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In a series of recent papers Kallosh, Linde, and collaborators provide a unified description of single-field
inflation with several types of potentials ranging from power law to supergravity, in terms of just one
parameter α. These so-called α attractors predict a spectral index ns and a tensor-to-scalar ratio r, which are
fully compatible with the latest Planck data. The only common feature of all α attractors is a noncanonical
kinetic term with a pole, and a potential analytic around the pole. In this paper, starting from the same
Einstein frame with a noncanonical scalar kinetic energy, we explore the case of nonanalytic potentials. We
find the functional form that corresponds to quasiscale-invariant gravitational models in the Jordan frame
characterized by a universal relation between r and ns that fits the observational data but is clearly distinct
from the one of the α attractors. It is known that the breaking of the exact classical scale invariance in the
Jordan frame can be attributed to one-loop corrections. Therefore we conclude that there exists a class of
nonanalytic potentials in the noncanonical Einstein frame that is physically equivalent to a class of models
in the Jordan frame, with scale invariance softly broken by one-loop quantum corrections.

DOI: 10.1103/PhysRevD.93.024040

I. INTRODUCTION

The most recent data from BICEP2 and Planck have
constrained the value of the scalar spectral index ns to
unprecedented precision and reduced the upper value of
the tensor-to-scalar ratio to about r < 0.10 [1]. From the
physical point of view, this means that the single-field,
chaotic inflationary models are greatly favored over other
competitors. Among these, the ones with potentials of the
form VðϕÞ ∼ ϕn, with n < 2 provide the best fit, together
with the Starobinsky model [2]. The latter can be turned
into the Higgs inflationary model [3] (at least at high
energy) by a conformal transformation, as discussed in [4].
This fact is not merely a coincidence but it rather reflects

a universal description of single-field chaotic inflationary
models, which also encompasses the ones descending from
supergravity. Such a unified view started in [5,6], and
explicitly worked out in [7–9], where the inflaton potential
is essentially arbitrary and only assumed to be positive and
grow in the vicinity of the moduli space boundary with a
stable or metastable minimum. Later, in a series of papers
Kallosh et al. [10] have investigated a one-parameter class
of attractors called α attractors, that contains virtually all
power-law inflationary models. With regard to these α
attractors, each member of the class is labeled by the real
parameter α, which enters the prediction for the spectral
indices given by

1 − ns ¼
2

N
; r ¼ 12α

N2
; ð1Þ

at the leading order in the number of e-foldings N.
For example, α ¼ 1 corresponds to the Starobinsky model,
while, for α large, one recovers the chaotic model with
V ∼ ϕ2 [11]. Formally, α can be seen as a deformation
parameter in the Lagrangian written in the Einstein frame
with a noncanonical kinetic term (from now on we call it
noncanonical Einstein frame for short) given by

L ¼ ffiffiffi
g

p �
M2

2
R −

36α2ð∂ϕÞ2
ð6α − ϕ2Þ2 − f2

�
ϕffiffiffiffiffiffi
6α

p
��

; ð2Þ

where f is an arbitrary but analytic function near the pole of
the kinetic term [12]. In the Einstein frame with a canonical
kinetic term, this amounts to having a plateau in the
effective potential, sufficiently flat to accommodate an
inflationary evolution.
In this paper we explore the inflationary predictions of a

class of nonanalytic potentials, in particular with power-law
and logarithmic singularities. As we shall see, in this case
we find a new class of attractors that fits the data and
predicts the relation

r ¼ 8

3
ð1 − nsÞ; ð3Þ

at the leading order.
In the case of the α attractors, the fundamental origin of

the parameter α is related to supergravity and provides
sound phenomenological predictions. In our case, the
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common origin of this class of attractors is quite different as
becomes apparent in the Jordan frame. Indeed, here the
Lagrangian turns out to be a deformation of a scale-
invariant gravity theory, which is known to be induced
by one-loop quantum corrections.
In summary, we show that, owing to the analyticity of the

scalar potential in the noncanonical Einstein frame, there
can be two inequivalent physical classes of (effective)
Lagrangians. The first corresponds to analytic potentials
and the α attractors. The second encompasses a specific
form of nonanalytic potentials and corresponds to what we
call quasiscale-invariant attractors. These two classes are
distinct and predict different values for ns and r: only more
accurate measurements of r will be able to discard one
of them.
The paper is organized as follows: In Sec. II we lay

down the formalism that will be used, and, in particular, we
compute the appropriate slow-roll parameters for the
noncanonical scalar kinetic term in the Einstein frame.
In Sec. III we discuss in detail the known case of analytic
potentials, along the lines of [10]. In Sec. IV we consider
potentials with logarithmic singularities and show, in
Sec. V, how these are related to quasiscale-invariant gravity.
We conclude in Sec. VII with some considerations.

II. SLOW-ROLL PARAMETERS FOR ACTIONS
WITH NONCANONICAL SCALAR

KINETIC TERM

Our starting point is the Lagrangian in the noncanonical
Einstein frame used in [10] that we write in the form

L ¼ ffiffiffiffiffiffi
−g

p �
M2

2
R −

Ap

2ϕp ð∂ϕÞ2 − VðϕÞ
�
: ð4Þ

Here M is the Planck mass and the Einstein gravitational
term is the usual one. The scalar Lagrangian for the self-
interacting scalar ϕ instead consists of the usual kinetic
term multiplied by a function with a pole of order p in ϕ
at ϕ ¼ 0, while Ap is an arbitrary constant. Of course, one
should remember that the presence of this pole singularity
is field-redefinition dependent, although the one which
makes the kinetic term canonical is also singular in general,
and in this sense the pole is intrinsic. Nonetheless a
noncanonical term in the Einstein frame is still very useful
for the discussion of the slow-roll approximation.
In this approximation (ϕ̈≃ _ϕ2 ≃ _H ≃ 0), the equations

of motion corresponding to the above Lagrangian read

3M2H2 ≃ VðϕÞ; ð5Þ

3H2Ap

ϕp

dϕ
dN

≃ −Vϕ; ð6Þ

where Vϕ ¼ dV
dϕ, and N is the e-fold time defined by

dN ¼ Hdt. From (5) and (6) it follows that

N ¼ −
Ap

M2

Z
Vdϕ
ϕpVϕ

: ð7Þ

The number of e-foldings between the beginning and the
end of inflation characterized by the corresponding values
ϕin and ϕend respectively, is commonly defined as

N� ¼ −
Ap

M2

Z
ϕin

ϕend

Vdϕ
ϕpVϕ

: ð8Þ

The Hubble flow functions are defined by [13]

ϵ0 ¼
H0

H
; ϵiþ1 ¼

_ϵi
Hϵi

; ð9Þ

where H0 is the initial value of the Hubble function. For
our work, it is sufficient to consider the first two, which
explicitly read

ϵ1 ¼ −
_H
H2

¼ −
H0

H
; ð10Þ

ϵ2 ¼
Ḧ

H _H
þ 2ϵ1 ¼

H00

H0 −
H0

H
; ð11Þ

where the prime stands for a derivative with respect to N.
Within the slow-roll approximation, these parameters are
related to the observables [14]. In particular, the spectral
index ns and the tensor-to-scalar ratio r are respectively
given by

ns ≃ 1 − 2ϵ1 − ϵ2; ð12Þ

r≃ 16ϵ1: ð13Þ

In our case, with the help of Eqs. (5) and (6), we find that, in
the slow-roll regime, the Hubble flow reads

ϵ1 ≃M2

2

ϕp

Ap

�
Vϕ

V

�
2

; ð14Þ

ϵ2 ≃ 4ϵ1 −
M2ϕp−1

Ap

�
p
Vϕ

V
þ 2ϕ

Vϕϕ

V

�
: ð15Þ

Let us note that these expressions for the Hubble flow
parameters differ from the standard ones (i.e. the ones
computed with a canonical kinetic term in the Lagrangian),
which we call ~ϵ1 and ~ϵ2. The latter are related to the former
by ~ϵ1 ¼ ϵ1ðp ¼ 0Þ and ~ϵ2 ¼ ϵ2ðp ¼ 0Þ. These formulas
are all we need to analyze the classes of attractors
corresponding to analytic and nonanalytic potentials.
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III. ANALYTIC POTENTIALS

The class of models considered in [10] corresponds to
an arbitrary p > 1 and analytic potentials at ϕ ¼ 0. Within
the slow-roll approximation, we expand VðϕÞ ¼ c0 þ c1ϕ,
and we assume c1=c0 > 0 for definitiveness. Thus, from
Eq. (7) the leading order for small ϕ gives, for p ≠ 2,

N ≃ Apc0ϕ1−p

c1M2ðp − 1Þ : ð16Þ

For p ¼ 2, one has N ≃ 1
ϕ þOðlnϕÞ; thus the leading term

for small ϕ is the same.
Furthermore, to leading order, one finds that

ϵ1 ¼ BpN
1

1−p; ð17Þ

where

Bp ¼ c21M
2K

p
1−p
p

2Apc20
; Kp ¼ c1ðp − 1ÞM2

Apc0
: ð18Þ

In addition, one finds that ϵ1 ≪ ϵ2 and that, to the leading
order

ϵ2 ≃ p
ðp − 1ÞN ; ð19Þ

which, in turn, leads to

1 − ns ¼
p

ðp − 1ÞN ; ð20Þ

together with

r ¼ 16ϵ1 ¼ 16BpN
p

1−p ∝ ð1 − nsÞ
p

p−1: ð21Þ

The p ¼ 2 case is of particular interest, since the
Starobinsky model [2] as well as Higgs inflation [3] belong
to this class. In general, as stressed in [10], the relation
between ns and N depends only on p.

IV. NONANALYTIC POTENTIALS

Let us now turn our attention to nonanalytic potentials.
We begin with the simplest models with a singular point at
ϕ ¼ 0 represented by

Vðϕ; pÞ ¼
8<
:

a
�

ϕ
ϕ0

�ð2−pÞ=2
; p > 2;

a ln
�

ϕ
ϕ0

�
; p ¼ 2:

ð22Þ

We limit our investigations to these types of singularity
because these are typical of potentials with quantum
corrections and of interest in inflationary cosmology.
Both forms satisfy the identity

pVϕ þ 2ϕVϕϕ ¼ 0; ∀ p ≥ 2; ð23Þ
and lead to the relation [see Eq. (15)]

ϵ2 ≃ 4ϵ1; ð24Þ
to leading order. Then, from Eqs. (12) and (13), we
immediately find the relation

r ¼ 8

3
ð1 − nsÞ; ð25Þ

which is clearly distinct from Eq. (21). From the formula
above we have that, for ns ≃ 0.968, the tensor-to-scalar
ratio is fixed to r≃ 0.085, which is a prediction consistent
with the latest data and distinct from the one of the α
models. The relation (25) is also obtained with the addition
of an arbitrary constant to the potential: then the first line
in Eq. (22) appears in the context of so-called D-brane
inflation [15], the second in theories with spontaneously
broken supersymmetry [16], but for the rest of the paper we
stick to Eq. (22) as given. Then for the special case p ¼ 2,
also the number of e-foldings is fixed. On using Eq. (14),
we find that ϵ1 ¼ 1=ð4NÞ; hence, ns ¼ 0.968 implies
N ≃ 47. For the case p ≠ 2 we find instead that

ϵ1 ¼
1

2pN
; ð26Þ

and

r ¼ 8

pN
; ns ¼ 1 −

3

pN
: ð27Þ

We conclude that the class of nonanalytic potentials (22)
yields the universal relation (25). Each point on this line is
uniquely fixed by the value of the product pN, which for
the quoted mean value of the tilting by Planck is within the
68% confidence interval 78.32 < Np < 114.07.
One may wonder what happens when the condition (22)

is relaxed. Suppose that the scalar Lagrangian has the form

Lϕ ¼ ffiffiffiffiffiffi
−g

p �
−

Ap

2ϕp ð∂ϕÞ2 −
V0

ϕq

�
; ð28Þ

where V0 is a constant and q > 0 is not related to p. By
repeating the calculations above one finds that

r ¼ 8

3
ð1 − nsÞ

3q
qþ p − 2

: ð29Þ

For the special case p ¼ 2 this relation becomes
r ¼ 8ð1 − nsÞ which is excluded by observations. In fact,
in order to have an acceptable value of r we need

0 <
3q

qþ p − 2
≤ 1: ð30Þ
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With the condition q > 0 these inequalities yield

p > 2; 0 < q ≤
p
2
− 1: ð31Þ

With the help of the e-folding number function (7) and the
definitions of the slow-roll parameters and of the spectral
indices, we find that these conditions yield

r <
4

N
; ns > 1 −

3

2N
: ð32Þ

Therefore, if we fix N ¼ 50 we find r < 0.08 but
ns > 0.970. If we increase to N ¼ 60 we have r < 0.07
and ns > 0.975. This means that a nonanalytic arbitrary
power-law potential does not improve the matching between
the theoretical and the observed spectral indices. Therefore,
we continue with potentials of the form (22), as they seem to
be phenomenologically viable and, moreover, appear to have
a much deeper interpretation in terms of scale invariance of
the action, as we will discuss in the next section.

V. QUASISCALE INVARIANCE AND
NONANALYTIC POTENTIAL

To fully understand the fundamental physics behind the
results displayed in the last section, it is convenient to go to
the Jordan frame (with canonical kinetic term). Let us first
consider the p ¼ 2 case. With the conformal transforma-
tion gμν → A−1

2 ϕ2gμν, the Lagrangian (4) can be written in
the convenient form

LJ ¼
ffiffiffiffiffiffi
−g

p �
ξϕ2R −

1

2
ð∂ϕÞ2 − λϕ4

�
1þ γ ln

ϕ2

μ2

��
; ð33Þ

where μ is an arbitrary mass scale and

ξ ¼ M2

2A2

; γ ¼ −
1

2 lnðϕ0=μÞ
; λ ¼ V0 lnðϕ0=μÞ

A4
2

:

ð34Þ

These three parameters are dimensionless, and the
Lagrangian above is exactly scale invariant when γ ¼ 0.
When γ ≠ 0, we can interpret this model as a scale-
invariant scalar-tensor theory with an additional logarith-
mic one-loop quantum correction, which depends on the
arbitrary mass scale μ2, along the lines of the model studied
in [17]. In general, the logarithmic term appears in the one-
loop expansion of massless scalar quantum electrodynam-
ics, and, in this context, the parameter γ depends on the
gauge coupling and on the self-interaction scalar coupling.
Typically, it is a small number and when it vanishes it
simply means that one-loop corrections are negligible. Note
that broken scale invariance has also been investigated in
Refs. [18–20], and within the context of the so-called
agravity in [21,22].

It is interesting to note that, on shell and in the slow-roll
approximation, this model is equivalent to the deformed
quadratic Lagrangian

fðRÞ ¼ ffiffiffiffiffiffi
−g

p
αR2

�
1þ γ ln

R
μ2

�
−1

þ � � � ð35Þ

proposed in [23] (for similar models, see [24]), where the
relation (25) was also found. To see this, it is sufficient
to neglect the kinetic term (slow-roll approximation) and
obtain the equation of motion for ϕ, which then reads

λϕ2 ¼ ξR

2ð1þ γ
2
þ γ lnðϕ2

μ2
ÞÞ
: ð36Þ

As shown in [23], the solution to this implicit relation is
given by the series expansion of the Lambert function1 for
large values of the argument, which in the present case has
the form

λϕ2 ¼ ξR
2

�
1þ γ

2
þ γ ln

�
R2

μ̄4

�
− λγ ln ln

�
R2

μ̄4

�
þ � � �

�−1

ð37Þ

with λγ ≪ γ ≪ 1 and a slightly different mass scale μ̄,
where the dots are terms of order λγ lnj lnR= lnk R,
1 ≤ j < k. Upon substitution in the Lagrangian (33) we
get the form (35) times a slowly varying factor (in the
variable R) given by ratios of logarithmic expressions.
For the case when p ≠ 2, the conformal transformation is

gμν → A−1
p ϕpgμν, and we find

LJ ¼
ffiffiffiffiffiffi
−g

p �
ξpϕ

pR −
1

2
ð∂ϕÞ2 − λpϕ

2pþ2
p−1

�
; ð38Þ

where ξp ¼ M2=ð2ApÞ and λp ¼ V0A−2
p ϕðp−2Þ=p

0 are no
longer dimensionless as for p ¼ 2. Then, we can proceed as
before by computing the equation of motion for ϕ in the
slow-roll approximation, and substituting back into the
Lagrangian. As a result, we find that the on-shell expres-
sion has the simple form

L ∼
ffiffiffi
g

p
Rnp; ð39Þ

where

np ¼ 2þ 2 − p
p2 − pþ 2

: ð40Þ

In [25], we studied the class of fðRÞmodels that best fit the
observed values for ns and we found the simple result

1The Lambert function is defined as the function z → WðzÞ,
solution of WeW ¼ z.
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fðRÞ ¼ Rζ; ζ ¼ 4 − α − α0

2ð1 − αÞ − α0
; ð41Þ

where α is a function of the e-folding number N and the
prime stands for the derivative with respect to N. In the
limit for constant α, the exponent reduces to ζ ∼ 2þOðaÞ;
thus the Lagrangian again tends to a deformation of R2.
From [25] we know that the approximation α ¼ const is not
very accurate as it leads to r≃ 0.3 and that, to have a more
precise prediction, one needs to consider third-order slow-
roll parameters (so that α0 is taken in account). Even in this
case, one finds that the effective exponent is still very close
to 2. This implies that the parameter p cannot be arbitrary if
one wants the model to fit observations. Therefore, we set
p ¼ 2þ ε and expand the Lagrangian (38) in the limit
ε → 0 (which also gives np ≃ 2 − ε=4). The result is

LJ ¼
ffiffiffiffiffiffi
−g

p �
ξϕ2

�
1þ ε

2
ln

�
ϕ2

μ2

��
R −

1

2
ð∂ϕÞ2

− λϕ4

�
1þ 3ε

4
ln

�
ϕ2

μ2

���
; ð42Þ

where, again, μ2 is an arbitrary mass scale to make the
argument of the log dimensionless, and ξ and λ have
absorbed the terms με and μεð2εþ3Þ=ð2þεÞ respectively. We
see that even for when p ≠ 2 we can still have phenom-
enologically viable solutions and these correspond, in the
Jordan frame, to models with scale invariance softly broken
by one-loop quantum corrections. In this case, ε plays the
same role as γ in Eq. (33).
In summary, our main result is that, to leading order in

the slow-roll parameters, nonanalytic potentials of the form
(22) in the Einstein frame with noncanonical kinetic term
correspond to theories in the Jordan frame represented
either by Eq. (35) or, equivalently, by Eq. (33), with scale
invariance broken either by hand or, more realistically, by
quantum effects. These models predict the specific relation
(25) between r and ns and form a set complementary to
the α attractors. For this reason, we named these models
quasiscale-invariant attractors.

VI. GENERALIZED NONANALYTIC POTENTIALS

In this section we generalize the form (22) of the
potential to see how robust our results are. We consider
a potential of the form

V ¼ V0

�
ϕ

ϕ0

�ð2−pÞ=2X
q

aq

�
ln

�
ϕ

m

��
q
; ð43Þ

where the logarithmic terms are generically expected from
loop quantum corrections, but may also be understood as
defining a new class of classical potentials. Here the aq are
real coefficients and m is the mass scale beyond which
corrections become relevant. Let us now determine to what

extent the relation between ns and r is affected by these
(possibly quantum) corrections. For simplicity, we study
the potential

V ¼ V0

�
ϕ

ϕ0

�ð2−pÞ=2�
1þ a ln

�
ϕ

m

��
; ð44Þ

which is sufficient to illustrate the main effect. On using the
formalism explained in Sec. II, we compute ϵ1 and ϵ2 and
Taylor expand to first order around a ¼ 0. We then use
these expressions to compute r and ns, which depend on a
and on ϕ. Finally, we combine the results to eliminate the ϕ
dependence, and find

r≃ 8

3
ð1 − nsÞ −

32ð1 − nsÞa
9ðp − 2Þ þOða2Þ; ð45Þ

which again yields Eq. (25) in the a → 0 limit. For p ¼ 2
this formula does not apply. In fact, in this case we fall back
to the case of the simple logarithmic potential studied in the
previous section. In general, for p ≠ 0, we conclude that
also with (small) quantum corrections our prediction is
robust: to leading order, logarithmic and power-law non-
analytic potentials such as (44) yield the universal relation
above. Moreover, positive values of a=ðp − 2Þ will tend to
further reduce the ratio r, the converse is true for negative
values.
Of course, these potentials also belong to the class of

quasiscale-invariant Lagrangians in the Jordan frame.
In fact, in the slow-roll approximation, we find that, on
shell and in the Jordan frame, the relation between ϕ2 and R
is similar to Eq. (36) and reads

λϕ
p2−pþ2

p ¼ ξR

�
B1 þ B2 ln

�
ϕ

m

��
−1
; ð46Þ

where B1 and B2 are coefficients depending on p and V0.
Thus, as in the previous section, we can always reduce this
Lagrangian to the form (35).

VII. CONCLUSIONS

Scale invariance is a powerful physical symmetry that
appears in several frameworks. For example, in the context
of black hole physics, the invariance of the action is
reflected by the thermodynamical properties of the horizon,
revealing a deep connection between gravity and entropy
[26]. In cosmology, scale invariance was long ago advo-
cated as a fundamental symmetry for the Harrison-
Zeldovich-Peebles spectrum with ns ¼ 1 [27]. Only when
the first measurements revealed that ns < 1, was this
hypothesis, at least partially, abandoned.
If we instead assume that scale invariance rules the

beginning of inflation, we need a mechanism to break it in
order to be consistent with current observations, quite
independent of the specific underlying gravitational theory;
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see e.g. [28,29]. For example, pure R2 gravity admits only a
combination of de Sitter and radiation-dominated solutions
[30], where the first dynamically dominates in time over the
second. However, on considering quantum fluctuations, we
can envisage a soft breaking mechanism of the scale
invariance of R2 via loop quantum corrections. From a
phenomenological point of view, this possibility was
considered in [25] and formulated more precisely in [23].
In the present paper, we have shown that the class of

quasiscale-invariant models is much larger than the one
considered in [23]. In fact, all potentials with logarithmic
and power-law singularities in the Einstein frame of the
form (22) or (43), and with a noncanonical kinetic term,
correspond, at leading order in the slow-roll parameters,
to the quasiscale-invariant models represented by the
Lagrangian (35).
For the leading term, all these models yield the same

universal relation between r and ns, which is independent

of the parameters of the theory, in contrast to the case of α
attractors, which represent a complementary alternative.
Since our prediction (25) is very precise, our model should
be easily falsifiable once a more accurate measure of r is
obtained.
On the other hand, should future observations confirm

the universal relation (25), classical scale-invariant gravity
with loop corrections would become a strong candidate to
describe the inflationary Universe in the physical Jordan
frame, thus recovering the original spirit of the Harrison-
Zeldovich-Peebles model.
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