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Relic gravitational waves (RGWs) generated in the early universe form a stochastic GW background,
which can be directly probed by measuring the timing residuals of millisecond pulsars. In this paper, we
investigate the constraints on the RGWs and on the inflationary parameters by the observations of current
and potential future pulsar timing arrays. In particular, we focus on effects of various cosmic phase
transitions (e.g., eþe− annihilation, QCD transition, and supersymmetry breaking) and relativistic free-
streaming gases (neutrinos and dark fluids) in the general scenario of the early universe, which have been
neglected in the previous works. We find that the phase transitions can significantly damp the RGWs in the
sensitive frequency range of pulsar timing arrays, and the upper limits of the tensor-to-scalar ratio r increase
by a factor ∼2 for both current and future observations. However, the effects of free-steaming neutrinos and
dark fluids are all too small to be detected. Meanwhile, we find that, if the effective equation of state w in
the early universe is larger than 1=3, i.e., deviating from the standard hot big bang scenario, the detection of
RGWs by pulsar timing arrays becomes much more promising.
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I. INTRODUCTION

Inflation is the most popular scenario of the extremely
early universe [1–3]. In addition to elegantly solving the
flatness puzzles, the horizon puzzles, and the monopole
puzzles in the hot big bang universe, inflationary models
predict the primordial density fluctuations (scalar pertur-
bations) with the nearly Gaussian distribution, and the
nearly scale-invariant power spectrum [4], which have been
strongly supported by the recent observations on the
anisotropies of cosmic microwave background (CMB)
radiation [5–7], and the distributions of the galaxies in
various large-scale structure observations.
In the inflation scenario, a stochastic background of relic

(primordial) gravitational waves (RGWs) in full frequency
range was inevitably produced due to the superadiabatic
amplification of zero-point quantum fluctuations of the
gravitational field [8], which provides the unique window
to study the physics in the early universe before the big
bang nucleosynthesis (BBN) stage. Nowadays, the detec-
tion of RGWs in different frequencies has been carried out
by different methods. In the lowest frequency range with
f < 10−15 Hz, it can be detected by their imprints in the
CMB anisotropies in temperature and polarizations [9]. The
recent Planck observations on the CMB temperature and
E-mode polarizations give the tightest constraint on the
tensor-to-scalar ratio r < 0.11 [7], which is consistent with
the result r < 0.12 obtained from the joint analysis of
BICEP2/Keck Array and Planck B-mode polarization data

[10]. In the near future, one anticipates that the detection
limit can arrive at r ¼ 0.01 for various ground-based or
balloon-borne experiments (including Keck/BICEP3,
POLARBEAR, SPT-3G, ACTPOL, CLASS, QUBIC,
QUIJOTE, QUIET, Simons Array, EBEX, PIPER,
SPIDER et al.). While for the space-based missions, such
as CMBPOL, LiteBird, COrE, PRISM, PIXIE, the detec-
tion limit can be r ¼ 0.001 [11].
In the high frequency range, i.e., f ∈ ð10−4; 104Þ Hz,

RGWs are detected by the ground-based and space-based
laser interferometer gravitational-wave observatories. So
far the most stringent bound is obtained by the joint
analysis of the 2009–2010 LIGO and Virgo data, which
gives energy density of RGWs ΩgwðfÞ < 5.6 × 10−6 at
frequency band spanning 41.5–1726 Hz [12]. In the future,
the detection limits at f ∼ 100 Hz are expected to be ∼10−9
for the second-generation gravitational-wave detectors,
such as AdvLIGO, AdvVirgo, KAGRA, and so on [13].
For the third-generation detectors, such as the Einstein
Telescope, this limit could arrive at ∼10−11 [14]. The space-
based detectors are sensitive to the lower-frequency gravi-
tational wave (about 0.1 mHz to 1 Hz). For the future
eLISA/NGO mission, the detection ability is hopeful to be
∼4 × 10−10 at f ¼ 4 mHz [15]. In addition, the limit can be
even improved by 5–10 orders by BBO, DECIGO [16], and
ASTROD [17] in the far future.
In this paper, we shall focus on the RGWs in the

median frequency range. In the frequency band
f ∈ ð10−9; 10−7Þ Hz, the gravitational waves are probed
through the pulsar timing arrays (PTAs). It is well known
that, the millisecond pulsars are the very stable clocks. The*wzhao7@ustc.edu.cn
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tiny timing residuals of these pulsars are caused by some
intrinsic or environmental noises, as well as gravitational
waves [18]. It was realized that the timing residuals from an
array of pulsars could be analyzed coherently to separate
GW-induced residuals from other effects [19,20]. So, it
provides the excellent way to detect RGWs in the median
frequency range. Nowadays, these observations are carried
out by three groups (PPTA, EPTA, NANOGrav). Recently,
all teams released their latest timing results [21–23], and the
tightest constraint is obtained by the PPTA team; they placed
a 95% upper limit on the strain amplitude (at a frequency of
yr−1) in the power-law model of Agw < 1.0 × 10−15 for
spectral index −2=3 [21]. These bounds could be signifi-
cantly improved by the potential observations of future
International Pulsar Timing Array, Five-hundred-meter
Aperture Spherical Radio Telescope (FAST) in China, and
the planned Square Kilometer Array (SKA) projects [24].
These upper limits of GW background have also been
applied to constrain the RGWs and on the inflation physics
[22–27]. In all these previous works, a simple evolution
model is used to calculate the RGW power spectrum, where
the effects of free-streaming fluids and various cosmic phase
transitions are neglected. However, it was known that, the
relativistic free-streaming gas (such as the neutrinos in the
Universe) gives rise to an anisotropic term in the evolution
equation of gravitational waves, which can significantly
damp the RGW spectra at f > 10−16 Hz [28,29]. Another
effect is caused by the successive changes in the relativistic
degrees of freedomduring the radiation-dominant stage, i.e.,
the QCD transition, eþe− annihilation, the electroweak
phase transition, and so on. During these transitions, the
evolution of the scale factor was altered compared with the
standard radiation-dominant stage, which left the imprints in
the RGW spectrum at f > 10−10 Hz [30–32]. So, both
effects can change theRGWs at themedian frequency range.
In this paper, we shall investigate in detail the effects of free-
steaming gas and cosmic phase transitions on the RGW
spectrum in a general cosmological scenario. In particular,
we shall focus on their influences on the detection of RGWs
by the current and future PTAs and the corresponding
cosmological implications.
The outline of this paper is as follows. In Sec. II, we

introduce the RGWs in the accelerating universe by
considering the effects of free-steaming gas, cosmic phase
transitions, and an unusual equation of state. In Sec. III and
Sec. IV, we discuss the constraints on the inflationary
parameters by the current and future PTA observations.
Section V summarizes the main results of this paper.

II. RELIC GRAVITATIONAL WAVES

The action of gravitational wave hij is [33]

S ¼
Z

dτd3x
ffiffiffiffiffiffi
−ḡ

p �
−ḡμν

64πG
∂μhij∂νhij þ

1

2
Πijhij

�
; ð1Þ

where ḡμν ¼ diagf−a2; a2; a2; a2g is the Friedmann-
Lemaître-Robertson-Walker metric, with a the scale factor,
G the Newtonian gravitational constant, and τ the con-
formal time. The term Πij is anisotropic stress, which
includes the contribution of a large-scale magnetic field
[34], free-streaming relativistic particles (e.g., neutrinos
after their decoupling) [28,35], and so on.
By applying the Euler-Lagrange equation to (1), we can

obtain the equation of motion for hijð~x; τÞ. Decompose the
perturbation hijð~x; τÞ and Πijð~x; τÞ by Fourier transforma-
tion, then we obtain the equation of evolution for the mode
with conformal wave number k,

h00kðτÞ þ 2
a0

a
h0kðτÞ þ k2hkðτÞ ¼ 16πGa2ðτÞΠkðτÞ; ð2Þ

where the prime ( 0) denotes derivative with respect to τ and
Πk is the Fourier component of Πijð~x; τÞ.
The power spectrum of RGWs at τ is defined by [33]

Phðk; τÞ ¼ 64πG
k3

2π2
jhkðτÞj2; ð3Þ

while the initial power spectrum (spectrum at τ ¼ 0) is
usually parametrized by a power-law form [36]

Phðk; 0Þ ¼ rARðk0Þ
�
k
k0

�
nt
; ð4Þ

where r is the tensor-to-scalar ratio, and ARðk0Þ is the value
of the scalar power spectrum at k ¼ k0, with k0 a pivot
number and nt the power index of the tensorial spectrum.
Throughout this paper, we use k0 ¼ 0.002 Mpc−1, and
ARðk0Þ ¼ 2.371 × 10−9 (this result is obtained by con-
verting AR ¼ 2.139 × 10−9 [7] at k ¼ 0.05 Mpc−1 into that
at k ¼ 0.002 Mpc−1).
The tensor-to-scalar ratio r is currently constrained to be

r < 0.11 (95% C.L.)[7]. For de Sitter inflation, the power
spectrum becomes flat when themodes leave the horizon, so
nt ¼ 0 [37]. For slow-roll inflation, due to the null energy
condition, nt < 0 [38], but noncanonical inflation or the
extension of the slow-roll model may predict nt > 0 [39].
It is convenient to convert the power spectrum into a

dimensionless spectrum of energy density [33]

Ωgwðk; τÞ ¼
1

ρc

dρgw
d ln k

¼ k2Phðk; τÞ
12a2ðτÞH2ðτÞ ; ð5Þ

where ρgw is the energy density of gravitational waves, and
ρc ¼ 3H2=ð8πGÞ is the critical energy density of the
Universe (we set c ¼ 1). This expression is equivalent to
Eq. (7) in our previous work [24].
Throughout this paper, we use the standard model of

cosmology. The cosmological parameters adopted in
this paper are listed here: Ωm ¼ 0.308, zeq ¼ 3365,
current conformal time τ0 ¼ 1.41 × 104 Mpc, present
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scale factor aðτ0Þ ¼ 1, current Hubble parameter
Hðτ0Þ ¼ 67.8 km s−1 Mpc−1, and the reduced Hubble
parameter h ¼ H=ð100 km s−1Mpc−1Þ [7].
Because the equation of evolution (2) is difficult to be

solved analytically (see [40], for example), it is useful to
introduce the transfer function Tðk; τÞ as follows [41]:

Tðk; τÞ ¼ hkðτÞ
hkð0Þ

; ð6Þ

where hkð0Þ is the initial amplitude of the mode with wave
number k. Now all the effects of evolution in the post-
inflation stage are attributed to the transfer function and we
split the transfer function into several parts to account for
different damping factors [33,42]

Tðk; τÞ ¼ Tzðk; τÞ × TPTðk; τÞ × Tνðk; τÞ × TEOSðk; τÞ;
ð7Þ

where Tz represents the transfer function of the cosmic
expansion (the reason of cosmological redshift z), while
TPT is for cosmic phase transitions in the hot universe, Tν is
for free-streaming particles (e.g., neutrinos ν) and TEOS is
for an unusual equation of state (EOS) before the
BBN epoch.
Inserting (3), (4), and (6) into (5), the present spectrum of

energy density becomes

Ωgwðk; τ0Þ ¼
rk2ARðk0Þ
12H2ðτ0Þ

�
k
k0

�
nt
× T2ðk; τ0Þ: ð8Þ

From (7) and (8), we could see that the transfer functions
determine the strength of the RGW spectrum to some
extent and that they are closely related to the physics after
inflation. Now we would like to discuss the transfer
functions one by one.

A. RGWs in the accelerating universe

RGWs were stretched out of the horizon during the
inflationary epoch and reentered the horizon in the follow-
ing epochs of decelerating expansion and recent accelerat-
ing expansion [3,37].
When stretched out of the horizon, RGWs started to

freeze out and the amplitude kept constant, because out of
the horizon there are no anisotropic tensors to damp the
RGWs even when there are some particles whose free path
may be comparable to the horizon [3,28]. When the
Universe exited inflation, the horizon started to increase
and the modes with high k (thus short wavelength) started
to reenter the horizon. The criterion of horizon crossing is
aðτÞHðτÞ ¼ k [43]. After reentering the horizon, RGWs are
mainly damped by the expansion of the Universe.
According to (2), when the anisotropic term Πij is
neglected, the amplitude of modes in the inner part of
the horizon [aðτÞHðτÞ ≪ k] would satisfy

hkðτÞ ≈
hkð0Þ
aðτÞ : ð9Þ

So, the evolution of RGWs is closely related to the history
of expansion. Turner et al. [41] formulated the transfer
function in the decelerating expansion by fitting it to the
numerically integrated results, while Zhang et al. noticed
the effect of accelerating expansion [44,45]. Now the
transfer function in the expanding universe is the product
of TRM (radiation and matter dominated era) and TΛ (Λ
dominated era), or precisely [41,44–47]

Tzðk; τ0Þ ¼
3Ωmj1ðkτ0Þ

kτ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.0þ 1.36

k
keq

þ 2.50
�

k
keq

�
2

s
;

ð10Þ
where keq ¼ 0.073Ωmh2 Mpc−1 is the wave number cor-
responding to the mode that entered the horizon at the
equality of matter and radiation, and j1ðkτ0Þ is the spherical
Bessel function of the first kind.
In Fig. 1, we plot the energy density spectrum of RGWs

by only considering the damping effect of the cosmic
expansion, where different spectral indices nt are consid-
ered. For the comparison, we have also plotted the current
and potential constraints/detection of RGWs by various
observations.

B. Effects of cosmic phase transitions: eþe−
annihilation, QCD transition, and SUSY breaking

When the hot universe gradually cooled down in the
radiation-dominant era, massive particles became less

FIG. 1. The energy density spectrum of RGWs ΩgwðfÞ for
different inflationary models, where we only consider the damp-
ing effect caused by the cosmic expansion in the standard hot big
bang universe. In this figure, we also show the current constraints
on RGWs by different observations (red lines) and the potential
constraints by future observations (blue lines). The details of
these constraints can be found in the main text.
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relativistic and contributed less to the energy density of
radiation. Typical cases are the breaking of supersymmetry
(SUSY) and the combination of quarks into hadrons (phase
transition of quantum chromodynamics, i.e., QCD phase
transition). Besides that, the annihilation of electrons and
positrons also induced big change in the energy density of
radiation. Here, we generally call all these three effects and
similar effects that could induce the change of energy
density of radiation cosmic phase transition.
The cosmic phase transitions change the energy density

of radiation, thus, the Hubble parameterHðτÞ ¼ a0=a2, and
affect the amplitude of RGWs through Eq. (9). The transfer
function of phase transitions is [30,31]

TPTðk; τ0Þ ¼
�
g⋆ðTkÞ
g⋆0

�1
2

�
g⋆sðTkÞ
g⋆s0

�
−2
3

; ð11Þ

where g⋆ðTkÞ is the effective degree of freedom (here the
effective degree of freedom is obtained by converting all
particles into effective photons, see Chap. 3.3 in [2]) for the
total energy density and g⋆sðTkÞ is the effective degree of
freedom for entropy density at temperature Tk, while g⋆0
and g⋆s0 are the present values. The parameter Tk is the
temperature at which the mode k reenters the horizon.
By use of the condition of horizon crossing aH ¼ k and

the conversation of entropy g⋆sa3T3 ¼ constant, we can
convert temperature into wave number

k ¼ Hðτ0ÞTðτ0Þ
Tk

�
g⋆s0
g⋆s

�1
3

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm

g⋆s
g⋆s0

�
Tk

Tðτ0Þ
�

3

þ Ωm

1þ zeq

g⋆
g⋆0

�
Tk

Tðτ0Þ
�

4

þ ΩΛ

s
;

ð12Þ
where Tðτ0Þ ¼ 2.7255 K is the current CMB temperature
[48] and zeq is the redshift at ΩmðτeqÞ ¼ ΩrðτeqÞ. We can
further convert wave number into frequency, k ¼ 2πf.
The transfer function of phase transitions depends on not

only the temperature but also the physical characteristics of
particles, such as mass, degree of freedom and the statistical
features (bosons or fermions), and so on. We follow the list
of particles in [30] but update the data according to [49].
The temperature when particles decouple from the others is
also very important. Here we adopt instantaneous decou-
pling of neutrinos from the radiation at T ¼ 1.5 MeV, and
that electrons annihilate with positrons immediately at T ¼
0.1 MeV [50]. The phase transition of QCD is treated as a
first order transition at 155 MeV [51].

Figure 2 shows the square of transfer function T2
PTðk; τ0Þ

at different temperature. When the cosmic phase transitions
are considered, the energy density spectrum of RGWs can
be reduced by about 60% at 102–105 MeV and by about
20% at 0.1–10 MeV.When we include the SUSY particles,
the spectrum could be damped as much as 70% at
T > 106 MeV. However, SUSY breaking is beyond the
detecting ability of PTAs (52 ∼ 3.9 × 103 MeV). So we
will not consider SUSY particles later.

C. Effects of relativistic free-streaming gases:
Neutrinos and dark fluids

1. Neutrinos

Now, let us discuss the anisotropic term in (2). As the
cosmic magnetic field is very small, we will ignore the
magnetic sources [34]. When neutrinos decouple from
the rest of radiation, the free streaming of neutrinos
contributes to the anisotropic stress ΠkðτÞ, which plays
the role of friction in the equation of motion and damps the
amplitude of RGWs, so it is necessary to study the damping
effect of neutrinos.
In very high precision, the transfer function of relativistic

free-streaming particles is [33,35]

Tνðk; τ0Þ ¼
15ð324135000 − 48118000fν þ 3152975f2ν − 55770f3ν þ 14406f4νÞ

343ð15þ 4fνÞð50þ 4fνÞð105þ 4fνÞð180þ 4fνÞ
; ð13Þ

FIG. 2. The dependence of T2
PTðk; τ0Þ on temperature: The solid

line (black) is the case without SUSY particles, while the dashed
one (red) is the case containing them. On the dashed line, from
right to left, there are three typical steps, which are the evidence
of breaking of SUSY (∼106 MeV), phase transition of quarks
(∼155 MeV), and the annihilation of eþe−ð∼0.1 MeVÞ. The
figure is plotted without considering the dark fluid (introduced in
Sec. II C 2).
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where fν is the fraction of free-streaming particles’ energy
density over the total energy density. This formula applies
for modes satisfying

ffiffiffi
2

p
k ≫ keq. When k decreases and

becomes comparable with keq, this formula does not apply
anymore. However, as k decreases, the transfer function
will gradually increases to 1 [52].
Because the sensitive band of PTAs is 10−9–10−7 Hz,

which is much higher than keq, we would not consider the
behavior of free-streaming neutrinos near keq, thus (13) is
enough for us and we take it as the transfer function of
free-streaming particles.
When there are neutrinos only, fν is the fraction of

energy density of free-streaming neutrinos. Before their
decoupling from the radiation, fν ¼ 0, thus Tνðk; τ0Þ ¼ 1,
so neutrinos could not damp the RGWs. After the decou-
pling, fν started to evolve with the Universe and depend on
the temperature.
In Fig. 3, we plot the fraction of neutrinos’ energy

density. We find that fν can be roughly divided into two
constant stages fν ¼ 0.491 with T2

νðk; τ0Þ ¼ 0.589 (before
eþe− annihilation) and fν ¼ 0.405 with T2

νðk; τ0Þ ¼ 0.645
(after eþe− annihilation). Therefore, our analysis is con-
sistent with that in [28,33].
It should be noted that the dip at log10ðT=MeVÞ ∈

ð−1.2;−1.0Þ and the spike at log10ðT=MeVÞ ∈
ð−1.0;−0.6Þ are artificial signatures. They are due to the
imperfect deal with annihilation (we assume instantaneous
annihilation here, which is not the real situation). The same

artifacts appears in [30], while [53] explains this in its
Appendix C.
Figure 4 plots the transfer function of cosmological

redshift, neutrinos, and cosmic phase transitions.
Apparently, Tz dominates all the damping effects in a
wide range from 10−15 to 104 Hz, while neutrino streaming
would decorate the spectrum in the low frequency band
(<10−10 Hz) and the cosmic phase transitions modify
RGWs in the high frequency range (>10−12 Hz). As we
could see, phase transitions show their importance espe-
cially around 10−8 Hz, which well resides in the sensitive
band of PTAs.

2. Dark fluids

In the standard model of particle physics, there are three
species of neutrinos. But when we consider the non-
instantaneous decoupling of neutrinos, the effective num-
ber of neutrino species Neff ¼ 3.046 [54]. The current
constraint from CMB and matter power spectra is Neff <
3.376 (95% confidence) [55], while the BBN observations
give Neff < 3.41 (95% confidence) [56], so tension is still
possible between theory and observation. Weinberg [57]
proposed massless bosons to relax the tension and found
ΔNeff ¼ 0.39 for bosons decouple at T > 100 MeV. Thus,
the current CMB observation can not exclude the existence
of extra neutrinolike particles.
Here, we assume the existence of extra fermions to

address the ΔNeff problem. Since massive particles freeze
out at low temperature and do not contribute to Neff , we
would like to assume the particles are massless. Because of
the constraints on Neff , it is well justified to set the physical
degree of freedom of dark fluid to be two (one for particle,

FIG. 3. The fraction fν of free-streamings’ energy density over
the total energy density: The black curve is the case without dark
fluid, while the red, green, and blue ones contain dark fluids
which decouple at 10, 102, and 103 MeV, respectively. Neutrinos
start to decouple at 1.5 MeV and eþe− annihilate at 0.1 MeV,
while the phase transition of QCD happens at 155 MeV. When
there are neutrinos only, the annihilation at T ¼ 0.1 MeV splits
fν into two stages fν ≈ 0.491 and 0.405. When dark fluids are
included, fν increases and has more stages: fν ≈ 0.13 for T ∈
ð1.5; 155Þ MeV and fν ≈ 0.025 for T ∈ ð155; 1000Þ MeV.

FIG. 4. The compilation of transfer functions from Tzðk; τ0Þ,
Tνðk; τ0Þ, and TPTðk; τ0Þ. The grey line is for Tz, while the red
one is for the product of Tz and Tν and the dotted blue one
combines all the three damping factors. The shaded area denotes
the sensitive band of pulsar timing arrays. No SUSY particle is
considered here.
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the other for antiparticle), then ΔNeff ¼ 1. To consider the
possibilities of different particles, we shall consider differ-
ent decoupling temperature. Since the PTA band f ∈
ð10−9; 10−7Þ Hz corresponds to 52 ∼ 3.9 × 103 MeV, we
consider three decoupling temperature 10, 102, and
103 MeV in our discussion. As the extra particles can be
any possible particles beyond current observations, we
simply call them dark fluids (DFs).
Figure 3 shows the fraction of free-streaming particles

including dark fluid. When we include DF, fν becomes the
fraction of all free-streaming particles’ energy density. Both
neutrinos and dark fluid contribute to fν. Rich features
occur in the fraction fν of free-streaming particles. In
Fig. 3, we consider three different decoupling temperatures
(T ¼ 10, 102, and 103 MeV) of dark fluid. Besides the two
stages fν ≈ 0.476 with T2

νðk; τ0Þ ¼ 0.599 and fν ≈ 0.563
with T2

νðk; τ0Þ ¼ 0.547 separated by annihilation of eþe− at
T ¼ 0.1 MeV, one more stage (fν ≈ 0.13, T2

νðk; τ0Þ ¼
0.867) appears when dark fluid decouples at 10 or
102 MeV, and a third stage [fν ≈ 0.025 with T2

νðk; τ0Þ ¼
0.973] occurs when dark fluid decouples at 103 MeV.
Thus, dark fluid would damp the RGWs at higher
frequency.
By use of the expression of spectrum (8), the transfer

function (10), (11) and (13), we can plot the energy density
spectrum of RGWs for given r and nt.
Figure 5 shows the spectrum of energy density for

r ¼ 0.1, nt ¼ 0. In this plot we could see the damping
effects caused by cosmological redshift, the cosmic phase
transitions, and the free-streaming neutrinos/DF. Neutrinos
damp the spectrum at 10−16 < f < 10−10 Hz, beyond the
sensitive band of PTAs; thus, PTAs cannot detect any relic
signals from neutrinos. The cosmic phase transitions
mainly damp the spectrum at f > 10−9 Hz by an amount
of 60%. The big jump at f ∼ 10−8 Hz is the signature of the
QCD phase transition (T ¼ 155 MeV).
In Fig. 5, we find that DFs have three kinds of signatures

in the spectrum. First, steps occur after their decoupling
from the radiation. Second, the spectrum at f < 10−10 Hz
is damped more. Finally, the spectrum at f > 10−8 Hz is
raised.
At the moment of decoupling (T ¼ 10, 102, 103 MeV),

big jumps occur as the free-streaming dark fluids start to
damp the spectrum. In the range of the decoupling of
neutrinos (10−16–10−10 Hz), the appearance of dark fluid
increases the fraction of free-streaming particle and, thus,
damps the spectrum more. This result is consistent with our
intuition. But at higher frequencies (f > 10−8 Hz) dark
fluids raise the spectrum when compared to the case
without dark fluids.
The reason why dark fluids raise the spectrum at high

frequencies resides in the massless feature of dark fluid. We
can clearly see this from the transfer function of the phase
transition (11). Massless particles can keep relativistic at
low temperature and always contribute to the effective

degree of freedom for energy and entropy density. So the
addition of dark fluids increases the value of g⋆s0 and
g⋆sðTkÞ. As g⋆ðTkÞ ≈ g⋆sðTkÞ for all Tk (see Chap. 3.3 in
[2]), then

TPTðk; τ0Þ ≈
�
g⋆sðTkÞ
g⋆s0

�
−1
6

: ð14Þ

At high temperature (which corresponds to high frequency)
g⋆sðTkÞ ≫ g⋆s0, so the increase of g⋆s0 dominates and
makes TPT increase a bit.

D. Effects of general equation of state

After inflation, the Universe should experience a period
of reheating to create the matter and dark matter we see
today. Some time later, dark matter should decouple from
the rest of the particles [3]. It is suspected that this epoch
before BBN can be dominated by massive particles and
cause deviation from ideal fluid [33,58]; thus, unusual EOS
may occur. EOS could deeply change the shape of spectrum
of energy density through the scale factor as we would
see below.
The relation between the scale factor and conformal time

could be generally parametrized by

a ∝ τ1þβ; ð15Þ

FIG. 5. The energy density spectrum of RGW including
Tzðk; τ0Þ, TPTðk; τ0Þ, and Tνðk; τÞ. In this figure, r is chosen
to be 0.1 and nt ¼ 0. The top grey line is the spectrum
considering the effect of cosmological redshift Tzðk; τ0Þ only,
while the pink curve includes free-streaming neutrinos Tνðk; τ0Þ
and cosmic phase transitions TPTðk; τ0Þ. Besides damping from
Tzðk; τ0Þ, TPTðk; τ0Þ, and Tνðk; τ0Þ, the black, green, and the
dashed blue line also include the effects of dark fluid, which is
assumed to decouple at 10, 102, and 103 MeV respectively. The
shaded area denotes the sensitive band 10−9–10−7 Hz of PTAs.
(In this plot, we do not consider SUSY particles.)
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where β is related to the EOS parameter w through

β ¼ 1 − 3w
1þ 3w

; with w ¼ p
ρ
: ð16Þ

For the era of radiation domination, w ¼ 1
3
followed by

a ∝ τ, and for the era of matter domination, w ¼ 0 and
a ∝ τ2. Since the EOS before BBN (∼1 MeV) is still not
clear, in the general scenario, we set w as a free parameter,
which represents the effective average EOS in this era.
The transfer function caused by general EOS is [25]

TEOSðk; τ0Þ ¼
�

ab
aðτ0Þ

�
β
�
Hb

k

�
β

for k > kb; ð17Þ

where ab is the scale factor at the BBN epoch (here we
chose the epoch at T ¼ 1 MeV without losing generality
[2]) andHb is the Hubble parameter at the BBN epoch. The
lower boundary k > kb is determined by the fact that
only those modes entered before Tb are affected by unusual
EOS.
Note that the sensitive band of PTA, i.e., 10−9–10−7 Hz,

corresponds to 52 ∼ 3.9 × 103 MeV, which is above the
lower boundary of the BBN energy scale; therefore, unusual
EOS could affect the detection of PTAs. In this sensitive
frequency range, the tensorial index nt and EOS w are
degenerate. To see this clearly,we put the transfer function of
the cosmic expansion Tzðk; τ0Þ and that of unusual EOS
TEOSðk; τ0Þ into the total transfer function. In the PTA
sensitive band, kτ0 ≫ 0; then from the spectrum (8) we find

ΩgwðkÞ ∝ knt−
2ð1−3wÞ
1þ3w . The observations are influenced by the

strength of RGWs, so they canmerely determine the total tilt
of ΩgwðkÞ, which is a combination of nt and w.
Figure 6 shows that the spectrum of energy density

undergoes the cosmic expansion and different EOS. For the
unusual EOS with w > 1=3, the energy density spectrum of
RGWs is strongly intensified, while the matterlike EOS
(w ¼ 0) damps the RGWs greatly. It is clear that, when the
general EOS is considered, the spectrum at higher fre-
quency is amplified or damped more than that at lower
frequency.

Table I lists the exact strength of Ωgw at three different
frequencies. For the extremely stiff EOS with w ¼ ∞
(w ¼ 1), the strength could be amplified at least 104

(102) times for the sensitive band of PTAs. For the mild
EOS w ¼ 0.6 [12,58], Ωgw could be amplified 9 times at
10−9 Hz, and as far as 130 times at 10−7 Hz. While a
matterlike EOS (w ¼ 0) may damp the strength by 4 orders
of magnitude.

III. CONSTRAINTS ON RGWS BY CURRENT
PULSAR TIMING ARRAYS

From Fig. 5 and Fig. 6, we have seen that many damping
effects such as cosmological redshift, phase transition of
QCD, the free-streaming dark fluids, and the unusual EOS
are well in the sensitive band of PTAs. Thus, PTAs provide
the good probe into these interesting physics. Now let us
turn to the detection of RGWs through PTAs.
RGWs could weakly stretch or suppress the space,

leading to the change of time of arrival for electromagnetic
pulses from pulsars. Difference of time of arrival could be
accumulated to form considerable timing residuals. By
analyzing the timing residuals carefully it is possible to
detect RGWs.
In practice, the characteristic strain hcðfÞ is more

convenient for analysis and can be related to Ωgw by [59]

Ωgwðf; τ0Þ ¼
2π2

3H2ðτ0Þ
f2h2cðfÞ: ð18Þ

FIG. 6. The dependence of Ωgwðf; τ0Þ on the EOS before BBN.
Five kinds of EOS, including w ¼ ∞, 1, 0.6, 1=3, and 0, are
considered. Here we choose r ¼ 0.1, nt ¼ 0 and adopt the
cosmological parameters mentioned before. As the effect of
unusual EOS changes the spectrum by several orders of magni-
tude, we do not include the relatively small effects caused by
cosmic phase transitions TPTðk; τ0Þ and free-streaming particles
Tνðk; τ0Þ here, but the damping effect of cosmic expansion
Tzðk; τ0Þ is still incorporated into the total transfer function.
The sensitive band of PTAs is the shaded area in the figure.

TABLE I. The strength of Ωgwðf; τ0Þ at f ¼ 10−9, 10−8 and
10−7 Hz for EOS with w ¼ ∞, 1, 0.6, 1=3, and 0 respectively. In
the calculation, we use r ¼ 0.1 and nt ¼ 0. The cosmological
parameters are the same as those mentioned at the beginning of
this section.

w Ωgwð10−9 HzÞ Ωgwð10−8 HzÞ Ωgwð10−7 HzÞ
∞ 2.6 × 10−13 2.5 × 10−11 2.5 × 10−9

1 5.0 × 10−15 5.0 × 10−14 5.0 × 10−13

0.6 9.2 × 10−16 3.4 × 10−15 1.3 × 10−14

1=3 9.8 × 10−17 9.8 × 10−17 9.8 × 10−17

0 3.8 × 10−20 3.8 × 10−22 3.8 × 10−24
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So if the spectrum of energy density (8) is given, the
characteristic strain can be determined theoretically.
When the spectrum is unknown, it is helpful to postulate

a parametrized power-law form as follows [22,23]:

hcðfÞ ¼ A

�
f
fyr

�
α

; ð19Þ

where A is the amplitude of hcðfÞ at fyr ¼ 1=yr ¼
3.171 × 10−8 Hz, and α is the power index.
Figure 7 shows the current constraints on A from PPTA

[21], EPTA [22], and NANOGrav [23]. From Fig. 7, we see
that the result of PPTA is the most stringent one (about a
factor of 1.5 better than NANOGrav at α ¼ −2=3), but
there is only one data point (the black diamond in the
figure), so in the rest this paper we would concentrate on
results from NANOGrav and EPTA to cover more possible
indices. In a wide range of α, NANOGrav gives a tighter
constraint than EPTA for all α ∈ ½−2; 0� and the advantage
becomes obvious as α increases. For example, at α ¼ −1,
NANOGrav gives A < 8.1 × 10−16, which is only a factor
of 1.7 better than 1.4 × 10−15 of EPTA. When α increases
to −0.6, NANOGrav gives A < 1.6 × 10−15, a factor of 2.2
better than 3.5 × 10−15 of EPTA.

A. Constraints on RGWs by current PTAs
considering cosmic expansion only

When upper limits on A for different indices are given,
we can convert hcðfÞ into ΩgwðfÞ through (18) and
compare it with the theoretical results in (8) to give limits
on the inflationary parameters r and nt.

We should first find out the relation between the two
power indices, α and nt. Because different damping effects
alter the spectrum differently (see Fig. 5), the relation
depends on the damping effects. Here we consider the
spectrum damped by cosmic expansion only. In this case,
the transfer function (7) has only one term Tzðk; τ0Þ from
cosmic expansion (10). For waves with frequencies
2πf ≫ keq, we find the simple relation between α and nt

nt ¼ 2αþ 2; ð20Þ

and the relation between A and r

r ¼ 32π2A2k2eqτ40
45ARðk0ÞΩ2

m

�
k0
2π

�
nt
�

1

fyr

�
nt−2

: ð21Þ

Inserting the parameters in Sec. II and the data in Fig. 7, we
obtain the upper limits on r for different nt.
Figure 8 shows the constraints on r − nt space. The red

dashed and the blue dashed lines are the cases considering
Tzðk; τ0Þ only. At nt ¼ 0, the limit from NANOGrav is
8.5 × 105, which is a factor of 3.1 more stringent than 2.7 ×
106 from EPTA. Note that [22] gives a limit 2.5 × 106 for
the same EPTA data. The small deviation occurs because
we adopt new cosmological parameters, which are slightly
different from those used in [22]. As nt increases, the
constraints become more stringent. At nt ¼ 0.8, the con-
straint of r from NANOGrav is 0.04, while the upper limit
of EPTA is 0.17 (see Table II). For nt < 0 both constraints
become very loose. In Table II, we also list the results
for nt ¼ −0.4.
For r ¼ 0.1, when only redshift is considered, Zhao et al.

[24] found nt ¼ 0.90 for NANOGrav [60] and nt ¼ 0.88

FIG. 7. The current 2σ constraints on strain amplitude A from
three PTA projects: NANOGrav, EPTA, and PPTA. The NANO-
Grav data are obtained through Fig. 3 in [23]. The two red squares
(α ¼ −1, A ¼ 1.4 × 10−15) and (α ¼ −2=3, A ¼ 3 × 10−15) are
constraints from EPTA by use of the Bayesian method [22]. The
dotted line is obtained by linearly fitting the squares. The black
diamond (α ¼ −2=3, A ¼ 1.0 × 10−15) comes from PPTA [21].

FIG. 8. 2σ-constraints on the r − nt space by NANOGrav [23]
and EPTA [22]. The solid lines are the constraints for the case
including the transfer function of cosmic expansion Tzðk; τ0Þ and
that of cosmic phase transitions TPTðk; τ0Þ, while the dotted lines
contain Tzðk; τ0Þ only.
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for EPTA [61], based on the previous observations. While
we found that, for r ¼ 0.1, the latest NANOGrav data [23]
follow nt ¼ 0.76 and EPTA data [22] follow nt ¼ 0.83.
Both constraints become tighter due to the update of
NANOGrav and EPTA data.

B. Constraints on RGWs by current PTAs considering
phase transitions and neutrinos

Although the damping effects beyond cosmic expansion
Tzðf; τ0Þ, such as cosmic phase transitions TPTðk; τ0Þ and
the relativistic free-streaming gases Tνðk; τ0Þ, have been
well studied before, few authors include these damping
effects when they constrain the inflationary parameters (see
[24] for example). As we mentioned before, cosmic phase
transitions could damp the spectrum Ωgwðf; τ0Þ as much as
60% in the sensitive band of PTAs (see Fig. 5). Thus, to
make accurate detection, it is inevitable to consider these
damping effects. In this subsection, we will discuss the
constraints on the inflationary parameters r and nt when
additional damping effects TPTðk; τ0Þ and Tνðk; τ0Þ are
included in the transfer function.
There are two points that deserve our attention. First, it is

very clear that neutrinos could not affect any detection
approached by PTAs, as neutrinos only damp the spectrum
in the range of 10−16–10−10 Hz, which is well beyond the
detecting ability of PTAs. Second, TPTðk; τ0Þ makes the
spectrum deviate from the power law, so, strictly speaking,
the postulation (19) does not hold. But TPTðk; τ0Þ is on the
order of 0.1, which could only change the spectrum by a
small amount, so in the meaning of perturbation, we could
still apply the power law and attribute the small deviation
from the power law to the weak dependence of A on the
frequency. Then the relation (20) between α and nt remains,
while the expression of r should be modified.
When we include cosmic phase transitions, the transfer

function Tðk; τ0Þ will have another term TPTðk; τ0Þ (11)
besides Tzðk; τ0Þ (10), so the expression of r becomes

r ¼ 32π2A2k2eqτ40
45ARðk0ÞΩ2

m

�
k0
2π

�
nt
�

1

fyr

�
nt−2

×
1

T2
PTðk; τ0Þ

: ð22Þ

As TPTðk; τ0Þ ≤ 1, we can expect the upper limit on r for
fixed nt would increase after we include cosmic phase

transitions. Specifically, numerical calculations give
T2
PTðkyr; τ0Þ ¼ 0.428, then we could obtain a looser con-

straint on r − nt space and the upper limit on r increases a
factor of 2.3 for all indices.
Figure 8 shows the upper limit on r − nt. The red solid

and the blue solid lines are upper limits where TPTðk; τ0Þ is
included. At nt ¼ 0, NANOGrav [23] gives upper limit
2.0 × 106, and EPTA [22] gives 6.4 × 106. Both are indeed
raised by a factor of 2.3 compared to the limit without
TPTðk; τ0Þ. At nt ¼ 0.8, the constraint from NANOGrav is
r < 0.09 and that given by EPTA is r < 0.39. We also list
the results at nt ¼ −0.4 in Table II.

C. Constraints on RGWs from other observations

1. Constraints from BBN

Besides PTA projects, BBN can also give an upper limit
on r − nt space. BBN precisely predicts the abundance of
light elements in the Universe. Nucleosynthesis happens
efficiently when the collision rate of protons and neutrons
are much higher than the Hubble parameter at that moment.
To obtain enough abundance of H and He, the expansion
rate of the Universe should not be too large, otherwise the
plasma soup would be diluted too much to produce an
effective reaction. The expansion rate of the Universe or
Hubble parameter H depends on the energy density of
radiation at that moment; thus, the abundance of light
elements could provide constraints on the total energy of
radiation including RGWs.
By use of the effective number of neutrino species Neff ,

BBN could set an upper limit on the energy of RGWs [59]Z
kup

klow

Ωgwðk; τ0Þh2d ln k ≤ 5.6 × 10−6ðNeff − NνÞ; ð23Þ

where Nν is the number of neutrino species, while Neff is
the effective number of neutrino species. For the standard
model in particle physics, considering the noninstantaneous
decoupling of neutrinos, Nν ¼ 3.046 [54]. Recent com-
bined observations from BBN and primordial mass fraction
of 4He and the abundance of deuterium give Neff ¼ 3.41
with 95% confidence [56], then

R
Ωgwh2d ln k ≤ 2.04×

10−6. The lower boundary of the integration is determined
by counting the RGWs that entered the horizon at the BBN
epoch only, while the upper boundary is determined by the
quantum limit. For the very short wavelength (i.e., high
frequency) portion, the ultraviolet divergences is avoided
by considering the Parker’s adiabatic theorem [62], which
states that, during a transition between expansion epochs
with a characteristic time during Δt, the gravitons created
will be suppressed for wave numbers k > 1=Δt. Here
we follow [63] to choose fup ¼ kup=2π ¼ 1010 Hz by
assuming the energy scale for the inflation is around
1016 GeV and klow¼ kðT¼ 1MeVÞ which can be obtained
from (12).

TABLE II. Constraints on the upper limit of r for different nt by
use of NANOGrav [23] and EPTA [22]. The second and third
columns are the limits when cosmic expansion Tzðk; τ0Þ is the
only transfer function, while in the last two columns cosmic
phase transition TPTðk; τ0Þ is added.

Include Tz only Include Tz and TPT

nt rnano repta rnano repta

−0.4 4.1 × 109 1.1 × 1010 9.6 × 109 2.6 × 1010

0 8.5 × 105 2.7 × 106 2.0 × 106 6.4 × 106

0.8 0.04 0.17 0.09 0.39
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Inserting the transfer function Tzðk; τ0Þ (10) caused by
cosmic expansion and TPTðk; τ0Þ by cosmic phase tran-
sitions (11) into the spectrum of energy density Ωgwðk; τ0Þ
in (8), we can integrate the spectrum numerically to obtain
the upper limit on the inflationary parameter space r − nt.
The result is shown by the purple dashed line in Fig. 9.

2. Constraints from CMB and matter power spectrum

Because of the precise observations of temperature and
polarization anisotropies, in the modern cosmology, CMB
becomes one of the most important tools to constrain
various cosmological phenomena/processes including
RGWs. RGWs affect the CMB fluctuations by two differ-
ent ways.
First, RGWs, as well as density perturbations, are the

sources which generate the CMB anisotropy power spectra,
including the temperature anisotropy autocorrelation spec-
trum (TT), E-mode polarization autocorrelation spectrum
(EE), B-mode polarization autocorrelation spectrum (BB),
and the cross-correlation of temperature anisotropy and
E-mode polarization (TE). Although the definite signal of
RGWs has not yet been found in the CMB power spectra,
based on the recent observations of TT, TE, and EE data,
the Planck team gives the quite tight constraint on the
tensor-to-scalar ratio r < 0.11 [7], which is nearly inde-
pendent of the spectral index nt [64]. A similar constraint
r < 0.12 is also obtained from the joint analysis of the
BICEP2/Keck Array and Planck B-mode polarization
data [10].

Second, RGWs affect the growth of density perturbation
and the CMB anisotropy power spectra by contributing
extra energy density to the total energy density or,
equivalently, by changing the expansion rate of the
Universe. The weak interaction of RGWs with matter
makes them similar to massless neutrinos. So constraints
on additional neutrinos from CMB and large-scale structure
(LSS) observations could be applied to RGWs [65]. With
95% confidence level, CMB combined with matter power
spectra gives Neff − Nν < 0.33 [55]. Again, we can insert
this number into (23) to yield another constraints on
RGWs. We obtain

R
Ωgwh2d ln k ≤ 1.85 × 10−6, but the

lower boundary of integration is much lower than that of
BBN. We adopt flow ¼ 10−15 Hz [65] to do the integration.
The corresponding constraint on r − nt is shown in Fig. 9
(the orange solid line).

3. Constraints from gravitational-wave detectors

The ground-based interferometer could directly detect
RGWs in the range 101–103 Hz by analyzing the interfer-
ence stripes caused by gravitational waves in the laser
beams. The latest constraints on the stochastic background
is from joint observations of LIGO and Virgo. In frequency
range 41.5–169.25 Hz, LIGO and Virgo correlations give
an upper limit on energy density spectrum Ωgwðk; τ0Þ <
5.6 × 10−6 for nt ¼ 0, while in the range 600–1000 Hz
Ωgwðk; τ0Þ < 0.14 for nt ¼ 3 (there are the other two sets of
constraints at nt ¼ 0 and 3, but they are much looser, so we
ignore them). Both limits are of 95% confidence [12].
We can use the LIGO and Virgo data to estimate the

upper limits of inflationary parameters r and nt. First, we
convert the limits on Ωgwðk; τ0Þ at α ¼ 0 and 3 into strain
amplitude A through (18), then use (22) to obtain limits on
r and nt at these two indices. Finally, we linearly fit the two
points to cover the range in nt ∈ ð0; 1Þ, which is shown in
Fig. 9 (the black solid line).

4. Comparison with different constraints

Figure 9 shows the constraints on r − nt space from
different observations. We can see that at low index
(nt < 0.37), upper limit of r from Planck is the most
stringent and constant constraint (r < 0.11), while at high
index (nt > 0.37), constraint by use of joint analysis of
CMB and LSS becomes the most stringent and the upper
limit decreases as nt increases, for example, at nt ¼ 0.5, the
upper limit is 10−4, but at nt ¼ 0.8, the limit is r < 10−12.
We see that the constraints from BBN (the purple dotted

line) are slightly looser than that from the joint data of
CMB and LSS (the orange solid line). There are two
reasons for it. First, constraints on Neff from BBN are a bit
looser than that from the joint analysis (0.36 versus 0.33,
see Secs. III C 1 and III C 2.) Second, the integration range
of BBN (flow ∼ 10−10 Hz) is larger than that of the
combination of CMB and LSS (flow ∼ 10−15 Hz); thus,

FIG. 9. Constraints on the inflationary parameter space r − nt
by use of data from observations of CMB [Planck [7] and the
joint analysis of CMB and LSS (matter power spectrum) [55]],
BBN [56], LIGO and Virgo [12], EPTA, and NANOGrav [22,23].
Note that the line standing for BBN is only a bit higher than that
for CMB and LSS, so we use a purple dashed line to represent the
result of BBN and orange solid line for CMB and LSS.
Here all the constraints have considered Tzðk; τ0Þ, TPTðk; τ0Þ,
and Tνðk; τ0Þ.
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less energy could be added to the integration, making the
tensor index larger.
Although the direct constraints from EPTA and

NANOGrav have significantly improved recently, they
are still much weaker than those from CMB, matter power
spectra and BBN. So are LIGO and Virgo. Therefore, the
great advancement is still needed to put tighter constraints.
Advanced LIGO and future PTAs like FAST and SKA are
indeed quite necessary.

IV. DETECTION OF RGWS BY THE
FUTURE OBSERVATIONS

In this section we will forecast the detections of RGWs
by the potential PTA observations, including the FAST and
SKA projects. In addition, as we know, the damping effects
caused by cosmological redshift, phase transition of QCD,
the free-streaming dark fluid, and the unusual EOS are all
well in the sensitive band of PTAs. So, the future PTAs also
provide a good chance to study these interesting physics,
which will also be investigated in this section.
In order to estimate detection abilities of the future PTAs,

we will use time of arrival to establish the signal-to-noise
ratio (SNR) of observations. When the spectrum of energy
density Ωgw (8) is given, an important problem follows:
What confidence level can we achieve when we come up
with new PTA projects to detect RGWs? The key lies on the
timing residuals caused by RGWs and their correlations.
RGWs could stretch or suppress the space weakly, leading
to the change of time of arrival for electromagnetic pulses
from pulsars. Difference of time of arrival could be
accumulated to form considerable timing residuals. The
timing residuals are usually decomposed into two parts

RiðtkÞ ¼ siðtkÞ þ niðtkÞ; ð24Þ

where RiðtkÞ is the timing residual for ith pulsar at time tk,
while siðtkÞ and niðtkÞ are the timing residuals contributed
by RGWs and by noise. To make a detection, it is necessary
to discriminate the contribution of the RGW signal from
that of noise. Let us consider the characteristic of siðtkÞ and
niðtkÞ separately.
The genuine RGWs would induce common residuals in

the data, so the correlation of siðtkÞ gives [66]

hsiðtkÞsjðtk0 Þi ¼ σ2gHðθijÞδtk;tk0 ; ð25Þ

where δtk;tk0 is Kronecker delta function and HðθijÞ is the
Hellings-Downs curve, while σg is the rms of timing
residuals resulted from RGWs. The Hellings-Downs curve
[19,67] is

HðθijÞ ¼
3

2
x ln x −

x
4
þ 1

2
ð1þ δðxÞÞ; x≡ 1 − cos θij

2

ð26Þ

where θij is the angular separation between ith and jth
pulsar. The rms of timing residuals from RGWs is given by

σ2g ¼
Z

fh

fl

jhcðfÞj2
12π2f3

df; ð27Þ

where fl ¼ 1=T and fh ¼ 1=ð2ΔtÞ are the lower and the
higher boundary of the sensitive band. T and Δt are the
span of the whole observation and the interval between two
observations, respectively. Now, if the spectrum of energy
density (8) is given, the rms of RGW is determined.
As for the part of noise, we assume that they are white

and the same for every pulsar in the PTA, then the
correlation of contributions from the noise is simple [66]

hniðtkÞnjðtk0 Þi ¼ σ2nδijδtk;tk0 ; ð28Þ

where σn is the rms of timing residuals from white noise.
By use of the correlation of timing residuals and the

whitening method, we could obtain the SNR for PTA
[24,68,69]

hSNRi ¼
ffiffiffiffi
N

p (
1þ

P
Δ0 ½1þ ðPgðΔ0Þ

PdðΔ0ÞÞ2H̄2�
ðPΔ0

PgðΔ0Þ
PdðΔ0ÞÞ2

P
2
H

)−1
2

; ð29Þ

where brackets hi are the ensemble average (hereafter when
we say SNR we mean the expectation of SNR, or hSNRi).
N ¼ nðn − 1Þ=2 is the number of pairs with n being the
number of pulsars. H̄2 and ΣH are the average of H2ðθijÞ
and the variance of HðθijÞ, respectively. For pulsars evenly
distributed in the full sky, we have H̄2 ¼ Σ2

H ¼ 1=48.
As for PgðΔ0Þ, it is defined as the rms in the Δ0th

bin [68]:

PgðΔ0Þ ¼
Z Δ0þ0.5

T

Δ0−0.5
T

h2cðfÞ
12π2f3

df; ðΔ0 > 1Þ ð30Þ

whereΔ0 is the binΔwhose signal is higher than noise, i.e.,
PgðΔÞ > σ2n=m, with m being the total number of obser-
vations in the PTA project. For Δ0 ¼ 1 the lower boundary
of integration in PgðΔ0Þ is 0.97=T [68]. The total spectral
density in a bin is the sum of contributions from signals and
noises: PdðΔ0Þ ¼ PgðΔ0Þ þ σ2n=m.
We could see that, to calculate the SNR for a given

spectrum of energy density, an observational plan should at
least include the following information: the observation
span T, the number of pulsars n, the number of observa-
tions m, and the noise level.
For timing noise, due to the intrinsic instability in the

pulsars and uncertainties in the telescopes, the noise is not
guaranteed to be white and may have a different value for
different pulsars [66]. In our analysis, for simplicity, we
assumed white and equal noise level σn for all pulsars in a
given array.
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A. Potential PTA projects in the future

In this paper, we follow Zhao et al. [24] to consider the
following future observations: the complete PPTA, FAST,
SKA, and optimal PTA.
The complete PPTA plans to observe 20 pulsars which

have the same noise level of 100 ns over 5 years (T ¼ 5 yr,
σn ¼ 100 ns, n ¼ 20, m ¼ 250), while current PPTA
mainly depends on four pulsars [21]. So, the future
PPTA could greatly improve the observation.
Another observation plan that deserves our attention is

that from FAST, which would be the largest single dish in
the world when it obtains the first light in 2016. Working
with multi beams in the 70 MHz–3 GHz frequency band,
FAST is expected to discover 4000 Galactic pulsars and one
tenth may be millisecond pulsars [70]. For the search for
gravitational waves, FAST plans to run a series of similar
observations [T ¼ 5 yr, n ¼ 20, m ¼ 250, we use FAST
(20) to label this plan] but with much lower noise of only
30 ns [70], which may directly improve the value of SNR.
Here we assume a second plan, FAST(40), to adequately
cover the possibility of more pulsars in a longer duration of
timing: T ¼ 10 yr, n ¼ 40, m ¼ 500.
In the 2020s, the establishment of the thousands of single

dishes will erect the biggest radio array SKA and pulsar
searching and timing will be part of the SKA scientific
goals. Accounting for the large signal-collecting area, SKA
could well survey the pulsars in the Milky Way in an
unprecedented efficient way [71] and greatly facilitate the
detection of gravitational waves. To estimate the capacity of
SKA in detecting RGWs, we adopt a low-noise plan
running for ten years [T ¼ 10 yr, σn ¼ 50 ns, n ¼ 100,
m ¼ 500, we use SKA(100) to denote this plan] [72].
However, from a conservative view point, we would also
consider a less ambitious one, SKA(40), with T ¼ 10 yr,
σn ¼ 50 ns, n ¼ 40, m ¼ 500.
Prolonging the time span allows PTAs to approach more

low frequency signals, which can be much stronger than
that of high frequency. So, accounting of these improve-
ments, future PTAs may greatly increase their sensitivities.
Zhao et al. [24] also considered the optimal PTA
(T ¼ 20 yr, σn ¼ 30 ns, n ¼ 200), which can reach an
unprecedented sensitivity. For easy reference, we list these
projects in Table III.
For the known damping factor, if r and nt are given, the

spectrum (8) is determined. Then, we use (18) to find the
characteristic strain hcðfÞ and obtain PgðΔ0Þ through (30)
for known PTA observations. Finally, we can calculate the
SNR for these observations through (29).
Note that without RGW signals, the timing residuals (24)

will be Gaussian distributed; thus, SNR ¼ 2 represents
95% confidence level. In the calculation, we would like to
obtain the constraints on r − nt space with 95% confidence
for the potential observations. This is possible, because for
given observational plans, when SNR is fixed, r and nt are
constrained by the relation (29). So we first insert the

spectrum with free parameters r and nt into (18) to obtain
PgðΔ0Þ through (30), then set SNR ¼ 2 to give upper limits
on r for different nt with 95% confidence level.

B. Detecting RGWs in the accelerating universe

As the first step, we only consider transfer function due
to cosmic expansion Tzðk; τ0Þ in (10) and assume a normal
radiation EOS w ¼ 1=3 before BBN in this section.
Figure 10 show the SNR of FAST in the range

nt ∈ ½0; 1�. The black and grey lines are the SNR including
the damping effect from Tzðk; τ0Þ only. Our results for
FAST(20) are the same as those in [24]. At nt ¼ 0, SNR
vanishes for both FAST plans; thus, no RGWs can be
detected. However, as nt increases, the SNR increases a lot.
If we fix nt ¼ 0.8, when r ¼ 0.1, RGWs produce a
significant detection with SNR ¼ 4 for FAST(20) and
11.5 for FAST(40).

TABLE III. The parameters of potential PTA projects: Time
span T, noise level σn, number of observed pulsars n and the total
number of observations m.

Potential PTA T=yr σn=ns n m

Complete PPTA... 5 100 20 250
FAST(20)............. 5 30 20 250
FAST(40)............. 10 30 40 500
SKA(40)............... 10 50 40 500
SKA(100)............. 10 50 100 500
Optimal PTA....... 20 30 200 1000

FIG. 10. The SNR of FAST(20) and FAST(40) when different
damping effects are considered. For FAST(40), the black lines
consider the effect of cosmic expansion Tzðk; τ0Þ only, while the
red ones include cosmic phase transitions TPTðk; τ0Þ. For FAST
(20), the grey lines consider Tzðk; τ0Þ only and the orange ones
add TPTðk; τ0Þ. In each project, from up to down, the solid,
dashed, and dotted lines are for the case of r ¼ 0.1, 0.01, 0.001
respectively.
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It is obvious that smaller r leads to lower SNR. For
example, at nt ¼ 0.8, when r decreases from 0.1 to 0.001,
SNR jumps from 11.5 to 6.5 for FAST(40), and from 4 to 2
for FAST(20) and, thus, greatly weaken the detection.
The trends described above also hold for SKA, as we

could see from Fig. 11, which shows the SNR for two SKA
plans with 40 and 100 pulsars. Since the only difference
between SKA(40) and SKA(100) is the number of pulsars
(see Table III), we conclude that increasing the scale of
arrays could greatly raise the detection ability. Lower noise
level also increases the possibility to make a detection,
therefore, FAST(40) will perform better than SKA(40). For
example, at nt ¼ 0.8, for r ¼ 0.1, FAST(40) gives
SNR ¼ 11.5, which is a bit higher than 10 given by
SKA(40).
In Fig. 12, we plot the constraints on r − nt space by

potential observations. The dashed lines are the cases only
considering Tzðk; τ0Þ. The current limits from NANOGrav
and EPTA are also plotted here to make comparison. We
could see, when only Tzðk; τ0Þ is considered, in the whole
range nt ∈ ½0; 1�, for the upper limits on r, complete PPTA
could be about 10 times more stringent than current
NANOGrav and about 50 times better than current
EPTA, while FAST(20) is 11 times more stringent than
complete PPTA and SKA(100) is 137 times better than
FAST(20). The most stringent limit would come from the
optimal PTA, which is about 107 times better than
SKA(100).
Although both SKA plans could defeat the FAST(20),

the advantages of SKA would be greatly challenged by
FAST(40), which is a factor of 2.5 better than SKA(40) and
only a factor of 1.6 weaker than SKA(100). The good
competence of FAST(40) comes from the low timing noise,
as indicated by Table III. As SKA(100) and FAST(20) are
the upper and lower limits of the four plans of SKA and
FAST, we would concentrate on these two observations in

the rest of this paper. However, due to the similar resolution
of FAST(40) and SKA(100) in the r − nt space, the results
for SKA(100) also hold for FAST(40) with good accuracy.
At nt ¼ 0, the upper limit on r given by optimal PTA is

0.44, which is the best constraints. At nt ¼ 0.8, the upper
limit given by complete PPTA is 0.008, while FAST(20)
gives 0.0007 and SKA(100) and the optimal PTA are much
more stringent.
For r ¼ 0.1, the optimal PTA gives nt < 0.08, while for

SKA(100) the upper limit is 0.32, for FAST(20) it is 0.58,
and for complete PPTA, it is 0.69. If r ¼ 0.01, the optimal
gives limit nt < 0.18, SKA(100) gives nt < 0.44, and
FAST(20) gives nt < 0.68. So both SKA(100) and optimal
PTA could give fairly good constraints on the inflation
models.

C. Effects of phase transitions and neutrinos

In the previous work [24], we only calculated the SNR
for the RGWs damped by cosmic expansion Tzðk; τ0Þ,
which is briefly reviewed in the previous subsection.
However, as we mentioned before, cosmic phase transi-
tions, especially the phase transition of QCD, damp the
spectrum by amount of 60% at f > 10−9 Hz, which is well
in the sensitive band of PTAs. Relativistic free-streaming
neutrinos could also damp the spectrum by about 40% in
the range of 10−16–10−10 Hz. Although the behavior of
neutrinos has no effect on PTAs, they play an important role
in the constraints by use of combined CMB and matter
power spectra. Therefore, effects from cosmic phase
transitions and neutrinos deserve attention.

FIG. 11. The SNR of SKA(40) and SKA(100) when Tzðk; τ0Þ
and TPTðk; τ0Þ are considered. The color is similar to Fig. 10.

FIG. 12. The constraints on r − nt space with 95% confidence
by future PTAs described in Table III: Complete PPTA, FAST,
SKA, and Optimal PTA. Dashed lines are the constraints
considering cosmic expansion Tzðk; τ0Þ only, while solid lines
consider both Tzðk; τ0Þ and cosmic phase transitions TPTðk; τ0Þ.
The lines of NANOGrav and EPTA are copied from Fig. 9 for
comparison. Here, for clarity, we only plot the solid lines for
FAST(40) and SKA(40).
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In this subsection, we shall take into account the
damping effects caused by cosmic phase transitions
TPTðk; τ0Þ in (11) and neutrinos Tνðk; τ0Þ in (13). Here
we also assume a normal EOS with w ¼ 1=3.
For PTAs we only deal with the effects of TPTðk; τ0Þ due

to QCD transition and ignore the damping effects of eþe−
annihilation and SUSY breaking, as eþe− annihilation
affects RGWs in the range of f < 1.7 × 10−12 Hz (or,
equivalently, 0.1 MeV) and SUSY phase transition in the
range of f > 3.1 × 10−5 Hz (or 106 MeV). We add the
transfer function TPTðk; τ0Þ and Tνðk; τ0Þ to the total
transfer function, and follow the procedures described in
Sec. IVA to obtain SNR and the constraints on r and nt,
respectively.
In Fig. 10, the red and orange lines show the SNR for

RGWs further damped by TPTðk; τ0Þ in FAST plans.
Obviously, compared with the cases which only contain
Tzðk; τ0Þ, SNR decreases for both plans when additional
cosmic phase transitions are considered. The decline of
SNR is consistent with our intuition, as additional damping
could surely lead to weaker RGW signals and smaller SNR.
In each observation, when nt > 0.6, for r ¼ 0.1, SNR
decreases by an almost constant amount: FAST(40)
decreases one unit, while FAST(20) by an amount of
0.6. So cosmic phase transitions are more important in
FAST(40) than in FAST(20). As nt decreases, the differ-
ence in SNR caused by TPTðk; τ0Þ also decreases and tends
to zero at nt ¼ 0. Similar features appear in SKA obser-
vations too (see Fig. 11).
Figure 12 shows the effects of cosmic phase transitions

TPTðk; τ0Þ on parameters r and nt. Obviously, TPTðk; τ0Þ
raises the upper limits of all PTAs nearly by a constant
factor of 2.2 in the wide range of nt. It is not difficult to
understand the reason, as the big jump cased by QCD
transition is the main feature in the narrow sensitive band of
PTA (see Fig. 5).
In Fig. 13, we put the constraints from future PTAs and

those from current observations together to get a better
view. The bounds from PTAs have already included
damping effects from cosmic expansion Tzðk; τ0Þ and
phase transitions TPTðk; τ0Þ. We see that around
nt ¼ 0.38, SKA(100) could do much better in limiting r
and become very competitive with current CMB observa-
tions from Planck and the joint analysis from CMB and
LSS. In nt ∈ ð0.36; 0.38Þ, SKA(100) is a bit more (about a
factor of 1.3) stringent than BBN and CMB. In comparison
with constraints from CMB and BBN, the role of cosmic
phase transitions becomes particularly important for SKA
(100), because without TPTðk; τ0Þ the advantage of SKA
(100) could increase to about 3 times better than CMB and
BBN over a wider range. We can also find that optimal PTA
could replace the dominant role of CMB and BBN in the
range nt ∈ ð0.11; 0.5Þ and restrict nt < 0.23 for r ¼ 0.01
and nt < 0.34 for r ¼ 0.001, which are very tight limits for
a wide variety of inflation models, including slow-rolling

inflation. We list the upper limits on nt in Table IV for
clarity. When we fix nt, we see that at nt ¼ 0, CMB is still
most stringent constraints even for the optimal PTA, but for
a small positive tensorial index, e.g., nt ¼ 0.2, the optimal
PTA can require r < 0.02. Therefore, the future constraints
are much better than the present ones if the spectrum of
RGWs is blue tilted (i.e., nt > 0). The bounds on r for
different indices nt are listed in Table V.

D. Effects of relativistic free-streaming dark fluids

The possible excess of effective number of neutrino
species Neff leads to tension between observations and
theories. As we mentioned in Sec. II C 2, this problem may
be reconciled by assuming extra relativistic light particles,
such as massless bosons proposed by [57] or a class of
massless fermions, i.e., the dark fluid in this paper. If
verified, the existence of extra species of particles will
bring new physics both to particle physics and cosmology.

FIG. 13. The constraints on r − nt space with 95% by future
observations compared with current observations from CMB and
BBN. Here, the PTAs consider both cosmic expansion Tzðk; τ0Þ
and phase transitions TPTðk; τ0Þ. The lines of CMB and BBN are
copied from Fig. 9, while those of PTAs from Fig. 12.

TABLE IV. The best constraints on tensorial index nt with
95% confidence level for three typical tensor-to-scalar ratios:
r ¼ 0.1, 0.01, and 0.001. Here we choose a normal EOS with
w ¼ 1=3. As the optimal PTAwould be the best constraint, these
bounds with cosmic phase transitions TPTðk; τ0Þ are all from
optimal PTA in Fig. 13, while those without phase transition are
read out from Fig. 12.

Upper limit on nt

r without TPTðk; τ0Þ with TPTðk; τ0Þ
0.1 0.08 0.12
0.01 0.18 0.23
0.001 0.30 0.34
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For RGWs, we have found that dark fluid plays dual
roles in the evolution of the gravitational waves (see Fig. 5):
It damps the spectrum by adding the fraction of free-
streaming particles (see Fig. 3). Meanwhile, it raises the
RGW spectrum a bit through cosmic phase transitions
[see Eq. (14)].
In this subsection, we will focus on the impact of dark

fluid on SNR and constraints on r − nt space. As before, we
also assume an EOS with w ¼ 1=3 before BBN. Since dark
fluid could affect the spectrum through both cosmic phase
transition and free-streaming gases, we should combine the
transfer functions TPTðk; τ0Þ, Tνðk; τ0Þ, and Tzðk; τ0Þ to get
the total transfer function in the spectrum (8); then perform
the similar procedures depicted in Sec. IVA to calculate
SNR of RGWs for different potential observations.
Figure 14 shows the difference on SNR of SKA(100)

caused by dark fluids decoupling at 101, 103, and
105 MeV. It is not strange to find that dark fluid can raise
the SNR curve a bit (≤0.3), as dark fluid could raise the

spectrum through the phase transition and counteract the
damping effect caused by its free-streaming [see Eq. (14)].
We could see this clearly in Fig. 5: For the dark fluid
decoupling at 10 MeV (the black solid line, which is
partially covered by the green solid line for 102 MeV), the
spectrum in the PTA band is clearly raised a bit, while for
that decoupling at 103 MeV (the blue dashed line), the
spectrum is not only raised a bit at the high frequency end
(i.e., f ∼ 10−7 Hz), but also damped a bit at the frequencies
below QCD transition (i.e., f ∼ 10−9 Hz). While at the
middle frequencies (f ∼ 10−8 Hz), the two effects nearly
cancel each other. For dark fluids that decouple at
105 MeV, the effect of free-streaming could extend to
higher frequencies, making the spectrum nearly unchanged.
Therefore, the SNR for the case of 101 and 103 MeV are
raised more than that for 105 MeV (the spectrum for
103 MeV increases because the effect near 10−7 Hz
become dominant as nt > 0). This is consistent with
Fig. 14, where the SNR curve for dark fluid decoupling
at 105 MeV (the purple solid line) is the middle one
between the curve for 103 MeV (the green dotted line)
and that without dark fluid (the orange solid line).
As nt goes up to 1, the spectrum could be raised more by

dark fluids, because the contribution of high frequencies
becomes dominant for nt > 0. We find the largest influence
on SNR caused by dark fluid for nt > 0.9, but the SNR of
SKA(100) is only raised by less than 0.5 for r ¼ 0.1.
Obviously, the impact on FAST would be even smaller
(similar to the cases in Fig. 10). So the influence of dark
fluid could reasonably be ignored by PTAs and we cannot
expect any significant changes caused by dark fluid in the
r − nt space.
The reason why dark fluid plays a small influence on the

spectrum is simple. Current constraints on the number of
species Neff is so stringent that only one or two more kinds
of extra particles are allowed; thus, the contribution of dark
fluid to the total radiation around the PTA band
(10−9–10−7 Hz, or equivalently, 52 ∼ 3.9 × 103 MeV) is
quite small, so both phase transition and free-streaming of
dark fluid become insignificant.

E. Effects of different equation of state w

BBN could trace physics up to about 10 MeV in the
history of Universe. However, the physics above this
energy scale is not quite clear, for example, the EOS in
this range is not determined. Reheating after inflation and
the appearance of massive particles may lead to quite
interesting EOS, which could make the Universe evolve
differently. For RGWs, these unusual EOS may greatly
amplify or depress the amplitudes, making the detection
hopeful or despaired (see Fig. 6). With the advancement in
the detection of RGWs, more stringent constraints could be
set to the EOS in this early stage of the Universe and limit
the possible reheating physics.

FIG. 14. The impact on SNR of SKA(100) caused by dark
fluids decoupling at 101, 103 and 105 MeV compared with the
case without dark fluid. Here we choose r ¼ 0.1 and pick out the
part with obvious differences among these three cases.

TABLE V. The constrains on the upper limit of r with
95% confidence for fixed nt from CMB and LSS, SKA (100),
and the optimal PTA. Note that the upper limit given by the pure
CMB (Planck) observation is r < 0.11. All the constraints have
considered the damping effects from cosmic expansion Tzðk; τ0Þ,
cosmic phase transitions TPTðk; τ0Þ, and the free-streaming
neutrinos Tνðk; τ0Þ. We use a normal EOS with w ¼ 1=3 here.

nt rcmb&lss rskað100Þ roptimal pta

0 >1 >1 1
0.2 >1 >1 0.02
0.4 0.03 0.04 3.2 × 10−4

0.6 1.0 × 10−7 6.3 × 10−4 6.0 × 10−6

0.8 5.0 × 10−13 1.0 × 10−5 1.0 × 10−7
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Since the transfer function of unusual EOS alters the
RGW spectrum dramatically (up to several orders of
magnitude), we will neglect the damping effects induced
by cosmic phase transitions and free-streaming particles in
this subsection, and only consider effects caused by cosmic
expansion Tzðk; τ0Þ and unusual EOS TEOSðk; τ0Þ. Similar
to the previous works [12,25], we will consider five
different EOS with w ¼ ∞; 1; 0.6; 1=3, and 0 to cover
the stiff, soft, and radiationlike states.
First, we consider when the unusual EOS appears, to

what extent the current NANOGrav data can limit the
r − nt space. With procedures similar to (21) and (22), we
could find the expression of r. Then by use of the
NANOGrav data (see Fig. 7), we can calculate the upper
limits on r for the unusual EOSmentioned above. Figure 15
shows the constraints on r − nt space when both Tzðk; τ0Þ
and TEOSðk; τ0Þ are considered. We can see that stiff EOS
(w > 1=3) could greatly suppress the possible parameter
space. For example when r ¼ 0.1, the upper limit on nt is
0.6 for w ¼ 0.6 and 0.49 for w ¼ 1, both of which are more
compact than that of 0.76 for w ¼ 1=3. The upper limit
could even be pushed to 0.21 for w ¼ ∞.
Now we consider the potential constraints from the

future PTAs. Inserting the transfer function TEOSðk; τ0Þ
of unusual EOS and Tzðk; τ0Þ of cosmic expansion to the
total transfer function in the RGW spectrum, we could
follow the steps given in Sec. IVA to calculate the SNR and
the constraint on r − nt for different observations.
Figure 16 shows the SNR for different EOS in the SKA

(100) project. We can see that, compared with the normal
EOS of radiation (w ¼ 1=3), stiff EOS (w > 1=3) could
greatly increase the SNR of PTAs in the whole range of

nt ∈ ð0.15; 1Þ. SNR even starts to saturate with SNR ¼
67.1 at nt ¼ 0.6 for the infinity stiff EOS, and reaches
maximum at nt ¼ 1 for w ¼ 1. Around nt ¼ 0, SNR for
w ¼ 1 and infinity can reach a well level. For example,
when nt ¼ 0.07, we have SNR ¼ 2 for w ¼ 1. Therefore,
SKA(100) is still very sensitive to the EOS above w > 1. If
the EOS before BBN is dominated by matter of w ¼ 0, then
the SNR will be dramatically damped in the whole range of
nt ∈ ð0; 1Þ and the maximum of SNR is 8.9 at nt ¼ 1. So,
in conclusion, RGWs are quite sensitive to the EOS before
BBN and could provide good probes into the interesting
physics in this epoch.

FIG. 15. The constraints on r and nt with 95% confidence level
by use of NANOGrav data [23]. Here the transfer function of
cosmic expansion Tzðk; τ0Þ and that of unusual EOS TEOSðk; τ0Þ
are considered. Note that the constraints of EOS with w ¼ 0 are
quite loose and exceed the scale of this plot, while the line for
w ¼ ∞ is linearly extended to nt ¼ 1.

FIG. 16. The SNR of SKA(100) when different EOS before
BBN are considered. Here we choose r ¼ 0.1 and plot SNR for
five different EOS. The damping effect of cosmic expansion
Tzðk; τ0Þ is also included in the calculations.

FIG. 17. Constraints on r − nt space with 95% confidence level
in SKA(100) for different EOS (w ¼ ∞; 1; 0.6; 1=3, and 0) before
BBN epoch. Here we consider damping effects from cosmic
expansion Tzðk; τ0Þ and that from unusual EOS TEOSðk; τ0Þ
before BBN.
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Figure 17 shows the constraints on r − nt for SKA(100)
when different EOS are considered. We could see that, stiff
EOS with w > 1=3 make the constraints more stringent
than the case of w ¼ 1=3, while the matterlike EOS
(w ¼ 0) damps the spectrum so much that the constraint
becomes very loose. Explicitly, at r ¼ 0.1, the upper limit
on nt given by w ¼ ∞ is less than 0, while w ¼ 1 gives
0.08, and w ¼ 0.6 gives 0.18, all of which are more
stringent than 0.32 given by normal radiationlike EOS
(w ¼ 1=3), but if w ¼ 0, the upper limit on nt is near 1. So
we can conclude that stiff EOS could facilitate the con-
straints of RGW parameters. For the case of r ¼ 0.1, 0.01,
and 0.001, we list the constraints on nt in Table VI.

V. CONCLUSIONS

A stochastic background of relic gravitational waves,
generated during the early inflationary stage, is a necessity
dictated by general relativity and quantum mechanics. The
spectrum of RGWs directly depends on the inflationary
physics. So, it is always treated as the smoking-gun
evidence of inflation. In addition, in the postinflation
stage, various cosmic phase transitions and relativistic
free-steaming gases also left imprints on the RGW spec-
trum. For this reason, RGWs also provide the cleanest way
to probe the physics in the postinflation epoch.
Detections of RGWs have been carried on by different

experimental methods. In the median frequency range
f ∈ ð10−9; 10−7Þ Hz, the detection is by analyzing the
timing residual of the millisecond pulsars. Recently, all
three PTA groups (PPTA, EPTA and NANOGrav) reported
the latest constraints on the GW background. In this paper,
by considering the current and the potential future PTA
observations, we investigated the constraints on the RGWs
and the inflationary parameters in the general cosmological
scenario. In particular, we studied the effects of cosmic
phase transitions and various relativistic free-streaming
fluids, which had been neglected in all the previous works.
Cosmic phase transitions, including eþe− annihilation,

QCD transition and SUSY breaking, damp the RGW
spectrum in the frequency range f > 10−10 Hz, which is

exactly the sensitivity range of PTA method. Taking into
account the damping effects caused by all physical tran-
sitions, we find the upper limit of the tensor-to-scalar ratio r
increases by a factor ∼2 for any given spectral index nt. In
the standard cosmological scenario, for current NANOGrav
constraints with nt ¼ 0, the upper limit of r increases from
8.5 × 105 to 2.0 × 106. While, for the future SKA(100), if
r ¼ 0.1, we find the detection of RGWs is possible only if
nt > 0.36, instead of nt > 0.32.
The relativistic free-streaming gases, including neutrinos

and some unknown dark fluids in the Universe, influenced
the evolution of RGWs in the radiation-dominant stage,
which significantly damped the RGWs spectrum at the
frequency range f > 10−16 Hz. By analysis, we find this
effect is very small in frequency f ∈ ð10−9; 10−7Þ Hz for
both neutrinos and dark fluids. Even for the future
SKA(100) project, this effect seems impossible to be
detected.
In the general cosmological scenario, the effective EOS

w of the cosmic fluid can be different from 1=3 in the pre-
BBN stage. We find that, the value of w greatly affects the
RGWs spectrum, as well as their detection by pulsar timing
arrays. For the future SKA(100) project, if r ¼ 0.01 is set,
we find the detection is possible if nt > 0.44 for the
standard model with w ¼ 1=3. However, if w ¼ 1, they
can be detected only if nt > 0.18. So, the stiff EOS could
significantly decreases the difficulties of RGW detection.
At the endof this paper,we shouldmention that in addition

to the detection methods above, RGWs have also been
constrained by some other observational and experimental
efforts. In the frequency range f ∈ ð10−16; 10−9Þ Hz, the
GW background produces a pattern of apparent proper
motion of quasars. So, by observing the motion of quasars
in the Universe, an interesting constraint Ωgw ≲ 0.2 in this
frequency band is given in [73]. For the RGWs with high
frequency f > 105 Hz, by analyzing the implications of
graviton to photon conversion in the presence of large-scale
magnetic fields, an upper limit Ωgw ≲ 1 is derived in [74].
Meanwhile, the experimental detections of the RGWs by
various GW detectors (e.g., the cryogenic resonant bar
detectors [75], the cavity detectors MAGO [76], the wave-
guide detectors [77], and theGaussianmaser beam detectors
[78]) have also been well studied in the recent literature.
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TABLE VI. Upper limit of nt for different EOS given by SKA
(100) with 95% confidence level when r is chosen to be the three
typical values: r ¼ 0.1, 0.01, and 0.001. The damping effect from
cosmic expansion Tzðk; τ0Þ is also included here.

Upper limit of nt

w r ¼ 0.1 r ¼ 0.01 r ¼ 0.001

∞ <0 <0 0.04
1 0.08 0.18 0.29
0.6 0.18 0.29 0.40
1=3 0.32 0.44 0.55
0 0.84 0.94 >1
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