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Three-dimensional gravity coupled to pressureless dust is a field theory with 1 local degree of freedom.
In the canonical framework, the dust-time gauge encodes this field in the metric. We find that its dynamics,
up to diffeomorphism flow, is independent of spatial derivatives and is therefore ultralocal. We study this
feature further by analyzing the linearized equations of motion about flat and (anti-)de Sitter backgrounds,
and show that this field may be viewed as either a traceless or a transverse mode.
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I. INTRODUCTION

Einstein gravity in three spacetime dimensions has been
a subject of much study, primarily as a model for quantum
gravity in a simpler setting [1,2]. In vacuum, however, the
theory has only a finite number of degrees of freedom
which arise either due to nontrivial topology of space [3–5],
or through point particles which appear as conical defects
[6]. It is therefore interesting to study three-dimensional
(3D) gravitational theories that do have local field degrees
of freedom. There are many such examples; prominent
among them is the topologically massive theory [7].
We consider here another method for obtaining local

degrees of freedom: three-dimensional Einstein gravity
coupled to matter. This has been studied before; it is
known, for instance, that 3D gravity with a scalar field has
wave solutions [8]. We study coupling to pressureless dust
in the Arnowitt-Deser-Misner (ADM) canonical frame-
work, where spatial slices are defined by level values of a
(pressureless) scalar field: the dust-time gauge. This gauge
has an interesting property, namely, that the (nonvanishing)
physical Hamiltonian is functionally the same as the
Hamiltonian constraint [9]. A counting of degrees of
freedom reveals that the theory has 1 local (configuration)
degree of freedom, which in the dust-time gauge manifests
itself as a metric field. In a previous work two of the present
authors studied the spherically symmetric sector of this
theory [10].
Here we investigate the nature of this field without

imposing additional symmetries. In the next section we
review the canonical framework with dust-time gauge. The
main result is that in this gauge, space points decouple,
giving independent and identical dynamics at each point. In
Sec. III we consider the case of a vanishing cosmological
constant and analyze the linearized theory in Fourier space;
we solve the diffeomorphism constraint and derive the

linearized canonical equations for the remaining metric
function. In Sec. IV we give a similar analysis for the case
of a nonvanishing cosmological constant. We conclude in
Sec. V with a brief summary and implications of the result
for quantum gravity.

II. ACTION AND HAMILTONIAN THEORY

The theory we study is given by the action

S ¼ 1

2π

Z
d3x

ffiffiffi
g

p ðR − 2ΛÞ

− 1

4π

Z
d3x

ffiffiffi
g

p
mðgμν∂μϕ∂νϕþ 1Þ: ð1Þ

The first integral is the usual gravitational action with a
cosmological constant. The second integral is the action
for the pressureless dust field, where m is a function of
spacetime. Variation with respect to m constrains the dust
field to have a timelike gradient j∇ϕj2 ¼ −1.
The canonical ADM action is

S ¼ 1

2π

Z
d3xð ~πab _qab þ pϕ

_ϕ − NH − NaCaÞ; ð2Þ

where the pairs ðqab; ~πabÞ and ðϕ; pϕÞ are, respectively, the
gravitational and dust phase-space variables. The lapse
and shift functions, N and Na, are the coefficients of the
Hamiltonian and diffeomorphism constraints

H ¼ HG þHD; ð3Þ

Ca ¼ CGa þ CDa ¼ −2Db ~π
b
a þ pϕ∂aϕ; ð4Þ

where

HG ¼ ffiffiffi
q

p �
−Rð2Þ þ 1

q
ð ~πab ~πab − ~π2Þ þ 2Λ

�
; ð5Þ
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HD ¼ 1

2

�
p2
ϕ

m
ffiffiffi
q

p þm
ffiffiffi
q

p ðqab∂aϕ∂bϕþ 1Þ
�
: ð6Þ

The trace of the gravitational momentum is ~π ¼ qab ~πab,
Rð2Þ is the scalar curvature of the spatial hypersurfaces, and
Da is the covariant derivative associated with qab.
The momentum conjugate to the field m is zero since it

appears as a Lagrange multiplier in the covariant action.
However, it is still present inHD. The canonical action may
be written in a convenient form that contains only the
phase-space variables by varying the action with respect to
m and substituting back the solution. This gives

m ¼ � pϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðqab∂aϕ∂bϕþ 1Þ

p ; ð7Þ

which leads to

HD ¼ �pϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qab∂aϕ∂bϕþ 1

q
: ð8Þ

It is readily verified that the constraints remain first class.
We will see in the gauge fixing below how the sign is
selected.

A. Time gauge fixing

We now partially reduce the theory by fixing a time
gauge and solving the Hamiltonian constraint to obtain a
physical Hamiltonian. We use the dust-time gauge [9,11]
which equates the physical time with level values of the
scalar field,

λ≡ ϕ − t ≈ 0: ð9Þ

This has a nonzero Poisson bracket with the Hamiltonian
constraint, so this pair of constraints is second class.
Requiring that the gauge condition be preserved in time
gives an equation for the lapse function:

1 ¼ _ϕ ¼
�
ϕ;

Z
d3xðNHþ NaCaÞ

�����
ϕ¼t

¼ N
pϕ

m
ffiffiffi
q

p ⇒ N ¼
ffiffiffi
q

p
m

pϕ
: ð10Þ

Using the relation (7) with ϕ ¼ t leads to N ¼ �1 and
implies that

ffiffiffi
q

p
m ¼ �pϕ. The sign of the lapse function

determines whether the evolution is forward (N ¼ þ1) or
backward (N ¼ −1) in time. We select the positive sign
which fixes the above ambiguity in the Hamiltonian
constraint, yielding HD ¼ þpϕ.
Imposing this gauge condition and solving the

Hamiltonian constraint gives

pϕ ¼ −HG: ð11Þ

Substituting this and the gauge condition (9) into Eq. (2)
gives the gauge fixed action

SGF ¼
1

2π

Z
d3xð ~πab _qab −HG − NaCGa Þ: ð12Þ

This shows that the gravitational part of the Hamiltonian
constraint becomes the physical Hamiltonian, and the full
diffeomorphism constraint reduces to the gravitational one.
This is a field theory: Three functions in qab subject to the
two diffeomorphism constraints give 1 local configuration
degree of freedom. This is the action we study in the
remainder of the paper.

B. Equations of motion

The theory so far has been partially reduced using the
dust-time gauge. The equations of motion are obtained via
Poisson brackets with the Hamiltonian

H ¼ 1

2π

Z
d3xðHG þ NaCGa Þ: ð13Þ

We have

_qab ¼ fqab;Hg ¼ 2ffiffiffi
q

p ð ~πab − ~πqabÞ þ LNqab; ð14Þ

_~πab ¼ f ~πab;Hg ¼ qab

2
ffiffiffi
q

p ½ ~πcd ~πcd − ~π2�

− 2ffiffiffi
q

p ð ~πac ~πcb − ~π ~πabÞ − Λ
ffiffiffi
q

p
qab þ LN ~π

ab; ð15Þ

where LN is a Lie derivative in the direction of the shift
vector Na. Spatial derivatives enter these equations only
through the Lie derivative terms, which is a gauge variation.
There are no physically meaningful spatial derivatives
because the Ricci scalar term

ffiffiffi
q

p
Rð2Þ does not contribute

to the equations of motion. This can be seen by evaluating
its variation:

δð ffiffiffi
q

p
Rð2ÞÞ ¼ ðδ ffiffiffi

q
p ÞRð2Þ þ ffiffiffi

q
p ðRð2Þ

ab δq
abÞ þ∇cJc

¼ ffiffiffi
q

p �
Rð2Þ
ab − Rð2Þ

2
qab

�
δqab þ∇cJc

¼ ∇cJc; ð16Þ

where Jc ¼ qabδΓc
ab − qcaδΓd

ad, and the last equality fol-
lows in two dimensions from the formula for the Riemann
tensor Rabcd ¼ ðR=2Þðqacqbd − qadqbcÞ. Since the varia-
tion is a total derivative, it contributes only to a boundary
term and does not affect the dynamics.
We conclude from this that the dynamics is ultralocal for

any value of the cosmological constant: The evolution
equations for the phase-space variables contain no spatial
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derivatives in the nongauge terms. This means that the
degrees of freedom at each space point evolve independ-
ently of any other point, and the diffeomorphisms serve
only to move the points around. We note, however, that if
spatial coordinate gauges are fixed and the diffeomorphism
constraint is solved, then the resulting equations of motions
may turn out not to be manifestly ultralocal; this appears,
for example, in the spherically symmetric reduction of the
theory [10], where the coordinate gauge is such that the
shift vector Na is not zero. But if one chooses coordinate
fixing conditions such that Na ¼ 0, then the dynamics
remains manifestly ultralocal. Thus, whether or not one has
manifest ultralocality depends on coordinate gauge.

III. LINEARIZED THEORY WITH Λ ¼ 0

We first analyze the linearized theory of perturbations
about the flat spacetime solution,

Λ ¼ 0; qð0Þab ¼ eab; ~πð0Þab ¼ 0; Nð0Þa ¼ 0;

ð17Þ

and write the perturbed fields as

qab ¼ eab þ hab; ~πab ¼ 0þ ~pab; Na ¼ 0þ na:

ð18Þ

Substituting this into the diffeomorphism constraint and
equations of motion gives to first order

∇a ~π
ab ≈ ∂a ~pab ¼ 0; ð19Þ

_hab ¼ 2ð ~pab − ~peabÞ þ 2∂ðanbÞ; ð20Þ

_~pab ¼ 0: ð21Þ

We note from these equations that any solution ~pab
s of the

diffeomorphism constraint gives a static source for the
metric perturbation, which then evolves linearly in dust
time (up to the diffeomorphism term if na ≠ 0).
Our goal is to fix coordinate gauges, solve the diffeo-

morphism constraint, and study the linearized equations
of motion for an appropriate set of physical variables. It is
easiest to work in k-space, as done, for example, in [12],
using the Fourier transformed fields

h̄abðt; kÞ ¼
1

2π

Z
d2xe−ikcxchabðt; xÞ; ð22Þ

p̄abðt; kÞ ¼ 1

2π

Z
d2xe−ikcxc ~pabðt; xÞ; ð23Þ

n̄aðt; kÞ ¼ 1

2π

Z
d2xe−ikcxcnaðt; xÞ: ð24Þ

The transform of the symplectic term in the canonical
action is

Z
d2x _habðt; xÞ ~pabðt; xÞ

¼ 1

ð2πÞ2
Z

d2xd2kd2k̄eix
cðkcþk̄cÞ _̄habðt; kÞp̄abðt; k̄Þ;

¼
Z

d2kd2k̄δ2ðkþ k̄Þ _̄habðt; kÞp̄abðt; k̄Þ;

¼
Z

d2k _̄habðt; kÞp̄abðt;−kÞ: ð25Þ

The linearized equations of motion in k-space become

_̄hab ¼ 2ðp̄ab − p̄δabÞ þ 2ikðan̄bÞ; ð26Þ

_̄pab ¼ 0: ð27Þ

The perturbations are still subject to the k-space diffeo-
morphism constraint,

C̄GðnÞ≡ n̄akbp̄ab ¼ 0; ð28Þ
which contributes the linear term in n̄a to the _̄hab equation.
To fix coordinate gauges and solve the diffeomorphism

constraint, it is convenient to expand the symmetric k-space
tensors ðh̄ab; p̄abÞ in a suitable matrix basis AI , I ¼ 1, 2, 3,
as

h̄ab ¼ hIAI
ab; p̄ab ¼ pIAab

I : ð29Þ
A convenient choice of basis is

ðA1Þab ≔
1ffiffiffi
2

p δab;

ðA2Þab ≔
ffiffiffi
2

p

jkj2 kakb −
1ffiffiffi
2

p δab;

ðA3Þab ≔
1ffiffiffi
2

p jkj2 ðϵackbk
c þ ϵbckakcÞ; ð30Þ

where ϵab is the Levi-Civita symbol. These are defined in
analogy with a similar basis used in 3þ 1 gravity: The first
two correspond to scalar degrees of freedom, and the third
to a “vector” degree of freedom. This basis is orthogonal
and normalized with the inner product

ðAI; AJÞ ≔ ðAIÞabðAJÞcdδacδbd ¼ δIJ: ð31Þ

The symplectic term becomes

_̄habp̄ab ¼ hIAI
abp

JAab
J ¼ hIpI; ð32Þ

so the expansion coefficients hI, pI are canonically con-
jugate. The basis also satisfies
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kaA1
ab ¼ kaA2

ab ¼
1ffiffiffi
2

p kb;

kaA3
ab ¼

1ffiffiffi
2

p ϵbckc;

δabA2
ab ¼ δabA3

ab ¼ 0: ð33Þ

Thus I ¼ 2, 3 are the traceless modes, and the linear
combination A2 − A1 is transverse. There is no transverse
and traceless mode in this model since there are no metric
perturbations satisfying both of these conditions: The only
solution to the two equations

δabhIAI
ab ¼ 0 ¼ kahIAI

ab ð34Þ

is hI ¼ 0 ∀ I.
We now write the linearized k-space equations in the

basis (30). The diffeomorphism constraint takes a useful
form: Decomposing the first order shift vector in compo-
nents parallel and perpendicular to ka,

n̄a ¼ n∥
ka

jkj þ n⊥ϵab
kb
jkj ; ð35Þ

this constraint (28) may be written as

C̄G ¼ C̄G∥ þ C̄G⊥ ¼ n∥
jkjffiffiffi
2

p ðp1 þ p2Þ þ n⊥
jkjffiffiffi
2

p p3: ð36Þ

This gives two separate constraints on the three momenta:

p1 þ p2 ≈ 0; p3 ≈ 0: ð37Þ

The equations of motion are

_h1 ¼ −2p1 þ
ffiffiffi
2

p
jkjn∥; ð38Þ

_h2 ¼ 2p2 þ
ffiffiffi
2

p
jkjn∥; ð39Þ

_h3 ¼ 2p3 þ
ffiffiffi
2

p
jkjn⊥; ð40Þ

_pI ¼ 0 ∀ I; ð41Þ

where we have redefined n∥ and n⊥ to absorb the factor of i
in (26). This shows the advantage of the chosen basis—the
equations of motion are decoupled, and the diffeomorphism
constraint breaks neatly into components parallel and
perpendicular to ka.

A. Gauge fixing and physical degrees of freedom

The fully reduced theory of physical degrees of freedom
is obtained by imposing two gauge conditions and solving
the two diffeomorphism constraints (37). This will give a
Hamiltonian theory of one pair of phase-space variables.

There is more than one way to do this, but we will focus on
the choices that are natural in our chosen decomposition.
Given the form of the diffeomorphism constraint, it is

natural to set the gauge h3 ¼ 0. This is second class with
the constraint p3 ≈ 0. Requiring that the gauge condition be
preserved in time means _h3 ¼ 0, which gives the condition
n⊥ ¼ 0 on the linear shift. These steps constitute a partial
gauge fixing of the theory, leaving the pair ðh1; p1Þ and
ðh2; p2Þ, and the remaining diffeomorphism constraint

p1 þ p2 ≈ 0: ð42Þ
The next step is to fix the remaining gauge freedom.

There are multiple ways of doing this, and in the following
we present a few cases.

1. Traceless gauge

Let us recall from (33) that only the traceless mode
remains if we set the gauge h1 ¼ 0. This is second class
with the reduced diffeomorphism constraint (42), which is
solved by setting p1 ¼ −p2. Dynamical preservation of
this gauge requires _h1 ¼ 0, which gives

n∥ ¼ −
ffiffiffi
2

p

jkj p2: ð43Þ

Thus the fully gauge fixed theory has only the traceless
mode ðh2; p2Þ, satisfying the equations of motion

_h2 ¼ _p2 ¼ 0: ð44Þ
Notice the linear-order shift vector n∥ works to cancel out
the right-hand side of the equation of motion for h2.
Since the remaining degrees of freedom are static, the

general solution is given by arbitrary functions of k:

h2 ¼ αðkÞ; p2 ¼ βðkÞ: ð45Þ

2. Transverse gauge

To leave the transverse mode as the remaining phase-
space pair, we use the gauge condition h1 þ h2 ¼ 0. This is
second class with CG∥ ≈ 0, which is again solved by setting
p1 ¼ −p2. Preserving this gauge dynamically requires
_h1 þ _h2 ¼ 0, which implies

n∥ ¼
ffiffiffi
2

p

jkj p1: ð46Þ

We can write the fully reduced theory using the variables
ðh1; p1Þ. This gives the same equations of motion as found
in the traceless gauge:

_h1 ¼ _p1 ¼ 0; ð47Þ

due to a cancellation coming from the solution to n∥.
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The solution to the equations of motion is again given in
terms of arbitrary functions that are constant in time:

h1 ¼ αðkÞ; p1 ¼ βðkÞ: ð48Þ

3. Gauges with time dependence

The two gauges used to fix diffeomorphism invariance
discussed above give rise to the simplest of evolution
equations. It is interesting to look at other gauge choices,
most of which give nontrivial dynamical equations. Let us
consider a more general gauge

h1 ¼ fðt; k; h2; p1; p2Þ; ð49Þ

where f is an arbitrary function. This is second class with
(42), which gives p1 ¼ −p2. Dynamical preservation of
this gauge now requires _h1 − _f ¼ 0. Using the equations of
motion, this fixes the lapse to be

n∥ ¼ −
ffiffiffi
2

p
p2

k
þ 1ffiffiffi

2
p

k

∂f
∂t

�
1 − ∂f

∂h2
�−1

: ð50Þ

The resulting equations of motion for the physical degrees
of freedom ðh2; p2Þ are

_h2 ¼
∂f
∂t

�
1 − ∂f

∂h2
�−1

; ð51Þ

_p2 ¼ 0: ð52Þ

The special case f ¼ μtp2, μ ¼ constant, reduces the first
equation to that of a free particle _h2 ¼ μp2.
That different gauges give rise to very different dynamics

is of course expected for a generally covariant theory. The
interesting feature is that the choice of dust time, together
with either the transverse or traceless gauges for the
diffeomorphism constraint, leads to the simplest solution.

4. Spacetime fields

The solutions presented above are given in terms of
ðhI; pIÞ, which are matrix expansion coefficients in k-
space. The first order ADM variables are obtained from
inverse Fourier transforms. For example, the metric per-
turbation in the traceless gauge is

habðxÞ ¼ − 1ffiffiffi
2

p
π
∂a∂b

Z
d2keikcx

c αðkÞ
jkj2

− eab
2

ffiffiffi
2

p
π

Z
d2keikcx

c
αðkÞ: ð53Þ

The other Fourier transforms take a similar form, and since
each contains the arbitrary function f for the general gauge,
one obtains a large class of spacetimes for the linearized
theory.

IV. LINEARIZED THEORY WITH Λ ≠ 0

We now give an analysis of the linearized theory with
a nonzero cosmological constant. As the background
solution we take the (anti-)de Sitter solution, which in
the dust-time gauge is

qab ¼ aðtÞ2δab; ~πab ¼ bðtÞδab; Na ¼ 0; ð54Þ

where aðtÞ and bðtÞ are

aðtÞ ¼
�
a0 coshð

ffiffiffiffiffiffijΛjp
tÞ Λ > 0

a0 cosð
ffiffiffiffiffiffijΛjp

tÞ Λ < 0;

bðtÞ ¼
�− ffiffiffiffi

Λ
p

tanhð ffiffiffiffiffiffijΛjp
tÞ Λ > 0ffiffiffiffi

Λ
p

tanð ffiffiffiffiffiffijΛjp
tÞ Λ < 0;

ð55Þ

for að0Þ ¼ a0. It is readily verified that these solutions
satisfy the diffeomorphism constraint and equations of
motion (14), (15).
For perturbations about this background we write

qab ¼ aðtÞ2δab þ hab;

~πab ¼ bðtÞδab þ ~pab;

Na ¼ 0þ na: ð56Þ

Calculating the diffeomorphism constraint and equations of
motion to first order gives

∇a ~π
ab ≈ ∂a ~pab þ a2b

�
∂ahab − 1

2
∂bh

�
¼ 0; ð57Þ

_hab ¼ 2ða−2 ~pab − ~pδabÞ − a2bhδab þ 2∂ðanbÞ; ð58Þ

_~pab ¼
�
a2hab−1

2
hδab

�
ðΛ−b2Þþa−2bpδab−2a2b∂ðanbÞ:

ð59Þ
These equations are significantly more complicated than
those written above (forΛ ¼ 0), particularly the equation of
motion for the momentum perturbation, which is no longer
identically zero. The is because the background momentum
is nonvanishing.
We now proceed as before by going to Fourier space.

Since the background metric is spatially constant, the same
Fourier transform as used in the last section is suitable; see
e.g. [12] for a similar case. The outcome is the same; the
transformed fields h̄abðt; kÞ and p̄abðt; kÞ are conjugate
variables, and the equations of motion and diffeomorphism
constraint can again be expressed in terms of these
variables and the shift perturbation n̄aðt; kÞ.
With the equations written in k-space, we again expand

in a basis for symmetric matrices. For the given background
solution, the following basis is suitable:
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ðA1Þab ≔
1ffiffiffi
2

p a2δab;

ðA2Þab ≔
ffiffiffi
2

p

jkj2 kakb −
1ffiffiffi
2

p a2δab;

ðA3Þab ≔
1ffiffiffi
2

p jkj2 ðϵackbk
c þ ϵbckakcÞ: ð60Þ

It reduces to the Λ ¼ 0 basis for aðtÞ ¼ 1. The metric
perturbation is expanded as h̄ab ¼ hIAI

ab and p̄
ab ¼ pIAab

I ,
taking care to raise and lower indices with the background
metric a2δab and its inverse a−2δab.
The diffeomorphism constraint again splits into compo-

nents parallel and perpendicular to ka. One finds that the
following two conditions must hold separately:

p1 þ p2 þ a2b

�
h2 − 1

2
h1

�
≈ 0;

p3 þ a2bh3 ≈ 0: ð61Þ

The pair ðh3; p3Þ are again constrained separately from the
other phase-space degrees of freedom, but the coefficient
p3 is no longer required to vanish.
At this point we can explore different gauge choices for

the coefficients ðhI; pIÞ. Although the equations are more
complicated to work with, the qualitative features remain
the same. Again we have a natural choice of h3 ¼ 0 which
sets p3 ¼ 0 and fixes n⊥ ¼ 0. It then remains to impose a
single condition on the remaining phase-space degrees of
freedom. The result is a completely reduced theory which
can be expressed in terms of either ðh1; p1Þ or ðh2; p2Þ and
the corresponding equations of motion.

V. DISCUSSION

We studied three-dimensional gravity coupled to dust in
the dust-time gauge. The structure of the canonical theory is
similar to that in four dimensions, where the physical
Hamiltonian is the same expression as the Hamiltonian
constraint. We found that the theory is ultralocal, a result
peculiar to three spacetime dimensions due to the evolution
equation for πab. For an understanding of the local metric
degree of freedom in this time gauge, we analyzed the
linearized theory about the flat and (anti-)de Sitter space-
times in k-space. For the Λ ¼ 0 case, this gives a curious
result for the transverse or traceless gauge: The linearized
evolution equations are trivial, which means that any initial
perturbations do not evolve, and remain frozen. For Λ ≠ 0
the dynamics are more complicated but the qualitative

features remain the same since the remaining physical
degrees of freedom can be expressed as a transverse or
traceless mode.
This result means that the fully gauge fixed linearized

theory in dust-time gauge, in the chosen k-space basis, is
such that the physical Hamiltonian of the physical modes is
exactly zero. The simplicity of this solution is due to the
choice of time gauge, the matrix basis, and the transverse or
traceless coordinate gauge. The situation is analogous to
the classical mechanics problem of finding the time-
dependent canonical transformation that maps a nontrivial
Hamiltonian to the trivial one. Had we used another time
gauge at the outset, the physical Hamiltonian and linearized
equations of motion would have been very different, and
nontrivial, because the solution of the Hamiltonian con-
straint would not be as simple as the one in dust-time
gauge. We see this also in the dust-time gauge, if the
remaining gauge choices are made in a more general way,
as in (49). It remains to explore the full nonlinear ultralocal
equations (14) and (15).
Given the ultralocality and trivial evolution of the flat

space perturbations in the transverse or the traceless gauge,
the corresponding quantum theory is effectively solved. For
each k, one defines creation and annihilation operators in
either case as a� ≔ h� ip. The quantum states are the
vacuum defined by aj0i ¼ 0, and the excited states
aþ… aþj0i ¼ jni. Since the physical Hamiltonian is zero,
there is no time-dependent Schrodinger equation to write
down, and no evolution of these states.
In spacetime dimensions higher than three, little is

known about the canonical quantization of a matter–gravity
system. It is natural to apply the procedure used here to the
linearized theory for 3þ 1 gravity coupled to dust, a work
presently in progress. It is of interest to see whether the
simplifications from the dust-time gauge and choice of
matrix basis in k-space produce new insights to this
difficult problem. Another direction for further work is
the inclusion of matter fields in addition to dust; the
physical Hamiltonian for such cases is a simple sum of
the gravity Hamiltonian HG and the standard Hamiltonian
for the matter field [9].
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