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We find a manifestly U-duality invariant formula for the Bekenstein-Hawking entropy of the most
general 4 dimensional, stationary, asymptotically flat, nonextremal STU black holes constructed recently
by Chow and Compère. The expression is entirely in terms of asymptotic charges. It involves the “scalar
charges” of the black hole which still need to be solved in terms of the dyonic charges and the mass. We
discuss how the formula reduces to some of the known results as the Klauza-Klein black hole and the dilute
gas limit of Cvetič and Larsen. We give the expected generalization to an E7ð7Þ invariant in the case of
maximal N ¼ 8 supergravity.
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I. INTRODUCTION

Recently, Chow and Compère [1,2] have constructed
the most general asymptotically flat, rotating, nonextremal
dyonic black hole solutions admitted by ungauged N ¼ 2
supergravity coupled to three vector multiplets in four
dimensions, or the so-called STU model. The Bekenstein-
Hawking entropy of these black holes can be written in the
form

S ¼ 2π
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

Δþ F
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−J2 þ F

p �
; ð1Þ

where J is the angular momentum, Δ is Cayley’s hyper-
determinant formed from the dyonic charges of the black
hole and F is a so far unidentified U-duality invariant given
in terms of auxiliary parameters.
The main result of this paper is the formula

F ¼M4 þM2

12
TrK12 −

M
24

TrðK12RÞ

þ 1

192

�
TrðK2

11Þ−TrðK11K22Þ−
1

2
ðTrR2Þ2 þTrðR4Þ

�
;

ð2Þ

whereM is the mass of the black hole whileR,K11,K22, and
K12 are certain 6 × 6 matrices depending on six scalar
charges, eight dyonic charges, and on the asymptotic values
of the scalar fields as well. As wewill explain, these matrices
transform in the adjoint of the U-duality group SLð2Þ×3U and
therefore the expression for F is manifestly U-duality
invariant. We also give the F invariant in the case of nonzero
NUT charge in Eq. (86). It is important to note that while the
scalar charges are functions of the mass and the dyonic
charges, the asymptotic values are independent parameters

and therefore the general black hole entropy depends on the
scalar hair. This confirms that there is no attractor mecha-
nism for general nonextremal STU black holes [3,4]. This
observation can also be reinforced by the following argu-
ment. The dyonic charges, transforming under the U-duality
group, form a prehomogeneous vector space [5]. This means
that there is only one algebraically independent continuous
invariant, in this case Cayley’s hyperdeterminant. Since the
mass and the angular momentum are U-duality invariants [6]
the only way that the F-invariant can be nontrivial is that it
depends on the scalar hair.
The construction of the building blocks for the F-

invariant is most conveniently done using the toolbox of
classifying certain entangled systems under stochastic
local operations and classical communication (SLOCC)
as three qubits [7], four qubits [8] and three fermions with
six single particle states [9]. The idea of formulating black
hole physics in supergravity in the language on quantum
entanglement is not new. The entropy of extremal STU
black holes is always expressed with Cayley’s hyperdeter-
minant Δ which is a measure of tripartite entanglement for
three qubits [10,11]. The timelike reduced STU model can
be described in the language of four qubit entanglement,
where the line element is given by a quadratic entanglement
measure [12,13]. Moreover, extremal black holes with
nilpotent charge vector can be classified in the language
of four qubit entanglement as shown in [14]. For a review of
this so-called black hole/qubit correspondence see [15].
The organization of this paper is as follows. In Sec. II we

give a quick review of the conventions we use for STU
supergravity and its reduction to the 3d coset model
SOð4; 4Þ=SLðRÞ×4. In Sec. III we review the aspects of
the black hole solution of Chow and Compère that we need.
In Sec. IV we describe the action of the U-duality group
SLð2;RÞ×3 on the coset element putting particular emphasis
on the fact that the generators for U-duality live in a different*sarosi@phy.bme.hu
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splitting of soð4; 4Þ than the one defining the 3d coset model
SOð4; 4Þ=SLðRÞ×4. After this, we describe how the 16
asymptotic charges of the black hole fit into the 9 ⊕ 8 ⊕ 8
representation of the U-duality group. We give the relevant
covariants that can be used to generate polynomial invar-
iants of this representation space in the simple language of
fermionic entanglement theory. In Sec. V we use these
covariants as building blocks to find the announced
expression for the F-invariant. Section V B contains the
formulas which are needed to compute the F-invariant
dressedwith the asymptotic values of the scalars. In Sec. VI
we give three constraints among the scalar and physical
charges and speculate if they are enough to determine the
scalar charges uniquely. As an illustration we solve the
constraints for some special cases like the Klauza-Klein
black hole and the dilute gas limit of [16]. We find
agreement with the literature. In Sec. VII we describe
howwe expect our results to generalize to anE7ð7Þ invariant
for maximal N ¼ 8 supergravity.
We include two appendices containing some explicit

formulas which we found too cumbersome to include in the
main text. In Appendix Awe set up our conventions for the
Lie-algebra of soð4; 4Þ and describe the three different
ways of selecting an sl×42 subalgebra with the remaining
generators transforming in the fundamental (2,2,2,2) rep-
resentation. In Appendix B we give the explicit forms of the
matrices R, K11, K12, and K22 appearing in expression (2)
for the F-invariant.

II. N = 2 SUPERGRAVITY

The term STU model refers to ungauged N ¼ 2 super-
gravity in four dimensions coupled to 3 vector multiplets
[17,18]. The model is of central importance in string theory
as it can be obtained from most string theories and is related
to various other supergravity theories through dualities.
Also, a suitable solution of the STU model can be used
[19] to generate all single centered stationary black holes of
maximal N ¼ 8 supergravity [20,21] which describes the
low energy limit of M-theory compactified on T7. The black
hole solutions in the theory can be obtained from the bosonic
part of the action without the hypermultiplets. There are
several formulations of this action, here we simply pick one
and refer to the literature on details. The action we choose is

S ¼ 1

16π

Z
dx4

ffiffiffiffiffi
jgj

p �
−
R
2
þGij̄∂μτ

i∂μτ̄ī

þ ðImN IJðF IÞμνðF JÞμν þ ReN IJðF IÞμνð⋆F JÞμνÞ
�
:

ð3Þ
Here, F I , I ¼ 0, 1, 2, 3 are four Uð1Þ gauge field strengths
and ⋆F I is the dual of F I . The complex scalars τi, i ¼ 1, 2,
3 are coordinates of the projective special Kähler manifold
½SLð2;RÞ=SOð2Þ�×3 and Gij̄ is the Kähler metric of this

space. The matrix N IJ is a certain 4 × 4 matrix depending
only on the scalars τi. As we do not need them in this paper,
for explicit forms of Gij̄ and N IJ we refer to the literature
[2,13]. We will usually use the decomposition of τi into real
in imaginary parts as

τi ¼ xi þ iyi: ð4Þ
To describe stationary black hole solutions we proceed with
the usual procedure of dimensional reduction along the time
coordinate. For details of this procedure see e.g., [2,22]. The
ansatz for the metric and the gauge fields is

ds2 ¼ −e2Uðdtþ ωÞ2 þ e−2Uds2ð3dÞ;

F I ¼ dAI ¼ dðζIðdtþ ωÞ þ AIÞ: ð5Þ
Here, ds2ð3dÞ ¼ habdxadxb is the three dimensional line

element with a, b being 3d indices. The scalars U and ζI

and the one-forms ω and AI are considered to be three
dimensional fields. One then dualizes ω and AI to scalars σ
and ~ζI as

d~ζI ¼ ReN IJdζJ − e2U⋆ð3dÞðdAJ þ ζJdωÞ;
dσ ¼ e4U⋆ð3dÞdωþ ζId~ζI − ~ζIdζI: ð6Þ

The resulting three dimensional theory is Euclidean gravity
coupled to 16 real scalars fU; σ; τi; τ̄ī; ζI; ~ζIg parametrizing
the coset space SOð4; 4Þ=SLð2;RÞ×3. The Lagrangian can
be written as

L ¼ −
1

2

ffiffiffi
h

p
R½h� þ gmn∂aΦm∂aΦn; ð7Þ

where Φm denotes the scalars with m ¼ 1;…; 16. The
metric gmn on SOð4; 4Þ=SLð2;RÞ×4 is expressed through
the line element as

1

4
gmndΦmdΦn ¼ Gij̄dτ

idτ̄j̄ þ dU2

þ 1

4
e−4Uðdσ þ ~ζIdζI − ζId~ζIÞ2

þ 1

2
e−2U½ImN IJdζIdζJ

þ ðImN Þ−1IJ ðd~ζI − ReN IKdζKÞ
× ðd~ζJ − ReN JLdζLÞ�: ð8Þ

Note that the equations of motion coming from (3)
are invariant under the SLð2;RÞ3×U subgroup of the full
U-duality group E7ð7Þ mapping the STU model to itself. An
element

S1 ⊗ S2 ⊗ S3 ∈ SLð2;RÞ3×U ; ð9Þ
is parametrized as
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Si¼
�
ai bi
ci di

�
; aidi−bici¼1; i¼1;2;3; ð10Þ

and it acts on the 3 dimensional fields the following way.
The scalars τi are transformed as

τi ↦
aiτi þ bi
ciτi þ di

; ð11Þ

while the electromagnetic potentials ζI , ~ζI transform in the
fundamental ð2; 2; 2Þ ¼ 8 dimensional representation.
Explicitly if one defines the three index tensor ψ ijk

corresponding to the amplitudes of a 3 qubit state as

�
ψ000 ψ001 ψ010 ψ011

ψ100 ψ101 ψ110 ψ111

�
¼
� ~ζ4 ζ3 ζ2 −~ζ1

ζ1 −~ζ2 −~ζ3 −ζ4

�
ð12Þ

the transformation rule is

ψ ijk ↦ ðS1Þii0 ðS2Þjj0 ðS3Þkk0ψ i0j0k0 : ð13Þ

In the following when we write SLð2Þ we are referring ot
SLð2;RÞ unless explicitly otherwise stated.
We can describe the second term in the 3d

Lagrangian (7) as a sigma model with target space
SOð4; 4Þ=SLð2Þ×4. The Lie algebra soð4; 4Þ has 28
generators. To describe this coset model we have to
split this as soð4; 4Þ ¼ h ⊕ m, where h is an sl×42
subalgebra and m is its 16 dimensional fundamental
representation which we denote as (2,2,2,2). There are
actually three ways to perform this split. We summa-
rize below two of them which are relevant for our
purposes.

ð2; 2; 2; 2Þf HΛ; pΛ ¼ EΛ þ FΛ j pQI ¼ EQI − FQI ; pPI ¼ EPI − FPI

sl×42 f kΛ ¼ EΛ − FΛ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðsl×4

2
ÞU

j kQI ¼ EQI þ FQI ; kP
I ¼ EPI þ FPI|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð2;2;2;2ÞU

ð14Þ

Here, HΛ, EΛ, FΛ, Λ ¼ 0;…; 3 and EQI , EPI
, FQI , FPI

,
I ¼ 1;…; 4 are the 28 generators of soð4; 4Þ. For an
explicit definition of these generators and a detailed
review of the splits, we refer to Appendix A. The
subscript U refers to the splitting suited to describe
the action of the U-duality group SLð2Þ×3. The extra
SLð2Þ factor in this split is the Ehlers symmetry. The
subalgebras without the subscript answer the split suited
to describe the 3d fields parametrizing the coset
SOð4; 4Þ=SLð2Þ×4.
Let us represent an element of this coset by an SOð4; 4Þ

matrix as [2,12]

V ¼ e−UH0e−
1
2

P
i
log yiHie−

P
i
xiEie−

P
I
ðζIEQIþ~ζIEPI Þe−1

2
σE0 :

ð15Þ

Notice that there are no F-type generators in the above
formula. This choice of gauge is called the Iwasawa
gauge. The next step is to project the Mauer-Cartan 1-
form to the 16 dimensional space spanned by the first
line of (14) as

P� ¼
1

2
ðdVV−1 þ ðdVV−1Þ#Þ: ð16Þ

Here, # is the anti-involution defining the horizontal split
of (14) [see also Eq. (A9)]. One finds that the target
space metric (8) can be written as the right invariant
metric on SOð4; 4Þ=SLð2Þ×4:

gmndΦmdΦn ¼ TrðP2�Þ: ð17Þ

The other way of writing this line element is to define the
matrix

M ¼ V#V: ð18Þ

Then we have

gmndΦmdΦn ¼ 1

4
TrððM−1dMÞ2Þ: ð19Þ

We note that M−1dM, similarly to P�, sits inside the 16
dimensional subspace which is spanned by the first line
of (14).
The 16 three dimensional fields can be extracted directly

fromM (see [2] for details) so we may proceed describing
the theory in terms of M. A group element h ∈ SOð4; 4Þ
acts naturally on V as

V ↦ qVh; ð20Þ

where q ∈ SLð2Þ×4 is a (possibly field dependent) com-
pensator which puts V back to the Iwasawa gauge. We will
see an example of this in Sec. IVA when we work out the
action of the U-duality group on V. The same action in
terms of M reads as

M ↦ h#Mh: ð21Þ
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It is then manifest that the line element and hence the 3d
Lagrangian is invariant under this action of SOð4; 4Þ.

III. THE MOST GENERAL NONEXTREMAL
BLACK HOLE SOLUTION

Here we give a lightning review of some of the results and
the solution generating technique presented in [2]. We have
seen that if M is a solution to the equations of motion then
so is h#Mh. This fact can be used to generate new solutions
from a known seed. This method is used by the authors of [2]
to find the most general nonextremal, rotating, asymptoti-
cally Taub-Newman-Unti-Tamburino (Taub-NUT) black
hole solution with 11 independent conserved charges.
These are the mass, NUT charge, angular momentum and
8 independent dyonic charges. They chose the four dimen-
sional Kerr-Taub-NUT metric as their seed with mass m,
NUT charge n and angular momentum J ¼ ma (here a is a
parameter). Then they chose the group element

h ¼ e−
P

I
γIkP

I

e−
P

I
δIkQI ; ð22Þ

to charge up the solution as

M ¼ h#MKTNh: ð23Þ

We refer to [2] for the definition of the seed matrix MKTN .
Here, we merely need how the physical charges of the black
hole are expressed with the 11 parameters m, n, a, δI , γI .
These charges are extracted as follows. Define the inverse
radial coordinate ρ ¼ 1

r and expand the fields around
asymptotic infinity. For now, we assume the following
expansion

e2U ¼ 1 − 2MρþOðρ2Þ;
ζI ¼ QIρþOðρ2Þ;
yi ¼ ð1 − ΣiρþOðρ2ÞÞ;
σ ¼ −4Nρþ ð4J cos θ þ cÞρ2 þOðρ3Þ;
~ζI ¼ PIρþOðρ2Þ;
xi ¼ ΞiρþOðρ2Þ; ð24Þ

which is the same as in [2]. HereM and J are the Arnowitt-
Deser-Misner (ADM) mass and angular momentum of the
spacetime, QI and PI are electric and magnetic charges
associated to the original 4d Uð1Þ gauge fields and Ξi, Σi

denote 6 scalar charges. The constant c is not playing any role
in the following. The corresponding expansion for M is

M ¼ I þQρþOðρ2Þ; ð25Þ

where the charge matrix Q does not contain the angular
momentum J which only enters in subleading order. Without
J, these are all together 16 asymptotic charges, which can be
expressed in terms of 10 seed & charge parameters,m, n, δI ,
γI. Therefore, the scalar charges are not independent ofM,N
and the dyonic charges, but we will keep them explicit
until Sec. VI.
We quote the formula for the mass and the NUT charge

M ¼ μ1mþ μ1n; N ¼ ν1mþ ν2n; ð26Þ
where μ1, μ2, ν1, ν2 are functions only of δI, γI and are
given explicitly as

μ1 ¼ 1þ
X
I

�
s2δI þ s2γI

2
− s2δIs

2
γI

�
þ 1

2

X
I;J

s2δIs
2
γJ;

μ2 ¼
X
I

sδIcδI

�
sγI
cγI

cγ1234 −
cγI
sγI

sγ1234

�
; ð27Þ

ν1 ¼
X
I

sγIcγI

�
cδI
sδI

sδ1234 −
sδI
cδI

cδ1234

�
;

ν2 ¼ ι −D; ð28Þ

with

ι ¼ cδ1234cγ1234 þ sδ1234sγ1234 þ
X
I<J

cδ1234
sδIJ
cδIJ

cγIJ
sγIJ

sγ1234;

D ¼ cδ1234sγ1234 þ sδ1234cγ1234 þ
X
I<J

cδ1234
sδIJ
cδIJ

sγIJ
cγIJ

cγ1234:

ð29Þ

Here the notation is resolved as follows: cδI ¼ cosh δI ,
sδI ¼ sinh δI and the same for γI. Multiple indices denote
that one should take the product of the hyperbolic functions
e.g., cδIJ ¼ cosh δI cosh δJ. The rest of the charges can be
obtained through the formulas

∂2M
∂δI ¼ QI;

∂2N
∂δI ¼ −PI; ð30Þ

∂QI

∂δJ ¼

0
BBB@

2M − Σ1 þ Σ2 þ Σ3

2M þ Σ1 − Σ2 þ Σ3

2M þ Σ1 þ Σ2 − Σ3

2M − Σ1 − Σ2 − Σ3

1
CCCA; ð31Þ
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∂PI

∂δJ ¼

0
BBB@

−2N Ξ3 Ξ2 −Ξ1

Ξ3 −2N Ξ1 −Ξ2

Ξ2 −Ξ1 −2N −Ξ3

−Ξ1 −Ξ2 −Ξ3 −2N

1
CCCA; ð32Þ

∂Σi

∂δJ ¼
0
B@−Q1 Q2 Q3 −Q4

Q1 −Q2 Q3 −Q4

Q1 Q2 −Q3 −Q4

1
CA;

∂Ξi

∂δJ ¼

0
B@−P4 P3 P2 −P1

P3 −P4 P1 −P2

P2 P1 −P4 −P3

1
CA: ð33Þ

Note that these identities are simple consequences of the
fact that we have defined the charging up element h with
the δI parameters being on the right. Therefore, for the
charge matrix Q ¼ h#QKTNh one has

∂Q
∂δI ¼ ½kQI ; Q�; ð34Þ

and hence taking the δI derivative of a component of Q in
some basis just amounts to multiplying with the adjoint
representation of kQI in the same basis. We have used here
that h is generated by the subalgebra in the second line of
(14) and hence we have h# ¼ h−1.
After reconstructing the 4d solution the Bekenstein-

Hawking entropy of the black hole can be calculated. It
reads as [2]

S ¼ 2π
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

Δþ F
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−J2 þ F

p �
; ð35Þ

where Δ is the quartic invariant formed from the dyonic
charges, and F is expressed with the seed and charge
parameters as

F ¼ ðm2 þ n2Þðmν2 − nν1Þ2: ð36Þ

To obtain asymptotically flat black holes one can cancel the
NUT charge by setting n ¼ −m ν1

ν2
.

IV. THE ACTION OF THE U-DUALITY GROUP

In this section we describe in detail the transformation
properties of the asymptotic charges of the black hole under
U-duality. This allows us to construct polynomial invariants
of these in the next section.

A. Action on fields

Recall that the coset element is parametrized in Iwasawa
gauge as

V ¼ e−UH0e−
1
2

P
i
log yiHie−

P
i
xiEie−

P
I
ðζIEQIþ~ζIEPI Þe−1

2
σE0 :

ð37Þ

Notice that the gauge is such that the scalar fields are in
an “upper triangular” form in the sense that the F type
generators are not present. We claim that the U-duality
group is generated by the generators Hi, Ei, Fi, i ¼ 1, 2, 3
of (14) and the action is a simple right action on V followed
by the left action of a local compensator q ∈ SOð2Þ×3 ⊂
SLð2Þ×3U restoring the Iwasawa gauge:

V ↦ qVg; g ∈ SLð2Þ×3U : ð38Þ

Indeed, we may write this as

qVg ¼ e−UH0ðqe−1
2

P
i
log yiHie−

P
i
xiEigÞ

× ðg−1e−
P

I
ðζIEQIþ~ζIEPI ÞgÞe−1

2
σE0 ; ð39Þ

as the generators E0 and H0 commute with SLð2Þ×3U . We
see that the part with the potentials transform simply with
the adjoint action. It is convenient to describe the 16
dimensional representation ð2; 2; 2; 2ÞU and its elementP

IðζIEQI þ ~ζIEPIÞ with the amplitudes ψ ijkl of a four

qubit state through (A7). Since there are no FPI
and FQI

generators present this four qubit state has ψ1jkl ≡ 0 and
therefore it is actually a three qubit state. We can think of
ψ1jkl ≡ 0 as the gauge fixing condition. Then, under the
U-duality transformation

X
I

ðζIEQI þ ~ζIEPIÞ ↦ g−1
X
I

ðζIEQI þ ~ζIEPIÞg;

g ∈ SLð2Þ×3U ; ð40Þ

this associated state transform as

ψ ijkl ↦ ðS1Þjj0 ðS2Þkk0 ðS3Þll0ψ ij0k0l0 ;

S1 ⊗ S2 ⊗ S3 ∈ SLð2Þ×3U ; ð41Þ

where, according to (A7), S1 ⊗ S2 ⊗ S3 is the SLð2Þ×3U
element associated to g−1. We see that the gauge condition
ψ1jkl ≡ 0 on the coset element does not change. Therefore,
this gives the required action of the U-duality group on the
potentials given in (12) and no compensator is needed.
We only need to worry about the gauge condition on the
scalars. Multiplying the scalar term from the right with g
spoils the gauge we chose and hence we need a local
compensator. Using the fact that each scalar parametrizes
the coset space SLð2Þ=SOð2Þ we expect the local com-
pensator to be from SOð2Þ×3 [23] and therefore to have
the form
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q ¼ e
P

3

i¼1
αiki ¼ e

P
3

i¼1
αiðEi−FiÞ: ð42Þ

Now it is easy to verify that if we let g to be the SLð2Þ×3U
element corresponding to�

d1 −b1
−c1 a1

�
⊗
�

d2 −b2
−c2 a2

�
⊗
�

d3 −b3
−c3 a3

�
;

ð43Þ

in the standard representation, then in order to restore
the Iwasawa gauge the αi of the compensator have to be
chosen as

tan αi ¼
ciyi

cixi þ ai
: ð44Þ

Then, we have

qe−
1
2

P
i
log yiHie−

P
i
xiEig ¼ e−

1
2

P
i
log y0iHie−

P
i
x0iEi ; ð45Þ

with the primed scalars being

x0i ¼
ðdi þ cixiÞðbi þ aixiÞ þ aiciðx2i þ y2i Þ

ðdi þ cixiÞ2 þ c2i y
2
i

;

y0i ¼
yi

ðdi þ cixiÞ2 þ c2i y
2
i
; ð46Þ

which just corresponds to the usual action of the U-duality
group on the scalars

τ0i ¼
aiτi þ bi
ciτi þ di

; ð47Þ

with τi ¼ xi þ iyi.

B. Action on asymptotic charges

Now recall that the asymptotic values of the fields are
conveniently encoded in a charge matrix Q [see (25)]
defined from the series expansion of M ¼ V#V around
asymptotic infinity. Now we need to be slightly more
general than in [2] and cover the moduli space by letting
Mðρ ¼ 0Þ ≠ I. To define this generalized Q first expand
M around asymptotic infinity

M ¼ Mð0Þ þMð1ÞρþOðρ2Þ: ð48Þ

Then note that M ¼ V#V is a proper element of SOð4; 4Þ
for every value of the coordinates. It follows that Mð0Þ and
ðMð0ÞÞ−1M are all good SOð4; 4Þ elements. Expanding
this latter yields

ðMð0ÞÞ−1M ¼ I þQρþOðρ2Þ; ð49Þ

where we have defined the “dressed” charge matrix [19]

Q ¼ ðMð0ÞÞ−1Mð1Þ: ð50Þ
As this is an expansion of an element of SOð4; 4Þ around
the identity, Q is an element of the Lie algebra soð4; 4Þ.
This is not true forMð1Þ alone. Now we slightly generalize
the expansion (24) of the fields around asymptotic infinity
by letting

yi ¼ Yið1 − ΣiρþOðρ2ÞÞ; xi ¼ Xi þ ΞiρþOðρ2Þ;
ð51Þ

with the rest being the same as in (24), but now with the
possibility of having arbitrary values for the scalar fields at
infinity. We give this general Q matrix in Sec. V B and for
now, go back to use Xi ¼ 0 and Yi ¼ 1 as in [2]. However,
we stress that Xi and Yi do transform under U-duality. One
should not worry about this too much as everything we do
in the following relies only on the fact that Q is an element
of soð4; 4Þ which is independent of this choice and hence
straightforwardly generalize to arbitrary Xi and Yi. Setting
Xi ¼ 0 and Yi ¼ 1 results in the simple form of Q

Q ¼ 2MH0 þ
X
i

ΣiHi þ 2Np0 −
X
i

Ξipi

−
X
I

ðQIpQI þ PIpPIÞ: ð52Þ

We see that in this case Q lives in the 16 dimensional
subspace (2,2,2,2) spanned by the first line of (14).
From the previous subsection we conclude that M

transforms under U-duality as M ↦ g#Mg, and hence
the charge matrix simply transforms with the adjoint action

Q ↦ g−1Qg; g ∈ SLð2Þ×3U : ð53Þ

Now from (52) we easily see that under the decomposition
(14) of soð4; 4Þ suitable for U-duality, Q has components
both in sl×42 U and ð2; 2; 2; 2ÞU. As the splitting ensures that
these components do not mix under the adjoint action of
sl×42 U we may consider these parts separately

Q ¼ Q− þQþ; ð54Þ
where

Q− ¼ 2MH0 þ
X
i

ΣiHi þ 2Np0 −
X
i

Ξipi ∈ sl×42 U;

Qþ ¼ −
X
I

ðQIpQI þ PIpPIÞ ∈ ð2; 2; 2; 2ÞU: ð55Þ

Let us first consider Q−. Clearly, M and N are invariant
under the adjoint action of SLð2Þ×3U as expected. The six
scalar charges Σi, Ξi parametrize an element sl×32 U and
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hence they transform in the adjoint representation of
SLð2Þ×3U . We define the matrices

Ri ¼
� Σi −Ξi

−Ξi −Σi

�
; ð56Þ

transforming under U-duality as

Ri ↦

�
ai bi
ci di

�
Ri

�
ai bi
ci di

�−1
; ð57Þ

with

�
ai bi
ci di

�
∈ SLð2Þ:

Note that the symmetricity of Ri is spoiled by this trans-
formation but this is simply a consequence of fixing the
asymptotic values of the scalars which, again, are not
invariant under U-duality (see Sec. V B for the general form
of R).
The element Qþ transforms as a four qubit state ψ ijkl

under the full SLð2Þ×4U and it decomposes into a pair of
three qubit states ðψ1Þjkl ≡ ψ0jkl and ðψ2Þjkl ≡ ψ1jkl when
just the U-duality group SLð2Þ×3U is used. The explicit
amplitudes can be read off using (A7) and are given as

0
BBB@

ψ0000 ψ0001 ψ0010 ψ0011

ψ0100 ψ0101 ψ0110 ψ0111

ψ1000 ψ1001 ψ1010 ψ1011

ψ1100 ψ1101 ψ1110 ψ1111

1
CCCA

¼

0
BBB@

−P4 −Q3 −Q2 P1

−Q1 P2 P3 Q4

−Q4 P3 P2 Q1

P1 Q2 Q3 −P4

1
CCCA: ð58Þ

Note that this pair is related through

jψ2i ¼
�
0 −1
1 0

�
⊗
�
0 −1
1 0

�
⊗
�
0 −1
1 0

�
jψ1i:

ð59Þ

For the corresponding pair of three qubit states dressed with
nontrivial scalar asymptotics, see again Sec. V B.
The index corresponding to the first qubit transforms as

a doublet under the extra Ehlers SLð2Þ. Note that the
scalar charges are singlets under the Ehlers symmetry: the
adjoint 28 of SOð4; 4Þ, whereQ lives in, decomposes under
the maximal subgroup SLð2Þ×4U ¼ SLð2ÞEhlers × ðSLð2Þ×3U Þ
as 28 ¼ ð3; 1Þ ⊕ ð1; 9Þ ⊕ ð2; 8Þ.

C. The algebra of covariants

We have seen that the asymptotic charges transform
under U-duality as a (not general) vector in 9 ⊕ 8 ⊕ 8,
where 9 refers to the adjoint representation, while 8 is the
fundamental corresponding to a three qubit state. If we
dress up the charge matrix with the asymptotic values of the
scalars, then Q actually fills out the representation
9 ⊕ 8 ⊕ 8. In order to be able to write up invariants we
first need to construct covariants with indices transforming
the same way. Luckily, there exists a construction, called
the moment map, which allows one to associate an element
transforming in 9 to a pair of vectors in 8. Unfortunately,
this construction will result in an unnecessarily large
covariant algebra. We can significantly reduce this by
incorporating “triality” symmetry of the STU model: the
symmetry under permutation of the three SLð2Þ factors.
This leads us to consider the embedding sl×32 U ⊂ sl6 and to
construct the moment map in the SLð6Þ covariant language
of three fermions with six single particle states [9,24,25].
Consider fermionic creation an annihilation operators pa

and na, a ¼ 1;…; 6 satisfying

fpa;nbg¼δab; fpa;pbg¼0; fna;nbg¼0: ð60Þ

An unnormalized three fermion state can be written as

jPi ¼ 1

3!
Pabcpapbpcj0i ∈ ∧3ðC6Þ; ð61Þ

with the antisymmetric tensor Pabc having 20 independent
components. The so-called SLOCC group of this system is
SLð6;CÞ acting locally on the amplitudes as

Pabc ↦ Saa
0
Sbb

0
Scc

0
Pa0b0c0 ; S ∈ SLð6;CÞ: ð62Þ

The moment map associates an slð6;CÞ element to jPi.
This element reads as

ðKPÞab ¼
1

2!3!
ϵac1c2c3c4c5Pbc1c2Pc3c4c5 : ð63Þ

It is clear that if we transform the state as in (62) this
covariant transforms as

KP ↦ ðSTÞ−1KPST; ð64Þ

hence the powers of its trace are continuous invariants. It
turns out that the action of SLð6;CÞ on 20 admits a single
independent continuous invariant, quartic in the ampli-
tudes, given by

DðPÞ ¼ 1

6
TrK2

P: ð65Þ

Note that this quantity is a measure of tripartite entangle-
ment for the fermions [9,26]. The situation is different if we
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have two states jPi and jQi at our disposal. In this case we
can define the following covariants

ðKPÞab ¼
1

2!3!
ϵac1c2c3c4c5Pbc1c2Pc3c4c5 ;

ðKQÞab ¼
1

2!3!
ϵac1c2c3c4c5Qbc1c2Qc3c4c5 ;

ðKPQÞab ¼
1

2!3!
ϵac1c2c3c4c5Pbc1c2Qc3c4c5 ;

ðKQPÞab ¼
1

2!3!
ϵac1c2c3c4c5Qbc1c2Pc3c4c5 : ð66Þ

Traces of products of these define invariants. In particular
there is now a nonzero invariant bilinear product

ðP;QÞ ¼ 1

3
TrKPQ

¼ −
1

3
TrKQP ¼ 1

3!3!
ϵc1c2c3c4c5c6Pc1c2c3Qc4c5c6 ;

ð67Þ

which also shows that the covariants KPQ and KQP are now
not elements of the Lie algebra sl6.
Now let us describe how to embed three qubit states

jψi ¼
X1
i;j;k¼0

ψ ijkjijki; ð68Þ

into our fermionic vector space. The standard thing to do is
the following:

jψi ↦ jPψi ¼
X1
i;j;k¼0

ψ ijkpiþ1pjþ3pkþ5j0i: ð69Þ

Then, it is easy to see that a three qubit SLOCC trans-
formation

ψ ijk ↦ ðS1Þii0 ðS2Þjj0 ðS3Þkk0ψ ij0k0 ;

S1 ⊗ S2 ⊗ S3 ∈ SLð2Þ×3U ; ð70Þ

can be implemented in the language of three fermions (62)
by choosing

S ¼

0
B@ S1

S2
S3

1
CA ∈ SLð6;CÞ: ð71Þ

Finally, we can associate covariants transforming in the
adjoint of SLð2Þ×3U to the pair of three qubit states given in
(58) using (66) and (69) as

ðK11Þab ¼
1

2!3!
ϵac1c2c3c4c5ðPψ1

Þbc1c2ðPψ1
Þc3c4c5 ;

ðK22Þab ¼
1

2!3!
ϵac1c2c3c4c5ðPψ2

Þbc1c2ðPψ2
Þc3c4c5 ;

ðK12Þab ¼
1

2!3!
ϵac1c2c3c4c5ðPψ1

Þbc1c2ðPψ2
Þc3c4c5 ;

ðK21Þab ¼
1

2!3!
ϵac1c2c3c4c5ðPψ2

Þbc1c2ðPψ1
Þc3c4c5 : ð72Þ

For an explicit form of these matrices see Appendix B.
Notice the crucial fact that these four matrices transform
exactly the same way under SLð2Þ×3U as the matrix

R ¼

0
B@RT

1

RT
2

RT
3

1
CA

¼

0
BBBBBBBBB@

Σ1 −Ξ1 0 0 0 0

−Ξ1 −Σ1 0 0 0 0

0 0 Σ2 −Ξ2 0 0

0 0 −Ξ2 −Σ2 0 0

0 0 0 0 Σ3 −Ξ3

0 0 0 0 −Ξ3 −Σ3

1
CCCCCCCCCA
; ð73Þ

formed by the scalar charges [see Eq. (56)].
The four matrices of (72) can be grouped into a 2 × 2

block matrix Kab transforming under the Ehlers SLð2Þ as
2 × 2 ¼ 1 ⊕ 3 in its ab indices. We note that the singlet
part satisfies the relation

K21 − K12 ¼
�X

I

ðQ2
I þ ðPIÞ2Þ

�
I; ð74Þ

and hence only three of the Kabs give independent
covariants.

V. THE F-INVARIANT

A. Construction of the invariant

Let us begin by listing the independent primitive invar-
iants of homogeneous degree less than or equal to four in the
asymptotic charges, that can be formed by our covariants.

(i) Degree 1 invariants:

M; N: ð75Þ

(ii) Degree 2 invariants:

TrðK12Þ; TrðR2Þ: ð76Þ

(iii) Degree 3 invariants:

TrðK12RÞ; TrðK11RÞ: ð77Þ
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(iv) Degree 4 invariants:

TrK2
11; TrK2

12; TrðK11K22Þ; TrðR4Þ: ð78Þ

To reduce the set of independent invariants we have used the
identities

TrðK11RÞ ¼ −TrðK22RÞ;
TrðK2

11Þ ¼ TrðK2
22Þ;

TrðK11R2Þ ¼ TrðK22R2Þ ¼ 0;

TrðK12K11Þ ¼ −TrðK12K22Þ;

TrðK12R2Þ ¼ 1

6
ðTrK12ÞðTrR2Þ;

3TrðK11K22Þ þ ðTrK12Þ2 − 3TrðK2
12Þ ¼ 0: ð79Þ

Note that we can write some well-known U-duality
invariants in this language. First of all, Cayley’s hyper-
determinant

Δ ¼ 1

16

�
4ðQ1Q2Q3Q4 þ P1P2P3P4Þ þ 2

X
J<K

QJQKPJPK

−
X
J

ðQJÞ2ðPJÞ2
�

ð80Þ

is just given as

Δ ¼ −
1

96
TrK2

11 ¼ −
1

96
TrK2

22: ð81Þ

The asymptotic value of the quadratic symplectic invariant
I2 is

I∞2 ¼ 1

4

X
I

ðQ2
I þ ðPIÞ2Þ ¼ −

1

12
TrK12: ð82Þ

The quadratic invariant

S∞2 ¼ 1

4
Gij̄∂rτ

i∂rτ̄
ījr→∞ ¼ 1

4

X
i

ðΞ2
i þ Σ2

i Þ; ð83Þ

can be expressed as

S∞2 ¼ 1

8
TrðR2Þ: ð84Þ

Now recall the formula for the F invariant in terms of the
charge-up parameters δI, γI and seed variables m and n:

F ¼ ðm2 þ n2Þðmν2 − nν1Þ2; ð85Þ

where ν1 and ν2 are the functions given in Eq. (28) and
they do not scale with the charges. We see that F is of

homogeneous degree 4 in the charges and we expect it to be
U-duality invariant. From the 10 invariants that we have
identified at the beginning of this section we can form 22
monomials of homogeneous degree four. We can form a
linear combination of these, equate it to F and try to solve
for the coefficients. The simplest way to do this is to
generate various random sets of parameters m, n, δI, and γI
and try to solve the resulting numerical, linear equations
simultaneously. If this works for a considerably higher
number of equations than the number of variables, which is
22, we can probably trust our coefficients. We did this
procedure for 600 equations and we have found a single
solution. The obtained numerical coefficients have been
rationalized and the result was tested analytically with a
computer algebra system. The result is

F ¼ M4 þM2N2 þM2

12
TrK12 −

M
24

TrðK12RÞ

þ N2

24
TrðR2Þ − N

24
TrðK11RÞ þ

1

192
ðTrðK2

11Þ

− TrðK11K22Þ −
1

2
ðTrR2Þ2 þ TrðR4Þ

�
: ð86Þ

In the asymptotically flat case one sets N ¼ 0 (or
n ¼ −m ν1

ν2
). In this case the F invariant reads as

F ¼ m4
ðν21 þ ν22Þ3

ν42

¼ M4 −M2I∞2 −
M
24

TrðK12RÞ −
1

2
Δ

−
1

192
TrðK11K22Þ −

1

6
ðS∞2 Þ2 þ

1

192
TrðR4Þ; ð87Þ

where we have reintroduced the familiar U-duality invar-
iants where it is possible. We stress that for general scalar
asymptotics one should use the R andKab matrices as given
in Sec. V B. It is useful to write the F invariant without
an explicit reference to the auxiliary 6 dimensional repre-
sentation that we have introduced. We may employ the
invariant bilinear product of (67) to write

TrK12 ¼ 3ðPψ1
; Pψ2

Þ;
TrðK12RÞ ¼ −ðPψ1

; R�Pψ2
Þ;

TrðK11K22Þ ¼ −ðPψ1
; ðK22Þ�Pψ1

Þ;
TrðK2

11Þ ¼ −ðPψ1
; ðK11Þ�Pψ1

Þ; ð88Þ

where we have defined the action of a Lie algebra element
t ∈ slð6Þ on P ∈ ∧3C as

ðt�PÞabc ¼ tdaPdbc þ tdbPadc þ tdcPabd: ð89Þ

Also, let us define the 8 × 8matrix R̂ corresponding to R in
the fundamental representation of the U-duality group:
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R̂ ¼ RT
1 ⊗ I ⊗ I þ I ⊗ RT

2 ⊗ I þ I ⊗ I ⊗ RT
3 ; ð90Þ

see (56) for the definition of Ris. Then we have

TrR4 −
1

2
ðTrR2Þ2 ¼ −

1

8

�
TrR̂4 −

1

8
ðTrR̂2Þ2

�
: ð91Þ

We may then rewrite the F invariant as

F ¼ M4 þM2N2 þM2

4
ðPψ1

; Pψ2
Þ þ M

24
ðPψ1

; R�Pψ2
Þ

þ N2

96
Trð ~R2Þ þ N

24
ðPψ1

; R�Pψ1
Þ

−
1

192
ðPψ1

; ðK11 − K22Þ�Pψ1
Þ

þ 1

1536

�
1

8
ðTrR̂2Þ2 − TrðR̂4Þ

�
; ð92Þ

which will be well suited for generalization to the E7

invariant case.
As a final remark, we note that a single centered STU

back hole parametrized by six moduli and eight dyonic
charges is expected to have five independent U-duality
invariants [6]. The reason that we have more than this in
(76)–(78) is that we treat the scalar charges as independent
variables. This allowed us to turn F into a polynomial
invariant.

B. General scalar asymptotics

Here we consider explicitly the computation of F for
general asymptotic values Xi and Yi of the moduli. We
expand the “dressed” charge matrix defined in (50) using
(51) as

Q ¼ qHΛ
HΛ þ qEΛ

EΛ þ qFΛ
FΛ þ qEQI EQI

þ q
EPI EPI þ qFQI FQI þ q

FPI FPI
; ð93Þ

The part in sl×42 U reads as

Q− ¼ 2MH0 þ 2Np0 þ
X3
i¼1


�
Σi −

ΞiXi

Y2
i

�
Hi

þ
�
−Ξi − 2ΣiXi þ

ΞiX2
i

Y2
i

�
Ei −

Ξi

Y2
i
Fi

�
; ð94Þ

and hence the Ri matrices of (56) obtain the following
dressing

Ri ¼

0
B@Σi −

ΞiXi
Y2
i

−Ξi − 2ΣiXi þ ΞiX2
i

Y2
i

− Ξi
Y2
i

−Σi þ ΞiXi
Y2
i

1
CA: ð95Þ

The four qubit state in ð2; 2; 2; 2ÞU is

Qþ ¼ qEQI EQI þ q
EPI EPI þ qFQI FQI þ q

FPI FPI
: ð96Þ

The amplitudes corresponding to the first three qubit state
[see (A7)] are unchanged

�
ψ0000 ψ0001 ψ0010 ψ0011

ψ0100 ψ0101 ψ0110 ψ0111

�

≡
�
q
EP4 qEQ3 qEQ2 −q

EP1

qEQ1 −q
EP2 −q

EP3 −qEQ4

�

¼
�
−P4 −Q3 −Q2 P1

−Q1 P2 P3 Q4

�
: ð97Þ

On the other hand, the second three qubit state

�
ψ1000 ψ1001 ψ1010 ψ1011

ψ1100 ψ1101 ψ1110 ψ1111

�

¼
�−qFQ4 q

FP3 q
FP2 qFQ1

q
FP1 qFQ2 qFQ3 −q

FP4

�
ð98Þ

has the following dressing

ψ1ijk ¼ Dð1Þ
ii0 D

ð2Þ
jj0 D

ð3Þ
kk0ψ0i0j0k0 ; ð99Þ

or equivalently,

jψ2i ¼ ðDð1Þ ⊗ Dð2Þ ⊗ Dð3ÞÞjψ1i; ð100Þ

with

DðiÞ ¼ 1

Yi

�
Xi −X2

i − Y2
i

1 −Xi

�
: ð101Þ

This is the generalization of the relation (59) and shows that
the pair of three qubit states are related by a moduli
dependent SLð2Þ3×U transformation. The formula (86) for F
is then valid for arbitrary scalar moduli provided that we
use the dressed Ri matrices of (95) and the Kab matrices
calculated from (97) and (99) through (72).
Now we can also relate the charge matrix of an arbitrary

solution through U-duality to an auxiliary charge matrix
with trivial scalar asymptotics. Consider the duality trans-
formation

J1⊗J2⊗J3∈SLð2Þ×3U ; Ji¼
1ffiffiffiffiffi
Yi

p
�
1 −Xi

0 Yi

�
; ð102Þ

and denote the corresponding SOð4; 4Þ element with J .
One may check with explicit computation that the asymp-
totic value of the coset element (48) satisfies

J #J ¼ Mð0Þ: ð103Þ
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As a consequence, for any general charge matrixQ we may
define a duality transformed one

~Q ¼ JQJ −1; ð104Þ

which corresponds to a black hole with trivial moduli. Now
we use the relations

DðiÞ ¼ J−1i

�
0 −1
1 0

�
Ji;

Ri ¼ J−1i

 
Σi − Ξi

Yi

− Ξi
Yi

−Σi

!
Ji ð105Þ

to relate the auxiliary charges of ~Q to the physical ones of
Q. Following IV we deduce that the dyonic charge vectors
j ~ψ1;2i of ~Q are expressed with the physical charges jψ1i as

j ~ψ1i ¼ ðJ1 ⊗ J2 ⊗ J3Þjψ1i;
j ~ψ2i ¼ ðJ1 ⊗ J2 ⊗ J3ÞðDð1Þ ⊗ Dð2Þ ⊗ Dð3ÞÞjψ1i

≡
�
0 −1
1 0

�
⊗
�
0 −1
1 0

�
⊗
�
0 −1
1 0

�
× ðJ1 ⊗ J2 ⊗ J3Þjψ1i: ð106Þ

We see that the vectors j ~ψ1;2i are indeed related as in (59)
which is valid only for the canonical moduli. For the scalar
charges one has

~Ri ¼ JiRiJ−1i ≡
� Σi − Ξi

Yi

− Ξi
Yi

−Σi

�
: ð107Þ

Since the F-invariant is blind to the transformation (104)
we obtained the result that for any asymptotics we may
calculate F by just using the formula for canonical moduli
with replacing the dyonic charges by ðJ1 ⊗ J1 ⊗ J3Þjψ1i
and scaling the scalar charges as Ξi ↦

Ξi
Yi
, i.e.,

FðXi; Yi; jψ1i;Σi;ΞiÞ

¼ F

�
Xi ¼ 0; Yi ¼ 1; ðJ1 ⊗ J2 ⊗ J3Þjψ1i;Σi;

Ξi

Yi

�
:

ð108Þ

VI. RELATIONS BETWEEN SCALAR CHARGES
AND PHYSICAL CHARGES

Our formula is entirely in terms of the asymptotic
charges of the black hole and is manifestly invariant under
U-duality and permutation of scalars. However, it does
contain explicitly the scalar charges Σi and Ξi which are not
independent of M, N, QI , and PI . A formula entirely in
terms of the physical charges would require solving for the

functions ΣiðM;N;Q; PÞ, ΞiðM;N;Q; PÞ. In this section,
we provide constraints that these functions must satisfy
and solve them for some special cases. We illustrate the
example of the four electric charge Cvetič-Youm black hole
that in general it is not possible to give the F-invariant in
terms of radicals of the physical charges.
We start by describing the constraint equations. Recall,

that the charge matrix Q of (50) transforms as a four qubit
state [see (A6)] under the action of the SLð2Þ4× spanned by
the second line of (14). The charge-up matrix h of Eq. (22)
is an element of this SLð2Þ4×. It is known [8,13] that this 16
dimensional representation admits four algebraically inde-
pendent continuous invariants. All of these can be checked
to be proportional to some power of the combination
(m2 þ n2) of the seed parameters. It follows that they
provide 3 independent polynomial equations among the 16
asymptotic charges in Q. Let us describe a convenient
and simple way of obtaining these equations. Consider the
characteristic polynomial of the charge matrix Q:

pðλÞ ¼ detðλI −QÞ: ð109Þ

It is clear that the characteristic polynomial is invariant
under the charge up operation and hence we have

pðλÞ ¼ p0ðλÞ; ð110Þ

where the characteristic polynomial for the seed solution is

p0ðλÞ ¼ detðλI −QKTNÞ
¼ λ4ðλ2 − 4m2 − 4n2Þ2
¼ λ4ðλ2 − TrQ2Þ2; ð111Þ

where we have used the invariance of TrQ2 to express
m2 þ n2 in terms of asymptotic charges. The two poly-
nomials agree iff all of their coefficients agree hence we
have the following 9 polynomial equations

dk

dλk
ðpðλÞ − p0ðλÞÞjλ¼0 ¼ 0; k ¼ 0;…; 8: ð112Þ

One can check that for k ¼ 1, 3, 5, 6, 7, 8 these are trivially
satisfied and hence we are left with 3 equations. These 3
equations have linearly independent gradients in the scalar
charges which indicates a three dimensional solution set.
However, this does not tell us anything about the set of
real solutions. One can easily check that as one approaches
the seed solution by taking QI → 0 and PI → 0, there is
only one real root satisfying the consistency requirement
Σi → 0. This shows that it is possible that the three
equations are enough to determine the scalar charges
uniquely. To say something more precise about this one
would need to determine at least the real dimension of the
semialgebraic set defined by these equations, but to our
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knowledge, there is no method to do this to date. Instead,
we provide solutions to (112) for some special charge
vectors, where the F-invariant is known explicitly, and
hence we can compare our results with the existing
literature.
Before doing so, we comment on what happens with

these constraints when one considers black holes with
nontrivial asymptotic moduli. In this case one can just
replace Q in (109) with the auxiliary charge vector ~Q, as
readily seen from (104). This shows that whatever expres-
sions Σi ¼ fiðM; jψ1iÞ, Ξi ¼ giðM; jψ1iÞ we find for
trivial moduli by solving (112), we can safely use them
for nontrivial moduli as Σi ¼ fiðM; ðJ1 ⊗ J2 ⊗ J3Þjψ1iÞ
and Ξi ¼ YigiðM; ðJ1 ⊗ J2 ⊗ J3Þjψ1iÞ. Combine this with
(108) to get the expected result

FðXi; Yi; jψ1iÞ ¼ FðXi ¼ 0; Yi ¼ 1; ðJ1 ⊗ J2 ⊗ J3Þjψ1iÞ;
ð113Þ

which is then guaranteed to be valid as long as we can use
(112) to solve for the scalar charges. This is the case for the
first two of the following examples.

A. Klauza-Klein black hole

The Klauza-Klein black hole [27] is obtained by setting
Q2 ¼ Q3 ¼ Q4 ¼ 0 and P2 ¼ P3 ¼ P4 ¼ 0 and N ¼ 0.
From the parametrization (30)–(33) we can deduce that
Ξi ¼ 0 and Σ2 ¼ Σ3 ¼ −Σ1 in this case. We can put this
into (112) as an ansatz and observe that it automatically
solves two equations. The third equation reads as

Σ1ð8M2 þ ðP1Þ2 þQ2
1 − 2Σ2

1Þ ¼ 2MððP1Þ2 −Q2
1Þ:

ð114Þ

As expected, there is only one root that vanishes for zero
charges. For this root we have found numerical agreement
between our formula

F ¼
�
M2 −

1

4
ðP1Þ2

��
M2 −

1

4
Q2

1

�

þ 1

8
MΣ1ððP1Þ2 −Q2

1Þ −
1

16
Σ4
1; ð115Þ

for the F-invariant and the complicated expression pre-
sented in [2] for the Klauza-Klein black hole. We may
further specialize by setting P1 ¼ 0. In this case the above
equation factorizes as

ð2M þ Σ1ÞðQ2
1 þ 4MΣ1 − 2Σ2

1Þ ¼ 0: ð116Þ

The physical root is Σ1 ¼ M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 1

2
Q2

1

q
. Upon sub-

stituting this into the formula for the F-invariant we get

F ¼ 1

64

�
32M4 − 40M2Q2

1 −Q4
1 þ 4Mð4M2 þ 2Q2

1Þ
3
2

�
;

ð117Þ

in complete agreement with [2].

B. −iX0X1 supergravity black hole

Now let us consider the axion-dilaton black hole of [28].
We set the electric and magnetic charges pairwise equal
Q1 ¼ Q4,Q2 ¼ Q3, P1 ¼ P4 and P2 ¼ P3. We also set the
NUT charge to zero. From (30)–(33) we observe that in this
case we have Σ2 ¼ Σ3 ¼ Ξ2 ¼ Ξ3 ¼ 0. Using this as an
ansatz in (112) we are left with a single equation

2ðP1Þ2ð2MΣ1 þ ðP2Þ2 −Q2
1 −Q2

2Þ þ 2Q2ð4MΞ1ðP2Þ þ 2MQ2Σ1 þQ2
1Q2Þ

¼ 4M2Ξ2
1 þ 4M2Σ2

1 þ ðP1Þð8MΞ1Q1 − 8ðP2ÞQ1Q2Þ þ 2ðP2Þ2ð2MΣ1 þQ2
1 þQ2

2Þ þ 4MQ2
1Σ1

þ ðP1Þ4 þ ðP2Þ4 þQ4
1 þQ4

2; ð118Þ

which admits a single real solution

Σ1 ¼
ðP1Þ2 − ðP2Þ2 −Q2

1 þQ2
2

2M
;

Ξ1 ¼
P2Q2 − P1Q1

M
: ð119Þ

This agrees with the axion-dilaton charge obtained in [28]

ϒ ¼ iðΞ1 − iΣ1Þ

¼ −
ðQ1 þ iP1Þ2 þ ð−P2 þ iQ2Þ2

2M
: ð120Þ

Upon inserting this into our formula (86) for the F-invariant
we obtain

F ¼ 1

16
ð4M2 − ðP1 − P2Þ2 − ðQ1 −Q2Þ2Þ

× ð4M2 − ðP1 þ P2Þ2 − ðQ1 þQ2Þ2Þ; ð121Þ

in complete agreement with [2,28]. We note here
that when the single modulus of this model is
turned on we have to replace the charges according
to (113). Explicitly, this leads to the following
replacement rule
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�
P1

Q1

�
↦

1ffiffiffiffiffi
Y1

p
�
1 −X1

0 Y1

��
P1

Q1

�
;�

Q2

−P2

�
↦

1ffiffiffiffiffi
Y1

p
�
1 −X1

0 Y1

��
Q2

−P2

�
; ð122Þ

which, again, agrees with [28].

C. Dilute gas limit

We can recover the dilute gas limit of [16] as well. In this
limit, we have the following constraint among the magnetic
charges

P1 þ P2 þ P3 þ P4 ¼ 0: ð123Þ
Provided that this is true, all three equations of (112) can be
solved exactly by setting

Σ1 ¼ −2M þQ2 þQ3; Σ2 ¼ 2M −Q2 −Q4;

Σ3 ¼ 2M −Q3 −Q4; Ξ1 ¼ P2 þ P3;

Ξ2 ¼ −P2 − P4; Ξ3 ¼ −P3 − P4: ð124Þ
These roots cannot be physical for all values of the charges as
for vanishing charges we must have Σi ¼ 0. However,
in the dilute gas limit, the charges are large and hence
this requirement is outside of the region of validity.
Define the excitation energy as δM ¼ M −MBPS ¼
M − 1

4
ðQ1 þQ2 þQ3 þQ4Þ. We obtain the dilute gas limit

of F by substituting (124) into (86) and scaling Qi → μ2Qi,
i ¼ 2, 3, 4 and PI → μPI, while keeping δM fixed. Upon
μ → ∞ the leading order μ8 inF vanishes. The next to leading
order contribution is the coefficient of μ6 which is

F0 ¼
1

2
δMQ2Q3Q4; ð125Þ

which agrees with the result of [16].

D. Four charge Cvetič-Youm black hole

Here we set all the magnetic charges and the NUT charge
to zero but allow for arbitrary electric charges [29]. We
have all Ξi ¼ 0 but we still need to solve for all the Σi.
Instead of trying to solve the constraint equations we can
simply use that as all γI ¼ 0, the equations for the δI
derivatives (30)–(33) give the full Jacobian for the change
of variables from boost parameters to asymptotic charges.
The best thing to do is to write differential equations for the
functions QIð2M;ΣiÞ because these are remarkably easily
solved. The solution is such thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Q2
I þ CI

q
¼ ∂QI

∂δI ; ð126Þ

where the right-hand side is understood to be given
through (31). The CI are constants of integration.
Comparing with the actual parametrization reveals that

CI ¼ 4m, I ¼ 1;…; 4. The solution for the scalar charges
is then easily obtained to be

Σ1 ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þQ2

1

q
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þQ2

2

q
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þQ2

3

q
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þQ2

4

q
;

Σ2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þQ2

1

q
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þQ2

2

q
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þQ2

3

q
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þQ2

4

q
;

Σ3 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þQ2

1

q
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þQ2

2

q
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þQ2

3

q
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þQ2

4

q
: ð127Þ

Plugging these expressions into the formula (86) for the
F-invariant we recover the expression given in [2]. This
expression still depends on the seed parameter m. A novel
result here is that m is determined in terms of the physical
charges through the equation

M ¼ 1

4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þQ2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þQ2

2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þQ2

3

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þQ2

4

q �
: ð128Þ

We happily acknowledge that the right-hand side is greater
than 1

4
ðQ1 þQ2 þQ3 þQ4Þ, and hence the requirement of

solvability is M ≥ MBPS. Note that this example illustrates
that it is in general not possible to express the F-invariant in
terms of radicals of the physical charges. Indeed, one may
rewrite (128) as a system of five polynomial equations as
M ¼ 1

4

P
4
I¼1 xI and x

2
I ¼ m2 þQ2

I for the five variables m
2

and xI. Then one may use some algorithm to cast this system
into regular chains. The first element of the chain can be
chosen to depend only onm2 and then to acquirem we need
to consider only this equation and forget about the others.1

We do not present this equation here due to its length but it is
a general, fifth order polynomial equation for m2. Then, due
to the Abel-Ruffini theorem, one cannot have an expression
for m in terms of radicals of the coefficients.

VII. GENERALIZATION FOR
N = 8 SUPERGRAVITY

We have seen that in the STU case the charge matrix is
an element of soð4; 4Þ and the U-duality group SLð2Þ×3U ⊂
SOð4; 4Þ acts on it through the adjoint representation
of SOð4; 4Þ. This representation decomposes as 28 ¼
1 ⊕ 1 ⊕ 1 ⊕ 9 ⊕ 8 ⊕ 8. There is a general way of con-
structing invariants on 9 ⊕ 8 ⊕ 8 which allowed us to
identify the F-invariant. In the N ¼ 8 case the 3d coset

1Note that not all of the roots of this equation are solutions
to (128).
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model is E8ð8Þ=SO�ð16Þ and the U-duality group is E7ð7Þ.
We expect that in this case the asymptotic charges of the
black hole parametrize a Lie-algebra element Q ∈ e8 and
the U-duality group E7ð7Þ ⊂ E8ð8Þ just acts by the adjoint
action of E8ð8Þ. This representation decomposes as 248 ¼
1 ⊕ 1 ⊕ 1 ⊕ 133 ⊕ 56 ⊕ 56 and hence the relevant rep-
resentation space is 133 ⊕ 56 ⊕ 56with 56 replacing three
qubit states containing dyonic charges and 133 replacing 9
containing the 70 scalar charges.2 The moment map from
pairs of 56 to 133 can be formulated. The construction goes
as follows. There is an E7ð7Þ invariant antisymmetric
bilinear form on 56, let us denote this by h:; :i. We may
define an e7 element TΨ1Ψ2

associated to the pair Ψ1, Ψ2 ∈
56 by demanding

κðT; TΨ1Ψ2
Þ ¼ hΨ1; TΨ2i; ∀ T ∈ e7: ð129Þ

Here, κ is the Killing form on e7. Using 56 ≅ ∧2C8 ⊕
∧2ðC8Þ� we may parametrize Ψa, a ¼ 1, 2 with a pair of
antisymmetric 8 × 8 matrixes:

Ψa¼ððxðaÞÞij;yðaÞij Þ; ðxðaÞÞij¼−ðxðaÞÞji; yðaÞij ¼−yðaÞji

ð130Þ

and using e7 ≅ sl8 ⊕ ∧4C8 we can parametrize the gen-
erators as

T ¼ ðΛi
j;ΣijklÞ; Λi

i ¼ 0; ð131Þ
and Σijkl totaly antisymmetric. We refer to the appendix of
[20] for the commutation relations, the action of e7 on 56
and the Killing form in terms of this parametrization. The
invariant bilinear product reads as

hΨ1;Ψ2i ¼ ðxð1ÞÞijyð2Þij − ðxð2ÞÞijyð1Þij : ð132Þ

Then, using the definition (129), a short exercise reveals the
explicit form of the moment map to be

TΨaΨb
¼ ððΛðabÞÞij; ðΣðabÞÞijklÞ;

ðΛðabÞÞij ¼ −
1

6
ððxðaÞÞinyðbÞjn þ ðxðbÞÞinyðaÞjn Þ

þ 1

48
ððxðaÞÞnmyðbÞnm þ ðxðbÞÞnmyðaÞnmÞδij;

ðΣðabÞÞijkl ¼
1

48
ðϵijklmnopðxðaÞÞmnðxðbÞÞop − yðaÞ½ij y

ðbÞ
kl� Þ:

ð133Þ

Note that in this formalism we have the Cartan-Cremmer-
Julia invariant expressed as

I4 ≡ 1

2
hΨ; TΨΨΨi

¼ xijxklyikyjl −
1

4
ðxijyijÞ2 þ

1

96
ðϵijklmnopxijxklxmnxop

þ ϵijklmnopyijyklymnyopÞ: ð134Þ

The conventions of [2] are such that I4 ¼ 4⋄ and ⋄ is the
one that reduces to Δ of (80) for the STU duality frame.
The dyonic charges parametrize Ψ1, Ψ2 ∈ 56 generaliz-
ing ψ1, ψ2. The STU charges (58) sit inside this Ψ1 and
Ψ2 as0
BBBBB@

yð2Þ12 ðxð2ÞÞ34 ðxð2ÞÞ56 yð2Þ78

ðxð2ÞÞ78 yð2Þ56 yð2Þ34 ðxð2ÞÞ12

yð1Þ12 ðxð1ÞÞ34 ðxð1ÞÞ56 yð1Þ78

ðxð1ÞÞ78 yð1Þ56 yð1Þ34 ðxð1ÞÞ12

1
CCCCCA

¼ 1ffiffiffi
2

p

0
BB@

ψ0000 ψ0001 ψ0010 ψ0011

ψ0100 ψ0101 ψ0110 ψ0111

ψ1000 ψ1001 ψ1010 ψ1011

ψ1100 ψ1101 ψ1110 ψ1111

1
CCA

¼ 1ffiffiffi
2

p

0
BBB@

−P4 −Q3 −Q2 P1

−Q1 P2 P3 Q4

−Q4 P3 P2 Q1

P1 Q2 Q3 −P4

1
CCCA; ð135Þ

with all the remaining ðxðaÞÞij and yðaÞij vanishing. See
[30,31] for details. One immediately verifies that the
relation to the fermionic inner product of Eq. (67) is
simply

hΨ1;Ψ2i ¼ ðPψ1
; Pψ2

Þ; ð136Þ

and that ⋄ reduces to Δ. As the next step, we may
parametrize an element R ∈ e7 with 70 scalar charges.
Denote the corresponding 56 × 56 matrix in the adjoint
representation with R. In the STU duality frame R
should reduce to R̂ of (90) on the eight dimensional
subspace of 56, where the pair of (135) lives, and zero
everywhere else. Then, the F invariant (92) can be
written in a manifestly E7 invariant way as:

F ¼ M4 þM2N2 þM2

4
hΨ1;Ψ2i þ

M
24

hΨ1;RΨ2i

þ N
24

hΨ1;RΨ1i þ
N2

96
TrðR2Þ

−
1

192
hΨ1; ðTΨ1Ψ2

− TΨ2Ψ2
ÞΨ1i

þ 1

1536

�
1

8
ðTrR2Þ2 − TrðR4Þ

�
: ð137Þ2Recall that in the STU case 9 contained 6 scalar charges, this

is just an artifact of fixing the scalar asymptotics.
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VIII. CONCLUSIONS

In this work we managed to express the F-invariant of
Chow and Compère, and hence the Bekenstein-Hawking
entropy of general asymptoticaly flat (or Taub-NUT),
nonextremal black holes admitted by the STU model in
terms of 16 asymptotic charges. These are not all inde-
pendent: six scalar charges are functions of the mass, NUT
charge, and eight dyonic charges. However, the expression
for F with the scalar charges being explicit makes the
U-duality invariance manifest and allowed us to conjecture
the generalization (137) of the F-invariant to the E7ð7Þ
invariant case. We have argued that a formula in terms of
only the physical charges requires one to find the real
solutions of a system of polynomial equations. We have
solved these equations for some known special cases and
recovered the expected expressions.
An important question left open is whether Eqs. (112),

together with the condition of reality, are enough to
determine the scalar charges uniquely or one needs some
additional constraints. Also, it would be very interesting
to see a microscopic origin of this entropy formula.
There are several results along these lines including
near-extremal black holes [32–35], neutral, nonextremal
ones [36] and the recently constructed dilute gas limit of
the general nonextreme STU black holes [16]. Another
interesting problem would be to find the uplift of the
formula for 5 dimensional finite temperature black
holes and black rings written as a qubic invariant of
E6ð6Þ [37]. A way of finding this formula would probably
be to recast our expression for the F-invariant in the
language of Freudenthal triple systems [38] and write it
in terms of elements of the corresponding cubic Jordan
algebra [39].
Finally, as adding a possible new twist to the black

hole/qubit correspondence, we note that the difference of
the inner and outer horizon radius is [2]

rþ − r− ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2 − a2

p
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrQ2

�
1 −

J2

F

�s
; ð138Þ

which measures extremality, and is U-duality invariant as
expected. It is known that the quantity TrQ2 can be
reinterpreted though (52) and (A15) as the quadratic four
qubit entanglement measure [13]. Then, so called nilpotent
states with TrQ2 ¼ 0 always correspond to extremal black
holes and they can be classified in the language of four
qubit entanglement [14]. However, we see that there are
extremal black holes corresponding to semisimple charge
vectors: these are the extremal, fast rotating black holes [2]
with F ¼ J2. It would be interesting to see if these black
holes relate to the entanglement properties of semisimple
four qubit states.
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APPENDIX A: DIFFERENT WAYS OF
SPLITTING soð4;4Þ AS sl×42 ⊕ ð2;2;2;2Þ

We define the group SOð4; 4Þ as the set of 8 × 8matrices
O keeping the bilinear form

G ¼
�
0 I

I 0

�
; ðA1Þ

i.e., OGOT ¼ G. Here, I is the 4 × 4 identity matrix. The
Lie algebra soð4; 4Þ is spanned by matrices T satisfying
TGþ GTT ¼ 0. We use the same parametrization of these
matrices as in [2]. We denote by Eij the 8 × 8matrix with 1
in the ði; jÞ component and zeros everywhere else. The
Cartan generators are given by

H0 ¼ E33 þ E44 − E77 − E88;

H1 ¼ E33 − E44 − E77 þ E88;

H2 ¼ E11 þ E22 − E55 − E66;

H3 ¼ E11 − E22 − E55 þ E66; ðA2Þ

while the roots are parametrized as

E0 ¼ E47 − E38; E1 ¼ E87 − E34;

E2 ¼ E25 − E16; E3 ¼ E65 − E12;

EQ1 ¼ E45 − E18; EQ2 ¼ E32 − E67;

EQ3 ¼ E36 − E27; EQ4 ¼ E41 − E58;

EP1 ¼ E57 − E31; EP2 ¼ E46 − E28;

EP3 ¼ E42 − E68; EP4 ¼ E17 − E35;

F0 ¼ E74 − E83; F1 ¼ E78 − E43;

F2 ¼ E52 − E61; F3 ¼ E56 − E21;

FQ1 ¼ E54 − E81; FQ2 ¼ E23 − E76;

FQ3 ¼ E63 − E72; FQ4 ¼ E14 − E85;

FP1 ¼ E75 − E13; FP2 ¼ E64 − E82;

FP3 ¼ E24 − E86; FP4 ¼ E71 − E53: ðA3Þ
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1. U-duality split

It is easy to see that the generatorsHΛ, EΛ, FΛ, Λ ¼ 0, 1,
2, 3 form four commuting sl2 algebras:

½HΛ; EΛ� ¼ 2EΛ; ½HΛ; FΛ� ¼ −2FΛ; ½EΛ; FΛ� ¼ HΛ:

ðA4Þ

The remaining 16 generators EPI
, EQI , FPI

, FQI form the
fundamental ð2; 2; 2; 2ÞU representation of this ðsl×42 ÞU
algebra under the adjoint action.
Avector of this representation can nicely be described by

the 16 amplitudes ψ ijkl of a four qubit state

jψi ¼
X1

i;j;k;l¼0

ψ ijkljijkli; ðA5Þ

transforming as

ψ ijkl ↦ ðS0Þii0 ðS1Þjj0 ðS2Þkk0 ðS3Þll0ψ i0j0k0l0 ;

S0 ⊗ S1 ⊗ S2 ⊗ S3 ∈ SLð2Þ×4; ðA6Þ

under the action of the group SLð2Þ×4 generated by the
algebra (A4). In terms of the Lie algebra generators one
writes this vector as

Ψ ¼ ψ0000EP4 þ ψ0001EQ3 þ ψ0010EQ2 − ψ0011EP1

þ ψ0100EQ1 − ψ0101EP2 − ψ0110EP3 − ψ0111EQ4

− ψ1000FQ1 þ ψ1001FP3 þ ψ1010FP2 þ ψ1011FQ1

þ ψ1100FP1 þ ψ1101FQ2 þ ψ1110FQ3 − ψ1111FP4 ;

ðA7Þ

transforming as (A6) under Ψ ↦ gΨg−1.

2. Sigma model split

We can realize the split sl×42 ⊕ ð2; 2; 2; 2Þ in a different
way suited to writing the timelike reduced STU action (7)
as a sigma model on SOð4; 4Þ=SLð2Þ×4. We may introduce
the symmetric bilinear form

η ¼ diagð−1;−1; 1; 1;−1;−1; 1; 1Þ; ðA8Þ

and look for the subgroup SOð2; 2Þ × SOð2; 2Þ ≅ SLð2Þ×4
keeping this fixed. This subgroup is generated by the −1
eigenspace of the involution

T# ¼ ηTTη: ðA9Þ

This eigenspace is spanned by the 12 generators

kΛ¼EΛ−FΛ; kQI ¼EQI þFQI ; kP
I ¼EPI þFPI

;

ðA10Þ

while the þ1 eigenspace is spanned by

HΛ; pΛ ¼ EΛ þ FΛ;

pQI ¼ EQI − FQI ; pPI ¼ EPI − FPI
: ðA11Þ

To see that this indeed realizes a sl×42 ⊕ ð2; 2; 2; 2Þ split
define [40,41]

~H1 ¼ 1=2ð−kQ4 − kQ1 − kQ2 − kQ3Þ;
~H2 ¼ 1=2ðkQ4 þ kQ1 − kQ2 − kQ3Þ;
~H3 ¼ 1=2ðkQ4 − kQ1 þ kQ2 − kQ3Þ;
~H4 ¼ 1=2ðkQ4 − kQ1 − kQ2 þ kQ3Þ;
~E1 ¼ 1=4ð−k0 þ k1 þ k2 þ k3 þ kP

1 þ kP
2 þ kP

3 þ kP
4Þ;

~E2 ¼ 1=4ðk0 − k1 þ k2 þ k3 þ kP
1 − kP

2 − kP
3 þ kP

4Þ;
~E3 ¼ 1=4ðk0 þ k1 − k2 þ k3 − kP

1 þ kP
2 − kP

3 þ kP
4Þ;

~E4 ¼ 1=4ðk0 þ k1 þ k2 − k3 − kP
1 − kP

2 þ kP
3 þ kP

4Þ;
~F1 ¼ 1=4ðk0 − k1 − k2 − k3 þ kP

1 þ kP
2 þ kP

3 þ kP
4Þ;

~F2 ¼ 1=4ð−k0 þ k1 − k2 − k3 þ kP
1 − kP

2 − kP
3 þ kP

4Þ;
~F3 ¼ 1=4ð−k0 − k1 þ k2 − k3 − kP

1 þ kP
2 − kP

3 þ kP
4Þ;

~F4 ¼ 1=4ð−k0 − k1 − k2 þ k3 − kP
1 − kP

2 þ kP
3 þ kP

4Þ:
ðA12Þ

One easily verifies that

½ ~HJ; ~EJ� ¼ 2 ~EJ; ½ ~HJ; ~FJ� ¼ −2 ~FJ; ½ ~EJ; ~FJ� ¼ ~HJ;

ðA13Þ

with J ¼ 1;…; 4 and all other commutators vanishing. We
can write an element of the þ1 eigenspace of # in terms of
four qubit amplitudes ψ ijkl transforming as in (A6) under
this new SLð2Þ×4. It reads explicitly as

~Ψ ¼ ~ΨHΛ
HΛ þ ~ΨpΛ

pΛ þ ~ΨQI
pQI þ ~ΨPIpPI

; ðA14Þ

where
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~ΨH0
¼ ψ0001 þ ψ0010 þ ψ0100 − ψ0111 − ψ1000 þ ψ1011 þ ψ1101 þ ψ1110;

~ΨH1
¼ ψ0001 þ ψ0010 − ψ0100 þ ψ0111 þ ψ1000 − ψ1011 þ ψ1101 þ ψ1110;

~ΨH2
¼ ψ0001 − ψ0010 þ ψ0100 þ ψ0111 þ ψ1000 þ ψ1011 − ψ1101 þ ψ1110;

~ΨH3
¼ −ψ0001 þ ψ0010 þ ψ0100 þ ψ0111 þ ψ1000 þ ψ1011 þ ψ1101 − ψ1110;

~Ψp0
¼ −ψ0000 þ ψ0011 þ ψ0101 þ ψ0110 − ψ1001 − ψ1010 − ψ1100 þ ψ1111;

~Ψp1
¼ −ψ0000 þ ψ0011 − ψ0101 − ψ0110 þ ψ1001 þ ψ1010 − ψ1100 þ ψ1111;

~Ψp2
¼ −ψ0000 − ψ0011 þ ψ0101 − ψ0110 þ ψ1001 − ψ1010 þ ψ1100 þ ψ1111;

~Ψp3
¼ −ψ0000 − ψ0011 − ψ0101 þ ψ0110 − ψ1001 þ ψ1010 þ ψ1100 þ ψ1111;

~ΨQ1
¼ 2ðψ0100 − ψ1011Þ;

~ΨQ2
¼ 2ðψ0010 − ψ1101Þ;

~ΨQ3
¼ 2ðψ0001 − ψ1110Þ;

~ΨQ4
¼ 2ðψ1000 − ψ0111Þ;

~ΨP1 ¼ ψ0000 þ ψ0011 − ψ0101 − ψ0110 − ψ1001 − ψ1010 þ ψ1100 þ ψ1111;

~ΨP2 ¼ ψ0000 − ψ0011 þ ψ0101 − ψ0110 − ψ1001 þ ψ1010 − ψ1100 þ ψ1111;

~ΨP3 ¼ ψ0000 − ψ0011 − ψ0101 þ ψ0110 þ ψ1001 − ψ1010 − ψ1100 þ ψ1111;

~ΨP4 ¼ −ψ0000 − ψ0011 − ψ0101 − ψ0110 − ψ1001 − ψ1010 − ψ1100 − ψ1111: ðA15Þ

Note that the SLð2Þ×4 invariant Tr ~Ψ2 is a quadratic measure
of four qubit entanglement [8].

3. The third split

The previous two splits are related by triality of soð4; 4Þ
and hence there must be one more inequivalent splitting of
the algebra. Indeed this split is given by the�1 eigenspaces
of the involution

T ↦ η2TTη2; ðA16Þ

where

η2 ¼
�
ϵ ⊗ ϵ 0

0 ϵ ⊗ ϵ

�
; ðA17Þ

where

ϵ ¼
�

0 1

−1 0

�
:

The −1 eigenspace is 12 dimensional and spans sl×42
algebra. The þ1 eigenspace forms the representation
(2,2,2,2) under this. We do not need this split in the
following hence we omit the explicit form of the generators.

APPENDIX B: EXPLICIT COVARIANTS FOR
STU BLACK HOLES

Here we list the explicit forms of the covariants needed to
calculate the F-invariant when the scalar asymptotics are
set such that Xi ¼ 0 and Yi ¼ 1.

R ¼

0
BBBBBBBBB@

Σ1 −Ξ1 0 0 0 0

−Ξ1 −Σ1 0 0 0 0

0 0 Σ2 −Ξ2 0 0

0 0 −Ξ2 −Σ2 0 0

0 0 0 0 Σ3 −Ξ3

0 0 0 0 −Ξ3 −Σ3

1
CCCCCCCCCA
; ðB1Þ

K12 ¼

0
BB@

Kð1Þ
12 0 0

0 Kð2Þ
12 0

0 0 Kð3Þ
12

1
CCA; ðB2Þ

where
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Kð1Þ
12 ¼

� −Q2
2 −Q2

3 − ðP1Þ2 − ðP4Þ2 −Q4P1 þQ3P2 þQ2P3 −Q1P4

−Q4P1 þQ3P2 þQ2P3 −Q1P4 −Q2
1 −Q2

4 − ðP2Þ2 − ðP3Þ2
�
;

Kð2Þ
12 ¼

� −Q2
1 −Q2

3 − ðP2Þ2 − ðP4Þ2 Q3P1 −Q4P2 þQ1P3 −Q2P4

Q3P1 −Q4P2 þQ1P3 −Q2P4 −Q2
2 −Q2

4 − ðP1Þ2 − ðP3Þ2
�
;

Kð3Þ
12 ¼

� −Q2
1 −Q2

2 − ðP3Þ2 − ðP4Þ2 Q2P1 þQ1P2 −Q4P3 −Q3P4

Q2P1 þQ1P2 −Q4P3 −Q3P4 −Q2
3 −Q2

4 − ðP1Þ2 − ðP2Þ2
�

ðB3Þ

K11 ¼

0
BB@

Kð1Þ
11 0 0

0 Kð2Þ
11 0

0 0 Kð3Þ
11

1
CCA; ðB4Þ

where

Kð1Þ
11 ¼

�
Q1P1 −Q2P2 −Q3P3 þQ4P4 2ðQ1Q4 þ P2P3Þ

−2ðQ2Q3 þ P1P4Þ −Q1P1 þQ2P2 þQ3P3 −Q4P4

�
;

Kð2Þ
11 ¼

�
−Q1P1 þQ2P2 −Q3P3 þQ4P4 2ðQ2Q4 þ P1P3Þ

−2ðQ1Q3 þ P2P4Þ Q1P1 −Q2P2 þQ3P3 −Q4P4

�
;

Kð3Þ
11 ¼

�
−Q1P1 −Q2P2 þQ3P3 þQ4P4 2ðQ3Q4 þ P1P2Þ

−2ðQ1Q2 þ P3P4Þ Q1P1 þQ2P2 −Q3P3 −Q4P4

�
; ðB5Þ

finally

K22 ¼

0
BB@

Kð1Þ
22 0 0

0 Kð2Þ
22 0

0 0 Kð3Þ
22

1
CCA; ðB6Þ

where

Kð1Þ
22 ¼

�
−Q1P1 þQ2P2 þQ3P3 −Q4P4 2ðQ2Q3 þ P1P4Þ

−2ðQ1Q4 þ P2P3Þ Q1P1 −Q2P2 −Q3P3 þQ4P4

�
;

Kð2Þ
22 ¼

�
Q1P1 −Q2P2 þQ3P3 −Q4P4 2ðQ1Q3 þ P2P4Þ

−2ðQ2Q4 þ P1P3Þ −Q1P1 þQ2P2 −Q3P3 þQ4P4

�
;

Kð3Þ
22 ¼

�
Q1P1 þQ2P2 −Q3P3 −Q4P4 2ðQ1Q2 þ P3P4Þ

−2ðQ3Q4 þ P1P2Þ −Q1P1 −Q2P2 þQ3P3 þQ4P4

�
: ðB7Þ
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