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Entropy of nonextremal STU black holes: The F-invariant unveiled
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We find a manifestly U-duality invariant formula for the Bekenstein-Hawking entropy of the most
general 4 dimensional, stationary, asymptotically flat, nonextremal STU black holes constructed recently
by Chow and Compere. The expression is entirely in terms of asymptotic charges. It involves the “scalar
charges” of the black hole which still need to be solved in terms of the dyonic charges and the mass. We
discuss how the formula reduces to some of the known results as the Klauza-Klein black hole and the dilute
gas limit of Cveti¢ and Larsen. We give the expected generalization to an E;(;) invariant in the case of

maximal A" = 8 supergravity.
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I. INTRODUCTION

Recently, Chow and Compere [1,2] have constructed
the most general asymptotically flat, rotating, nonextremal
dyonic black hole solutions admitted by ungauged N = 2
supergravity coupled to three vector multiplets in four
dimensions, or the so-called STU model. The Bekenstein-
Hawking entropy of these black holes can be written in the
form

S =2a(VATF + V=P +F), (1)

where J is the angular momentum, A is Cayley’s hyper-
determinant formed from the dyonic charges of the black
hole and F is a so far unidentified U-duality invariant given
in terms of auxiliary parameters.

The main result of this paper is the formula

2
F:M4+£TrK —%Tr(K R)
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+é (TF(K%l) - Tr(Kllez) _%(TrRZ)z + Tr(R4)>,
(2)

where M is the mass of the black hole while R, K|, K,,, and
K, are certain 6 x 6 matrices depending on six scalar
charges, eight dyonic charges, and on the asymptotic values
of the scalar fields as well. As we will explain, these matrices
transform in the adjoint of the U-duality group SL(2)}* and
therefore the expression for F is manifestly U-duality
invariant. We also give the F invariant in the case of nonzero
NUT charge in Eq. (86). It is important to note that while the
scalar charges are functions of the mass and the dyonic
charges, the asymptotic values are independent parameters
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and therefore the general black hole entropy depends on the
scalar hair. This confirms that there is no attractor mecha-
nism for general nonextremal STU black holes [3,4]. This
observation can also be reinforced by the following argu-
ment. The dyonic charges, transforming under the U-duality
group, form a prehomogeneous vector space [5]. This means
that there is only one algebraically independent continuous
invariant, in this case Cayley’s hyperdeterminant. Since the
mass and the angular momentum are U-duality invariants [6]
the only way that the F-invariant can be nontrivial is that it
depends on the scalar hair.

The construction of the building blocks for the F-
invariant is most conveniently done using the toolbox of
classifying certain entangled systems under stochastic
local operations and classical communication (SLOCC)
as three qubits [7], four qubits [8] and three fermions with
six single particle states [9]. The idea of formulating black
hole physics in supergravity in the language on quantum
entanglement is not new. The entropy of extremal STU
black holes is always expressed with Cayley’s hyperdeter-
minant A which is a measure of tripartite entanglement for
three qubits [10,11]. The timelike reduced STU model can
be described in the language of four qubit entanglement,
where the line element is given by a quadratic entanglement
measure [12,13]. Moreover, extremal black holes with
nilpotent charge vector can be classified in the language
of four qubit entanglement as shown in [14]. For a review of
this so-called black hole/qubit correspondence see [15].

The organization of this paper is as follows. In Sec. I we
give a quick review of the conventions we use for STU
supergravity and its reduction to the 3d coset model
SO(4,4)/SL(R)**. In Sec. Il we review the aspects of
the black hole solution of Chow and Compere that we need.
In Sec. IV we describe the action of the U-duality group
SL(2,R)*? on the coset element putting particular emphasis
on the fact that the generators for U-duality live in a different
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splitting of 80(4, 4) than the one defining the 3d coset model
SO(4,4)/SL(R)**. After this, we describe how the 16
asymptotic charges of the black hole fit into the 9 @ 8 @ 8
representation of the U-duality group. We give the relevant
covariants that can be used to generate polynomial invar-
iants of this representation space in the simple language of
fermionic entanglement theory. In Sec. V we use these
covariants as building blocks to find the announced
expression for the F-invariant. Section V B contains the
formulas which are needed to compute the F-invariant
dressed with the asymptotic values of the scalars. In Sec. VI
we give three constraints among the scalar and physical
charges and speculate if they are enough to determine the
scalar charges uniquely. As an illustration we solve the
constraints for some special cases like the Klauza-Klein
black hole and the dilute gas limit of [16]. We find
agreement with the literature. In Sec. VII we describe
how we expect our results to generalize to an E;(;) invariant
for maximal A = 8 supergravity.

We include two appendices containing some explicit
formulas which we found too cumbersome to include in the
main text. In Appendix A we set up our conventions for the
Lie-algebra of 30(4,4) and describe the three different
ways of selecting an 315* subalgebra with the remaining
generators transforming in the fundamental (2,2,2,2) rep-
resentation. In Appendix B we give the explicit forms of the
matrices R, K|, K, and K,, appearing in expression (2)
for the F-invariant.

II. N'=2 SUPERGRAVITY

The term STU model refers to ungauged N = 2 super-
gravity in four dimensions coupled to 3 vector multiplets
[17,18]. The model is of central importance in string theory
as it can be obtained from most string theories and is related
to various other supergravity theories through dualities.
Also, a suitable solution of the STU model can be used
[19] to generate all single centered stationary black holes of
maximal A" = 8 supergravity [20,21] which describes the
low energy limit of M-theory compactified on 7”7. The black
hole solutions in the theory can be obtained from the bosonic
part of the action without the hypermultiplets. There are
several formulations of this action, here we simply pick one
and refer to the literature on details. The action we choose is

R L
[ — 4 9 Aiouz
S 16 dx |g|{ 2—|—GU8MT@T

(I (F1) (T ReNu(f’),w(*f’)””)}-

3)

Here, 7/, 1 =0, 1, 2, 3 are four U(1) gauge field strengths
and »F' is the dual of F'. The complex scalars 7/, i = 1, 2,
3 are coordinates of the projective special Kéhler manifold
[SL(2,R)/SO(2)]* and G;; is the Kihler metric of this
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space. The matrix N}, is a certain 4 x 4 matrix depending
only on the scalars 7'. As we do not need them in this paper,
for explicit forms of G;; and N;; we refer to the literature
[2,13]. We will usually use the decomposition of 7/ into real
in imaginary parts as

Ti :xi~|-iy,~. (4)

To describe stationary black hole solutions we proceed with
the usual procedure of dimensional reduction along the time
coordinate. For details of this procedure see e.g., [2,22]. The
ansatz for the metric and the gauge fields is

ds? = —e?V(dt + w)? + e72Vds?

(3d)’
Fl=dA =d((dr + ) + AT). (5)
Here, ds%3 0= h,,dx?dx? is the three dimensional line

element with a, b being 3d indices. The scalars U and ¢ I
and the one-forms @ and A’ are considered to be three
dimensional fields. One then dualizes @ and A’ to scalars ¢

and 5, as

dz] = Re./\/'UdCJ - €2U*(3d> (dAJ —+ Clda)),
do = e*Vn(3gdw + ¢1d, — £l (6)

The resulting three dimensional theory is Euclidean gravity

coupled to 16 real scalars {U, 0,7/, 7, ¢!, {;} parametrizing
the coset space SO(4,4)/SL(2,R)**. The Lagrangian can
be written as

1
L= —Ex/i_zR[h] + G0, BM OB, (7)

where ®" denotes the scalars with m = 1,...,16. The
metric g,,, on SO(4,4)/SL(2,R)** is expressed through
the line element as

1 -
ngndfbmdq)" = G;de'd? + du?

4y (do + Ed — 1,

+ €_2U [IHW[JdCIdC,

1
2
+ (ImA);} (dE; — ReN g dK)

x (d¢; —ReN ; dgh)]. (8)

Note that the equations of motion coming from (3)
are invariant under the SL(2,R)3* subgroup of the full
U-duality group E7(7) mapping the STU model to itself. An
element

S ®S5,®S;€SL(2,R), 9)

is parametrized as
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a; bi
Si_( >’ aidi—bic;=1, i=12.3, (10)

c; d;

and it acts on the 3 dimensional fields the following way.
The scalars 7 are transformed as

ai’ri + bi
> —

- , 11
CiTl+di ( )

while the electromagnetic potentials £/, Z’ ; transform in the
fundamental (2,2,2) =8 dimensional representation.
Explicitly if one defines the three index tensor
corresponding to the amplitudes of a 3 qubit state as

<l//000 Won)_(& SN —é:l>
Y100 Vi ao=g —53 =

(12)

Yoo1
Y101

Yo10
Y110

(2,2,2,2){ HA, pA:EA+FA | lezEQI_FQl’
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the transformation rule is

Wi > (51,7 (82) 7 (S3)E wirjw. (13)

In the following when we write SL(2) we are referring ot
SL(2,R) unless explicitly otherwise stated.

We can describe the second term in the 3d
Lagrangian (7) as a sigma model with target space
SO(4,4)/SL(2)**. The Lie algebra %o(4,4) has 28
generators. To describe this coset model we have to
split this as 80(4,4) =h @ m, where § is an sI5*
subalgebra and m is its 16 dimensional fundamental
representation which we denote as (2,2,2,2). There are
actually three ways to perform this split. We summa-
rize below two of them which are relevant for our
purposes.

pP’ — EP’ _FP’

14
30 kyn=Ey—Fy | k& =E% 4 F% kP =P 4 F¥ (14)
(85)y (22.22)y
Here, Hy, Ey, Fy, A=0,...,3 and E2, EP', FO FP', GndP"dD" = Tr(P2). (17)

I=1,...,4 are the 28 generators of 80(4,4). For an
explicit definition of these generators and a detailed
review of the splits, we refer to Appendix A. The
subscript U refers to the splitting suited to describe
the action of the U-duality group SL(2)*3. The extra
SL(2) factor in this split is the Ehlers symmetry. The
subalgebras without the subscript answer the split suited
to describe the 3d fields parametrizing the coset
SO(4,4)/SL(2)*4.

Let us represent an element of this coset by an SO(4,4)
matrix as [2,12]

P
Y = ¢ UHo e‘%Z[ IOg.V[Hie_Z[xiEie_ (' ECL+ ¢ EP ) g=30Eo

(15)

Notice that there are no F-type generators in the above
formula. This choice of gauge is called the Iwasawa
gauge. The next step is to project the Mauer-Cartan 1-
form to the 16 dimensional space spanned by the first
line of (14) as

1

P, == (dVV=! 4 (dvy-H#). (16)

N

Here, # is the anti-involution defining the horizontal split
of (14) [see also Eq. (A9)]. One finds that the target
space metric (8) can be written as the right invariant
metric on SO(4,4)/SL(2)**:

The other way of writing this line element is to define the
matrix

M =V, (18)

Then we have

GpndP" D" = %Tr((/\/l“d/\/l)z). (19)

We note that M~'d M, similarly to P,, sits inside the 16
dimensional subspace which is spanned by the first line
of (14).

The 16 three dimensional fields can be extracted directly
from M (see [2] for details) so we may proceed describing
the theory in terms of M. A group element & € SO(4,4)
acts naturally on V as

VYV qVh, (20)
where ¢ € SL(2)** is a (possibly field dependent) com-
pensator which puts V back to the Iwasawa gauge. We will
see an example of this in Sec. IVA when we work out the
action of the U-duality group on V. The same action in
terms of M reads as

M +— h* Mh. (21)
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It is then manifest that the line element and hence the 3d
Lagrangian is invariant under this action of SO(4,4).

III. THE MOST GENERAL NONEXTREMAL
BLACK HOLE SOLUTION

Here we give a lightning review of some of the results and
the solution generating technique presented in [2]. We have
seen that if M is a solution to the equations of motion then
so is h* Mh. This fact can be used to generate new solutions
from a known seed. This method is used by the authors of [2]
to find the most general nonextremal, rotating, asymptoti-
cally Taub-Newman-Unti-Tamburino (Taub-NUT) black
hole solution with 11 independent conserved charges.
These are the mass, NUT charge, angular momentum and
8 independent dyonic charges. They chose the four dimen-
sional Kerr-Taub-NUT metric as their seed with mass m,
NUT charge n and angular momentum J = ma (here a is a
parameter). Then they chose the group element

h= et Dl (22)
to charge up the solution as
M - h#MKTNh' (23)

We refer to [2] for the definition of the seed matrix M gry.
Here, we merely need how the physical charges of the black
hole are expressed with the 11 parameters m, n, a, o, y;.
These charges are extracted as follows. Define the inverse
radial coordinate p = % and expand the fields around
asymptotic infinity. For now, we assume the following

expansion
eV =1-2Mp + 0(p?),
&= Qi+ 0(p?),
yi=(1=Zp+0(p?)),
6 =—4Np + (4J cos 0 + ¢)p* + O(p?),
Cr=Plp+0(p?).
x; =Eip+ 0(p?), (24)
which is the same as in [2]. Here M and J are the Arnowitt-

Deser-Misner (ADM) mass and angular momentum of the
spacetime, Q; and P! are electric and magnetic charges
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denote 6 scalar charges. The constant ¢ is not playing any role
in the following. The corresponding expansion for M is

M=1+Qp+0(p*), (25)

where the charge matrix Q does not contain the angular
momentum J which only enters in subleading order. Without
J, these are all together 16 asymptotic charges, which can be
expressed in terms of 10 seed & charge parameters, m, n, oy,
71 Therefore, the scalar charges are not independent of M, N
and the dyonic charges, but we will keep them explicit
until Sec. VL.

We quote the formula for the mass and the NUT charge

M = pym + pyn, N =vym + uv,n, (26)

where pq, >, vy, U5 are functions only of &;, y; and are
given explicitly as

S§I+S§I 2 2 1 2 2
pr =1+ E 5 Ssr5y1 +§ E :551Sy1’
i 1.J

C

s
_ vl vl
Ho = E Ss1Cs1 <_c Cy1234__s S71234>’ (27)
1

vl vl

- Csi Ss1
vy = SyrCyr | — 551234 — ——C51234 | »
7 Ss1 Cs1
v, =1—D, (28)
with

_ Ss1J Cy1g
1 = C51234Cy1234 T 551234571234 + Cs1234 — — Sy12345
T=J Cs1 Sy1y

D— Ss17 SylJ
= C512345y1234 1 S51234Cy1234 + E Cs1234 —— —— Cy1234-
=7 Cs1J Cy1y

(29)

Here the notation is resolved as follows: c¢; = coshéy,
55, = sinh 6; and the same for y;. Multiple indices denote
that one should take the product of the hyperbolic functions
e.g., cs;y = cosh §; cosh §;. The rest of the charges can be
obtained through the formulas

02M 02N

o0, SE=-P 30
associated to the original 4d U(1) gauge fields and Z;, %; 06, < 06, (30)
|
IM—%,+%,+ 3,
00; M43, -3, +3, a1
25, M+ 3 + 3, -3, ’

IM—-%, -3, -3,
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—2N

—3 2 =1
oP! S -2N T, -E
or _ ,_3 - 1 ’_‘2 ’ (32)
65j = — —2N —=3
5, -E, -5, -2N
-0 0 0; -0
azi 1 2 3 4
=| &1 -0 03 -04].
a5,
01 0 -03 -0y
_P4 P3 P2 _Pl
0=,
3 5’ = P -P* P P2 (33)
J P2 Pl _P4 _P3

Note that these identities are simple consequences of the
fact that we have defined the charging up element # with
the 0; parameters being on the right. Therefore, for the
charge matrix Q = h*Qgyyh one has

00

0
06, [, 0,

(34)

and hence taking the §; derivative of a component of Q in
some basis just amounts to multiplying with the adjoint
representation of k97 in the same basis. We have used here
that 4 is generated by the subalgebra in the second line of
(14) and hence we have h* = h~!.

After reconstructing the 4d solution the Bekenstein-
Hawking entropy of the black hole can be calculated. It
reads as [2]

§=22(VA+F+V-F+F), (35)

where A is the quartic invariant formed from the dyonic
charges, and F is expressed with the seed and charge
parameters as

F = (m* + n?)(mv, — nvy)>. (36)
To obtain asymptotically flat black holes one can cancel the
NUT charge by setting n = —m 5—;

IV. THE ACTION OF THE U-DUALITY GROUP

In this section we describe in detail the transformation
properties of the asymptotic charges of the black hole under
U-duality. This allows us to construct polynomial invariants
of these in the next section.

A. Action on fields

Recall that the coset element is parametrized in [wasawa
gauge as

PHYSICAL REVIEW D 93, 024036 (2016)
VY= e—UHoe_%Z,-108)’iHie—Zix;Eie—z,(C]EQ“rglEpl)e—%an'

(37)

Notice that the gauge is such that the scalar fields are in
an “upper triangular” form in the sense that the F type
generators are not present. We claim that the U-duality
group is generated by the generators H;, E;, F;,i =1,2,3
of (14) and the action is a simple right action on V followed
by the left action of a local compensator ¢ € SO(2)*3 C
SL(2)} restoring the Iwasawa gauge:

V= ¢V, g€ SL(2)%. (38)
Indeed, we may write this as
gVg = e—UHO(qe_%Zilog,"iHie_ZixiEig>
x (g-1em o EEUTLE") gy ok (30)

as the generators E, and H, commute with SL(2)}?. We
see that the part with the potentials transform simply with
the adjoint action. It is convenient to describe the 16
dimensional representation (2,2,2,2), and its element
ST (C'E + & EP') with the amplitudes wij of a four
qubit state through (A7). Since there are no F” " and F<
generators present this four qubit state has v, =0 and
therefore it is actually a three qubit state. We can think of
wiju =0 as the gauge fixing condition. Then, under the
U-duality transformation

> (

JEQ +E") > g7y ((TEY + G E g,
1 1

g€ SL(22);, (40)
this associated state transform as
Wi = (S1)7 (82,5 (S3), wijwr
SI®SHRS; e SL(2)§’, (41)

where, according to (A7), S} ® S, ® S3 is the SL(2);
element associated to g~'. We see that the gauge condition
v = 0 on the coset element does not change. Therefore,
this gives the required action of the U-duality group on the
potentials given in (12) and no compensator is needed.
We only need to worry about the gauge condition on the
scalars. Multiplying the scalar term from the right with ¢
spoils the gauge we chose and hence we need a local
compensator. Using the fact that each scalar parametrizes
the coset space SL(2)/SO(2) we expect the local com-
pensator to be from SO(2)*3 [23] and therefore to have
the form

024036-5
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q= eZ?:l aiki — eZ?:l ai(E"_F")_ (42)

Now it is easy to verify that if we let g to be the SL(2)}
element corresponding to

(4 2o(® el )
—Cq ap —C) [25) —C3 as
(43)

in the standard representation, then in order to restore
the Iwasawa gauge the a; of the compensator have to be
chosen as

CiYi

tana,- =
CiX; +di

(44)

Then, we have
qe—%zi logyiHie_ZixiEig _ e—%zilogy;H,-e—Zix;Ei’ (45)
with the primed scalars being

r_ (di + ¢x;) (b; + aix;) + a;e;(x7 +y7)

l (d; + cix;)* + c}y?
Vi

di+ cix;)* + ciyi’

El

Yi = ( (46)

which just corresponds to the usual action of the U-duality
group on the scalars

,aiti+ b,

_ , 47
fi CiT; +dl ( )

with 7; = x; + iy;.

B. Action on asymptotic charges

Now recall that the asymptotic values of the fields are
conveniently encoded in a charge matrix Q [see (25)]
defined from the series expansion of M = V¥V around
asymptotic infinity. Now we need to be slightly more
general than in [2] and cover the moduli space by letting
M(p =0) # 1. To define this generalized Q first expand
M around asymptotic infinity

M= MO + MDp + 0(p?). (48)

Then note that M = V*V is a proper element of SO(4,4)
for every value of the coordinates. It follows that M(©) and
(MO~ M are all good SO(4,4) elements. Expanding
this latter yields

(MM =1+ 0p+ 0(p?), (49)
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where we have defined the “dressed” charge matrix [19]
0 = (MO)"Tpm), (50)

As this is an expansion of an element of SO(4,4) around
the identity, Q is an element of the Lie algebra 8o(4,4).
This is not true for M (1) alone. Now we slightly generalize
the expansion (24) of the fields around asymptotic infinity
by letting

yi =Yi(1=Zip +0(p?)), X =X;+Zip+ 0(p?),

(51)

with the rest being the same as in (24), but now with the
possibility of having arbitrary values for the scalar fields at
infinity. We give this general Q matrix in Sec. V B and for
now, go back to use X; = 0 and Y; = 1 as in [2]. However,
we stress that X; and Y; do transform under U-duality. One
should not worry about this too much as everything we do
in the following relies only on the fact that Q is an element
of 80(4,4) which is independent of this choice and hence
straightforwardly generalize to arbitrary X; and Y,. Setting
X, =0 and Y; = 1 results in the simple form of Q

Q =2MHy+ Y SiH;+2Npo— Y Z;p;

= (@ + PIp"). (52)

We see that in this case Q lives in the 16 dimensional
subspace (2,2,2,2) spanned by the first line of (14).
From the previous subsection we conclude that M
transforms under U-duality as M +— ¢* Mg, and hence
the charge matrix simply transforms with the adjoint action
0 g'Qg,  geSLQ2). (53)
Now from (52) we easily see that under the decomposition
(14) of 80(4,4) suitable for U-duality, Q has components
both in QIZX“U and (2,2,2,2),. As the splitting ensures that
these components do not mix under the adjoint action of
3154, we may consider these parts separately

Q=0_+ Q+, (54)

where
Q- =2MHy+ > SH,+2Npy— Y _Zip; € 8l5%,
i i

Q. =-) (Q;p% +P'p™) € (2,2,2,2),. (53)
1

Let us first consider Q_. Clearly, M and N are invariant
under the adjoint action of SL(2)}® as expected. The six

scalar charges X;, =; parametrize an element §I§3 y and

024036-6
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hence they transform in the adjoint representation of
SL(2)}. We define the matrices

R <Z" ‘:) (56)
\-g -3 /)

transforming under U-duality as

with

a; b;
< > € SL(2).

¢ d;
Note that the symmetricity of R; is spoiled by this trans-
formation but this is simply a consequence of fixing the
asymptotic values of the scalars which, again, are not
invariant under U-duality (see Sec. V B for the general form
of R).

The element Q, transforms as a four qubit state vy,
under the full SL(2)}* and it decomposes into a pair of
three qubit states () ji; = Woju and (¥2) iy = W1 When
just the U-duality group SL(2)}? is used. The explicit
amplitudes can be read off using (A7) and are given as

WYoooo Wooor Wooio Woorl
Yoo Woior Woito Woiil
Yiooo Wioor  Wioto  Wio1l
Yioo Y101 Yitio Vi
-P* -0y -0, P!
_ P2 P3
_ 0, O4 (58)
-0, PP P2 0
P! 0, 03 -P*
Note that this pair is related through
) 0 -1 ® 0 -1 2 0 -1 )
2=\ o 10 1o )"
(59)

For the corresponding pair of three qubit states dressed with
nontrivial scalar asymptotics, see again Sec. V B.

The index corresponding to the first qubit transforms as
a doublet under the extra Ehlers SL(2). Note that the
scalar charges are singlets under the Ehlers symmetry: the
adjoint 28 of SO(4, 4), where Q lives in, decomposes under
the maximal subgroup SL(2)5* = SL(2)phiers X (SL(2)7)
as 28 =(3,1) & (1,9) & (2,8).

PHYSICAL REVIEW D 93, 024036 (2016)

C. The algebra of covariants

We have seen that the asymptotic charges transform
under U-duality as a (not general) vector in 9 @ 8 @ 8,
where 9 refers to the adjoint representation, while 8 is the
fundamental corresponding to a three qubit state. If we
dress up the charge matrix with the asymptotic values of the
scalars, then @ actually fills out the representation
9 @ 8 @ 8. In order to be able to write up invariants we
first need to construct covariants with indices transforming
the same way. Luckily, there exists a construction, called
the moment map, which allows one to associate an element
transforming in 9 to a pair of vectors in 8. Unfortunately,
this construction will result in an unnecessarily large
covariant algebra. We can significantly reduce this by
incorporating “triality” symmetry of the STU model: the
symmetry under permutation of the three SL(2) factors.
This leads us to consider the embedding 8153, C 8l and to
construct the moment map in the SL(6) covariant language
of three fermions with six single particle states [9,24,25].

Consider fermionic creation an annihilation operators p®
and n,, a =1, ..., 6 satisfying
{ng,n,}=0. (60)

{p*.np}=6%. {p*.p"}=0,

An unnormalized three fermion state can be written as

1 .

[P) = 35 Pavepp"p|0) € A¥(C°), (61)
with the antisymmetric tensor P, having 20 independent
components. The so-called SLOCC group of this system is
SL(6,C) acting locally on the amplitudes as

Pupe > S48, S. Py, SeSL(6,C). (62)
The moment map associates an 8L(6,C) element to |P).
This element reads as

1
aAC|CrC3C4C
S € T SPbclczpc3c4c5' (63)

(KP)ah = 2131

It is clear that if we transform the state as in (62) this
covariant transforms as

Kp > (ST)71KpST, (64)

hence the powers of its trace are continuous invariants. It
turns out that the action of SL(6, C) on 20 admits a single
independent continuous invariant, quartic in the ampli-
tudes, given by

D(P) = éTrK%. (65)

Note that this quantity is a measure of tripartite entangle-
ment for the fermions [9,26]. The situation is different if we
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have two states |P) and |Q) at our disposal. In this case we
can define the following covariants

1
a _ ac|cycycaC
(KP) b — etarana 5Pbé‘lczp

2131 s

(Ko = 575714 Operes o

(Kn)*s = 37576 P s
(Kor)", = 31511 O Py (66)

Traces of products of these define invariants. In particular
there is now a nonzero invariant bilinear product

_ €€1€2€3¢4C5C6 P

3131

c1cc3 Qc4c506 ’

(67)

which also shows that the covariants K p( and Kp are now
not elements of the Lie algebra 3l.
Now let us describe how to embed three qubit states

1

ly) = Z wijklijk), (68)

i.j. k=0

into our fermionic vector space. The standard thing to do is
the following:

1
) > P, = ) wipp™ p B psI0). (69)
i.j k=0

Then, it is easy to see that a three qubit SLOCC trans-
formation

Vijk > (Sl)ii,(SZ)jj/(S3)kk,l//ij’k’v
51 ® S, ® Sy €SLQ2)}, (70)

can be implemented in the language of three fermions (62)
by choosing

€ SL(6,C). (71)

Finally, we can associate covariants transforming in the
adjoint of SL(2)}? to the pair of three qubit states given in
(58) using (66) and (69) as

PHYSICAL REVIEW D 93, 024036 (2016)

(K = 3357 Py o (P e
(K = 3357155 Py o (P e
(K = 33571 Py o (P e
(K = 551 € S Py P e (72)

For an explicit form of these matrices see Appendix B.

Notice the crucial fact that these four matrices transform

exactly the same way under SL(2)}? as the matrix

R{
R= RT
R}
¥ -, 0 0 0 0
- -X 0 0 0 0
I U 22 Z 0 0 )
0 0 -Z, -%, 0 0
0 0 0 0 % -5
0 0 0 0 -F -3

formed by the scalar charges [see Eq. (56)].

The four matrices of (72) can be grouped into a 2 x 2
block matrix K, transforming under the Ehlers SL(2) as
2x2 =16 3 in its ab indices. We note that the singlet
part satisfies the relation

Ky —Kpp = (Z(Q% + <Pf>2>)1, (74)

and hence only three of the K,,s give independent
covariants.

V. THE F-INVARIANT

A. Construction of the invariant

Let us begin by listing the independent primitive invar-
iants of homogeneous degree less than or equal to four in the
asymptotic charges, that can be formed by our covariants.

(i) Degree 1 invariants:

M. N (75)

(i) Degree 2 invariants:

Tr(K ), Tr(R?). (76)
(iii) Degree 3 invariants:
Tr(KlzR), Tr(KMR). (77)
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(iv) Degree 4 invariants:

TI‘K%I, TI'K%z, TT(KHKQQ), Tr(R4) (78)

To reduce the set of independent invariants we have used the
identities

Tr(K 1 R) = —Tr(K5R)
Tr(K$,) = Tr(K3,).
Tr(K11R?) = Tr(K»R?) = 0,
Tr(K:K11) = =Tr(K2K»),
Tr(K oR?) = ¢ (TrK ) (TeR?),
3Tr(KKa,) + (TrK ,)? — 3Tr(K3,) = 0. (79)

Note that we can write some well-known U-duality
invariants in this language. First of all, Cayley’s hyper-
determinant

1
A= 16( (10,0504 + P'P2PPP*) + 2 ~0,0¢P'PK

J<K

DTS (80)
7
1S just given as
1 2 ! 2
A:—%TTKH :—%Terz. (81)

The asymptotic value of the quadratic symplectic invariant
I 2 18

1 1

I = ZZ[:(Q% +(P')?) = _ETrKIZ- (82)

The quadratic invariant
59 =1Go0707, =S (@245, (83
2 _4_1 7O T O, T ‘r—>oo —ZZ(HI‘ + i)v ( )

can be expressed as
1 2

S = gTr(R ). (84)

Now recall the formula for the F invariant in terms of the
charge-up parameters ;, y; and seed variables m and n:
F = (m? + n?)(mv, — nvy)?, (85)

where v; and v, are the functions given in Eq. (28) and
they do not scale with the charges. We see that F is of

PHYSICAL REVIEW D 93, 024036 (2016)

homogeneous degree 4 in the charges and we expect it to be
U-duality invariant. From the 10 invariants that we have
identified at the beginning of this section we can form 22
monomials of homogeneous degree four. We can form a
linear combination of these, equate it to F and try to solve
for the coefficients. The simplest way to do this is to
generate various random sets of parameters m, n, §;, and y;
and try to solve the resulting numerical, linear equations
simultaneously. If this works for a considerably higher
number of equations than the number of variables, which is
22, we can probably trust our coefficients. We did this
procedure for 600 equations and we have found a single
solution. The obtained numerical coefficients have been
rationalized and the result was tested analytically with a
computer algebra system. The result is

F = M4+M2N2+£Trl( MT (K13R)
12 77 24 12
N2 N 1
QTY(RZ) —ﬁTr(K”R) 02 o5 (Tr(K7T)

1
— Tr(Kllez) — 5 (TI'R2>2 + TI'(R4)> . (86)
In the asymptotically flat case one sets N =0 (or
n = —m+'). In this case the F invariant reads as

4 (V% + V%P

4
12

F=m

M
=M* - M1 - ﬁTr(KuR) - EA

1

1
—Tr(R*
G + r(R*),

1
—Tr(K 1K) - 02

192 g 5T)’

(87)
where we have reintroduced the familiar U-duality invar-
iants where it is possible. We stress that for general scalar
asymptotics one should use the R and K ,;, matrices as given
in Sec. VB. It is useful to write the F invariant without
an explicit reference to the auxiliary 6 dimensional repre-
sentation that we have introduced. We may employ the
invariant bilinear product of (67) to write

TrK12 = 3(PW1’ ),
Tr(KlzR) = —(Py,] ,R*Py,z),
Tr(Ky Kp) = —(Py,, (K2).Py, ),

Tr(K%l) = _<Py/,’ (Kll)*Pyn)’ (88)

where we have defined the action of a Lie algebra element
t € 3L(6) on P € A’C as
([*P)abc - tdanbc + tdbPadc + tchabd' (89)

Also, let us define the 8 x 8 matrix R corresponding to R in
the fundamental representation of the U-duality group:
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R=RI®IQI+IQ®R, ®I+IQI®R], (90) 0, = qpo E9 + g E” + qro,FO + g, F'. (96)
see (56) for the definition of R;s. Then we have The amplitudes corresponding to the first three qubit state
[see (A7)] are unchanged
1 1 PO RS
TrR* — ~ (TrR*)> = — = (TrR4 - (TrRz)z). (91)
2 8 8 <W0000 Yooor  ¥ooto Yooil )
We may then rewrite the F invariant as Yoo Yoo Voo Vo
_ qEP4 qEs qEe _qEP]
F — M* + M2N? M’ P P M P RP - 9dger  —4pr2 —qpp —4Eg%
o + +T( vy W2)+ﬁ( Wi T l//z) E E
-P* -0, -0, P
I N = X R . (97)
+ 56 THRY) + 54 (Py RPy,) -0, PP,
1 .
- 19 (Py, (K11 — K3).Py,) On the other hand, the second three qubit state
+ ﬁ (% (TrR?)? - Tr(i{,é&))’ (92) <W1000 Yior Yiolo Yol >
Yio Wit Yo ¥
which will be well suited for generalization to the E; [ T4res g dpr dFo (98)
invariant case. - G dro:  qros  —qp
As a final remark, we note that a single centered STU
back hole parametrized by six moduli and eight dyonic h . .
. . . the foll d
charges is expected to have five independent U-duality as the loflowing dressing
invariants [6]. The reason that we have more than this in
. . —pYp@pBd, (99
(76)—(78) is that we treat the scalar charges as independent Viijk = Ly Py PreWoi ji s )
variables. This allowed us to turn F into a polynomial
invariant. or equivalently,
B. General scalar asymptotics ly) = (DY @ D® @ DO))|y,), (100)
Here we consider explicitly the computation of F for
general asymptotic values X; and Y; of the moduli. We  with
expand the “dressed” charge matrix defined in (50) using , ,
. 1 /X, -X;-Y;
(51) as Dl — v ( 1’ lX ! ) (101)
i —4&

Q = qu Hy + qg,Ex + qr, Fp + qpo E?
pl pl This is the generalization of the relation (59) and shows that
T BT ar o PO T E the pair 0% three qubit states are related by a moduli
dependent SL(2)3* transformation. The formula (86) for F
is then valid for arbitrary scalar moduli provided that we
use the dressed R; matrices of (95) and the K,;, matrices
calculated from (97) and (99) through (72).
Now we can also relate the charge matrix of an arbitrary

The part in 815*;, reads as

: ZX;
Q_ =2MH,+2Npy+ Y [(zi - 7) H,
i=1 i

= X2 = solution through U-duality to an auxiliary charge matrix
+ <—5,- - 25X, + ;2 l ) E; - Y—;F ,} ; (94)  with trivial scalar asymptotics. Consider the duality trans-
i i formation

and hence the R; matrices of (56) obtain the following SL(2)3 1 1 -X; 102
dressing /@183 €L Jii\/Yi 0 Y ) (102)
¥, -2 = 23X, +5_’2‘2 and denote the corresponding SO(4,4) element with 7.
R, = _Y" _ Y (95) One may check with explicit computation that the asymp-

- -3 % totic value of the coset element (48) satisfies

TT = MO, (103)

The four qubit state in (2,2,2,2), is
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As a consequence, for any general charge matrix Q we may
define a duality transformed one
0=J0J", (104)

which corresponds to a black hole with trivial moduli. Now
we use the relations

D(l)_‘]t_]<0 _1>Jia
1 0
% -7
Ri:J,»—l( Y')J,-
_Tz _Zi

to relate the auxiliary charges of Q to the physical ones of
Q. Following IV we deduce that the dyonic charge vectors

(105)

71 ,) of O are expressed with the physical charges [y;) as

) = (J1 @ J, ® J3)|wy).
) = (J, ® J, ® J3)(DY @ D @ DO))|y,)

=G o)eli 9)e ()
X (J1 ®@J, ® J3)|wy). (106)

We see that the vectors | ,) are indeed related as in (59)
which is valid only for the canonical moduli. For the scalar
charges one has

3 % -7
Ri_JiRiJi_]E< Yl).

N (107)

_Z
Y;

Since the F-invariant is blind to the transformation (104)
we obtained the result that for any asymptotics we may
calculate F by just using the formula for canonical moduli
with replacing the dyonic charges by (J; ® J; ® J3) |y 1)
and scaling the scalar charges as =; > IE/— ie.,

F(Xivyiﬁ |w1>’2isEi)
:F<Xi =0Y, =1, ®J,Q J3)|y). X )

(108)

<[ 10

VI. RELATIONS BETWEEN SCALAR CHARGES
AND PHYSICAL CHARGES

Our formula is entirely in terms of the asymptotic
charges of the black hole and is manifestly invariant under
U-duality and permutation of scalars. However, it does
contain explicitly the scalar charges X, and =; which are not
independent of M, N, Q,, and P/. A formula entirely in
terms of the physical charges would require solving for the

PHYSICAL REVIEW D 93, 024036 (2016)

functions X;(M,N, Q, P), E;(M,N, O, P). In this section,
we provide constraints that these functions must satisfy
and solve them for some special cases. We illustrate the
example of the four electric charge Cveti¢-Youm black hole
that in general it is not possible to give the F-invariant in
terms of radicals of the physical charges.

We start by describing the constraint equations. Recall,
that the charge matrix Q of (50) transforms as a four qubit
state [see (A6)] under the action of the SL(2)4X spanned by
the second line of (14). The charge-up matrix % of Eq. (22)
is an element of this SL(2)**. It is known [8,13] that this 16
dimensional representation admits four algebraically inde-
pendent continuous invariants. All of these can be checked
to be proportional to some power of the combination
(m? 4+ n?) of the seed parameters. It follows that they
provide 3 independent polynomial equations among the 16
asymptotic charges in Q. Let us describe a convenient
and simple way of obtaining these equations. Consider the
characteristic polynomial of the charge matrix Q:

p(A) = det( — Q). (109)
It is clear that the characteristic polynomial is invariant
under the charge up operation and hence we have

(110)
where the characteristic polynomial for the seed solution is

po(4) = det(Al — Qkry)
=24(1? —dm? — 4n?)?

= 2*(2? = TrQ?)?, (111)
where we have used the invariance of TrQ? to express
m? + n? in terms of asymptotic charges. The two poly-
nomials agree iff all of their coefficients agree hence we
have the following 9 polynomial equations

dk

@ k:0,,8

(p(4) = po(1)|;=0 = O, (112)

One can check that for k = 1, 3, 5, 6, 7, 8 these are trivially
satisfied and hence we are left with 3 equations. These 3
equations have linearly independent gradients in the scalar
charges which indicates a three dimensional solution set.
However, this does not tell us anything about the set of
real solutions. One can easily check that as one approaches
the seed solution by taking Q; — 0 and P! — 0, there is
only one real root satisfying the consistency requirement
Y; = 0. This shows that it is possible that the three
equations are enough to determine the scalar charges
uniquely. To say something more precise about this one
would need to determine at least the real dimension of the
semialgebraic set defined by these equations, but to our

024036-11



GABOR SAROSI

knowledge, there is no method to do this to date. Instead,
we provide solutions to (112) for some special charge
vectors, where the F-invariant is known explicitly, and
hence we can compare our results with the existing
literature.

Before doing so, we comment on what happens with
these constraints when one considers black holes with
nontrivial asymptotic moduli. In this case one can_just
replace Q in (109) with the auxiliary charge vector Q, as
readily seen from (104). This shows that whatever expres-
sions X; = f;(M, ), Zi=gi(M,|y,)) we find for
trivial moduli by solving (112), we can safely use them
for nontrivial moduli as X; = f;(M, (J; ® J, ® J3)|w1))
andZ; = Y;9;(M, (J, ® J, ® J3)|y)). Combine this with
(108) to get the expected result

F(Xi’Yh

w1) =F(X;=0,Y;,=1,(J; @ [, ® J3)|y1)),
(113)

which is then guaranteed to be valid as long as we can use
(112) to solve for the scalar charges. This is the case for the
first two of the following examples.

A. Klauza-Klein black hole
The Klauza-Klein black hole [27] is obtained by setting
0,=03=0s=0and PP=P>=P*=0 and N =0.
From the parametrization (30)-(33) we can deduce that
= =0 and X, = %3 = -, in this case. We can put this
into (112) as an ansatz and observe that it automatically
solves two equations. The third equation reads as

2 (8M2 + (P')2 + 0} - 253) = 2M((P')* - Q3.
(114)
J

PHYSICAL REVIEW D 93, 024036 (2016)

As expected, there is only one root that vanishes for zero
charges. For this root we have found numerical agreement
between our formula

- =y o-o)

1 1
+gME((P')? = 0F) - £ =1,

T (115)

for the F-invariant and the complicated expression pre-
sented in [2] for the Klauza-Klein black hole. We may
further specialize by setting P! = 0. In this case the above
equation factorizes as

(2M +2))(Q? +4M=Z, —=252) =0.  (116)

\/M?*+4%03. Upon sub-
stituting this into the formula for the F-invariant we get

The physical root is 2| = M —

1

F =
64

(32M4 —40M> Q3 — Q% + AM(4M? + ZQ%)%) ,
(117)

in complete agreement with [2].

B. —iX°X! supergravity black hole
Now let us consider the axion-dilaton black hole of [28].
We set the electric and magnetic charges pairwise equal
0, = Q4, 0, = 03, P! = P*and P> = P3. We also set the
NUT charge to zero. From (30)—(33) we observe that in this
case we have X, = X3 = =, = =Z3 = 0. Using this as an
ansatz in (112) we are left with a single equation

2(P)2(2ME; + (P?)* — Q% — 03) + 20, (4ME (P?) + 2M 0, + 030,)
= AM?Z3 + 4AM?32 + (PY)(8ME,Q, — 8(P?)0,05) +2(P*)?(2ME, + 0% + 03) +4M Q3%

+ (PY*+ (P?)* 4+ 01 + 03.

which admits a single real solution

o _(PP-(PP- 01+ 0
! 2M ’
= :PzQz—PlQl

zZ y (119)

This agrees with the axion-dilaton charge obtained in [28]
(1 +iP')? + (=P +iQ,)?

= i . (120)

(118)

Upon inserting this into our formula (86) for the F-invariant
we obtain

F =M = (P = P22 = (0, - 0:))

X (4M2 = (P! + P2)? = (01 + 01)?). (121)
in complete agreement with [2,28]. We note here
that when the single modulus of this model is
turned on we have to replace the charges according
to (113). Explicitly, this leads to the following
replacement rule

024036-12



ENTROPY OF NONEXTREMAL STU BLACK HOLES: THE ...

(o) 7m0 %))
(%)=l W(5%)

which, again, agrees with [28].

(122)

C. Dilute gas limit

We can recover the dilute gas limit of [16] as well. In this
limit, we have the following constraint among the magnetic
charges

P+ P2+ P+ P=0. (123)

Provided that this is true, all three equations of (112) can be
solved exactly by setting

I =-2M+ 0, + 05, Xy =2M - Qs — Oy,
23:2M—Q3—Q4, 51:P2+P3,

=, = —P?2 - P4, =, =—-P3 - P* (124)
These roots cannot be physical for all values of the charges as
for vanishing charges we must have X; = 0. However,
in the dilute gas limit, the charges are large and hence
this requirement is outside of the region of validity.
Define the excitation energy as M =M — Mppg =
M —1(01 + 0y + Q3 + Q4). We obtain the dilute gas limit
of F by substituting (124) into (86) and scaling Q; — u>Q;,
i=2,3,4and P! - uP!, while keeping M fixed. Upon
u — oo the leading order 4® in F vanishes. The next to leading
order contribution is the coefficient of 4® which is

1
Fo=50MQ>030s. (125)

which agrees with the result of [16].

D. Four charge Cveti¢-Youm black hole

Here we set all the magnetic charges and the NUT charge
to zero but allow for arbitrary electric charges [29]. We
have all =Z; = 0 but we still need to solve for all the Z;.
Instead of trying to solve the constraint equations we can
simply use that as all y; =0, the equations for the &,
derivatives (30)—(33) give the full Jacobian for the change
of variables from boost parameters to asymptotic charges.
The best thing to do is to write differential equations for the
functions Q;(2M, %;) because these are remarkably easily
solved. The solution is such that

/ 0

where the right-hand side is understood to be given
through (31). The C; are constants of integration.
Comparing with the actual parametrization reveals that

(126)
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C;=4m,1=1,...,4. The solution for the scalar charges
is then easily obtained to be

1 1
L=\ m+ 0145\ /m? + 03
1 1
oM+ O3-S/ 4 0F,
1 1
—5\/m2+Q%+5\/m2+Q%

(127)

Plugging these expressions into the formula (86) for the
F-invariant we recover the expression given in [2]. This
expression still depends on the seed parameter m. A novel
result here is that m is determined in terms of the physical
charges through the equation

M:%<\/m2+Q%+\/m2+Q%

+\/m2+Q§+\/m2+Qi).

We happily acknowledge that the right-hand side is greater
than }l (Q1 + Q) + Q3 + Qy), and hence the requirement of
solvability is M > M ppg. Note that this example illustrates
that it is in general not possible to express the F-invariant in
terms of radicals of the physical charges. Indeed, one may
rewrite (128) as a system of five polynomial equations as
M =331 x; and x7 = m? + Q7 for the five variables m?
and x;. Then one may use some algorithm to cast this system
into regular chains. The first element of the chain can be
chosen to depend only on m? and then to acquire m we need
to consider only this equation and forget about the others."
We do not present this equation here due to its length but it is
a general, fifth order polynomial equation for m2. Then, due
to the Abel-Ruffini theorem, one cannot have an expression
for m in terms of radicals of the coefficients.

(128)

VII. GENERALIZATION FOR
N'=8 SUPERGRAVITY

We have seen that in the STU case the charge matrix is
an element of 80(4,4) and the U-duality group SL(2)}® C
SO(4,4) acts on it through the adjoint representation
of SO(4,4). This representation decomposes as 28 =
111698 8. There is a general way of con-
structing invariants on 9 @ 8 @ 8 which allowed us to
identify the F-invariant. In the N' = 8 case the 3d coset

'Note that not all of the roots of this equation are solutions
to (128).
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model is Eg(g)/SO*(16) and the U-duality group is E;).
We expect that in this case the asymptotic charges of the
black hole parametrize a Lie-algebra element Q € eg and
the U-duality group E;(7) C Ejyg) just acts by the adjoint
action of Eg ). This representation decomposes as 248 =
11616 1336 56 @ 56 and hence the relevant rep-
resentation space is 133 @ 56 @ 56 with 56 replacing three
qubit states containing dyonic charges and 133 replacing 9
containing the 70 scalar charges.” The moment map from
pairs of 56 to 133 can be formulated. The construction goes
as follows. There is an E;(;) invariant antisymmetric
bilinear form on 56, let us denote this by (.,.). We may
define an e element 7'y, associated to the pair ¥, ¥, €
56 by demanding

K'(T, T\I/]\IJZ) = <\IJI,T\I/2>, v T€€7. (129)
Here, « is the Killing form on e;. Using 56 = A’C® @
A%(C8)* we may parametrize ¥,, a = 1, 2 with a pair of
antisymmetric 8 x 8 matrixes:

(x( @) = —(x(@ )i,y = _y§.7>

W, = (()7y)),

(130)

and using e; = 8lg @ A*C® we can parametrize the gen-

erators as

T = (Aij’ Zijkl)? A =0, (131)

and X, totaly antisymmetric. We refer to the appendix of

[20] for the commutation relations, the action of e¢; on 56

and the Killing form in terms of this parametrization. The
invariant bilinear product reads as

(01 W) = (x)iiyF) = (@)iy)

ij ij -

(132)

Then, using the definition (129), a short exercise reveals the
explicit form of the moment map to be

T‘I’aq’b = ((A(ab))ij7 (Z(Qb))iﬂd),
. ! in (b in,,\a
(A(ab))lj = —6«)6(“))’ y§n> + (x(b)> yﬁn))
il
48

1 a)\mn o a)_(b
(Z(ab))ijkl = 4_8 (eijklmnop(x( )> (x(b)) P — yEU)yl(d))

a)\nm,,(b) nm (@) si
((x< >) Yum + (x(h>) Ynm)0 i

(133)

Note that in this formalism we have the Cartan-Cremmer-
Julia invariant expressed as

?Recall that in the STU case 9 contained 6 scalar charges, this
is just an artifact of fixing the scalar asymptotics.
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(U, Ty T)

| =

]4E

iy 1, .. .
— ij vkl i 2 ij .kl mn ..o
= x"x Yikyjl_z(xjyij) +_96 (eijklmnopxjx XM xoP

+ eijklmnopyijyklymnyop)' (134)
The conventions of [2] are such that /, = 4¢ and ¢ is the
one that reduces to A of (80) for the STU duality frame.
The dyonic charges parametrize ¥,, ¥, € 56 generaliz-
ing w1, w,. The STU charges (58) sit inside this ¥; and
U, as

2 2
G ST

A I Sl
y(1]2) (x(l))34 (x(l))SG y%)
GO R e
Yoooo Wooor Wooio Wooll
_ L Yoioo Woior  WYorio WYoill
\/5 Yiooo WYioor Yiowo Yionl
Yioo Y101 Yiio ¥in
-P* -0y -Q, P!
1 |-00 P2 P Q0
“Val-o, PP g | 139

Pt 0, 03 -—P

with all the remaining (x(¢))¥ and yl(-?) vanishing. See
[30,31] for details. One immediately verifies that the
relation to the fermionic inner product of Eq. (67) is
simply

<\I/1’\112> = (PI[II’PI/Q)’ (136)
and that ¢ reduces to A. As the next step, we may
parametrize an element R € e; with 70 scalar charges.
Denote the corresponding 56 x 56 matrix in the adjoint
representation with R. In the STU duality frame R
should reduce to R of (90) on the eight dimensional
subspace of 56, where the pair of (135) lives, and zero
everywhere else. Then, the F invariant (92) can be
written in a manifestly E; invariant way as:

M? M
F = M* + M>N? +T<\I/1, W) + 55 (V1. R¥,)

N N? 5
+ﬂ<§[’1,R\Ijl> +%TT(R )
1
_@<‘Illv (Ty,v, — Ty,u,)V1)

1 1 2\2 4
+ o5 <§(Tr72 )2 = Te(R )). (137)
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VIII. CONCLUSIONS

In this work we managed to express the F-invariant of
Chow and Compere, and hence the Bekenstein-Hawking
entropy of general asymptoticaly flat (or Taub-NUT),
nonextremal black holes admitted by the STU model in
terms of 16 asymptotic charges. These are not all inde-
pendent: six scalar charges are functions of the mass, NUT
charge, and eight dyonic charges. However, the expression
for F with the scalar charges being explicit makes the
U-duality invariance manifest and allowed us to conjecture
the generalization (137) of the F-invariant to the Es)
invariant case. We have argued that a formula in terms of
only the physical charges requires one to find the real
solutions of a system of polynomial equations. We have
solved these equations for some known special cases and
recovered the expected expressions.

An important question left open is whether Egs. (112),
together with the condition of reality, are enough to
determine the scalar charges uniquely or one needs some
additional constraints. Also, it would be very interesting
to see a microscopic origin of this entropy formula.
There are several results along these lines including
near-extremal black holes [32—-35], neutral, nonextremal
ones [36] and the recently constructed dilute gas limit of
the general nonextreme STU black holes [16]. Another
interesting problem would be to find the uplift of the
formula for 5 dimensional finite temperature black
holes and black rings written as a qubic invariant of
Eg(6) [37]. A way of finding this formula would probably
be to recast our expression for the F-invariant in the
language of Freudenthal triple systems [38] and write it
in terms of elements of the corresponding cubic Jordan
algebra [39].

Finally, as adding a possible new twist to the black
hole/qubit correspondence, we note that the difference of
the inner and outer horizon radius is [2]

ro—r_=2vVm*+n’-ad*

il | 2 J2

which measures extremality, and is U-duality invariant as
expected. It is known that the quantity TrQ? can be
reinterpreted though (52) and (A15) as the quadratic four
qubit entanglement measure [13]. Then, so called nilpotent
states with TrQ? = 0 always correspond to extremal black
holes and they can be classified in the language of four
qubit entanglement [14]. However, we see that there are
extremal black holes corresponding to semisimple charge
vectors: these are the extremal, fast rotating black holes [2]
with F = J2. It would be interesting to see if these black
holes relate to the entanglement properties of semisimple
four qubit states.

(138)

PHYSICAL REVIEW D 93, 024036 (2016)
ACKNOWLEDGMENTS

I am grateful for Alejandra Castro for bringing my
attention to the problem. I would like to thank Alejandra
Castro, Gary Horowitz, Péter Lévay, and Joe Polchinski for
reading the manuscript and providing valuable feedback.
I am grateful for Geoffrey Compére, Victor Lekeu, and
Mario Trigiante for useful correspondence. I would like to
thank the Gordon and Betty Moore Foundation for finan-
cial support. This research was supported in part by the
National Science Foundation under Grant No. NSF
PHY11-25915.

APPENDIX A: DIFFERENT WAYS OF
SPLITTING 80(4.4) AS 83 @ (2.2.2.2)

We define the group SO(4, 4) as the set of 8 x 8 matrices
O keeping the bilinear form

(o)
G= ,
I 0

i.e.,, OGOT = G. Here, I is the 4 x 4 identity matrix. The
Lie algebra 80(4,4) is spanned by matrices T satisfying
TG + GTT = 0. We use the same parametrization of these
matrices as in [2]. We denote by E;; the 8 x 8 matrix with 1

in the (i,j) component and zeros everywhere else. The
Cartan generators are given by

(A1)

Hy = E33 + Eyy — E77 — Egg,
Hy = E33 — E4y — E77 + Egg,
H, = E|| + Ey — Ess — Eg,

Hy = Ey — Ey — Ess + Eg, (A2)
while the roots are parametrized as

Ey = Eq7 — E3g, E) = Eg; — E3q,
Ey = Eys — Eye, E3 = Ees — Enp,
EC = E4s — Eyg, E® = Ej3, — Egy,
E® = E3q — Ey, E% = Ey4 — Esg,
EP =Esj—Ey.  E" = Eg—En,
EP = Ey, — Eg, EP = Ey; — Ess,
Fo = Eqy — Egs, Fy = Eq3 — Ey3,
Fy = Esy) — Egy, F3 = Esq — Ey,
FO = Es, — Egy, F@ = Ey; — Ex,
F% = Eg — Ep, FO = E\4 — Egs,
FP' = Eys — Ey3, FP* = Eg4 — Eg,

FP = Ey, — Eg, FP = E;y — Es;. (A3)
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1. U-duality split

It is easy to see that the generators Hy, E, Fy, A =0, 1,
2, 3 form four commuting 3!, algebras:
[Hy Ez] =2Ey,  [Hp Fal =

—2F,, [En,Fyl=H,.

(A4)

The remaining 16 generators EX', EQ, FP', FQi form the
fundamental (2,2,2,2), representation of this (815%),
algebra under the adjoint action.

A vector of this representation can nicely be described by
the 16 amplitudes y;;; of a four qubit state

|
Z wilijkl), (A5)
i KI=0
transforming as
Wik F> (S0)i" (S1);7 (S2)X (S3) wirwr
So®SI®S5QS; e SL(2)X4 (A6)

under the action of the group SL(2)** generated by the
algebra (A4). In terms of the Lie algebra generators one
writes this vector as

U = woo0E™ + woon EZ + wo010E® — woor ET
+woi00EQ — woi01 E —yorn E
—v1000F 2 + w1001 FT 4+ y1010F" + wion FO
+wiooF” + w0 FS 4+ yinoF S =i F™,

(A7)

P3
—WoroE

transforming as (A6) under ¥ + g¥g~!

2. Sigma model split

We can realize the split 8I5* @ (2,2,2,2) in a different
way suited to writing the timelike reduced STU action (7)
as a sigma model on SO(4,4)/SL(2)**. We may introduce
the symmetric bilinear form

n = diag(-1,-1,1,1,-1,-1,1,1), (A8)

and look for the subgroup SO(2,2) x SO(2,2) = SL(2)**
keeping this fixed. This subgroup is generated by the —1
eigenspace of the involution

" = ynT7y. (A9)
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This eigenspace is spanned by the 12 generators

=EP' 4 FP',
(A10)

kan=Ey—F,, k% =F%4F2

while the 41 eigenspace is spanned by

Hy, pr=Er+ Fy,
pQ =E% —F%  pP = EP' P (A11)

To see that this indeed realizes a §I2X4 @ (2,2,2,2) split

define [40,41]

H =1)2
Hy = 1/2(k% + k1 — k2 — k2s),
Hy = 1/2(k% — k9 + k% — k),
Hy = 1/2(k — k2 — k2 + k),
E, = 1/4(=ko + ky + ky + ky + k' + k" + kP 4 kP,

(- K9+ — k91 — Q> — kQa)’

(

(

(

(=
Ey = 1/4(k -

(

(

(

(=

(=

(-

ki + ky 4 ks + kP — kP — kP kP,
Ey = 1/4(ko+ ky — ky + ky — k2" + kP — kP* + kP,
E, = 1/4(ko+ ky + ky — ks — kP — kP + kP + k™),
Fy=1/4(ky— ki — ky — ky + kP + kP + kP + kP,
F2 =1/4 k0+k1 —ky — kg 4 kP — kP — kP 4 kP,
= 1/4(=kg — ky + ky — k3 — kP + kP — kP + kPY),
= 1/4(—kog — ky — ky + k3 — kP — kP* + kP + k7).
(A12)
One easily verifies that
[Hy,E)) =2E,,  [H) Fj))=-2F, [E;, F,]=H,,
(A13)
with J = 1, ..., 4 and all other commutators vanishing. We

can write an element of the +1 eigenspace of * in terms of
four qubit amplitudes y;j;; transforming as in (A6) under

this new SL(2)*“. It reads explicitly as
U = \iJHAHA—l-\iJPApA—|—\ilQ1pQ’—|—\i/p1pP[, (A14)

where
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li’HO = Yooo1 T ¥oo10 + Woi00 — Yoii1 — ¥io00 T ¥iot1 + ¥iior T Witios
‘i’H, = o001 + Wo010 — Wo100 T Wort1 + ¥1000 — Wio11 T Wito1 + ¥ii10s
‘i’HQ = Wo001 — ¥o010 T Woro0 T Wort1 + ¥i000 T ¥Wio11 — ¥iio1 + ¥ii10s
‘I’H3 = =Wo001 + ¥oo10 T Woro0 + Wort1 + Wio00 T ¥io11 T Wito1 — ¥ii10s
\ijpo = =Woo00 + Woor1 T Woror + Worto =~ ¥ioo1 —~ Y1010 — ¥1100 T Wii11s
\ilp] = —Wo000 T Woor1 — Yoior — Yori0 T ¥ioo1 + ¥io10 — ¥it00 T ¥iiiis
\ilpz = —Wo000 ~ ¥ooi1 T Woior — Woiio T ¥ioo1 — ¥io10 + ¥ii00 + Wiii1s
W, = —=Woooo — Woor1 — Wotor + Yoito — ¥ioot + Wioto + Wiioo + Wiin1e
Vo, = 2(Wo100 — W1o11)>

s

)
‘I’QZ - 2(W0010 - l//1101)
i’Q; = 2(1,110001 - ll’mo)

)

Vo, = 2(y1000 = Worr1)-

Wp1 = yoo00 + Woorr — Woro1 — Yoi10 — ¥ioo1 — ¥ioto T ¥Wii00 + ¥iin1s
Wp2 = Woo0o — Woorr + Woto1 — Yorio — ¥ioot + Wioto — Wiio0 + ¥iin1s
Wps = Woooo — Woorr — Woto1 + Woro + ¥ioor — Wioto — V1i00 + ¥iii1s

Wpt = =Wooo0 — Woor1 — Woiol — Woi10 — Y1001 — ¥io010 — ¥1100 — Vill1- (AIS)

Note that the SL(2)** invariant Tr¥? is a quadratic measure
of four qubit entanglement [8].

3. The third split

The previous two splits are related by triality of 80(4,4)
and hence there must be one more inequivalent splitting of
the algebra. Indeed this split is given by the 1 eigenspaces

APPENDIX B: EXPLICIT COVARIANTS FOR
STU BLACK HOLES

Here we list the explicit forms of the covariants needed to
calculate the F-invariant when the scalar asymptotics are
set such that X; =0 and Y, = 1.

of the involution 2 - 0 0 0 0
-=Z -Z 0 0 0 0
T — l’]zTTl’]2 <A16)
’ 0 0 > -5 0 0
R = = , (B1)
where 0 0 -5 -X 0 0
0 0 0 0 ¥, I
0 -
7 = (6' ® e >’ (A17) 0 0 0 0 —=3 —23
0 e® ¢
where
1
o ( 0 1)' Y 0 0
-1 0 Kp=| 0o k¥ o | (B2)
3
The —1 eigenspace is 12 dimensional and spans 80;* 0 0 ng)
algebra. The +1 eigenspace forms the representation
(2,2,2,2) under this. We do not need this split in the
following hence we omit the explicit form of the generators. where
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W _ ( —03 - 03— (P")? — (P*)? —Q4P! +Q3P2+Q2P3—Q1P4>
PP 0P P - 0P -0 - 0F - (P - (P )
K(z)_( -071 - 03— (P?)> = (P*)? Q3PI—Q4P2+Q1P3—Q2P4)
o 1_ 2 3 _ 4 N2 _ 2 _ (pl\2 _ (p3)2 ’
Q3P — OQ4P" + O1P° = QP 0;—0;—(P)* = (P°)

0 _ ( —01 =03 = (P = (P*)>  QoP' + O\P* = Q4P - Q3P“> (B3)
P \QP £ 0P - QP - 03Pt —0% - 03— (P')? - (P?)
kY 0 o
Kyn=| o & o [. (B4)
()
0 0 K
where
K<1)_(QlPl—szz—Q3P3+Q4P4 2(0,04 + P?P%) >
: ~2(0,05 + P'P*) —0\P! + QsP? + 03P = Q4P )
K2 (_lel + QP2 = Q3P + QuP* 2(0,04 + P'P?) >
: ~2(010; + P*P*) QP! = Q1P + 03P = 0, P* )
¥ = <—Q1P1 = OQyP* + Q3P + Q4 P* 2(0304 + P'P?) > (B5)
: ~2(010, + P*P*) QP! + Q2P = 03P = 0, P* )
finally
kY 0 0
Kn=| 0o k% o [. (B6)
o o Kk
where
) _ (—lel + 0,P* + Q3P — O, P* 2(0,05 + P'P?) >
2 = ]
—-2(0104 + P*P?) Q\P' = 0,P* — Q3P° + Q4 P*
K<2)<Q1P1—Q2P2+Q3P3—Q4P4 2(0,05 + P*P*) >
- ~2(0:04 + P'P?) —0\P' + QyP = OsP* + Q4P* )
& = <Q1P1+Q2P2—Q3P3—Q4P4 2(0,0, + PPPY) > (B7)
” ~2(0;04 + P'P?) —0\P' = P + Q3P + Q4P )
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