case as it would
be for k ¼ 0 (where the kinetic operator is just the
d’Alembertian, for which the Green’s kernels are well
known for all possible choices of boundary conditions).
Moreover, as for the d’Alembertian, the Green’s kernel will
depend on the boundary conditions. The problem of
determining which set of boundary conditions is more
appropriate depends on the physical situation we have in
mind and will be dealt with in the next sections.

At this point, we would like to point out the relation
between our approach and the model in Ref. [6], where a
third quantization perspective is assumed. The action on
minisuperspace that was considered in Ref. [6] reads6

S½ψ � ¼ Sfree½ψ �

þ
X
n

λn
n!

X
ν1…νn

Z
dϕ1…dϕnfðnÞðνi;ϕiÞ

Y
j

ψðνj;ϕjÞ;

ð16Þ

where the first term gives the dynamics of the free theory,
namely, a homogeneous and isotropic gravitational back-
ground coupled to a massless scalar field

Sfree½ψ � ¼
X
ν

Z
dϕψðν;ϕÞK̂ψðν;ϕÞ; ð17Þ

K̂ is the Hamiltonian constraint in LQC, and the terms
containing the functions fðnÞ represent additional inter-
actions that violate the constraint. This is a toy model for
group field cosmology [6], given by a GFT with group
G ¼ Uð1Þ and ν a Lie algebra element. The free dynamics
depends on the specific LQC model adopted. However, the
continuum limit should be the same regardless of the model
considered and must give the WDW equation for the
corresponding three-space topology. The WDW approach
to quantum cosmology should therefore be interpreted as
an effective theory, valid at scales such that the discreteness
introduced by the polymer quantization cannot be probed.
We will show that, even from this more limited perspective,
the action Eq. (16) leads to a novel effective theory of
quantum cosmology that represent modifications of WDW.
The validity of this approach is limited to large volumes and
therefore cannot be used to study the dynamics near
spacetime singularities.
It was hinted in Ref. [6] that the additional interactions

could also be interpreted as interactions occurring between
homogeneous patches of an inhomogeneous Universe.
Another possible interpretation is that they actually re-
present interactions among different, separate, universes.
The latter turns out to be a natural option in the framework
of third quantization (see Ref. [18] and references therein),
which naturally allows for topology change.7

We restrict our attention to the quadratic term, that can be
interpreted as a self-interaction of the Universe. This is in
fact worth considering even without resorting to a third-
quantized cosmology and can in principle be generalized to
include nonlocality in minisuperspace (this situation will
not be dealt with in the present work).

6The model was originally formulated for k ¼ 0, but it admits a
straightforward generalization to include the case k ¼ 1.

7For an example of topology change in the old “baby
universes” literature, see e.g. Ref. [4].
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III. ANALYSIS OF THE UNPERTURBED CASE

We review here the construction of wave packet sol-
utions for the cosmological background presented in
Ref. [10]. The Wheeler-DeWitt equation for a homo-
geneous and isotropic Universe (compact spatial topology,
k ¼ 1) with a massless scalar field is

� ∂2

∂α2 −
∂2

∂ϕ2
− e4α

�
ψðα;ϕÞ ¼ 0: ð18Þ

We impose the boundary condition

lim
α→∞

ψðα;ϕÞ ¼ 0; ð19Þ

necessary in order to reconstruct semiclassical states
describing the dynamics of a closed Universe, since regions
of minisuperspace corresponding to arbitrary large scale
factors are not accessible.
Equation (19) can be solved by separation of variables

ψkðα;ϕÞ ¼ NkCkðαÞφkðϕÞ; ð20Þ

leading to

∂2

∂ϕ2
φk þ k2φk ¼ 0; ð21Þ

∂2

∂α2 Ck − ðe4α − k2ÞCk ¼ 0: ð22Þ

Note that ψkðα;ϕÞ stands for the solution of Eq. (18) and
should not be confused with the Fourier transform of ψ , for
which we will use instead the notation ~ψðα; kÞ. In Eq. (20)
above, Nk is a normalization factor that depends on k, the
value of which will be fixed later.
Let us proceed with the solutions of Eqs. (21) and (22).

Equation (21) yields complex exponentials as solutions

φk ¼ eikϕ; ð23Þ

while Eq. (22) has the same form as the stationary
Schrödinger equation for a nonrelativistic particle in one
dimension, with potential VðαÞ ¼ e4α − k2 and zero
energy. One then easily remarks that the particle is free
for α → −∞, whereas the potential barrier becomes infi-
nitely steep as α takes increasingly large positive values.
Given the imposed boundary condition, Eq. (22) admits as
an exact solution the modified Bessel function of the
second kind (also known as the MacDonald function):

CkðαÞ ¼ Kik=2

�
e2α

2

�
: ð24Þ

Wave packets are then constructed as linear superpositions
of the (appropriately normalized) solutions

ψðα;ϕÞ ¼
Z

∞

−∞
dkψkðα;ϕÞAðkÞ; ð25Þ

with an appropriately chosen amplitude AðkÞ. Since the
CkðαÞ are improper eigenfunctions of the (one-parameter
family of) Hamitonian operator(s) in Eq. (22), they do not
belong to the space of square integrable functions on the
real line L2ðRÞ. However, it is still possible to define some
sort of normalization by fixing the oscillation amplitude of
the improper eigenfunctions for α → −∞. For this purpose,
we recall the WKB expansion of Eq. (24),

Kik=2

�
e2α

2

�
≃

ffiffiffi
π

p
2

e−k
π
4ðk2 − e4αÞ−1=4

× cos

�
k
2
arccos h

k
e2α

−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − e4α

p
−
π

4

�
;

ð26Þ

a very accurate approximation for large values of k. We
therefore set

ψkðα;ϕÞ ¼ ek
π
4

ffiffiffi
k

p
Kik=2

�
e2α

2

�
eikϕ; ð27Þ

which for large enough values of k gives elementary waves
with the same amplitude to the left of the potential barrier.
Note that for small k the amplitude AðkÞ will still exhibit
dependence on k.
Let us assume a Gaussian profile for the amplitude AðkÞ

in Eq. (25),

AðkÞ ¼ 1

π1=4
ffiffiffi
b

p e−
ðk−k̄Þ2
2b2 ; ð28Þ

where k̄ should be taken large enough so as to guarantee the
normalization of the function ψkðα;ϕÞ. One then finds that
the solution has the profile shown in the Fig. 1. The solution
represents a wave packet that starts propagating from a
region where the potential vanishes (i.e. at the initial
singularity) toward the potential barrier located approx-
imately at αk̄ ¼ 1

2
log k̄, from where it is reflected back. For

such values of k̄, the wave packet is practically completely
reflected back from the barrier. The parameter b gives a
measure of the semiclassicality of the state; i.e. it accounts
for how much it peaks on the classical trajectory. We
remark that the peak of the wave packet follows closely the
classical trajectory,

e2α ¼ k̄
coshð2ϕÞ ; ð29Þ

and refer the reader to Fig. 2.
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IV. TIME-INDEPENDENT PERTURBATION
POTENTIAL

In the case in which the potential in the rhs of Eq. (9)
does not depend on the scalar field (that we interpret as an
internal time), we can resort to time-independent

perturbation theory to calculate the corrections to the wave
function. Namely, we consider the representation of the
operator T̂0 defined in Eq. (13) in Fourier space, or
equivalently its action on a monochromatic wave, so that
we are lead to the Helmoltz equation in the presence of a
potential,

� ∂2

∂α2 þ k2 − e4α
�
~ψ ð0Þðα; kÞ ¼ 0; ð30Þ

where the potential cannot be considered as a small
perturbation with respect to the standard Helmoltz equa-
tion. In fact, reflection from an infinite potential barrier
requires boundary conditions that are incompatible with
those adopted in the free particle case. We therefore have to
solve Eq. (30) exactly.
In order to compute the first perturbative corrections, we

need to solve Eq. (15), which in Fourier space leads to

� ∂2

∂α2 þ k2 − e4α
�
~ψ ð1Þðα; kÞ ¼ UðαÞ ~ψ ð0Þðα; kÞ; ð31Þ

upon defining UðαÞ ¼ −e3αgðαÞ. Equation (31) is easily
solved once the Green’s function of the Helmoltz
operator on the lhs is known. The equation for the
Green’s function is

� ∂2

∂α2 þ k2 − e4α
�
Gkðα; α0Þ ¼ δðα − α0Þ: ð32Þ

The homogeneous equation admits two linearly indepen-
dent solutions, which we can use to form two distinct linear
combinations that satisfy the boundary conditions at the
two extrema of the interval of the real axis we are
considering. The remaining free parameters are then fixed
by requiring continuity of the function at α0 and the
condition on the discontinuity of the first derivative at
the same point.
Equation (30) has two linearly independent solutions

pðαÞ and hðαÞ given by

pðαÞ ¼ Kik
2

�
e2α

2

�
ð33Þ

and

hðαÞ ¼ I−ik
2

�
e2α

2

�
þ Iik

2

�
e2α

2

�
: ð34Þ

We thus make the following ansatz,

Gkðα; α0Þ ¼
�
γpðαÞ α ≥ α0

δhðαÞ þ ηpðαÞ α < α0;
ð35Þ

FIG. 2. Classical trajectory of the Universe in minisuperspace.
It is closely followed by the peak of semiclassical states, as we
can see by comparison with Fig. 1.

FIG. 1. Absolute square of the “wave function” of the Universe
corresponding to the choice of parameters b ¼ 1, k̄ ¼ 10. Lighter
shades correspond to larger values of the wave function. During
expansion and recollapse, the evolution of the Universe can be
seen as a freely propagating wave packet. From the plot the
reflection against the potential barrier at αk̄ ¼ 1

2
log k̄ is also

evident, where the wave function exhibits a sharp peak.
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and note that Gkðα; α0Þ satisfies the boundary condition
Eq. (19) by construction.
Since we do not know what the boundary condition for

α → −∞ is, i.e. near the classical singularity,8 we will not
be able to fix the values of all constants γ; δ; η. We will
therefore end up with a one-parameter family of Green’s
functions.
The Green’s function must be continuous at the point

α ¼ α0, hence

γpðα0Þ ¼ δhðα0Þ þ ηpðα0Þ: ð36Þ

Moreover, in order for its second derivative to be a Dirac
delta functional, the following condition on the disconti-
nuity of the first derivative must be satisfied:

γp0ðα0Þ − δh0ðα0Þ − ηp0ðα0Þ ¼ 1: ð37Þ

Upon introducing a new constant Ω ¼ γ − η, we can
rewrite Eqs. (36) and (37) in the form of a Kramer’s system,

�Ωpðα0Þ − δhðα0Þ ¼ 0;

Ωp0ðα0Þ − δh0ðα0Þ ¼ 1;

which admits a unique solution, given by

Ω ¼ −
hðα0Þ
Wðα0Þ ; ð38Þ

δ ¼ −
pðα0Þ
Wðα0Þ ; ð39Þ

where Wðα0Þ ¼ pðα0Þh0ðα0Þ − hðα0Þp0ðα0Þ is the
Wronskian. Hence, the ansatz (35) is rewritten as

Gk;ηðα;α0Þ ¼
8<
:

pðαÞ
�
η − hðα0Þ

Wðα0Þ
�

α ≥ α0

− pðα0Þ
Wðα0Þ hðαÞ þ ηpðαÞ α ≤ α0;

where we have explicitly introduced the parameter η in our
notation for the Green’s function in order to stress its
nonuniqueness. Note that the phase shift at −∞ varies
with η.
Hence, the solution of Eq. (31) reads

~ψ ð1Þðα; kÞ ¼
Z

dα0Gk;ηðα; α0ÞUðα0Þ ~ψ ð0Þðα; kÞ: ð40Þ

The possibility of studying the perturbative corrections
using a decomposition in monochromatic components is
viable because of the validity of the superposition principle.

This is in fact preserved by additional interactions of the
type considered here, which violate the constraint while
preserving the linearity of the wave equation. Note that, in
general, modifications of the scalar constraint in the WDW
theory would be nonlinear and nonlocal, as for instance
within the proposal of Ref. [8], where classical geome-
trodynamics arises as the hydrodynamics limit of GFT.
However, such nonlinearities would spoil the superposition
principle, hence making the analysis of the solutions much
more involved.
The time dependence of the perturbative corrections is

recovered by means of the inverse Fourier transform of
Eq. (40),

ψ ð1Þðα;ϕÞ ¼
Z

dk
2π

~ψ ð1Þðα; kÞe−ikϕ: ð41Þ

Expectation values of observables can be defined using
the measure determined by the time component of the
Noether current jϕ as

hfi ¼
Z

dαfjϕ: ð42Þ

The Noether current is defined as

jμ ¼ −i

 
ψ� ∂

↔
ψ

∂ϕ ;ψ� ∂
↔
ψ

∂α
!
: ð43Þ

Using the conservation of the Noether current, we can then
derive an analog of the Ehrenfest theorem, namely,

d
dϕ

hfi ¼
Z

dαðjϕ∂ϕf þ f∂ϕjϕÞ

¼
Z

dαðjϕ∂ϕf þ f∂αjαÞ: ð44Þ

When the observable f does not depend explicitly on the
internal time ϕ, the first term in the integrand vanishes.
Considering for instance the scale factor a ¼ eα then, after
integrating by parts, we get

d
dϕ

hai ¼ −
Z

dαeαjα: ð45Þ

In an analogous fashion, one can show that

d
dϕ

ha2i ¼ −2
Z

dαe2αjα: ð46Þ

Formulas (44) and (46), besides their simplicity, turn out
quite handy for numerical computations, especially when
dealing with time-independent observables. In fact they can
be used to compute time derivatives of the averaged
observables without the need for a high resolution on

8In fact, even popular choices like the Hartle-Hawking
no-boundary proposal [19,20] or the tunneling condition pro-
posed by Vilenkin [21] only apply to massive scalar fields.
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the ϕ axis; i.e. they can be calculated using data on a single
time slice. Expectation values can therefore be propagated
forward or backward in time by solving first order ordinary
differential equations.

V. FIRST PERTURBATIVE CORRECTION FOR
TIME-DEPENDENT POTENTIALS

In the previous section,we considered a time-independent
perturbation, which can be dealt with using the Helmoltz
equation. This is in general not possible when the perturba-
tion depends on the internal time. In order to study the more
general case, we have to resort to different techniques to find
the exact Green’s function of the operator T̂0. Since the
potential e4α breaks translational symmetry, Fourier analy-
sis, which makes the determination of the propagator so
straightforward in the k ¼ 0 case (where the Hamiltonian
constraint leads to the wave equation), is of no help.
Let us perform the following change of variables,

X ¼ 1

2
e2α coshð2ϕÞ; Y ¼ 1

2
e2α sinhð2ϕÞ; ð47Þ

which represents a mapping of minisuperspace into the
wedge X > jYj (Fig. 3). The minisuperspace interval
(corresponding to DeWitt’s supermetric) can be expressed
in the new coordinates as

dϕ2 − dα2 ¼ 1

X2 − Y2
ðdY2 − dX2Þ; ð48Þ

with ðX2 − Y2Þ−1 the conformal factor.9 As an immediate
consequence of conformal invariance, uniformly expanding
(contracting) universes are given by straight lines parallel to
X ¼ Y (X ¼ −Y) within the wedge. The “horizons” X ¼
−Y and X ¼ Y represent the initial and final singularities,
respectively. It is worth pointing out that the classical
trajectory Eq. (29) takes now the much simpler expression

k̄ ¼ 2X; ð49Þ

i.e. classical trajectories are represented by straight lines
parallel to the Y axis and with the extrema on the two
singularities.
In the new coordinates X; Y, the operator T̂0 in Eq. (13)

reads

T̂0 ¼ ðX2 − Y2Þð∂2
X − ∂2

Y − 4Þ; ð50Þ

which is, up to the inverse of the conformal factor, a Klein-
Gordon operator with m2 ¼ 4. This is a first step toward a
perturbative solution of Eq. (15), which we rewrite below
for convenience of the reader in the form

T̂0ψ
ð1Þ ¼ Uðα;ϕÞψ ð0Þ; ð51Þ

where

Uðα;ϕÞ ¼ −e3αgðα;ϕÞ: ð52Þ

Note that the above is the same equation as the one
considered in the previous section, but we are now allowing
for the interaction potential to depend also on ϕ. Given
Eq. (50), we recast Eq. (51) in the form that will be used for
the applications of the next section, namely,

ð∂2
X − ∂2

Y − 4Þψ ð1Þ ¼ UðX; YÞ
ðX2 − Y2Þψ

ð0Þ: ð53Þ

The formal solution to Eq. (53) is given by a convolution of
the rhs with the Green’s function satisfying suitably chosen
boundary conditions

ψ ð1ÞðX; YÞ ¼
Z

dX0dY 0GðX; Y;X0; Y 0Þ

×
UðX0; Y 0Þ
ðX02 − Y 02Þψ

ð0ÞðX0; Y 0Þ: ð54Þ

The Green’s function of the Klein-Gordon operator in free
space is well known for any dimension D (see e.g.
Ref. [22]). In D ¼ 2 it is formally given by10

GðX; Y;X0; Y 0Þ ¼
Z

d2k
ð2πÞ2

e−iðkYðY−Y 0Þ−kXðX−X0ÞÞ

ðk2Y − k2XÞ − 4
ð55Þ

and satisfies the equation

ð∂2
X − ∂2

Y − 4ÞGðX; Y;X0; Y 0Þ ¼ δðX − X0ÞδðY − Y 0Þ:
ð56Þ

Evaluating (55) explicitly using Feynman’s integration
contour, which is a preferred choice in the context of a
third quantization, we get [22,23]

GðX; Y;X0; Y 0Þ ¼ −
1

4
θðsÞHð2Þ

0 ð2 ffiffiffi
s

p Þ

−
i
2π

θð−sÞK0ð2
ffiffiffiffiffiffi
−s

p Þ; ð57Þ

where we introduced the notation s ¼ ðY − Y 0Þ2 − ðX −
X0Þ2 for the interval. However, the present situation is
distinguished from the free case, since there is a physical
boundary represented by the edges of the wedge. The
boundary conditions must be therefore appropriately dis-
cussed. A preferred choice is the one that leads to the
Feynman boundary conditions in the physical coordinates
ðα;ϕÞ. In the following, we will see the form that these
conditions take in the new coordinate system, finding the

9Recall that any two metrics on a two-dimensional manifold
are related by a conformal transformation. 10Notice that here Y plays the role of time.
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transformation laws of the operators that annihilate
progressive and regressive waves.
We begin by noticing that the generator of dilations in the

ðX; YÞ plane acts as a tangential derivative along the edges

X∂X þ Y∂Y ¼ ∂t: ð58Þ
Moreover on the upper edge X ¼ Y (corresponding to the
big crunch), we have

∂tjX¼Y ¼ 1

4
ð∂α þ ∂ϕÞ; ð59Þ

while on the lower edge (corresponding to the initial
singularity), we have

∂tjX¼−Y ¼ 1

4
ð∂α − ∂ϕÞ: ð60Þ

Therefore, the boundary conditions

∂tjX¼YG ¼ ∂tjX¼−YG ¼ 0 ð61Þ

are equivalent to the statement that the Green’s function is a
positive (negative) frequency solution of the wave equation
at the final (initial) singularity. This is in agreement with the
Feynman prescription and with the fact that the potential eα

vanishes at the singularity α → −∞.
There is a striking analogy with the classical electro-

statics problem of determining the potential generated by a
point charge inside a wedge formed by two conducting
plates (in fact it is well known that the electric field is
normal to the surface of a conductor, so that the tangential
derivative of the potential vanishes). The similarity goes
beyond the boundary conditions and holds also at the level
of the dynamical equation. In fact, after performing a Wick
rotation Y → −iY, Eq. (56) becomes the Laplace equation
with a constant mass term, while the operator ∂t defined in
Eq. (58) keeps its form.
After performing the Wick rotation, the problem can be

solved with the method of images. Given a source (charge)

at point P0 ¼ ðr0; θ0Þ, three image charges as in Fig. 4 are
needed to guarantee that the boundary conditions are met.
The Euclidean Green’s function as a function of the point
Q ¼ ðr; θÞ and source P0 (hence, m ¼ 2) is shown to be
given by

Gðr; θ; r0; θ0Þ ¼ 1

2π
ðK0ðmP0QÞ − K0ðmP1QÞ

þ K0ðmP2QÞ − K0ðmP3QÞÞ: ð62Þ

The quantities PjQ represent the Euclidean distances
between the charges and the point Q. The Lorentzian
Green’s function is then recovered by Wick rotating all the
Y time coordinates, i.e. those of Q and of the Pj’s. In order
to obtain this solution, we treated the two edges symmet-
rically, thus maintaining time reversal symmetry. The
Green’s function with a source P0 within the wedge
vanishes when Q is on either of the two edges. In fact,
this can be seen as a more satisfactory way of realizing
DeWitt’s boundary condition, regarding it as a property of
correlators rather than of states.11

FIG. 3. The whole of minisuperspace is conformally mapped
into the wedge. The straight lines X ¼ �Y correspond to the two
horizons, while the vertical line is the classical trajectory of a
closed Universe.

FIG. 4. The Green’s function is a function of the point Q and
the source P0. The positions and the charges of the images Pj’s
are determined so as to satisfy the boundary conditions.

11DeWitt originally proposed the vanishing of the wave
function of the Universe at singular metrics on superspace,
suggesting in this way that the singularity problem would be
solved a priori with an appropriate choice of the boundary
conditions. However, there are cases (see the discussion in
Refs. [24,25]) where DeWitt’s proposal does not lead to a
well-posed boundary value problem and actually overconstrains
the dynamics. For instance, the solution given in Ref. [10] that we
discussed in Sec. III satisfies it for α → ∞ but not at the initial
singularity, since all the elementary solutions CkðαÞ are indefi-
nitely oscillating in that region. Imposing the same condition on
the Green’s function does not seem to lead to such difficulties.
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VI. TREATING THE INTERACTION AS
WHITE NOISE

The methods developed in the previous sections are
completely general and can be applied to any choice of the
extra interaction terms using Eq. (54). In this section we
will consider, as a particularly simple example, the case in
which the additional interaction is given by white noise.
Besides the mathematical simplicity, there are also physical
motivations for doing so. In fact, we can make the
assumption that the additional terms that violate the
Hamiltonian constraint can be used to model the effect
of the underlying discreteness of spacetime on the evolu-
tion of the Universe.
Some approaches to quantum gravity (for instance GFT)

suggest that an appropriate description of the gravitational
interaction at a fundamental level is to be given in the
language of third quantization [26]. At this stage, one might
make an analogy with the derivation of the Lamb shift in
QED and in effective stochastic approaches. As it is well
known, the effect stems from the second quantized nature
of the electromagnetic field. However, the same prediction
can also be obtained if one holds the electromagnetic field
as classical but imposes ad hoc conditions on the statistical
distribution of its modes, which necessarily has to be the
same as that corresponding to the vacuum state of QED. In
this way, the instability of excited energy levels in atoms
and the Lamb shift are seen as a result of the interaction of
the electron with a stochastic background electromagnetic
field [11,13]. However, in the present context, we will not
resort to a third quantization of the gravitational field but
instead put in ad hoc stochastic terms arising from
interactions with degrees of freedom other than the scale
factor. Certainly, our position here is weaker than that of
SED (see Refs. [12,14] and the works cited above), since a
fundamental third quantized theory of gravity has not yet
been developed to such an extent so as to make observable
predictions in cosmology. Therefore, we are unable to give
details about the statistical distribution of the gravitational
degrees of freedom in what would correspond to the
vacuum state. Our model should henceforth be considered
as purely phenomenological, and its link to the full theory
will be clarified only when the construction of the latter will
eventually be completed.
To be more specific, we treat the function g in the

perturbation as white noise. Stochastic noise is used to
describe the interaction of a system with other degrees of
freedom regarded as an environment.12 Hence, we write

hgðα;ϕÞi ¼ 0; ð63Þ

hgðα;ϕÞgðα0;ϕ0Þi ¼ εδðα − α0Þδðϕ − ϕ0Þ; ð64Þ

where h i denotes an ensemble average and ε is a
parameter which can be regarded as the magnitude of
the noise. It is straightforward to see that

hψ ð1Þi ¼ 0; ð65Þ

which means that the ensemble average of the corrections
to the wave function vanishes.
A more interesting quantity is represented by the second

moment

F ðX1; Y1;X2; Y2Þ ¼ hðψ ð1ÞðX1; Y1ÞÞ�ψ ð1ÞðX2; Y2Þi: ð66Þ

In fact when evaluated at the same two points
~F ðX; YÞ≡ F ðX; Y;X; YÞ, it represents the variance of
the statistical fluctuations of the wave function at the point
ðX; YÞ. Using Eqs. (15), (64), and (66), we get

hjψ ð1Þj2ðX; YÞi ¼ ~F ðX; YÞ

¼ 16ε

Z
X≥jYj

dX0dY 0ðX02 − Y 02Þ12jψ ð0Þ

× ðX0; Y 0Þj2jGðX − X0; Y − Y 0Þj2: ð67Þ

In order to obtain the correct expression of the integrand,
one needs to use the transformation properties of the Dirac
distribution, yielding

hgðα;ϕÞgðα0;ϕ0Þi ¼ 2εðX2 − Y2ÞδðX − X0ÞδðY − Y 0Þ:
ð68Þ

Notice the resemblance of Eq. (66) with the two-point
function evaluated to first order using Feynman rules for a
scalar field in two dimensions interacting with a potential
ðX2 − Y2Þ12jψ ð0Þj2. Following this analogy, the variance ~F
can be seen as a vacuum bubble.
Equation (67) implies that a white noise interaction is

such that the different contributions to the modulus square
of the perturbations add up incoherently. Moreover, the
perturbative corrections receive contributions from all
regions of minisuperspace where the unperturbed wave
function is supported.
A discussion about the implications of the results of this

section is now in order. The boundary conditions (61)
imposed on the Green’s function (62) treat the two
directions of the internal time ϕ symmetrically.
Therefore, the amplitude for a Universe expanding from
X ¼ −Y to the point with coordinates ðX0; Y0Þ is the same
as that for having a collapsing Universe (or anti-Universe,
notice the close analogy with CPT symmerty in ordinary
RQFT) going from ðX0; Y0Þ to X ¼ −Y. It is also clear

12For a derivation of the Schrödinger-Langevin equation using
the methods of stochastic quantization, we refer the reader to
Ref. [27]. We are not aware of other existing works suggesting the
application of stochastic methods to quantum cosmology. There
are, however, applications to the fields of classical cosmology and
inflation, and the interested reader is referred to the published
literature.

DE CESARE, GARGIULO, and SAKELLARIADOU PHYSICAL REVIEW D 93, 024046 (2016)

024046-10



from (67) and the property GðX − X0; Y − Y 0Þ ¼ GðX −
X0; Y 0 − YÞ that

~F ðX; YÞ ¼ ~F ðX;−YÞ: ð69Þ

Therefore, fluctuations in the perturbed wave function are
symmetric under time inversion. This result can be seen to
hold more generally for any interaction function gðα;ϕÞ
which respects this same symmetry property. In such cases,
the arrow of time is thus determined by the unperturbed
solution for the background and points toward the direction
in which the Universe expands, in agreement with the
interpretation of Ref. [10]. Whether this cosmological
arrow of time agrees with the thermodynamic one, defined
by the direction of growth of inhomogeneities, remains an
open problem in LQC.13 The suggestive idea of such an
identification between the two fundamental arrows of time
is old and was first proposed by Hawking [30] in the
context of the sum-over-geometries approach to quantum
cosmology, but later disproved by Page [31]. Their argu-
ments are based on the formal properties of the wave
function of the Universe, defined by a path integral over
compact Euclidean metrics (hence, with no boundary).
However, it is not clear whether they have a counterpart in
other approaches to quantum cosmology, such as the one
we considered in this work. In order to be able to provide a
satisfactory answer to this question, one must not neglect
the role played by inhomogeneities. Their dynamics might
in fact display interesting features especially where quan-
tum effects become more relevant, i.e. close to the
singularities and at the turning point. In particular, the
symmetry (or the lack thereof) of the dynamics around

the latter will be crucial, since that is the point where the
cosmological arrow of time defined by the background
undergoes an inversion [30].
Another important aspect concerns the semiclassical

properties of the perturbed states that we constructed.
From Fig. 5 one sees that the perturbation at a fixed ϕ
is a rapidly decreasing function of α with Gaussian tails.
Therefore, the result of a white noise perturbation on a
wave packet solution of the WDW equation is still a wave
packet. The position of the peak of the perturbation, like
that of the unperturbed state, is a monotonically increasing
function of ϕ for negative values of ϕ, while it is
monotonically decreasing for positive ϕ. In this sense
we can regard the perturbed state as retaining the property
of semiclassicality of the unperturbed state. It is therefore
possible to perform the classical limit, which can be
obtained when ℏ → 0 or equivalently by considering
infinitesimally narrow unperturbed wave packets ψ ð0Þ,
i.e. in the limit b → 0. More precisely, one should compute
expectation values of physical observables (e.g. the scale
factor) on the perturbed state ψ ð0Þ þ ψ ð1Þ and perform an
asymptotic expansion near ℏ ¼ 0. One can also simulta-
neously expand around ε ¼ 0, and the classical dynamics
would then be seen to get corrections in the form of
additional terms involving powers of ε and ℏ, to be
interpreted as stochastic and quantum effects, respectively
(or a combination of the two).

VII. CONCLUSIONS

Motivated by LQC and GFT, we considered an extension
of WDW minisuperspace cosmology with additional inter-
action terms representing a self-interaction of the Universe.
Such terms can be seen as a particular case of the model
considered in Ref. [6], which was proposed as an approach
to quantum dynamics of inhomogeneous cosmology.
In general, inhomogeneities would lead to nonlinear

FIG. 5. The figure represents the plot of hjψ ð1Þj2i as a function of α for different values of the internal time ϕ and for k̄ ¼ b ¼ 1. The
perturbation is maximally focused at the time of recollapse, whereas it spreads and develops a secondary maximum when approaching
the singularities.

13Progress on the inclusion of inhomogeneities in the LQC
framework using lattice models can be found in Ref. [28]. For a
study of inhomogeneities using effective equations, see instead
Ref. [29].
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differential equations for the quantum field. This is indeed
the case when the “wave function” of the Universe is
interpreted as a quantum field or even as a classical field
describing the hydrodynamics limit of GFT.
In the framework of a first quantized cosmology, we only

considered linear modifications of the theory in order to
secure the validity of the superposition principle. Our work
represents indeed a first step toward a more general study,
that should take into account nonlinear and possibly non-
local interactions in minisuperspace. However, the way
such terms arise, their exact form, and even the precise way
in which minisuperspace dynamics is derived from funda-
mental theories of quantum gravity should be dictated from
the full theory itself.
Assuming that the additional interactions are such that

deviations from the Friedmann equation are small, we
developed general perturbative methods which allowed us
to solve the modified WDW equation. We considered a
closed FLRWUniverse filled with a massless scalar field to
define an internal time, for which wave packets solutions
are known explicitly and propagate with no dispersion. A
modified WDW equation was then obtained in the large
volume limit of a particular GFT-inspired extension of LQC
for a closed FLRW Universe. Perturbative methods were
then used to find the corrections given by self-interactions
of the Universe to the exact solution given in Ref. [10]. To
this end, the Feynman propagator of the WDW equation
was evaluated exactly by means of a conformal map in
minisuperspace and (after a Wick rotation) using the
method of the image charges that is familiar from electro-
statics. This is potentially interesting as a basic building
block for any future perturbative analysis of nonlinear
minisuperspace dynamics for a closed Universe. Our
choice of the boundary conditions satisfied by the
Green’s function is compatible with a cosmological arrow
of time given by the expansion of the Universe.
A Helmoltz-like equation was obtained from WDW

when the extra interaction did not depend on the internal
time. Its Green’s kernel was evaluated exactly and turned
out to depend on a free parameter η related to the choice of
boundary conditions. Further research must be carried over
to link η to different boundary proposals.
We illustrated our perturbative approach in the simple

and physically motivated case in which the perturbation
was presented by white noise. In this phenomenological
model, the stochastic interaction term can be seen as
describing the interaction of the cosmological background
with other degrees of freedom of the gravitational field.
Calculating the variance of the statistical fluctuations of the
wave function, we found that a white noise interaction is
such that the different contributions to the modulus square
of the perturbations add up incoherently and that the
perturbed wave function retains the property of semi-
classicality. Furthermore, the width of the perturbation of
the wave function reaches a minimum at recollapse.

APPENDIX A: WKB APPROXIMATION OF THE
ELEMENTARY SOLUTIONS AND

ASYMPTOTICS OF THE WAVE PACKETS

Since Eq. (22) has the form of a time-independent
Schrödinger equation, it is possible to construct approxi-
mate solutions using the WKB method (Fig. 6).
For a given k, we divide the real line in three regions,

with a neighborhood of the classical turning point in the
middle. The classical turning point is defined as the point
where the potential is equal to the energy

αk ¼
1

2
log k: ðA1Þ

The WKB solution to first order in the classically allowed
region � −∞; αk − ϵ� (with ϵ an appropriately chosen real
number; see below) is

CI
k ¼

2

ðk2 − e4αÞ1=4 cos
�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − e4α

p

−
k
2
arccoth

�
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 − e4α
p

�
þ π

4

�
ðA2Þ

and reduces to a plane wave in the allowed region for
α ≪ αk. The presence of the barrier fixes the amplitude and
the phase relation of the incoming and the reflected wave
through the matching conditions.
The solution in the classically forbidden region ½αk þ

ϵ;þ∞½ is instead exponentially decreasing as it penetrates
the potential barrier and reads

CIII
k ¼ 1

ðe4α − k2Þ1=4 exp
�
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4α − k2

p

þ k
2
arctan

�
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e4α − k2
p

��
: ðA3Þ

Finally, in the intermediate region �αk − ϵ; αk þ ϵ½, any
semiclassical method would break down, and hence the
Schrödinger equation must be solved exactly using the
linearized potential

VðαÞ≃ VðαkÞ þ V 0ðαkÞðα − αkÞ
¼ 4e4αkðα − αkÞ ¼ 4k2ðα − αkÞ: ðA4Þ

In this intermediate regime, Eq. (22) can be rewritten as the
well-known Airy equation

d2CII
k

dt2
− tCII

k ¼ 0; ðA5Þ

where the variable t is defined as

t ¼ ð4k2Þ13ðα − αkÞ: ðA6Þ
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Of the two independent solutions of Eq. (A5), only the Airy
function AiðtÞ satisfies the boundary condition, and hence
we conclude that

CII
k ¼ cAiðtÞ; ðA7Þ

where c is a constant that has to be determined by matching
the asymptotics of AiðtÞ with the WKB approximations
on both sides of the turning point. Hence, we get that for
t ≪ 0

AiðtÞ ≈ cos ð2
3
jtj3=2 − π

4
Þffiffiffi

π
p jtj1=4 ; ðA8Þ

while for t ≫ 0

AiðtÞ ≈ e−
2
3
t3=2

2
ffiffiffi
π

p
t1=4

: ðA9Þ

We thus fix c ¼ 2
ffiffiffi
π

p
. Note that the arbitrariness in the

choice of ϵ can be solved, e.g. by requiring the point αk − ϵ
to coincide with the first zero of the Airy function.
The WKB approximation improves at large values of k,

as one should expect from a method that is semiclassical in
spirit. Yet it allows one to capture some effects that are
genuinely quantum, such as the barrier penetration and the
tunneling effect.
From the approximate solution we have just found, we

can construct wave packets as in Ref. [10]. We thence
restrict our attention to the classically allowed region and

the corresponding approximate solutions, i.e. CI
kðαÞ for

α ≪ αk ¼ 1
2
log k, and compute the integral in Eq. (25). If

the Gaussian representing the amplitudes of the mono-
chromatic modes is narrow peaked, i.e. its variance b2 is
small enough, we can approximate the amplitude in
Eq. (A2) with that corresponding to the mode with the
mean frequency k̄. Thus, introducing the constant

ck̄ ¼
2

ðk̄2 − e4αÞ1=4
1

π1=4
ffiffiffi
b

p ; ðA10Þ

we have

ψðα;ϕÞ≃ ck̄

Z
∞

−∞
dke−

ðk−k̄Þ2
2b2 cos

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − e4α

p

−
k
2
arccoth

�
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 − e4α
p

�
þ π

4

�
eikϕ: ðA11Þ

Moreover,

k arccoth
�

kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − e4α

p
�

¼ k arccos h
k
e2α

≃ k arccos h
k̄
e2α

:

ðA12Þ
The last approximation in the equation above holds as
the derivative of the inverse hyperbolic function turns
out to be much smaller than unity in the allowed region.
Furthermore, the term approximated in Eq. (A12) domi-
nates over the square root in the argument of the cosine in

2.6 2.7 2.8 2.9

−0.2

−0.1

0.1

0.2

0.3

0.4

FIG. 6. The thick and the dot-dashed curve represent the WKB approximation of the wave function in the classically allowed and in
the forbidden regions, respectively. They both diverge at the classical turning point. The Airy function is represented by the dashed
curve. The value k ¼ 220 was chosen.
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the integrand in the rhs of Eq. (A11), so we can consider the
latter as a constant. Hence, we can write

ψðα;ϕÞ≃ ck̄

Z
∞

−∞
dke−

ðk−k̄Þ2
2b2 cos ðΛkþ δÞeikϕ; ðA13Þ

where we have introduced the notation

Λ≡ 1

2
arccos h

k̄
e2α

; ðA14Þ

δ≡ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄2 − e4α

p
−
π

4
ðA15Þ

for convenience. Using Euler’s formula we can express the
cosine in the integrand in the rhs of Eq. (A13) in terms of
complex exponentials and evaluate ψðα;ϕÞ. In fact,
defining

Pk̄ ≡ eiðk̄ðΛþϕÞþδÞ; Qk̄ ≡ e−iðk̄ðΛ−ϕÞþδÞ; ðA16Þ

we have

ψðα;ϕÞ

≃ ck̄
2

Z
∞

−∞
dke−

ðk−k̄Þ2
2b2 ðeiðk−k̄ÞðΛþϕÞPk̄ þ e−iðk−k̄ÞðΛ−ϕÞQk̄Þ:

ðA17Þ

Shifting variables and performing the Gaussian integra-
tions, we get the result as in Ref. [10],

ψðα;ϕÞ≃ck̄

ffiffiffi
π

2

r
b

�
e−

b2
2
ðΛþϕÞ2Pk̄þe−

b2
2
ðΛ−ϕÞ2Qk̄

�
: ðA18Þ

APPENDIX B: ORTHOGONALITY OF THE
MACDONALD FUNCTIONS

It was proved in Refs. [32–34] that
Z

∞

0

dx
x
KiνðkxÞKiν0 ðkxÞ ¼

π2δðν − ν0Þ
2ν sinhðπνÞ ; ðB1Þ

which expresses the orthogonality of the MacDonald
functions of imaginary order. Performing a change of
variables, the above formula can be recast in the form

Z
∞

−∞
dαKih

2

�
e2α

2

�
Kih

0
2

�
e2α

2

�
¼ π2δðh − h0Þ

h sinhðπ h
2
Þ ; ðB2Þ

which is convenient for the applications considered in this
work. For large values of k, it is equivalent to the
normalization used in Sec. II,

Z
∞

−∞
dαψ�

k0 ðα;ϕÞψkðα;ϕÞ ¼
π2

2
δðk − k0Þ: ðB3Þ
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