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We investigate the stability of a free scalar field nonminimally coupled to gravity under linear
perturbations in the spacetime of a charged spherical shell. Our analysis is performed in the context of
quantum field theory in curved spacetimes. This paper completes previous analyses which considered the
exponential enhancement of vacuum fluctuations in the spacetime of massive shells.

DOI: 10.1103/PhysRevD.93.024043

I. INTRODUCTION

It has been shown that well-behaved spacetimes are able
to induce an exponential enhancement of the vacuum
fluctuations of some nonminimally coupled free scalar
fields [1]. This “vacuum awakening effect” may be seen as
the quantum counterpart of the classical instability expe-
rienced by these fields under linear perturbations [2]. The
exponential growth of the vacuum energy density of an
unstable scalar field in the spacetime of, e.g., a neutron star
[3] would necessarily induce the system to evolve into a
new equilibrium configuration culminating in the emission
of a burst of free scalar particles [4] (see also Refs. [5–7] for
related classical analyses). Conversely, the determination of
the mass-radius ratio of observed neutron stars may be used
to rule out the existence of whole classes of nonminimally
coupled scalar fields [8,9]. This has motivated us to
investigate how the vacuum awakening effect is impacted
by relaxing some symmetries assumed in Ref. [3]. In order
to avoid complications in modeling the fluid, the analyses
of deviations from sphericity [10] and staticity [11] were
considered in the context of massive thin shells. In this
paper, we investigate the vacuum awakening mechanism
when we endow a spherical shell with electrical charge.
The presence of charge affects both the energy conditions
satisfied by the shell matter and the effective potential
appearing in the radial part of the scalar field equation.

Hence, it is interesting to inquire how previous results for
massive thin shells are modified in the charged case.
The paper is organized as follows. In Sec. II, we

introduce the spacetime of a massive charged shell. In
Sec. III, we quantize the real scalar field in this background
and discuss the vacuum awakening effect. In Sec. IV, we
investigate the exponential growth of the vacuum energy
density. Section V is dedicated to our final remarks. We
assume the metric signature ð−þþþÞ and natural units in
which c ¼ ℏ ¼ G ¼ 1 unless stated otherwise.

II. SPHERICALLY SYMMETRIC
CHARGED SHELLS

Let us write the line element describing the spacetime of
a spherically symmetric thin shell with massM and electric
charge Q lying at the radial coordinate r ¼ R as [12]

ds2− ¼ −fðRÞdt2 þ dr2 þ r2ðdθ2 þ sin2 θdφ2Þ ð1Þ

and

ds2þ ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdθ2 þ sin2 θdφ2Þ ð2Þ

with

fðrÞ≡ ð1 − 2M=rþQ2=r2Þ > 0; ð3Þ

where R > M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
when jQj ≤ M (while R may

assume any positive value when jQj > M) and ∓ labels
quantities defined at r≶R, respectively. The three-
dimensional timelike surface S defined at r ¼ R will be
covered with coordinates ζa ¼ ðt; θ;φÞ. The metrics h−ab
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and hþab on S as induced from the internal- and external-to-
the-shell spacetime portions, respectively, satisfy h−ab ¼ hþab
as demanded by the continuity condition.
The shell stress-energy-momentum tensor

Tμν ¼ SabeμaeνbδðlÞ ð4Þ

can be computed from the discontinuity of the extrinsic
curvature ΔKab ≡ Kabþ − Kab− across S (see, e.g.,
Ref. [13]). In Eq. (4),

Sab ≡− 1

8π
ðΔKab − habΔKÞ; ð5Þ

where ΔK ≡ ΔKabhab, e
μ
a ≡ ∂xμ=∂ζa are the components

of the coordinate vectors ∂=∂ζa defined on S, and l (inside
the delta distribution) is the proper distance along geodesics
intercepting orthogonally S (with l < 0, l ¼ 0, and l > 0
inside, on, and outside S, respectively). By using Eqs. (1)
and (2), we obtain

S00 ¼
1

4πR
ðfðRÞ1=2 − 1Þ ð6Þ

and

S22 ¼ S33 ¼
1

8πR

��
1 −M

R

�
fðRÞ−1=2 − 1

�
: ð7Þ

In order to unveil the most realistic shell configurations,
we have investigated the behavior of the different energy
conditions with respect to the shell parameters R=M and
Q=M. (For the stability of charged shells under linear
perturbations, see Ref. [14].) We can see that the weak,
strong, and dominant energy conditions are simultaneously
satisfied in a large portion of Fig. 1, namely, region 3.

III. QUANTIZING THE FIELD AND AWAKING
THE VACUUM

Now, we consider a nonminimally coupled massless real
scalar field Φ satisfying the Klein-Gordon equation

−∇μ∇μΦþ ξRΦ ¼ 0 ð8Þ

in the spacetime of our spherically symmetric charged
shell, where ξ ∈ R and R is the scalar curvature. We follow
the canonical procedure and expand the corresponding field
operator [15,16]

Φ̂ ¼
Z

dϑðηÞ½âηuη þ â†ηu�η�; ð9Þ

in terms of positive, uη, and negative, u�η, norm modes with
respect to the Klein-Gordon inner product, where ϑ is a
measure defined on the set of quantum numbers η. The
annihilation âη and creation â†η operators satisfy ½âα; â†β� ¼
δðα; βÞ and ½âα; âβ� ¼ 0, where the delta function is defined
by

R
dϑðαÞδðα; βÞF ðαÞ ¼ F ðβÞ for F ∈ C∞, and the

vacuum state j0i must satisfy âηj0i ¼ 0 for all η.
The spacetime symmetries drive us to look for positive-

norm modes in the form

u∓σlμðt; r; θ;φÞ ¼ TσðtÞF∓
σlðrÞYlμðθ;φÞ; ð10Þ

where Ylμðθ;φÞ represent the spherical harmonic functions,
l ¼ 0; 1; 2…, μ ¼ −l;−lþ 1;…l, σ ¼ const ∈ R, and

i

�
T�
σ
dTσ

dt
− Tσ

dT�
σ

dt

�
> 0 ð11Þ

(positive-norm condition). By using Eq. (10) in Eq. (8), we
obtain that F∓

σlðrÞ and TσðtÞ satisfy

− fðRÞ
r2

d
dr

�
r2
dF−

σl

dr

�
þ fðRÞ

r2
lðlþ 1ÞF−

σl ¼ σF−
σl; ð12Þ

− fðrÞ
r2

d
dr

�
r2fðrÞ dF

þ
σl

dr

�
þ fðrÞ

r2
lðlþ 1ÞFþ

σl ¼ σFþ
σl;

ð13Þ

and

1

3

2

4
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FIG. 1. The graph shows where the different energy conditions
are satisfied as functions of the shell parameters R=M and Q=M
out of the black area. The black area is excluded because there are
no static shell configurations in this region. The weak energy
condition is satisfied everywhere but in region 4. The strong
energy condition is violated in regions 2 and 4, while the
dominant energy condition is violated in regions 1 and 4. We
see, thus, that in a large portion, namely, region 3, the three
energy conditions are satisfied.
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d2

dt2
Tσ þ σTσ ¼ 0: ð14Þ

Depending on the sign of σ, Eq. (14) supplemented by
condition (11) admits two kinds of general solutions:

TσðtÞ ∝σ¼ω2

expð−iωtÞ; ω > 0; ð15Þ

for σ ≡ ω2 > 0 and

TσðtÞ ∝σ¼−Ω2

eΩt−iπ=12 þ e−Ωtþiπ=12; Ω > 0; ð16Þ

for σ ≡−Ω2 < 0. The combination chosen on the right-
hand side of Eq. (16) guarantees that the corresponding u∓σlμ
functions will be indeed positive-norm modes [1]. The
modes (10) with TσðtÞ as given by Eqs. (15) and (16) will
be denoted as

u∓σlμ⟶
σ¼ω2

v∓ωlμ ¼
ψ∓
ωlðrÞ
r

Ylμðθ;φÞ
expð−iωtÞffiffiffiffiffiffi

2ω
p ð17Þ

and

u∓σlμ ⟶
σ¼−Ω2

w∓
Ωlμ ¼

ψ∓
ΩlðrÞ
r

Ylμðθ;φÞ
ðeΩt−iπ=12 þ e−Ωtþiπ=12Þffiffiffiffiffiffi

2Ω
p ;

ð18Þ

corresponding to the usual time-oscillating and “tachyonic”
modes, respectively.
The field-operator expansion (9) can be cast, then, in

terms of oscillatory and tachyonic modes as

Φ̂ ¼
X
lμ

Z
dω½b̂ωlμvωlμ þ b̂†ωlμv

�
ωlμ�

þ
X
lμΩ

½ĉΩlμwΩlμ þ ĉ†Ωlμw
�
Ωlμ�; ð19Þ

where the only nonzero commutation relations between the
creation and annihilation operators are

½b̂ωlμ; b̂†ω0l0μ0 � ¼ δll0δμμ0δðω − ω0Þ; ð20Þ

½ĉΩlμ; ĉ†Ω0l0μ0 � ¼ δll0δμμ0δΩΩ0 : ð21Þ

The presence of tachyonic modes makes the scalar field
unstable. Quantum fluctuations and, consequently, the
expectation value of the stress-energy-momentum tensor,
grow exponentially in time in the presence of these modes
(see also Refs. [17,18] for further discussions on the
quantization of unstable linear fields in static globally
hyperbolic spacetimes).

Now, we shall discuss in detail the radial part of modes
v∓ωlμ and w∓

Ωlμ, namely, ψ∓
ωlðrÞ=r and ψ∓

ΩlðrÞ=r, respec-
tively. For the sake of convenience, we define the coor-
dinates χ∓ ¼ χ∓ðrÞ such that for r < R

r → χ−ðrÞ≡ r

fðRÞ1=2 ; for all Q ∈ R; ð22Þ

while for r ≥ R

r → χþðrÞ≡ rþ R2
2 lnðr − R2Þ − R2

1 lnðr − R1Þ
R2 − R1

þDð1Þ;

for jQj < M; ð23Þ

r → χþðrÞ≡ r − M2

r −M
þ 2M lnðr −MÞ þDð2Þ;

for jQj ¼ M; ð24Þ

and

r → χþðrÞ≡ rþ 2M2 −Q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 −M2

p arctan

�
r −Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 −M2

p
�

þM ln½r2fðrÞ� þDð3Þ; for jQj > M;

ð25Þ

where R1 ≡M − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
, R2 ≡M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
, and

Dð1Þ, Dð2Þ, and Dð3Þ are constants chosen such that χ− and
χþ fit each other continuously on the shell. In terms of
the coordinates χ∓ ¼ χ∓ðrÞ, Eqs. (12) and (13) can be
rewritten as “Schrödinger-like” equations for ψ∓

λl where
λ ∈ fω;Ωg:

−d2ψ∓
ωl=dχ

2∓ þ Vðl;∓Þ
eff ψ∓

ωl ¼ ω2ψ∓
ωl ð26Þ

and

−d2ψ∓
Ωl=dχ

2∓ þ Vðl;∓Þ
eff ψ∓

Ωl ¼ −Ω2ψ∓
Ωl ð27Þ

with

Vðl;−Þ
eff ðrÞ ¼ fðRÞ lðlþ 1Þ

r2
ð28Þ

and

Vðl;þÞ
eff ðrÞ ¼ fðrÞ

�
2M
r3

− 2Q2

r4
þ lðlþ 1Þ

r2

�
: ð29Þ

We note that the discontinuity of the potential across the
shell is ΔVeff ¼ fðRÞð2M=R3 − 2Q2=R4Þ and that solu-
tions ψþ

ΩlðrÞmust vanish asymptotically to be normalizable:
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lim
r→þ∞

ψþ
Ωl ¼ 0: ð30Þ

Now, let us discuss the junction conditions on ψ∓
λl for

λ ∈ fω;Ωg. By using Einstein equations in conjunction
with Eq. (4), we have that

R ¼ −8πT ¼ −8πSδðlÞ; ð31Þ

where, by using Eqs. (6) and (7), we have

S≡ Sabhab ¼
1

4πR

�
2 − 3M=RþQ2=R2

fðRÞ1=2 − 2

�
:

By using Eq. (31) in Eq. (8), we obtain the junction
conditions for ψ∓

λlðrÞ=r and for its first derivative along the
direction orthogonal to S, namely,

½ψþ
λl=r − ψ−

λl=r�S ¼ 0; ð32Þ

and

�
dðψþ

λl=rÞ
dl

− dðψ−
λl=rÞ
dl

�
S
¼ ξγðψλl=rÞS; ð33Þ

where γ ¼ −2ΔK ¼ −8πS and ðψλl=rÞS ¼ ðψ∓
λl=rÞS

because of Eq. (32).
Next, we shall look for the conditions on M=R, Q=M,

and ξ which allow for the existence of solutions ψ∓
Ωl for

Eq. (27) associated with regular modes w∓
Ωlμ [see Eq. (18)].

The regularity requirement demands that ψ−
Ωl vanishes at

the origin. The fact that the Klein-Gordon inner product
fixes the mode normalization up to a multiplicative phase,
allows us to assume without loss of generality that ψ−

Ωl
approaches zero from positive values:

lim
r→0

ψ−
Ωl ¼ 0þ: ð34Þ

Then, by using Eqs. (27) and (34) together with the junction

condition (32) and the fact that Vðl;−Þ
eff ≥ 0 [see Eq. (28)], we

conclude that

0 < ψ−
ΩljS ¼ ψþ

ΩljS; ð35Þ

while we see from Eq. (33) that in general
dψ−

Ωl=drjS ≠ dψþ
Ωl=drjS.

From the usual analysis of bound states in nonrelativistic
quantum mechanics, it is straightforward to infer that for a
fixed l the ψ∓

Ωl solution of Eq. (27) (if any) satisfying
conditions (30) and (32)–(34) with the n-th largest Ω will
possess n − 1 zeros for r > 0. In particular, for those
configurations admitting one single ψ∓

Ωl solution, we will
have ψ∓

Ωl ≥ 0 (with the equality holding at the origin). The
boundary separating configurations possessing and not

possessing tachyonic modes for a fixed l will be given
by the set M=R, Q=M, and ξ, which allows for a single
well-behaved solution ψ∓

Ωl with Ω ¼ 0. These marginal
solutions ψ∓

0l will also satisfy conditions (32)–(34). The
asymptotic behavior of marginal solutions can be obtained
directly from Eq. (13):

− d
dr

�
r2

dψþ
0l=r
dr

�
þ lðlþ 1Þψ

þ
0l

r
≈

r≫M;Q
0; ð36Þ

whose general solution can be cast as

ψþ
0lðrÞ ≈

r ≫ M;Q
Blrlþ1 þ Clr−l ð37Þ

with Bl, Cl ∈ R being constants. We see that, for l ¼ 0,
condition (30) is actually not satisfied by any nontrivial
ψþ
00. This is an artifact which appears because marginal

solutions have Ω ¼ 0. The presence of any small Ω ≠ 0
would eventually dominate for large enough r changing the
asymptotic form of Eq. (36) to

d
dr

�
r2
dψþ

Ωl=r
dr

�
− lðlþ 1Þψ

þ
0l

r
≈

r ≫ M;Q
rΩ2ψþ

Ωl; ð38Þ

in which case the general solution could be written as

ψþ
ΩlðrÞ ≈

r ≫M;Q
BlJ

ð1Þ
Ωl ðrÞ þ ClJ

ð2Þ
Ωl ðrÞ; ð39Þ

where for small enough Ω

J ð1Þ
Ωl ∼M;Q≪r≪1=Ω

rlþ1; J ð1Þ
Ωl ∼r≫1=Ω

expðΩrÞ;
J ð2Þ

Ωl ∼M;Q≪r≪1=Ω
r−l; J ð2Þ

Ωl ∼r≫1=Ω
expð−ΩrÞ:

The fact that Eq. (30) demands Bl ¼ 0 implies that we
should look for marginal solutions (37) behaving asymp-

totically as ψþ
0lðrÞ ∼r≫M;Q

r−l.
It is easy to see that

ψ−
0lðrÞ ¼ Alrlþ1=Rl; Al > 0; ð40Þ

is a marginal solution in the interior of the shell satisfying
condition (34) for any charge value. Now, we note from
Eqs. (28) and (29) that the smaller the l the “deeper” the

effective potential Vðl;∓Þ
eff making tachyonic modes with

vanishing angular momentum the most likely ones to exist.
Because the appearance of a single tachyonic mode is
enough to render the system unstable, we shall restrict our
quest to marginal solutions with l ¼ 0. Then, from Eq. (40),
we immediately write

ψ−
00ðrÞ ¼ A0r; A0 > 0 ð41Þ

for all Q. Next, we look for marginal solutions external to
the shell. For the sake of clarity, we present the cases
jQj < M, jQj ¼ M, and jQj > M, separately.
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Case jQj < M: The general marginal solution external
to the shell for arbitrary l can be written as [19]

ψþ
0lðrÞ ¼ Bð1Þ

l rPl

�
r −Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
�
þ Cð1Þ

l rQl

�
r −Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
�
;

ð42Þ

where Bð1Þ
l , Cð1Þ

l ¼ const ∈ R guarantees that ψþ
0l is a real

function, PlðzÞ and QlðzÞ are Legendre functions of the
first and second kinds [20], respectively, and we note that

Ql½ðr −MÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
� > 0 everywhere outside the shell.

Then, for l ¼ 0

ψþ
00ðrÞ ¼ Bð1Þ

0 rþ Cð1Þ
0 r ln

�
r −M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
r −M − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 −Q2
p

�1=2

ð43Þ

∼r≫MBð1Þ
0 rþ Cð1Þ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
:

Now, we impose the constraints (32) and (33) on the
solutions (41) and (43) obtaining the following relation-
ships among the integration constants:

Bð1Þ
0

Að1Þ
0

¼ 1þ ξR=Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Q2=M2

p
�
−2þ 3M

R
−Q2

R2
þ 2fðRÞ1=2

�

× ln

�−1þ R=M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Q2=M2

p
−1þ R=M − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −Q2=M2
p

�
ð44Þ

and

Cð1Þ
0

Að1Þ
0

¼ 2ð1−Bð1Þ
0 =Að1Þ

0 Þ
ln ½ðR−Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−Q2

p
Þ=ðR−M− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 −Q2
p

Þ�
:

ð45Þ

Next, we recall the discussion below Eq. (39) and impose

Bð1Þ
0 =Að1Þ

0 ¼ 0 to render the asymptotic form of the mar-
ginal solution as desired. This establishes a relationship
between the coupling constant ξ and the shell parameters
M=R, Q=M, which allows us to draw the boundary of
the unstable regions in Figs. 2 and 3 for Q ¼ 0 and
Q=M ¼ 0.5, respectively.
Case jQj ¼ M: Let us write the general marginal sol-

ution external to the shell in this case as

ψþ
0lðrÞ ¼ Bð2Þ

l r
ðr −MÞl
ðR −MÞl þ Cð2Þ

l r
ðR −MÞlþ1

ðr −MÞlþ1
ð46Þ

with Bð2Þ
l , Cð2Þ

l ∈ R being constants. In the particular case
where l ¼ 0, we obtain

ψþ
00ðrÞ ¼ Bð2Þ

0 rþ Cð2Þ
0 ðR −MÞr=ðr −MÞ: ð47Þ

Now, by imposing the constraints (32) and (33) on
Eqs. (41) and (47), we obtain

Bð2Þ
0

Að2Þ
0

¼ 1þ 2ξM
R

and
Cð2Þ
0

Að2Þ
0

¼ 1 − Bð2Þ
0

Að2Þ
0

: ð48Þ

−10 −5 0 5 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

ξ

M
R

FIG. 2. The black region is excluded because no static spherical

shell can exist for R < R2 ≡M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þQ2

p
when jQj ≤ M.

The translucent gray area contains static shell configurations with
Q=M ¼ 0 which violate the dominant energy condition. The dark
gray areas depict the regions where the “vacuum awakening
effect” is triggered. The vertical dotted line corresponds to the
conformal coupling, ξ ¼ 1=6. It intercepts the instability island
inside the region where the dominant energy condition is
violated. This graph should be used as a benchmark for the sake
of comparison with Figs. 3, 4 and 5 where Q=M ≠ 0.

−10 −5 0 5 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

ξ

M
/R

FIG. 3. This figure considers a shell with jQj=M ¼ 0.5. The
same color convention as in Fig. 2 is assumed here.
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The boundary of the unstable region in Fig. 4 is obtained by

demanding Bð2Þ
0 =Að2Þ

0 ¼ 0.
Case jQj > M: Finally, the general marginal solution

external to the shell in this case can be written as

ψþ
0lðrÞ ¼ Bð3Þ

l rð−iÞlPl

�−iðr −MÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 −M2

p
�

þ Cð3Þ
l rð−iÞlþ1Ql

�−iðr −MÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 −M2

p
�
; ð49Þ

where Bð3Þ
l , Cð3Þ

l ∈ R are constants and ψþ
0l are real

functions. We then make use of Eq. (8.834-2) of
Ref. [20] to show that the Legendre functions of the second
kind can be cast as

Qlð−ixÞ ¼ Plð−ixÞQ0ð−ixÞ −Wl−1ð−ixÞ; x ∈ R;

ð50Þ

where

Wl−1ð−ixÞ ¼
Xl

k¼1

Pk−1ð−ixÞPl−kð−ixÞ
k

; W−1ð−ixÞ≡ 0:

Now, by choosing the branching cut for ln z along the line
z ¼ iy, y ≥ 0, we write

Q0ð−ixÞ ¼ 1

2
ln

�−ixþ 1

−ix − 1

�

¼ iðπ=2 − arctan xÞ; ð51Þ

from which it can be seen that

ð−iÞlþ1Ql

�−iðr −MÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 −M2

p
�

> 0:

As before, we take l ¼ 0 in Eq. (49), obtaining

ψþ
00ðrÞ ¼ Bð3Þ

0 rþ Cð3Þ
0 r

�
π

2
− arctan

�
r −Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 −M2

p
��

ð52Þ

∼r≫Q
Bð3Þ
0 rþ Cð3Þ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 −M2

p
:

Again, by imposing constraints (32) and (33) on Eqs. (41)
and (52), we obtain

Bð3Þ
0

Að3Þ
0

¼ 1þ 2ξR=Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2=M2 − 1

p
�
−2þ 3M

R
−Q2

R2
þ 2fðRÞ1=2

�

×

�
π

2
− arctan

� −1þ R=Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2=M2 − 1

p
��

ð53Þ

and

Cð3Þ
0

Að3Þ
0

¼ 1 − Bð3Þ
0 =Að3Þ

0

π=2 − arctan½ðR −MÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 −M2

p
�
: ð54Þ

The boundary of the unstable regions in Fig. 5 was drawn

by demanding Bð3Þ
0 =Að3Þ

0 ¼ 0.
In Figs. 2–5 we show the parameter-space region where

tachyonic modes exist for jQj=M ¼ 0, 0.5, 1, 1.5, rendering
the scalar vacuum unstable. The black areas represent
regions where there are no static shell configurations.
For any fixed jQj=M, there is a small enough ðM=RÞ0
such that for 0 < M=R < ðM=RÞ0 the boundary of
the unstable regions is determined by ξ ¼ −R=ð2MÞ þ
OðM=RÞ being independent of the value of jQj=M. As
M=R increases, the influence of the charge on the insta-
bility regions becomes more noticeable. In particular, the
minimum value ofM=R required for some scalar field with
ξ > 0 to become unstable grows from 4=9whenQ ¼ 0 to 1
when jQj → M−. Scalar fields with ξ ≥ 0 are stable in
the spacetime of shells with jQj ¼ M. We recall that for
jQj > M there are static shell configurations for any M=R
at the cost of having the weak, strong and dominant energy
conditions being violated by shells with large enough
M=R. Finally, it is interesting to note that although there
are shell configurations which allow for the existence of
tachyonic modes for the conformal scalar field case,
ξ ¼ 1=6, at least some energy condition will be violated
by the corresponding shell.

FIG. 4. This figure considers a shell with jQj=M ¼ 1. The same
color convention as in Fig. 2 is assumed here. We see that the
instability islands which appear in Figs. 2 and 3 for ξ > 0 are not
present in this case.
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IV. VACUUM ENERGY DENSITY

Here, we analyze the exponential growth of the vacuum
energy density (as measured by static observers) ρV ≡
−hT̂0

0i≡−h0injT̂0
0j0ini as a result of the instability

induced by the appearance of tachyonic modes. We assume
the vacuum j0ini to be the no-particle state as defined
according to the oscillating modes at the infinite past, where
the initial shell parameters, Min, Qin, and Rin, do not allow
for the existence of tachyonic modes. Then, by assuming
that the shell evolves to the static configuration, charac-
terized by M, Q, and R, which allows for the existence of
tachyonic modes, we can use the general expression
obtained in Ref. [1] to write the leading contribution to
the vacuum energy density (see Ref. [4] for a more
comprehensive discussion):

ρV ¼ −hT̂0
0i−Hð−lÞ − hT̂0

0iþHðlÞ − hT̂0
0iS; ð55Þ

where HðlÞ is the Heaviside step function (with l being
the proper distance of the geodesics which orthogonally
intercept S) and

hT̂0
0i− ∼ − κ

8π

e2Ω̄t

r2
d
dr

��
1 − 4ξ

4Ω̄

�
r2

dðψ −̄
Ω0ðrÞ=rÞ2
dr

�
; ð56Þ

hT̂0
0iþ ∼ − κ

8π

e2Ω̄t

r2
d
dr

��
1 − 4ξ

4Ω̄

�
r2fðrÞ dðψ

þ
Ω̄0ðrÞ=rÞ2
dr

þ ξM
Ω̄

�
1 − Q2

Mr

��
ψþ
Ω̄0ðrÞ
r

�2�
; ð57Þ

and

hT̂0
0iS ∼ − κ

8π
e2Ω̄t

fðRÞ−1=2
R

ξ

Ω̄

�
ð1 − 4ξÞ

�
−2þ 3M

R

−Q2

R2
þ 2fðRÞ1=2

�
þM

R
−Q2

R2

��
ψþ
Ω̄0ðRÞ
R

�2

δðlÞ;

ð58Þ
are the leading vacuum contributions to the energy density
inside, outside, and on the shell, respectively. Here, κ is a
positive constant of order one (see Ref. [1] for more details)
and Ω̄ represents the largest Ω among all tachyonic
solutions. We note that although the absolute value of the
vacuum energy density increases exponentially in time, the
growth is positive at some places and negative at some other
ones in such away that the total vacuum energy is conserved
[1]. Eventually, the spacetime must react to the vacuum
energy growth leading thewhole system to evolve into some
final stable configuration with no tachyonic modes. The
analysis of the corresponding evolution in the context of
semiclassical gravity is well known to be difficult. However,
it was recently shown that the scalar field should lose
coherence fast enough to allow backreaction to be treated
in the much easier context of general relativity [21].

V. CONCLUSIONS

We have analyzed the stability of a nonminimally
coupled free scalar field in the spacetime of charged
spherical shells. The impact of the charge on the instability
is enhanced for more compact configurations. Also, the
cases jQj ≤ M and jQj > M differ because in the latter case
there are static shell configurations for every radius R.
Notwithstanding, some of them may violate the weak,
strong and dominant energy conditions. The presence of
charge does not alter the fact that spherically symmetric
shells which are able to awake the vacuum for conformally
coupled scalar fields, ξ ¼ 1=6, do not satisfy at least the
dominant energy condition. Finally, we have calculated the
expectation value of the vacuum energy density in order to
make explicit its exponential growth in time.
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FIG. 5. This figure considers a shell with jQj=M ¼ 1.5. The
dark region is not present here in contrast to the previous three
figures because for jQj > M there are static shell configurations
for any M=R. On the other hand, the energy conditions are
typically more restrictive. The light translucent gray area corre-
sponds to configurations where the strong energy condition is
violated. The dark translucent gray region is excluded by the
weak, strong, and dominant energy conditions.
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