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Gauge-invariant observables for quantum gravity are described, with explicit constructions given primarily
to leading order in Newton’s constant, analogous to and extending constructions first given by Dirac in
quantum electrodynamics. These can be thought of as operators that create a particle, together with its
inseparable gravitational field, and reduce to usual field operators of quantum field theory in the weak-gravity
limit; they include both Wilson-line operators and those creating a Coulombic field configuration. We also
describe operators creating the field of a particle in motion; as in the electromagnetic case, these are expected
to help address infrared problems. An important characteristic of the quantum theory of gravity is the algebra
of its observables. We show that the commutators of the simple observables of this paper are nonlocal, with
nonlocality becoming significant in strong field regions, as predicted previously on general grounds.
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I. INTRODUCTION

Gravity is widely believed to be described by a quantum-
mechanical theory, rather than one that requires an
extension or modification of quantum mechanics. If this is
the case, the structure of quantum mechanics (suitably
generalized—see Ref. [1]) imparts certain rigid features
to the theory of quantum gravity. One basic aspect is
the existence of quantum observables, which are gauge-
invariant, Hermitian operators acting on the Hilbert space
of states of the theory. An outstanding problem is to
understand properties of these observables.
While a complete discussion of observables in quantum

gravity must obviously await more complete understand-
ing of itsHilbert space anddynamics,we alreadyhave a good
deal of information if any suchmore complete formulation is
tomatch onto a quantumversion of Einstein’s theory inweak
field regimes. One can study the properties of quantum
observables in these regimes. Moreover, such properties are
likely to provide further information about the mathematical
structure of the theory in the strong-gravity regime. One of
the challenges of quantumgravity is specifically to formulate
gauge-invariant observables that reduce to the usual observ-
ables of local quantum field theory (LQFT) in the weak-
field limit.
In order to define gauge-invariant observables that

reduce to those of LQFT, ordinarily a relational approach
is taken [2–14], where, for example, a particle or field
operator is localized with respect to some features of the
state, or with respect to another particle or field operator.
Some examples of such constructions are given in Ref. [9].
We also expect that there should be observables that act
on a state of the system, say the vacuum, and create or

annihilate a particle, as in LQFT. These are expected to be
the simplest operators reducing to simple operators of a
nongravitational LQFT. A key point, however, is that such
observables must also create the gravitational field of the
particle, in order to be gauge invariant (that is, satisfy the
constraints). Such operators have been constructed in gauge
theories—going back to the work of Dirac [15]—but not, to
our knowledge, in gravity.
Indeed, one way to think of constructing such operators

has a close parallel to the construction of other relational
operators [9]; we can demand that the point at which a field
operator acts is a fixed geodesic distance from a fixed
feature (or “platform”), which we may take to approach
infinity. Such a specification will be diffeomorphism
invariant for diffeomorphisms vanishing at infinity. An
example, in anti-de Sitter (AdS) space, is to base such
coordinates on spatial infinity, which there serves as the
platform. An equivalent way to describe these constructions
defines operators by working in a specific gauge, e.g. using
Gaussian normal coordinates based on the asymptotic
platform. Such a construction was considered for AdS in
Refs. [16–18]; a related construction appears in Ref. [19],
based on earlier work [20].
These observables, acting on the vacuum, create both the

quantum associated with the field operator and a nontrivial
gravitational field. The field for the “Wilson-line” observ-
ables we have just described is a singular gravitational
string. Such a string, once created, is expected to decay to a
more natural, less singular gravitational configuration. An
approach to deriving the operator that directly creates such
a configuration is to average over the directions of the
gravitational string. Working in the linear theory, we will
find that such a procedure indeed produces an operator that
creates the gravitational analog of the Coulomb field,
namely the linearized Schwarzschild solution; a parallel
construction works for QED, producing the Dirac dressing.
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These operators, and other operators that we construct
taking into account the possible motion of the particles
associated with the field operator, give simple examples of
diffeomorphism-invariant observables in quantum gravity,
which we explicitly construct to leading order in an
expansion in Newton’s constant G.
Another key question regarding gravitational observ-

ables is the algebra that they obey. In LQFT, the field
algebra closely mirrors the underlying manifold structure
[21] and provides a precise characterization of locality,
through commutativity of observables associated with
spacelike-separated regions. An important question for
quantum gravity, which appears critical to inferring its
underlying structure and its interplay with locality, is that of
determining the structure of the algebra obeyed by its
observables [22]. Since we are able to construct such gauge
invariant observables to leading order in G, we are able to
infer the leading-order structure of this algebra, and we do
so by explicitly calculating commutators of the operators
we have just described. We find that these operators do not
have local commutation relations,1 due to the gravitational
dressings that we have described, and specifically they have
significant departures from the commutators of LQFT in
regions previously characterized by the locality bounds of
Refs. [23–25]. These basic algebraic properties of the
theory appear to be the universal weak-field behavior of
any quantum gravity theory that matches Einstein’s in the
weak field limit and thus should furnish important infor-
mation about the more complete theory of quantum gravity.
In outline, the next section reviews and extends the

discussion of gauge-invariant observables in QED, to set
the stage for gravity. Section III describes construction of
bothWilson-line and “Coulomb” diffeomorphism-invariant
observables in gravity, as well as a generalization valid for
moving particles, and performs simple checks that these
operators create the physically expected gravitational
fields. Section IV turns to the question of the algebraic
structure, first in QED, where we derive nonzero commu-
tators for various dressings and explicitly reconcile a
conflict with Ref. [26], by also working out commutators
using Dirac brackets. We then exhibit the nontrivial and
nonlocal commutators of various of the gravitational field
dressings. Section V provides conclusions and discussion
of further directions. There are also three Appendixes: two
with basic formulas for the quantization of QED and of
linearized gravity and one with other useful formulas.

II. GAUGE-INVARIANT OBSERVABLES FOR QED

We begin by reviewing and extending discussions of
gauge-invariant observables in QED, which we will take to
be coupled to a scalar ϕ with charge q,

LQED ¼ − 1

4
FμνFμν − 1

2α
ð∂μAμÞ2 − jDμϕj2 −m2jϕj2;

ð1Þ

where Dμ ¼ ∂μ − iqAμ. Gauge transformations act as

AμðxÞ → AμðxÞ − ∂μΛðxÞ ð2Þ

ϕðxÞ → e−iqΛðxÞϕðxÞ; ð3Þ

where the gauge transformation parameter ΛðxÞ vanishes at
infinity. The parameter α is a gauge-fixing (more precisely,
breaking) parameter; special choices are α ¼ 0, Lorenz or
Landau gauge, α ¼ 1, “Feynman gauge,” and α ¼ ∞,
restoring gauge symmetry. Further conventions and useful
formulas for QED appear in Appendix A.
The naive expectation that ϕ acts on the vacuum to create

particles is confounded by the fact that ϕ is not gauge
invariant. However, one may “dress” ϕ to make a gauge
invariant quantity, if one defines

ΦðxÞ ¼ VðxÞϕðxÞ; ð4Þ

where the dressing V transforms as VðxÞ → eiqΛðxÞVðxÞ.
Following Refs. [15,27–29], such V’s can be found in the
form

VðxÞ ¼ exp

�
iq

Z
d4x0fμðx; x0ÞAμðx0Þ

�
: ð5Þ

Under a gauge transformation (2), this becomes

VðxÞ → VðxÞ exp
�
−iq

Z
d4x0fμðx; x0Þ∂μΛðx0Þ

�

¼ VðxÞ exp
�
iq

Z
d4x0∂ 0

μfμðx; x0ÞΛðx0Þ
�

ð6Þ

and will transform as needed provided

∂ 0
μfμðx; x0Þ ¼ δ4ðx − x0Þ: ð7Þ

Here, we use the requirement that gauge transformations
vanish at infinity. Note also that in the quantum theory, one
must give a careful definition of the operator Φ, accounting
for possible ordering ambiguities.
There is a lot of freedom in choosing the function fμ.

However, not all of this is physical freedom. Two functions
fμ are the same if they agree when integrating against all
solutions of the equations of motion. We can think of
inequivalent dressings, following Ref. [28], as correspond-
ing to different “soft photon clouds” surrounding each
particle. However, they need not be composed only of soft
modes; for example, stringlike dressings, which we are
about to consider, have divergent energy density.

1Here, we differ from claims of Ref. [18], but for reasons
that can and will be explained in the analogous and simpler case
of QED.
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A. Faraday, or Wilson, line dressing

Indeed, a particularly simple dressing is that of a spatial
Wilson line, or Faraday line, running to the boundary, e.g.
along the z direction,

ΦWz
ðxÞ ¼ ϕðxÞeiq

R
∞
0

dsAzðxþsẑÞ; ð8Þ

where ẑ is the unit vector in the z direction. Gauge
invariance of an operator may be alternately stated as
the requirement that the operator creates states satisfying
the Gauss law constraints, and this operator does so by
creating an electric field that is localized to an infinitesi-
mally thin string extending to infinity along the z direction.
To see that (8) creates a line of electric flux, we can use

the equal-time commutation relation (see Appendix A)
½EiðxÞ; AjðyÞ� ¼ iδijδ

ð3Þð~x − ~yÞ to find [15] at t ¼ t0

½EzðxÞ;ΦWz
ðx0Þ� ¼ −qδ2ð~x⊥ − ~x0⊥Þθðz − z0ÞΦWz

ðx0Þ; ð9Þ

where x⊥ denotes the components orthogonal to the z
direction, x⊥ ¼ ðt; x; yÞ. Note that Ez is negative for
positive q because ϕ creates an antiparticle of charge
−q. The other components of E commute with ΦD. The
interpretation of this equation is that acting with the
operator ΦD increases the value of the electric field by
the addition of a single line of electric flux.
More explicitly, to find the field created by a general

dressed operator Φ, consider

AμðxÞΦðx0Þj0i ¼ ½AμðxÞ;Φðx0Þ�j0i þ Φðx0ÞAμðxÞj0i: ð10Þ

If the commutator is proportional to Φ, this shows that the
field after acting by Φ differs by ~AμðxÞ, given by

~AμðxÞΦðx0Þ ¼ ½AμðxÞ;Φðx0Þ�; ð11Þ

from that of the vacuum.
To find the future evolution of the field associated to the

electric string, we evaluate the commutator to leading order
in q in the region that is causally separated from the string
but spacelike to the point x0. In Feynman gauge, this is
given by

~AzðxÞ ¼ iq
Z

∞

0

ds½AzðxÞ; Azðx0 þ sẑÞ�

¼ qϵðt − t0Þ
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−ðx⊥ − x0⊥Þ2
p ; ð12Þ

where ϵðxÞ ¼ signðxÞ. This corresponds to an electric field
which at time t ≠ t0 is given by

~EzðxÞ ¼ −∂0
~Az ¼

qjt − t0j
2π½−ðx⊥ − x0⊥Þ2�3=2

: ð13Þ

This solution describes the field lines of the initial string
spreading out. There is also a corresponding magnetic field,
since the electric field is changing with time.

B. Coulomb, or Dirac, dressing

The stringlike configuration considered above is of
course a rather unusual electric field for a charged particle;
the operator creates a singular electric field concentrated in
a single line. We expect such an operator to receive large
corrections in perturbation theory, and this raises serious
doubts as to whether such an operator can be rigorously
defined in the full quantum theory. One approach to
avoiding this would be to thicken out the field into a finite
diameter tube, with a finite stress energy tensor. A related
approach, to which we now turn, is to distribute the field
lines even more widely—providing a more physical dress-
ing for a charged particle.
In particular, a Coulomb-like field is anticipated to be a

more typical, and less singular, configuration for the
electromagnetic field of a charged particle. Such a field
can be found by averaging (8) over different directions.
Specifically, taking x ¼ 0, we can averageZ

dzAz →
1

4π

Z
d2Ωdrr̂iAi ¼

Z
d3~x

Ar

4πr2
; ð14Þ

which generalizes for x ≠ 0 to give

ΦDðxÞ ¼ ϕðt; ~xÞ exp
�
iq

Z
d3~x0

ð~x0 − ~xÞi
4πj~x0 − ~xj3 Aiðt; ~x0Þ

�
≡ ϕðt; ~xÞVDðt; ~xÞ: ð15Þ

This is the Dirac [15] dressing, which is sometimes
rewritten after an integration by parts,

Z
d3~x

Ar

4πr2
¼

Z
d3~x

1

4πr
∂iAi −

Z
d2Ω
4π

xiAið∞Þ: ð16Þ

Using the canonical commutators, one may check that this
creates a Coulomb field at time t:

½EiðxÞ;ΦDðx0Þ�jt¼t0
¼ − q

4π

ð~x − ~x0Þi
j~x − ~x0j3 ΦDðxÞ: ð17Þ

For earlier or later times, we can use the fact that the
commutator ½AμðxÞ;Φðx0Þ� satisfies the Heisenberg equa-
tions of motion, with initial data given by the equal-time
commutators. Outside the light cone of x0, these are, working
to linear order in q, the source-free Feynman-gauge equa-
tions □½AμðxÞ;ΦDðx0Þ� ¼ 0. The gauge-dependent term
∂μAμ does not appear in this equation, since ∂μAμ generates
gauge transformations (see Appendix A), and so

½∂μAμðxÞ;ΦDðx0Þ� ¼ 0: ð18Þ
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This also means the solution ~A satisfies the Lorenz gauge
condition ∂μ ~Aμ ¼ 0. The free field equation with these initial
conditions has the solution

~AiðxÞ ¼ − q
4π

ðt − t0Þ ð~x
0 − ~xÞi

j~x0 − ~xj3 ;
~A0 ¼ 0; ð19Þ

giving the static electric field of a particle at ~x0.
The field configuration (19) may be continued into the

future light cone of x0 but then does not in general satisfy
the equations of motion. The reason is that the solution
there depends on the state of motion of the particle at and
after t0. In general, this solution will have, in addition to
(19), a radiative part. The full determination of this field
depends on particle motion in the interacting theory.
As we have noted, if theWilson line operatorΦWz

acts on
the vacuum, the highly localized electric field it creates is
not stable and will decay [30,31]. Another way to see its
relation to the Dirac field is to rewrite the field arising from
the Wilson line as a longitudinal, Coulomb, piece, plus a
transverse, radiative, piece [32], using

Ai ¼ AL
i þ AT

i ¼ ∂i∂j

∇2
Aj þ

�
δij − ∂i∂j

∇2

�
Aj: ð20Þ

The integral
R
dsAL

z then gives the Dirac dressing (16);R
dsAT

z contributes extra field energy which radiates to
infinity.

C. Worldline dressing

An electromagnetic dressing that takes particle motion
into account is defined by the worldline expression

ΦWLðxÞ ¼ VDða; ~0Þ ~T exp

�
−iq

Z
1

0

dλ
dxμ

dλ
AμðxνðλÞÞ

�
ϕðxÞ:

ð21Þ

Here, VD is the Dirac dressing given in (15), ~T antiorders in
time (the latest time is to the right), and xμðλÞ is a trajectory
with xμð0Þ ¼ ða; ~0Þ and xμð1Þ ¼ xμ. This produces the
electromagnetic field that results from classical motion
along xðλÞ. For large m, a quantum particle approximately
follows such a trajectory, and (21) produces the leading-
order field, but for generalm, there are quantum corrections
to this field.
To see that (21) produces the field of the moving particle,

we consider again the commutator ~Aμ. This will contain a
term from VD as well as one from the worldline, given by

�
Aμðx0Þ;−iq

Z
1

0

dλ
dxν

dλ
AνðxρðλÞÞ

�

¼ q
Z

dλDμνðx0 − xðλÞÞ dx
ν

dλ
þOðq2Þ; ð22Þ

whereDμν is the Pauli-Jordan function for Aμ, (A22). When
x0 is spacelike to x and to the future of ða; ~0Þ, Dμν agrees
with the retarded propagator, so this term produces the field
of the moving particle. When x0 is spacelike to x and to
ða; ~0Þ, we have the Coulomb field (19).
We note that, although the vector potential Aμ is

discontinuous across the light cone of ða; ~0Þ, this is a pure
gauge discontinuity, and Fμν will be continuous provided
the trajectory xðλÞ is initially at rest. If ~Aμ is initially at rest,
then the field just to the future of the light cone of ða; ~0Þ is

~Aμðx0Þ ¼ −ημ0 q
4πj~x − ~x0j ; ð23Þ

which is related to the configuration (19) (with x ↔ x0) by a
gauge transformation,

Λðx0Þ ¼ qðt − t0Þ
4πjx − x0j : ð24Þ

Let us examine the large-m case more closely. In the
large-m limit, the four-velocity uμ of a particle is constant
and superselected [33]. Then, from the equation of motion

DμDμϕ ¼ m2ϕ; ð25Þ

one may show

iuμ∂μΦWLðxÞ ¼ mΦWL − eimuμxμ
D2

2m
ðe−imuμxμϕÞeiq

R
1

0
AVD:

ð26Þ
Thus, to leading order in 1=m, ΦWL creates a state that is an
energy eigenstate; this statement was called the “dressing
equation” in Ref. [34].
The latter feature, together with the fact that in the

asymptotic regime, where particles have large separation,m
is the largest energy scale, motivated Refs. [34,35] to use
(21), with constant-velocity trajectories, to define asymp-
totic states which avoid the usual infrared difficulties of
describing asymptotic particle states in QED.

D. Lorenz dressing

One natural way to specify a gauge-invariant operator is
to fix a gauge by some condition and defineΦðxÞ to be ϕðxÞ
in that particular gauge. If this condition completely fixes
the gauge, we can solve for the gauge transformation λ that
transforms an arbitrary vector potential Aμ into this chosen
gauge. This allows us to express ΦðxÞ in a manifestly
gauge-invariant way,

ΦðxÞ ¼ e−iqλðxÞϕðxÞ; ð27Þ
where λðxÞ is a nonlocal function of Aμ. Indeed, the
preceding construction of ΦWz

, for example, gives the field
operator in axial gauge.
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Another apparently natural choice for this purpose is
Lorenz gauge ∂μAμ ¼ 0. However, this is not a complete
specification of the gauge; given a vector potential Aμ, we
must find the gauge transformation λ to Lorenz gauge,
which is found by solving

∂μAμ ¼ □λ: ð28Þ
The solutions to this equation are not unique until we
specify appropriate initial (or final) data for λ.
If our initial data surface is spacelike, we should choose

initial data that determine both λ and its first derivative away
from the surface. For example, we can fix nμAμ ¼ 0, where
nμ is a normal to an initial data surface, which we take to be a
spacelike surface of constant time. This leads to an initial
condition for nμ∂μλ ¼ nμAμ. This does not yet determine a
solution for λ, since we need to know both the initial value of
λ and its time derivative. We can give an additional constraint
∂iAi ¼ 0, which leads to the equation ~∇2

λ ¼ ∂iAi on the
initial surface. This determines λ completely, once we
include the boundary condition λ → 0 at spacelike infinity.
Of course there are other ways to fix the gauge asymp-

totically. Since λ satisfies a free wave equation, it may make
more sense to fix its initial data on I−. For example, we can
impose Au ¼ 0, where u is the null generator of I−. This
leads to the equation ∂uλ ¼ Au, which then determines λ
completely on I from the condition that the gauge trans-
formations vanish at infinity, λ ¼ 0 on i0.
One can therefore likewise formulate dressings based on

these gauges; we leave the description of these dressings to
future work.

III. GAUGE-INVARIANT OBSERVABLES
FOR GRAVITY

We next turn to a discussion of gravitational observables
analogous to those we have described in QED. The non-
linearity of gravity of course is a significant complication,
which we manage by working perturbatively in Newton’s
constant GD. In particular, the leading-order, linear struc-
ture of gravity has important similarities to that of QED.
This structure will describe the dominant behavior in the
weak-field regime.
Specifically, consider the gravitational Lagrangian, min-

imally coupled to a scalar ϕ with mass m,

L ¼ 2

κ2
R − 1

ακ2

ffiffiffiffiffiffiffi
jg0j

p
ffiffiffiffiffijgjp 1

jgj ½∇
0
μð

ffiffiffiffiffi
jgj

p
gμνÞ�2

− 1

2
½ð∇ϕÞ2 þm2ϕ2�; ð29Þ

where κ2 ¼ 32πGD and R is the scalar curvature. The
derivative ∇0 is with respect to the background metric
about which we perturb. The parameter α is a gauge fixing
(more precisely, breaking) parameter; α ¼ 0 gives de
Donder gauge, an analog of Lorenz or Landau gauge;

α ¼ 1 is an analog of Feynman gauge for QED; and α → ∞
is the analog of unitary gauge, which restores the gauge
symmetry. The perturbative expansion follows from

gμν ¼ ημν þ κhμν; ð30Þ

where here the background is taken to be the Minkowski
metric. Further details of the perturbative theory are
supplied in Appendix B.
As was the case for a charged field in QED, the field

ϕðxÞ is not a gauge-invariant operator, since under a
diffeomorphism f∶M → M, the field transforms as the
push forward

ϕ → f�ϕ; ðf�ϕÞðxÞ ¼ ϕðf−1ðxÞÞ: ð31Þ

If we take f to be an infinitesimal diffeomorphism,
fμðxÞ ¼ xμ þ κξμ,

δϕðxÞ ¼ ϕðf−1ðxÞÞ − ϕðxÞ ¼ −κξμ∂μϕþOðκ2Þ: ð32Þ

To find a diffeomorphism-invariant operator, we will form a
composite operator that includes both ϕ and the gravita-
tional field sourced by ϕ.
A simple approach to constructing operators invariant

under linearized diffeomorphisms, analogous to the
approach taken for QED, is to seek an operator of the form

ΦðxÞ ¼ eiV
μðxÞPμϕðxÞe−iVμðxÞPμ ¼ ϕðxμ þ VμðxÞÞ

¼ ϕðxÞ þ VμðxÞ∂μϕðxÞ þOðV2Þ; ð33Þ

where Pμ ¼ −i∂μ [compare the QED expression (3)]. Here,
the dressing VμðxÞ is a functional of the metric perturbation
that transforms under a diffeomorphism as

xμ þ VμðxÞ → fμðxþ VðxÞÞ; ð34Þ

which at linear order becomes

δVμðxÞ ¼ κξμðxÞ: ð35Þ

Then, using the combined transformations, at linear order,

δΦðxÞ ¼ δ½ϕðxþ VÞ� ≈ δϕðxÞ þ δVμðxÞ∂μϕðxÞ ¼ 0: ð36Þ

The transformation law (35) should follow from the change
in the metric, which transforms as

δgμν ¼ −κLξgμν ¼ −κð∇μξν þ∇νξμÞ; ð37Þ

correspondingly the metric perturbation transforms as

δhμν ¼ −∂μξν − ∂νξν þOðκÞ: ð38Þ

This paper will primarily (though not exclusively) consider
such constructions at leading order in κ and in so doing will
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consider only linearized diffeomorphisms and drop the
OðκÞ term from (38). A construction to higher order in κ
will then be constrained by this leading behavior; we save
general examination of all-orders behavior for future work.
As in the case of gauge theory, we can try to find V’s

satisfying (35) that are of the form

VμðxÞ ¼ κ

Z
d4x0fμνλðx; x0Þhνλðx0Þ; ð39Þ

where f is assumed symmetric in its last two indices
fμνλ ¼ fμλν. Given (38), in order for Vμ to transform as
(35), the function f parametrizing the dressing must satisfy

2∂ 0
νfμνλðx; x0Þ ¼ δ4ðx − x0Þημλ: ð40Þ

Again, there is substantial freedom in choosing the func-
tions f, which determine the “soft graviton cloud” (plus,
possibly, a harder component) of a ϕ particle, though not all
freedom yields physically inequivalent dressings.

A. Gravitational Wilson line

As in QED, a very simple dressing is a Wilson line. One
very geometrical way to think of such a line in gravity
arises if points are located by shooting a spatial geodesic in
a perpendicular direction from a fixed asymptotic platform,
where diffeomorphisms are taken to vanish; ultimately,
we might take this to reside at infinity.2 Specifically, the
location of a general point is determined by the platform
point at which the geodesic originates and the distance
along the geodesic. The field ϕ, expressed as a function of
these data, is gauge invariant under gauge transformations
vanishing at the platform.
We can thus choose as coordinates the initial platform

position and the geodesic distance. Specifically, define new
coordinates x̆μ in which the z̆ direction is perpendicular to
the platform, and choose “axial” gauge (or geodesic normal
coordinates)

hz̆ μ̆ ¼ 0: ð41Þ

In this gauge, the z̆ coordinate is the geodesic distance, and
the remaining coordinates correspond to the platform
position. The diffeomorphism-invariant field is thus just
the scalar field ϕ in these coordinates. To write this in terms
of the scalar field in arbitrary coordinates, consider a new
(general) coordinate system

xμ ¼ fμðx̆Þ: ð42Þ

Note that, for general coordinates xμ, the function fμ

depends nonlocally on the metric, since it must take a
general metric to the form (41). Then,

ΦWz
ðxÞ ¼ ϕðfðxÞÞ ð43Þ

is the diffeomorphism-invariant field written in terms of
the field ϕ expressed in general coordinates. (At this stage,
we drop the accent on x̆.)
The preceding statements are valid to all orders in the

perturbative expansion in κ but can also be simply explained
to leading order in this expansion. Specifically, consider a
small metric perturbation and parametrize the relation
between axial coordinates x̆μ and a general coordinate xμ as

x̆μ ¼ xμ − Vμ
Wz
: ð44Þ

Then, the relation (43) becomes

ΦWz
ðxÞ ≈ ϕðxμ þ Vμ

Wz
ðxÞÞ ð45Þ

to leading order. Given the linearized gauge transformation
(38), axial gauge (41) can be fixed by a diffeomorphism of
the form

−κξz ¼ κ

2

Z
∞

0

dshzzðxþ sẑÞ ¼ VWz;zðxÞ

−κξμ̬ ¼ κ

Z
∞

0

ds

�
hzμ
̬ ðxþ sẑÞ þ 1

2
∂μ
̬
Z

∞

s
ds0hzzðxþ s0ẑÞ

�
¼ VWz;μ

̬ ðxÞ; ð46Þ

where μ
̬
denotes indices excluding z and the platform has

been taken to z ¼ ∞.
With these expressions, one can explicitly check the

leading-order diffeomorphism invariance of (43) and (45).
From the metric transformation (38), VWz

transforms as in
(35) for a diffeomorphism ξ that vanishes at infinity, so
according to (36), ΦWz

is diffeomorphism invariant. The
gauge-invariant operator ΦWz

is the gravitational analog of
the electric Wilson-line operator defined in (8).
This construction can also be characterized by solving

the geodesic equation for a curve xμ ¼ x̆μ þ sẑμ þ vμðsÞ
with the boundary condition vμð∞Þ ¼ 0. The quantity
VμðxÞ ¼ vμð0Þ then gives the coordinate displacement
between general coordinates and axial coordinates. To find
the linearized dressing Vμ, we solve the linearized geodesic
equation,

∂2
svμðsÞ þ Γμ

zzðxμ þ sẑμÞ ¼ 0; ð47Þ

which gives

Vμ
Wz
ðxÞ ¼ −

Z
∞

0

dssΓμ
zzðxþ sẑÞ þ s:t:; ð48Þ

where s.t. denotes a surface term at infinity.3 This can be
checked to be equivalent to (46).

2For an analogous construction in anti-de Sitter space, with the
AdS boundary providing a platform, see Refs. [16,18,36]. 3This vanishes if j~xjhμzðxÞ vanishes in the limit ~x → ∞.
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As with the case of electromagnetism, the operator (43),
(45) creates a singular metric configuration, where gravi-
tational field lines are concentrated in an infinitesimal
string. This can be seen by studying the commutator of hμν
with VWz

. Even in the linear theory, this is an unstable field
configuration and if it is created the field lines will then
dynamically spread out into a Coulomb-like configuration.
Of course, in the nonlinear theory, we also expect such a
concentrated gravitational field to source large nonlinear
corrections, and as a result, at a minimum the gravitational
field configuration should be “thickened” [22]; the absence
of stringlike solutions to the sourceless Einstein equations
moreover likewise strongly indicates that the field con-
figuration should undergo such a decay to a more sym-
metric configuration in the full theory.

B. Gravitational Coulomb dressing

1. Construction

Like with QED, an approach to finding a more sym-
metric dressing is to average the gravitational Wilson line
over all directions. This is most easily done starting with
(48), which then becomes, specializing to x ¼ 0 and
working in D ¼ 4,

Vμ
Cð0Þ ¼ − 1

4π

Z
d2Ω

Z
∞

0

drrΓμ
αβr̂

αr̂β þ s:t:

¼ − 1

4π

Z
d3x

1

r
Γμ
αβr̂

αr̂β þ s:t: ð49Þ

with r̂ the unit radial vector. While we use D ¼ 4 for much
of the following, the discussion readily generalizes to
D > 4. Specializing to the timelike component, we find

V0
Cð0Þ ¼ − κ

4π

Z
d3x

�∂0hrr
2r

þ h0r
r2

�
; ð50Þ

where the surface term has cancelled. The spatial compo-
nents become

Vi
Cð0Þ ¼

3κ

8π

Z
d3x

r̂i

r2
hrr; ð51Þ

where again the surface terms cancel. At a general location
x, these become

V0
CðxÞ ¼ − κ

4π

Z
d3x0

�
d̂αd̂β∂0hαβ

2d
þ h0αd̂

α

d2

�
;

Vi
CðxÞ ¼

3κ

8π

Z
d3x0

d̂id̂αd̂β

d2
hαβ; ð52Þ

where ~d ¼ ~x0 − ~x. One can check directly that Vμ
C has the

correct gauge variation; using (38), one finds

δVi
CðxÞ ¼ κξiðxÞ − 3κ

4π

Z
d2Ω0 r

02

d2
r̂0 · d̂ d̂ ·ξd̂i; ð53Þ

δV0
CðxÞ¼ κξ0ðxÞþ κ

4π

Z
d2Ω0r02r̂0 · d̂

�
d̂ · _ξ
d

þ ξ0
d2

�
: ð54Þ

Thus, we recover the expected transformation law,
δVμ

CðxÞ ¼ κξμðxÞ, as in (35), for ξ satisfying falloff con-
ditions such that the boundary terms in these expressions
vanish; i.e. ξr and r_ξr þ ξ0 vanish as r → ∞.

2. Dressing field

Comparing with QED, we might expect that the operator
ΦCðxÞ ¼ ϕðxþ VCðxÞÞ creates a gravitational analog of
the Coulomb field. In order to check this, we examine the
commutator ½hμνðxÞ;ΦCð0Þ�, which indicates, as with the
QED case, how the gravitational field is changed by
the action of the dressed operator.
As a first step, we need the commutator

½h̄μνðx0Þ; V0
Cð0Þ�

¼ − κ

4π

Z
d3x

�
r̂λr̂σ

2r
∂0 þ

t̂λr̂σ

r2

�
½h̄μνðx0Þ; hλσðxÞ�

¼ − iκ
4π

Z
d3x

�
r̂μr̂ν
2r

∂0 þ
t̂ðμr̂νÞ
r2

�
Dðx0 − xÞ; ð55Þ

where we work in Feynman gauge and D is the Pauli-
Jordan propagator of a massless scalar (A20). This can be
rewritten in terms of scalar integrals using (see
Appendix C)

r̂μr̂ν
r

¼ qμν
r

− ∂μ∂νr;
r̂ν
r2

¼ −∂ν
1

r
; ð56Þ

where the spatial metric is denoted qμν. We then integrate
by parts, so that the derivatives act on Dðx0 − xÞ, and then
trade them for x0 derivatives, which can be pulled outside
the integral,

½h̄μνðx0Þ; V0
Cð0Þ�

¼ iκ
4π

Z
d3x

�
1

2
∂μ∂νr∂0 − qμν

2r
∂0 þ t̂ðμ∂νÞ

1

r

�
Dðx0 − xÞ

¼ − iκ
4π

~∂ 0
μ
~∂ 0
ν∂ 0

t

�Z
d3x

r
2
Dðx0 − xÞ

�

þ iκ
4π

�
qμν
2

∂ 0
0 þ t̂ðμ~∂ 0

νÞ

��Z
d3x

Dðx0 − xÞ
r

�
; ð57Þ

where ~∂ denotes the spatial gradient. The resulting scalar
integrals can then be evaluated:
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Z
d3x

1

r
Dðx0 − xÞ ¼

8<
:

−1 if t0 > r0

−t0=r0 if − r0 < t0 < r0

1 if t0 < −r0
ð58Þ

Z
d3xrDðx0 − xÞ ¼

8>><
>>:

−t02 − r02
3

if t0 > r0

−t0r0 − t03
3r0 : if − r0 < t0 < r0

t02 þ r02
3

if t0 < −r0:
ð59Þ

Using these results with (57) and combining terms, we find,
in the region that is spacelike to the origin, −r < t < r,

½h̄μνðxÞ; V0
Cð0Þ� ¼ − iκ

4π

�
r̂μr̂ν
2r

− t
t̂ðμr̂νÞ
r2

þ t2
qμν − 3r̂μr̂ν

2r3

�
:

ð60Þ

In the regions that are timelike to the origin, t > r and
t < −r, we find ½h̄μνðxÞ; V0

Cð0Þ� ¼ 0. We can check explic-
itly that (60) satisfies the harmonic gauge condition
∂μh̄μν ¼ 0 as well as the equation of motion □h̄μν ¼ 0.
We also need the commutator ½h̄μνðxÞ; Vi

Cð0Þ�. Only the
spatial components contribute, and they are given by

½h̄jkðx0Þ; Vi
Cð0Þ� ¼

3iκ
8π

Z
d3x

r̂ir̂jr̂k
r2

Dðx0 − xÞ: ð61Þ

We use the same trick of expressing the tensor as a
derivative [see (C7)],

r̂ir̂jr̂k
r2

¼ 1

3
∂i∂j∂kr − qðij∂kÞ

1

r
; ð62Þ

integrate by parts; pull the derivatives outside the integral;
and find

½h̄jkðxÞ; Vi
Cð0Þ� ¼ − 3iκ

8π

�
t
r2
r̂ir̂jr̂k þ

t3

9
∂i∂j∂k

1

r

�
ð63Þ

in the case where x is spacelike to the origin. In the timelike
regions t > r and t < −r, we have ½h̄μνðxÞ; Vi

Cð0Þ� ¼ 0. We
can again check that the result (63) satisfies the harmonic
gauge condition ∂μh̄μν ¼ 0 and the equation of motion
□h̄μν ¼ 0.
We first consider the dressing field due to a massive

particle, which we can approximately consider to be at
rest, so that ∂0ϕðxÞ ¼ imϕðxÞ (for the creation part of
the operator) and we can neglect spatial gradients. Then,
we have

½h̄μνðxÞ;Φð0Þ�
¼ ½h̄μνðxÞ; V0

Cð0Þ�∂0ϕð0Þ

¼ κm
4π

�
r̂μr̂ν
2r

− t
t̂ðμr̂νÞ
r2

þ t2

2r3
ðqμν − 3r̂μr̂νÞ

�
ϕð0Þ

¼ ~̄hμνðxÞϕð0Þ; ð64Þ

which gives the field of the particle, valid for all points
spacelike to the origin, jtj < r. As noted, this satisfies the
harmonic gauge condition and the equation of motion
□ ~hμν ¼ 0 in this region.
While the metric in (64) may be unfamiliar, it is simply

the linearized Schwarzschild metric in an unusual gauge.
By means of an infinitesimal diffeomorphism

ξμ ¼ − κm
16π

�
1

2
− t2=r2

�
r̂μ; ð65Þ

we can put the metric into the form

hμν − ∂μξν − ∂νξμ ¼
κm
16πr

ðt̂μ t̂ν þ r̂μr̂νÞ; ð66Þ

which is the linearized Schwarzschild solution. This can
also be checked by calculating the Arnowitt-Deser-Misner
(ADM) energy,

P0
ADM ¼ 1

16πG

I
r2d2Ωr̂ið∂jgij − ∂igjjÞ

¼ 2

κ

I
r2d2Ωr̂ið∂jhij − ∂ihjjÞ; ð67Þ

which indeed yields P0
ADM ¼ m for the solution in (64).

Generalizing to the case of a localized source with
∂μϕ ≈ −ipμϕ, we also pick up a field contribution from
(63), of the form

h̄jk ¼ − 3κ

8π
pi

�
t
r2
r̂ir̂jr̂k þ

t3

9
∂i∂j∂k

1

r

�
: ð68Þ

Again, this satisfies the harmonic gauge condition and the
equation of motion□hμν ¼ 0 in the region spacelike to the
origin.
As a check, we can calculate the ADMmomentum of the

solution. This is given by [37]

Pi
ADM ¼ − 2

κ

I
r2d2Ωr̂jπij

¼ − 2

κ

I
r2d2Ωr̂j

�
_hij − 1

2
_hδij

�
; ð69Þ

where we have used the canonical conjugate πij to the
metric defined in (B25), in Feynman gauge. We can verify
that the solution (68) has Pi

ADM ¼ pi, as expected. This is a
general consequence of the commutation relations

WILLIAM DONNELLY and STEVEN B. GIDDINGS PHYSICAL REVIEW D 93, 024030 (2016)

024030-8



½Pμ
ADM; V

ν
CðxÞ� ¼ iημν: ð70Þ

Another check on the preceding constructions is to
consider the commutator

½Pμ
ADM;ΦðxÞ� ¼ i∂μϕjxþV

¼ i∂μΦðxÞ þOðκÞ: ð71Þ

This shows that the ADM momentum generates trans-
lations of the diffeomorphism-invariant observables. Note,
however, that at this order PADM only generates translations
of the field ϕ and not of the dressing; this is a consequence
of truncating our perturbation theory at OðκÞ. Since PADM
contains an explicit factor of κ−1, one has to go to order
κnþ1 to see the effect of translating V in the operator Φ at
order κn. We expect that the ADM D-momentum will
continue to generate translations of Φ at higher orders in
perturbation theory.

3. Further comments on different dressings

We have noted above that the gravitational Wilson line
will in general decay to a Coulomb-like configuration. As
with QED, the averaging procedure yielding (49) projects
the Wilson-line field onto this configuration, and the
remaining transverse field, as in (20), represents the
radiative part of the gravitational field.
Other simple examples of different dressings satisfy-

ing the constraints can be obtained by adding to a Vμ

giving a solution of the constraints a multiple of the
deformations

ΔV0ðxÞ ¼ κ

8π

Z
d3x0

d̂id̂j þ qij

d
_hij ð72Þ

or

ΔViðxÞ ¼ κ

8π

Z
d3x0

3d̂id̂jd̂k þ d̂iqjk − 2qijd̂k

d2
hjk ð73Þ

again with ~d ¼ ~x0 − ~x. These can be shown to be
invariant under diffeomorphisms (38) which vanish
sufficiently rapidly at infinity, and thus adding them
maintains the condition (35); moreover they shift the
dressing field by a diffeomorphism. Note that a linear
combination of them can be added to the Coulomb
dressing to cancel the leading ξ dependence at infinity,
resulting in invariance under supertranslations at spatial
infinity [38,39].

C. Gravitational worldline dressing

In parallel with QED, the dressing (49) creates the field
for a particle at x that has been at rest forever. Note also that
it does not necessarily give the correct field in the future
light cone of the point x, since that will depend on the
subsequent state of motion of the particle. We can consider

gravitational dressings corresponding to more general
trajectories for the particle; for example, for an operator
describing a particle at x, we might want to consider
gravitational dressings corresponding to different paths that
the particle took to x. For completeness, we give a
construction relevant to these cases. A possible way to
account for this is to construct a dressing similar to that of
(21), beginning with the Coulomb dressing (49) at a time in
the distant past and then adding a worldline component to
account for the motion of the particle up to a given time. In
principle, we might try to consider an arbitrary worldline,
specified in an invariant way, e.g. by specifying its
acceleration in a local frame carried by parallel transport.
However, this will not yield a dressing creating a field
solely generated by a particle following that worldline,
since the gravitational field must be coupled to a conserved
stress tensor, which for an isolated particle must correspond
to a geodesic. Thus, allowed worldlines are determined by
the geometry and the final position and momentum of the
particle.
Alternatively, we can proceed directly to the construction

of the worldline-dressed operator directly analogous to
(45), via a geodesic construction. Specifically, we define a
worldline-dressed operator of the form

ΦWLðxÞ ≈ ϕðxμ þ Vμ
WLðx; x0Þ þ Vμ

Cðx0ÞÞ; ð74Þ

where the ≈ denotes that we are again working only to
linear order in the metric perturbation. Here, Vμ

Cðx0Þ dresses
the point x0 ¼ ðt0; ~xÞ directly to the past of x ¼ ðt; ~xÞ and
transforms as δVμ

Cðx0Þ ¼ κξμðx0Þ, as before. This is the
special case of a geodesic with zero initial velocity and
will be generalized below. Then, the worldline part of the
dressing can be associated with the choice of a Gaussian-
normal gauge h0μ ¼ 0 for t > t0, analogous to the axial
gauge choice. Effectively, one localizes spatial points at
t ¼ t0 with respect to the boundary and then localizes future
points by relative to these. As in Eq. (46), this gives an
expression,

VWL;0ðx; x0Þ ¼ − κ

2

Z
t−t0

0

dλh00ðx0 þ λt̂Þ;

VWL;iðx; x0Þ ¼ −
Z

t−t0

0

dλ

�
κh0iðx0 þ λt̂Þ

− 1

2
∂i

Z
λ

0

dλ0κh00ðx0 þ λ0t̂Þ þ ∂iVC;0ðx0Þ
�
:

ð75Þ

The latter term in Vi
WL is needed so that

δVμ
WLðx; x0Þ ¼ κξμðxÞ − κξμðx0Þ; ð76Þ

as is readily checked. Then, under a general
diffeomorphism,

DIFFEOMORPHISM-INVARIANT OBSERVABLES AND … PHYSICAL REVIEW D 93, 024030 (2016)

024030-9



δΦWLðxÞ ≈ δϕðxμ þ Vμ
WLðx; x0Þ þ Vμ

Cðx0ÞÞ
þ ∂μϕðxμ þ Vμ

WLðx; x0Þ þ Vμ
Cðx0ÞÞ

× ðδVμ
WL þ δVμ

CÞ ¼ 0; ð77Þ

as in (36).
These expressions can be derived directly from a

geometrical construction, while simultaneously generaliz-
ing to nonzero initial velocity. Specifically, we first use the
Coulomb dressing to establish a frame at the point x0 ¼
ðt0; ~x0Þ on the surface defined to linear order by

xμ ¼ x̆μ þ Vμ
Cðx̆μÞ ð78Þ

with constant t̆0 and varying x̆i0. The spatial vectors of this
frame are given by (dropping accents)

eμi ¼ δμi þ ∂iV
μ
C: ð79Þ

The timelike vector e0 is given by finding the unit normal to
the surface defined by (78); the conditions

0 ¼ ðημν þ κhμνÞeμ0∂iðxν þ Vν
CÞ

¼ κh0i þ e0i þ ∂iVC0;

−1 ¼ ðημν þ κhμνÞeμ0eν0 ð80Þ

give

eμ0 ¼
�
1þ κ

2
h00

�
t̂μ þ δμið−κh0i − ∂iVC0Þ: ð81Þ

A geodesic is determined by shooting it from x0 ¼ ðt0; ~x0Þ
with an initial four-velocity specified with respect to this
frame. The choice in (75) corresponds to an initial four-
velocity purely in the normal direction, ∂0V

μ
WL ¼ eμ0. More

generally, we can take initial velocity

∂τVμðx; x0Þjx¼x0
¼ uνeμν : ð82Þ

Solving the geodesic equation

∂2
τwμ þ Γμ

uu ¼ 0 ð83Þ

for the perturbation wμ from the straight-line trajectory,
with these initial conditions, gives the curve xμ ¼
x̆μ þ Vμ

WLðx; x0Þ þ Vμ
Cðx0Þ. This determines the worldline

dressing

Vμ
WLðx; x0Þ ¼

Z
τ

0

dλ½ðλ − τÞΓμ
uuðx0 þ λuÞ þ uνeμνðx0Þ�:

ð84Þ

This can be checked to be gauge invariant, beginning with
the gauge transformation for the frame field:

δeμi ¼ ∂iðδVμ
CÞ ¼ κ∂iξ

μ;

δeμ0 ¼ −κð∂0ξ0Þt̂μ þ δμiðκ∂0ξi þ κ∂iξ0 − κ∂iξ0Þ ¼ κ∂0ξ
μ:

ð85Þ

Then, Eq. (84) can be varied; a u-dependent term from
varying the Christoffel symbol is cancelled by the second
term, using (85), and we again find the necessary variation,
Eq. (76).
In summary, the combined Coulomb and worldline

dressings can be understood by the following procedure.
First, we establish an equal-time surface at time t0 by the
geodesic averaging/Coulomb construction, then to locate a
point at a later time t, we shoot a geodesic forward from this
surface for a given proper time in the direction uμ specified
with respect to the frame at the surface. One may alternately
add a worldline dressing to the Wilson line-dressed
operator, analogous to (74).
The leading-order dressing field resulting from the

worldline construction can also be worked out, in analogy
to the calculations of Sec. III B 2. We leave the description
of this for future work.

D. Gravitational dressing equation

In Ref. [34], dressed field operators for QED were
derived from the requirement that in the infinite-mass limit,
the equation of motion for the dressed fieldΦ should reduce
to a first-order equation i d

dtΦ ¼ mΦ. This first-order
dressing equation can be shown from the equations of
motion to be solved by the worldline dressing (21), up to
terms of order 1=m—see (26). The construction depends on
a choice of Lorentz frame, so it selects a preferred dressing
for each frame, corresponding to different boosted
Coulomb fields.
Also for completeness, we show here that a similar

equation is satisfied by the gravitational worldline dressing.
If we study the large-m limit, that means we consider
solutions with a rapidly oscillating phase e−imt̆, where t̆will
be the proper time coordinate used in defining the worldline
dressing for gravity. Here, we work in the rest frame of the
massive particle, corresponding to choosing a geodesic
with zero initial velocity in the preceding subsection,
although the discussion may be generalized to nonzero
velocity. The equation of motion for ϕ can be rewritten as

−i∇μt̆∇μϕ − i
2
ð∇2t̆Þϕ ¼ mϕ − e−imt̆

2m
∇2ðeimt̆ϕÞ: ð86Þ

Here, we have used the fact that t̆ measures proper time,
ð∇μt̆Þ2 ¼ −1. To rewrite this as a gravitational dressing
equation, we need to reexpress it in terms of the dressed
field and to relate the first term to a time derivative ∂=∂ t̆.
Recall that the worldline dressed operator ΦWLðx̆Þ is
defined as the value of the field at a set of coordinates x̆
with an invariant physical meaning. Like with the
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gravitational Wilson line, t̆ is the proper time along a
timelike geodesic, and x̆ labels the different geodesics.
Thus,

ΦWLðx̆ðxÞÞ ¼ ϕðxÞ; ð87Þ

compare (42) and (43). Using this, we can reexpress the
first term in (86)

−i∇μt̆∇μϕ ¼ −ið∇μt̆Þð∇μx̆νÞ
∂
∂x̆ν ΦWLðx̆ðxÞÞ: ð88Þ

Since the worldline coordinates are Gaussian normal,
ð∇μt̆Þð∇μx̆νÞ ¼ η0ν, and the equation of motion (86)
becomes

i
∂
∂ t̆ΦWL − i

2
ð∇2 t̆ÞΦWL ¼ mΦWL − e−imt̆

2m
∇2ðeimt̆ΦWLÞ;

ð89Þ

where ∂=∂ t̆ is defined with the coordinates x̆i held fixed.
This is first order in time, up to Oð1=mÞ corrections.
Dropping the Oð1=mÞ term gives the gravitational dressing
equation, analogous to that discussed for QED in
Ref. [34].

IV. ALGEBRAIC STRUCTURE

An important basic question for a theory is the algebraic
structure of its algebra of observables. In local theories
without long-range fields, the algebra has a net structure of
subalgebras [21] that mirrors the decomposition of the
underlying manifold into spacetime regions. Long range
gauge fields lead to additional subtleties with such sub-
algebras. We next turn to an examination of some basic
aspects of such algebraic structure, focussing on the gauge-
invariant observables that we have constructed above,
beginning first with QED and then turning to gravity.

A. Algebra for observables in QED

1. Commutators for Faraday dressing

Let us first consider the scalar field operator dressed by a
Faraday line introduced in Sec. II A. If we consider
commutators of ΦWz

ðxÞ with ΦWz
ðx0Þ at equal times

t ¼ t0, they will vanish because the operators only involve
ϕ and Az, all of which commute at equal times (see
Appendix A for basic commutators). However, away from
equal times, there will be a nonzero commutator whenever
any part of the two electric strings are causally separated.
To show this, we consider one point slightly to the future

of the other, which is determined by ½∂0ΦWz
ðxÞ;ΦWz

ðx0Þ� at
equal times. Using the definition of ΦWz

, Eq. (8), and the
identity [34]

d
dt

eO ¼ eO
�
_Oþ 1

2
½ _O;O�

�
ð90Þ

whenever ½ _O;O� is a c-number, we find that

_ΦWz
ðxÞ ¼ eiq

R
∞
0

dsAzðxþsẑÞ
�
_ϕðxÞ þ iqϕðxÞ

Z
∞

0

ds _Azðxþ sẑÞ

þ i
2
q2ϕðxÞδ2ð0Þ

Z
∞

0

ds

�
: ð91Þ

The last term arises from the commutator [see Eq. (A21)]
½ _AzðxÞ; Azðx0Þ� ¼ −iδ3ð~x − ~x0Þ; it is formally infinite and
can be interpreted as due to the infinite energy of the
singular string. It can be regulated by cutting off the
construction at z ¼ Z and by smearing out the singular
string over a small region. However, since it is proportional
to ΦWz

, it can be alternately absorbed by a c-number phase
rotation of ΦWz

and thus also does not contribute to the
commutators of present interest.
If we now commute (91) with ΦWz

ðx0Þ for x ≠ x0, the
contribution of the first term vanishes by ½ _ϕ;ϕ� ¼ 0, and we
are left with

½ _ΦWz
ðxÞ;ΦWz

ðx0Þ�

¼ ΦWz
ðxÞ · iq

Z
∞

0

ds½ _Azðxþ sẑÞ;ΦWz
ðx0Þ�

¼ iq2ΦWz
ðxÞΦWz

ðx0Þδð2Þð~x⊥ − ~x0⊥Þ
Z

∞

maxðz;z0Þ
dz00: ð92Þ

The last term is infrared divergent and may be again
regulated by cutting off the z integration at finite Z.
To understand the appearance of the nontrivial com-

mutator, imagine first acting on the vacuum with the
operator ΦWz

ðxÞ. This will create a charged particle and a
nontrivial configuration of the electromagnetic field (9),
(12). If we subsequently act with ΦWz

at a slightly later
point ðtþ δt; ~xÞ, there is a large phase associated with the
introduction of the new charged particle into the preexist-
ing nontrivial field. The divergence arises since this field
does not decay as z → ∞. While the Faraday dressing
provides a nice intuitive picture of the origin of the
nonzero commutator, the divergence can be eliminated
by working with dressings like that of Dirac, which are
better behaved.

2. Commutators for Dirac dressing

Commutators of Dirac-dressed operators (15) likewise
vanish at equal times but can be shown not to vanish as one
operator is moved into the future by considering the
commutator ½ _ΦDðxÞ;ΦDðx0Þ�. Specifically, the needed time
derivative is
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_ΦDðxÞ ¼VDðxÞ
�
_ϕðxÞ þ iqϕðxÞ

Z
d3x0

ð~x0 − ~xÞi
4πj~x0 − ~xj3

_Aiðt; ~x0Þ þ
i
2
q2ϕðxÞ

Z
d3x0

1

ð4πÞ2
1

j~x0 − ~xj4
�
: ð93Þ

Here, again, the last piece is interpreted in terms of field energy; here, it is infrared finite, but ultraviolet divergent, though it
does not contribute to the commutator of interest. The equal-time commutator arises, as with the Faraday dressing, from the
second term in (93) and takes the form

½ _ΦDðxÞ;ΦDðx0Þ� ¼ ΦDðxÞ · iq
Z

d3x00
ð~x00 − ~xÞi
4πj~x00 − ~xj3 ½

_Aiðt; ~x00Þ;ΦDðx0Þ�

¼ iq2ΦDðxÞΦDðx0Þ
Z

d3x00
ð~x00 − ~xÞi
4πj~x00 − ~xj3

ð~x00 − ~x0Þi
4πj~x00 − ~x0j3

¼ iq2ΦDðxÞΦDðx0Þ
Z

d3x00
1

4πj~x − ~x00j
�
−∇2

x00
1

4πj~x0 − ~x00j
�

¼ iq2

4πj~x − ~x0jΦDðxÞΦDðx0Þ: ð94Þ

In contrast to the divergent commutator of the Faraday-
dressed operators, the commutator of the Dirac-dressed
operators is nonsingular and decays with distance, reflect-
ing the fact that the Coulomb field spreads out with
distance. Moreover, we see that the coefficient entering
the commutator is precisely the Coulomb energy between
charges at points ~x and ~x0.

3. Relation to calculations with Dirac brackets

Note that Ref. [26] claims that commutators of the field
ϕ, in the axial gauge, vanish at spacelike separation and
argues that this means microcausality is preserved. This
seems in conflict with the results derived above. Here, we
will reanalyze the question, in the Dirac bracket formalism
used in Ref. [26], and show that the commutators in
question are indeed nonvanishing. To do this, we review
the Dirac bracket formalism [40] and compare it with the
construction used in the present paper.
First, we recall that the dressed operator ΦWz

ðxÞ coin-
cides with the value of ϕðxÞ in axial gauge Az ¼ 0. So the
commutation relations of ΦWz

ðxÞ are given by the com-
mutation relations of ϕðxÞ in the axial gauge, which can be
evaluated using the Dirac brackets. We will encounter a
possible ambiguity in this gauge choice, since Az can really
only be set to zero by a gauge transformation vanishing at
infinity if

R
dzAz ¼ 0; correspondingly, the operator ϕðxÞ

could be accompanied by an electric string running off to
z ¼ ∞, or to z ¼ −∞, or a linear combination of the two,
and these are gauge-inequivalent configurations.
To carry out the Dirac quantization, we begin by treating

the components of Aμ as canonical variables and find their
momenta πμ; these are given in (A9) with α → ∞. Only πi

are nonzero, and π0 ¼ 0 gives a primary constraint. In order
that this constraint be preserved in time, we find the Gauss
law constraint, ∂iπ

i ¼ −j0, where j0 is the charge density
defined in (A7). These constraints Poisson commute with

each other and with the Hamiltonian and give a system of
first-class constraints.
In order to fix a gauge and reduce the system to physical

degrees of freedom, we add an additional gauge-fixing
constraint, Az ¼ 0. This constraint does not commute with
Gauss’ law, or with the Hamiltonian. To preserve the
constraint in time, we introduce its time derivative πz þ
∂zA0 ¼ 0 as a further constraint. Note that this constraint
does not commute with the primary constraint π0 ¼ 0. We
thus have a system of second-class constraints, given by

π0 ¼ 0; ∂iπ
i þ j0 ¼ 0;

Az ¼ 0; πz þ ∂zA0 ¼ 0: ð95Þ
Letting χi label the constraints (there are four per point),

we can consider the matrix Cij ¼ fχi; χjg, written in terms
of the Poisson brackets fAμðxÞ; πνðx0Þg ¼ δνμδ

3ðx − x0Þ. If
this matrix is invertible, then we can form its inverse Cij

and define the Dirac brackets,

fA; BgDB ¼ fA;Bg − fA; χigCijfχj; Bg: ð96Þ

Because the term Cij is obtained by inverting a differential
operator, the Dirac bracket is nonlocal.
In the case of axial gauge, the nonzero Poisson brackets

are

fπ0ðxÞ; πzðx0Þ þ ∂zA0ðx0Þg ¼ ∂zδ
3ðx − x0Þ; ð97Þ

f∂iπ
iðxÞ þ j0ðxÞ; Azðx0Þg ¼ −∂zδ

3ðx − x0Þ; ð98Þ

fAzðxÞ; πzðx0Þ − ∂zA0ðx0Þ� ¼ δ3ðx − x0Þ: ð99Þ

The constraint matrix C can be expressed as a 4 × 4 matrix
of differential operators, which takes the form
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C ¼

2
6664

0 0 0 ∂z

0 0 −∂z 0

0 −∂z 0 I

∂z 0 −I 0

3
7775: ð100Þ

The general antisymmetric inverse of the constraint matrix is given by

C−1ðx; x0Þ ¼

2
666664

0 − 1
2
jz − z0j − cz0 − dz − e 0 1

2
ϵðz − z0Þ − c

1
2
jz − z0j þ czþ dz0 þ e 0 − 1

2
ϵðz − z0Þ þ d 0

0 − 1
2
ϵðz − z0Þ − d 0 0

1
2
ϵðz − z0Þ þ c 0 0 0

3
777775δ

2ð~x⊥ − ~x0⊥Þ:

ð101Þ

We have to choose boundary conditions in order to invert
C, which determines the constants c, d, and e. The freedom
in inverting the matrix of Poisson brackets is due to the
ambiguity in transforming to a gauge such that Az ¼ 0. The
Dirac bracket defined in Ref. [40] corresponds to the choice
c ¼ d ¼ e ¼ 0. These different solutions define different
dressed scalar operators. The simplest way to see this is by
considering the Dirac bracket of ϕ with the z-component of
the electric field, which measures the electric flux.
To find the Dirac bracket of ϕ with Ez, we need the

nonzero Poisson brackets of these quantities with the
constraints, which are given by

f∂iπ
iðxÞ þ j0ðxÞ;ϕðx0Þg ¼ iqδ3ðx − x0Þϕðx0Þ; ð102Þ

fEzðxÞ; Azðx0Þg ¼ δ3ðx − x0Þ: ð103Þ

The Dirac bracket is then given by

fEzðxÞ;ϕðx0ÞgDB
¼ −

Z
d3x00d3x000fEzðxÞ; Azðx00Þg

�
− 1

2
ϵðz00 − z000Þ − d

�
× δ2ð~x00⊥ − ~x000⊥Þf∂iπ

iðx000Þ þ j0ðx000Þ;ϕðx0Þg

¼ iq

�
1

2
ϵðz − z0Þ þ d

�
δ2ð~x⊥ − ~x0⊥Þϕðx0Þ: ð104Þ

Thus, we see for d ¼ 1=2we have a Faraday line of flux−q
pointing in the z direction, which is the dressing ΦWz

of (9)
with the identification ½; � ¼ if; gDB. The choice c ¼ 0,
used in Ref. [40], gives a particle dressed by two Faraday
lines of flux q=2 pointing in opposite directions.
We can now consider Dirac brackets between the scalar

field ϕ and its canonical momentum πϕ. The modification
of the Dirac brackets is due to the nonzero commutator of
the matter field with Gauss’ law. However, Cij is zero when
i and j both label the Gauss law constraint, so these Dirac
brackets coincide with the canonical Poisson brackets. This

conclusion was reached in Ref. [26] and used as part of an
argument for commutativity of ϕ’s at spacelike separation.
However, while this argument shows that the Poisson

brackets between ϕ and πϕ are unmodified by the coupling
to the gauge field, it does not show that ϕ commutes with ϕ
at a later time. To see this, we can consider the Dirac
bracket of ∂0ϕ ¼ π�ϕ þ iqA0ϕ with ϕ. This leads to a
nontrivial Dirac bracket due the Poisson bracket of A0 with
the primary constraint π0:

f _ϕðxÞ;ϕðx0ÞgDB ¼ −
Z

d3x00d3x000fiqA0ðxÞϕðxÞ; π0ðx00Þg

×

�
− 1

2
jz00 − z000j − cz000 − dz00 − e

�
× δ2ð~x00⊥ − ~x000⊥Þfj0ðx000Þ;ϕðx0Þg

¼ −q2
�
1

2
jz − z0j þ cz0 þ dzþ e

�
× ϕðxÞϕðx0Þ: ð105Þ

This indeed agrees with the commutator of the Wilson-line
dressing (92), if we take c ¼ d ¼ 1

2
and e ¼ −Z.

Thus, in summary, while one does find that the equal-
time Poisson bracket fϕðxÞ; πϕðx0Þg ¼ 0 for x ≠ x0, this
does not imply that fϕðxÞ;ϕðx0Þg vanishes at spacelike
separation, so the operators do not commute in general
outside the light cone.

B. Algebra for observables in gravity

We finally turn to the important question of the algebra
of gauge-invariant operators in gravity. In Sec. III, we
described the construction, at linear order in κ, of diffeo-
morphism-invariant observables corresponding to a matter
field and its gravitational dressing. In parallel with the
preceding discussion on QED, we can now likewise
investigate the algebra obeyed by these observables.
While these have only been constructed to leading order

DIFFEOMORPHISM-INVARIANT OBSERVABLES AND … PHYSICAL REVIEW D 93, 024030 (2016)

024030-13



in κ, and thus we will only find the leading-order commu-
tators, these have interesting structure and of course
constrain the all-orders commutators since the latter need
to match our results when expanded to this leading order.
The general form of the gauge-invariant observables we

have described is

ΦðxÞ ¼ ϕðxÞ þ VμðxÞ∂μϕðxÞ þ κ2Φð2ÞðxÞ þOðκ3Þ;
ð106Þ

where Vμ is of order κ and explicit examples have been
given in Sec. III. We will consider the equal-time commu-
tators ½Φ;Φ� and ½ _Φ;Φ� to leading order, which is to order
κ2. At this order and for x ≠ x0, these commutators take the
form

½ΦðxÞ;Φðx0Þ� ¼ ½VμðxÞ; Vνðx0Þ�∂μϕðxÞ∂νϕðx0Þ ð107Þ

and

½ _ΦðxÞ;Φðx0Þ� ¼ ½ _VμðxÞ; Vνðx0Þ�∂μϕðxÞ∂νϕðx0Þ
þ ½VμðxÞ; Vνðx0Þ�∂μ

_ϕðxÞ∂νϕðx0Þ: ð108Þ

Note that the validity of (107) and (108) requires the
elimination of other terms that could potentially contribute
at order κ2. First, there is a possible contribution to the
commutator (107) of the form

½VμðxÞ;ϕðx0Þ�∂μϕðxÞ ð109Þ

and similarly with x ↔ x0. However, VμðxÞ as we have
constructed it depends only on the metric and its first
derivative on the constant time slice, so this commutator
vanishes.
There is also the possibility of a term in (108) of the form

½ _VμðxÞ;ϕðx0Þ�∂μϕðxÞ; ð110Þ

and likewise with x ↔ x0. Indeed, since V0 contains time
derivatives of the spatial metric [see (46) and (50)], _V0

contains second time derivatives of hij. In order to find
these commutators at equal time, we have to use the
equation of motion for hμν (B22). It is convenient to
choose Feynman gauge and rewrite the equation of motion
by subtracting a multiple of the trace as [cf. (B24)]

ḧμν ¼ ~∇2
hμν þ

κ

2
T̂μν; ð111Þ

where T̂μν is the “inverse trace-reversed” stress tensor,
defined as in (B8). This suggests that the nontrivial
commutator between T̂μν with ϕ could potentially lead
to a contribution at order κ2. However, the spatial compo-
nents of T̂μν ¼ ∂μϕ∂νϕþm2ϕ2ημν=ðD − 2Þ, which enter
_V0, do not contain time derivatives of ϕ, so there is no such

contribution to the equal-time commutator between _Φ and
Φ; the term in (110) vanishes.
Finally, we should consider a possible term in (107) of

the form

κ2½ϕðxÞ;Φð2Þðx0Þ�; ð112Þ
with similar terms appearing in (108). It appears that this
term could contain an Oðκ2Þ contribution. However, we
have defined Φ as the value of ϕ at a point determined in
terms of the geometry, so the second-order piece takes the
form

κ2Φð2ÞðxÞ ¼
1

2
VμðxÞVνðxÞ∂μ∂νϕðxÞ þ Vμ

ð2ÞðxÞ∂μϕðxÞ;
ð113Þ

where Vμ
ð2Þ is a nonlocal functional of the metric hμν of

order κ2. Then, the commutator ½ϕðxÞ; hμνðx0Þ� is OðκÞ
since it vanishes in the absence of gravitational interactions,
so the term in (112) is Oðκ3Þ.
We therefore conclude that (107) and (108) contain all

the terms that can enter the commutators at order κ2.
As we have just noted, V0 contains a time derivative of

the spatial metric, and this implies a new feature of the
algebra, as compared to the gauge-theory case: there can be
a nonzero contribution to the equal-time commutators
½Φ;Φ�. We will consider the different commutators in turn.

1. ½ _Φ;Φ�
In this paper, rather than working out the full structure of

the commutators in detail, our main focus will be the
question of when the commutators are nonzero and when
they become significant. We first consider commutators
½ _Φ;Φ�. These receive contributions in particular when we
consider the large-mass limit, where the operators can
create massive particles at rest.
A simplest example of such commutators arises in the

Wilson-line case, where we find from (46), working in
D ¼ 4,

½ _VWz;zðxÞ; VWz;zðx0Þ�

¼ κ2

4

Z
∞

0

ds
Z

∞

0

ds0½ _hzzðxþ sẑÞ; hzzðx0 þ s0ẑÞ�

¼ −i
κ2

8
δ2ðx⊥ − x0⊥Þ

Z
∞

0

ds; ð114Þ

using the equal-time commutator [specialized to D ¼ 4;
see (B14)]:

½ _hμνðxÞ; hλσðx0Þ� ¼ −i
�
δμðλδ

ν
σÞ −

1

2
ημνηλσ

�
δ3ð~x − ~x0Þ;

ðt ¼ t0; D ¼ 4Þ: ð115Þ
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Thus, from (108), there is a nonvanishing contribution to
the equal-time commutator

½ _ΦWz
ðxÞ;ΦWz

ðx0Þ� ¼ −i κ
2

8
∂zϕðxÞ∂zϕðx0Þδ2ðx⊥ − x0⊥Þ

×
Z

∞

0

dsþ � � � ; ð116Þ

where we omit terms proportional to other derivatives of ϕ.
The divergence here can be regulated by basing the Wilson-
line construction on a platform at a large, finite z ¼ Z,
cutting off the integral at Z.
We next consider commutators proportional to

_ϕðxÞ _ϕðx0Þ; these are the terms that make the leading
contribution in the large-mass, zero-momentum limit.
These commutators arise from ½ _V0; V0�.
An interesting case is that of the commutator of two

operators with the Coulomb dressing. The time derivative
of V0

C is, using (111) and neglecting the stress tensor terms
which we have argued do not contribute to our calculation,
and with ~r ¼ ~y − ~x,

_V0
CðxÞ¼− κ

4π

Z
d3y

�
ḧrrðyÞ
2r

þ
_h0rðyÞ
r2

�

¼−
κ

4π

Z
d3y

�
hμν ~∇2

�
r̂μr̂ν

2r

�
þ

_h0rðyÞ
r2

�

− κ

4π

I
r2d2Ω

�∇rhrr
2r

−hμν∇r

�
r̂μr̂ν

2r

��
þT terms

¼−
κ

4π

Z
d3y

�
hii−3hrr

r3
−2π

3
hiiδ3ð~rÞþ

_h0r
r2

�

− κ

4π

I
r2d2Ω

�∇rhrr
2r

þ hrr
2r2

�
þT terms: ð117Þ

Here, we have also used the identities (C4), (C6). When
evaluating the commutator with V0

C, we can neglect the
boundary terms. This is because the commutator of hμνðyÞ
with V0ðx0Þ decays as 1=r, so when we commute V0ðx0Þ
with the boundary term in (117), the resulting integrand is
1=r3, and hence its integral vanishes as the surface is taken
to infinity.
The commutator ½ _V0

CðxÞ; V0
Cðx0Þ� is the sum of three

terms, which we denote by ½ �1;2;3. The bulk term from the
commutator of _h0r with h0r is, with ~r0 ¼ ~y0 − ~x0,

½ �1 ¼
κ2

16π2

Z
d3y

Z
d3y0

r̂μ

r2
r̂0ν

r02
i
2
δμνδ

3ð~y − ~y0Þ

¼ iκ2

32π2

Z
d3y∂μ

�
1

r

�
∂μ

�
1

r0

�

¼ iκ2

8πjx − x0j : ð118Þ

The piece of the commutator coming from the 1=r3 term
in (117) is

½ �2 ¼
iκ2

32π2

Z
d3y

1 − 3ðr̂ · r̂0Þ2
r3r0

: ð119Þ

This integral is evaluated in Appendix C and gives

½ �2 ¼ − iκ2

6πjx − x0j : ð120Þ

Finally, the δ-function term in (117) leads to

½ �3 ¼
iκ2

96πjx − x0j : ð121Þ

Adding these terms gives

½ _V0
CðxÞ;V0

Cðx0Þ� ¼ ½ �1þ½ �2þ½ �3¼− iκ2

32πjx−x0j : ð122Þ

Then, if we consider ΦCðx0Þ to create a static source, for
which _ϕðx0Þ ¼ imϕðx0Þ, and use (108), this leads to a
nonzero commutator,

½ _ΦCðxÞ;ΦCðx0Þ� ¼ ½ _V0
CðxÞ; V0

Cðx0Þ� _ϕðxÞ _ϕðx0Þ

¼ Gm
jx − x0j

_ϕðxÞϕðx0Þ: ð123Þ

Note the comparison between this result and the QED result
(94); this is even clearer in the static limit _ϕðxÞ ¼ imϕðxÞ.
In higher dimensions, we expect a denominator jx − x0jD−3.
Thus, in gravity, we find nonlocal commutators, and in
particular commutators proportional to the gravitational
potential.

2. ½Φ;Φ�
As noted above, a difference between gravity and QED is

a nonzero contribution to the equal-time commutators
½Φ;Φ�. Such contributions arise for both the Wilson line-
dressed operators and the Coulomb-dressed operators.
These are most easily elucidated by considering the

commutator ½ΦWz
ðxÞ;ΦCð0Þ�. For simplicity, consider the

case where ~x ¼ ð0; 0; zÞ. Then, we see from (107) that these
commutators have a contribution from

½Vz
Wz
ðxÞ; V0

Cð0Þ�

¼ − κ2

8π

Z
∞

z
dz0

Z
d3y½hzzð0; z0Þ; _hijðyÞ�

yiyj

2y3

¼ −
iκ2

32π

Z
∞

z

dz0

z0

¼ −
iκ2

32π
lnðZ=zÞ; ð124Þ
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where in the last line we have introduced a large-z cutoff Z.
Thus, we find

½ΦWz
ðxÞ;ΦCð0Þ� ¼ − iκ2

32π
lnðZ=zÞ∂zϕðxÞ _ϕð0Þ þ � � � ;

ð125Þ

where we do not include terms proportional to other
operators.
While initially surprising, the log has the following

explanation. The time derivative in V0 (50) creates the
perturbation of the spatial metric which we have shown
corresponds to linearized Schwarzschild,

κhrr ¼
κ2m
16πr

: ð126Þ

After acting with the operator ΦCð0Þ, the proper distance
from a point near infinity is thus corrected by a term
logarithmic in r; since theWilson-line construction uses the
proper distance, this leads to the log in (124). Note that this
logarithmic term is closely similar to another logarithmic
dependence seen in a related physical effect: the Shapiro
time delay. In higher dimensions, the metric perturbation
created by V0

C is

κhrr ∝
GDm
rD−3 ; ð127Þ

and so the corresponding correction does not require a
cutoff and varies ∝ z4−D.
One can likewise examine the commutator

½ΦWz
ðxÞ;ΦWz

ðx0Þ�; here, one finds a result that is quadrati-
cally divergent in the cutoff Z for D ¼ 4.
Finally, we consider the commutator of two of the more

“physical” ΦC’s. The commutator of the dressings is

½V0
CðxÞ; Vi

Cðx0Þ�

¼ − 3κ2

32π2

Z
d3y

Z
d3y0

r̂jr̂k

2r
½ _hjkðyÞ; hlmðy0Þ�

r̂0ir̂0lr̂0m

r02

¼ 3iκ2

64π2

Z
d3y

ðr̂ · r̂0Þ2 − 1=2
rr02

r̂0i; ð128Þ

where ~r ¼ ~y − ~x and ~r0 ¼ ~y0 − ~x0; in the second line,
~y0 ¼ ~y. The necessary integral is done in Appendix C,
yielding

½V0
CðxÞ; Vi

Cðx0Þ� ¼
iκ2

64π

x0i − xi

jx − x0j : ð129Þ

This result, then, gives a commutator,

½ΦCðxÞ;ΦCðx0Þ� ¼ − iκ2

64π
½ _ϕðxÞ∂iϕðx0Þ þ ∂iϕðxÞ _ϕðx0Þ�

×
xi − x0i

jx − x0j : ð130Þ

This term does not decay with distance, but does vanish
with the momentum of the fields, and so vanishes in the
static limit. In higher dimensions, we expect a falloff
∼jx − x0j4−D.
Note that the commutator of the form (130) can be

eliminated by adding a linear combination of ΔV0 and ΔVi

appearing in Eqs. (72), (73) to Vμ
C. For example, the

combination

V0
NðxÞ ¼ V0

CðxÞ þ
1

4
ΔV0ðxÞ ð131Þ

commutes with Vkðx0Þ, and so the resulting dressing does
not produce a commutator (130). More generally, one
expects a one parameter family of dressings with linear
combinations of ΔV0 and ΔVi added to Vμ

C with the same
property. Note that these will also change the commutators
½ _V0; V0�, but the latter can be shown to still take the same
form as in (122), with different numerical coefficients.

C. Further comments

We have only evaluated some indicative commutators,
which reveal nonlocal behavior, as compared to LQFT, of
our gauge-invariant, gravitationally dressed operators.
Other commutators can be likewise evaluated, with more
effort, using similar techniques. In particular, one can
evaluate the commutators of the operators with the world-
line dressing, corresponding to more general states of the
motion of a particle, and find similar results to the simple
cases we have shown.
We also note that there are contrary claims in the

literature [18], that gravitational dressing does not modify
the local properties of commutators of field operators. The
same claim was made [26] for QED, for similar reasons.
But, as we have detailed above, a closer inspection of the
Dirac brackets for QED fixed to the axial gauge explicitly
shows noncommutativity that matches that of the dressed
operators, giving one confidence in our methods and
results. Thus, we likewise expect that the nonzero com-
mutators for gravity—which are similar in structure to
those of QED—are also present and could likewise be
derived through a Dirac bracket analysis.

V. DISCUSSION

The diffeomorphism-invariant observables that we have
constructed in this paper potentially play multiple impor-
tant roles in better understanding aspects of quantum
gravity.
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A first role is to control infrared divergences in scatter-
ing. While that has not been a primary focus of this paper,
we have noted that the worldline-dressed operators
described in Sec. II C have been argued by Refs. [34,35]
to regulate IR divergences in scattering in QED.4

Section III C has constructed analogous operators in
gravity. Thus, we expect the corresponding gravitational
dressings to analogously address IR divergences in gravi-
tational scattering. We leave development of such a treat-
ment of scattering to future work; for related work
see Ref. [43].
Another very important role is in capturing features of the

fundamental structure of quantum gravity. As we have noted,
locality in LQFT is most clearly described in terms of
commutativity of subalgebras of gauge-invariant observables
associated with spacelike-separated regions of spacetime. A
key question for quantum gravity, if it is a quantum-
mechanical theory, is thus what algebraic structure governs
its observables, and how this structure relates to possible
localization, and reduces to the locality structure of LQFT in
the limit G → 0 [22].
While the strong gravitational regime still poses many

puzzles, we have found that even the weak-field regime
allows us to infer apparently important aspects of this
algebraic structure, since nontrivial results can be found
perturbatively in G and since any more complete algebra
relevant to arbitrarily strong fields must have these con-
tributions at leading order in an expansion in G. In
particular, we have found, at order G in an expansion of
commutators of the gauge-invariant observables, obstruc-
tions to the commutativity of operators associated to
different “regions” of spacetime. If locality is defined in
terms of such commutativity, it fails for the gravitationally
dressed operators we have considered, and in a way that
suggests that it will not necessarily be easy to restore with
definitions of different operators. This appears to be an
important structural aspect of a quantum theory of gravity,
if it is to agree with quantized general relativity in the weak-
field regime.
One key piece of information is that of when the

noncommutativity becomes significant; that is expected
to be an important characteristic of the “correspondence
boundary” where quantum gravity reduces to LQFT
[22,44]. For example, for two particles of energy E,
Eq. (123) indicates that the dressing only makes a small
correction to _ΦðxÞΦðx0ÞwhenGE≲ jx − x0j, or, for general
D, for

GDE≲ jx − x0jD−3: ð132Þ

This is in accord with the locality bound proposed in
Refs. [23–25], which stated that LQFT ceases to give an

accurate description of the state once the bound (132) is
violated. Note that we have also found significant correc-
tions in the ½ΦðxÞ;Φðx0Þ� commutator, which appear to
become relevant in a regime where GpE≳ jx − x0jD−4,
where p is a characteristic momentum of the particles being
created. While interesting, and clearly related to the
physical effect described in (125), these commutators
can be removed by modifying the dressing, as described
in the preceding section.
Notice that we can, at the order G to which we work,

achieve commutativity of the gravitational Wilson-line
operators of (45) associated to spacelike separated points
x and x0, if we run their associate Wilson lines in different
directions so that they also stay spacelike separated.
However, such operators do not have a clear identification
with a compact spacetime region and appear to be more
clearly associated with a noncompact neighborhood,
extending to infinity and containing the flux line.
Moreover, we expect important corrections [22] at higher
order in G. First, the infinitesimally thin Wilson lines have
infinite energy density and thus are expected to receive
significant corrections once the self-coupling of gravity is
taken into account. This is expected to thicken these Wilson
lines. Moreover, it would appear that the thickness of the
corresponding region would grow as the mass or energy
sourcing the flux lines increases. This suggests an impor-
tant lesson for any putative subalgebra structure: a mono-
mial in the operator ΦWz

ðxÞ would appear to be associated
with a larger and larger region as the order of the monomial
grows; moreover, this also strongly suggests that such a
monomial does not commute with ΦWz

ðx0Þ for high enough
order, spoiling any commutative subalgebra structure.
While we have treated the case of asymptotically

Minkowski space, many of the features we have described
should carry over to the case of anti de Sitter space with
relatively minor modification. In particular, one can like-
wise construct Wilson-line operators, associated with
“Fefferman-Graham” gauge, there; for a related discussion,
see Refs. [16,18,36]. These can alternately be averaged
over directions, as we have done in Sec. III B, to produce a
Coulomb-like dressing. One would then find a similar
commutator structure for the corresponding operators. In
particular, two Wilson-line operators with overlapping
Wilson lines are not expected to commute, as in (92).
This differs from a claim of Ref. [18], though we have
understood the origin of the conflict in the simple example
of QED in Sec. IVA 3. Also note that for many purposes
working in AdS will provide an effective infrared regulator,
with characteristic length ∼RAdS, to calculations with the
flat-space operators described in this paper.
The present discussion also has interesting relations

with the similar problem of observables in de Sitter
space—though here nontrivial features are encountered. In
particular, Refs. [9,12] discussed the formulation of observ-
ables where field operators are separated by a given

4Connections to and issues with the related analysis of
Ref. [41] are discussed in Ref. [42].
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geodesic distance; as in the present work, these will create
particles together with a gravitational flux line connecting
them. Thus, for far separated particles, or if one particle is
taken to be massive and provide a platform with respect to
which we measure, the construction for the remaining
particle is very similar to the ones we have described.
However, notice that in such a picture field lines appear to
terminate on the pair of particles; none can reach asymp-
totic infinity since space is compact. This new feature arises
from the nontrivial nature of the de Sitter background.
Past examples [9] of diffeomorphism-invariant, approx-

imately local observables such as those just mentioned are
relational, in that the position at which we create or
measure a particle is defined in relation to other particles
or features of the background state. Interestingly, the
observables constructed in this paper do not require any
such local structure to define location; the location of the
field operator is defined in relation to the structure at
infinity. Thus, these are still relational, though in a some-
what different fashion.
A final role to consider for such observables is their

connection to observation or experiment. The observables
of this paper, like those of Refs. [9,12], are observables in
the usual mathematical sense of quantum mechanics—they
are Hermitian, gauge-invariant operators on the Hilbert
space. However, they do not have an a priori connection to
observations made by “observers inside the system” and
thus were referred to as q-observables in Ref. [45]. Some
such q-observables are expected to be related to observa-
tions such observers can make (thus to what experimental
physicists would call “observables”); further development
of this story is left for future work.
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APPENDIX A: QED BASICS

Here, we collect some basic formulas relevant to the
quantization of QED.
The Lagrangian of QED takes the form

LQED ¼ − 1

4
FμνFμν − 1

2α
ð∂μAμÞ2 þ Lm: ðA1Þ

The second term is a “gauge-fixing” (really, gauge-
invariance breaking) term; gauge transformations act as

AμðxÞ → AμðxÞ − ∂μΛðxÞ: ðA2Þ

Gauge symmetry is restored for α ¼ ∞, α ¼ 1 gives
Feynman gauge, and α → 0 gives “Lorenz” or “Landau
gauge.” The third term is the matter Lagrangian. The
corresponding equations of motion are

∂νFμν − 1

α
∂μ∂νAν ¼ −□Aμ þ

�
1 − 1

α

�
∂μ∂νAν ¼ jμ;

ðA3Þ

where jμ ¼ δ
δAμ

R
d4xLm is the current; here □ ¼ ∂μ∂μ.

A particular matter Lagrangian is that for a charged
scalar,

Lm ¼ −jDμϕj2 −m2jϕj2; ðA4Þ

with gauge transformation

ϕðxÞ → e−iqΛðxÞϕðxÞ; ðA5Þ

and with covariant derivative

Dμϕ ¼ ∂μϕ − iqAμϕ: ðA6Þ

The corresponding current is

jμ ¼ −iq½ϕ�Dμϕ − ðDμϕÞ�ϕ�: ðA7Þ

The canonical momenta are

πϕ ¼ ðD0ϕÞ�; π�ϕ ¼ D0ϕ ðA8Þ

and

πi ¼ −∂0Ai þ ∂iA0 ¼ −F0i ¼ −Ei; π0 ¼ 1

α
∂μAμ:

ðA9Þ

At α ¼ ∞, π0 of course vanishes, yielding a constraint. The
equal-time commutators are

½πϕðxÞ;ϕðx0Þ�jt¼t0
¼ −iδD−1ð~x − ~x0Þ ¼ ½π�ϕðxÞ;ϕ�ðx0Þ�jt¼t0

ðA10Þ

and

½πμðxÞ; Aνðx0Þ�jt¼t0
¼ −iδμνδD−1ð~x − ~x0Þ: ðA11Þ

These commutation relations provide initial data for the
unequal-time commutators. In the free limit, these satisfy
the free equations of motion. For the free scalar, we have

½ϕðxÞ;ϕ�ðx0Þ� ¼ iΔðx − x0Þ; ðA12Þ
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where Δ is the massive Pauli-Jordan function, satisfying

ð□ −m2ÞΔðxÞ ¼ 0; ΔðxÞjt¼0
¼ 0;

∂tΔðxÞjt¼0
¼ −δ3ð~xÞ: ðA13Þ

Note also that

Δðx − x0Þ ¼ Gaðx; x0Þ −Grðx; x0Þ; ðA14Þ

where Gr and Ga are the retarded and advanced Green
functions, respectively,

Grðx; x0Þ ¼ iθðt − t0Þh0j½ϕðxÞ;ϕ�ðx0Þ�j0i;
Gaðx; x0Þ ¼ −iθðt0 − tÞh0j½ϕðxÞ;ϕ�ðx0Þ�j0i: ðA15Þ

The commutators for the electromagnetic field may be
written in terms of the massless Pauli-Jordan function (again,
advanced minus retarded Green function), satisfying

□DðxÞ ¼ 0; ðA16Þ

Dð−xÞ ¼ −DðxÞ; ðA17Þ

DðxÞjt¼0
¼ 0; ðA18Þ

∂tDðxÞjt¼0
¼ −δD−1ð~xÞ: ðA19Þ

In four dimensions, DðxÞ is given by

DðxÞ ¼ − 1

2π
ϵðtÞδðx2Þ; ðA20Þ

where ϵðtÞ is the sign function. The commutators become

½AμðxÞ; Aνðx0Þ� ¼ iDμνðx − x0Þ; ðA21Þ

where

DμνðxÞ ¼ ημνDðxÞ þ ð1 − αÞ∂μ∂νEðxÞ; ðA22Þ

and □E ¼ −D. More explicitly, EðxÞ is the Green function
for the operator □2 with the boundary conditions

EðxÞjt¼0
¼ ∂tEðxÞjt¼0

¼ ∂2
t EðxÞjt¼0

¼ 0;

∂3
t EðxÞjt¼0

¼ −δD−1ð~xÞ: ðA23Þ

In D ¼ 4, it is constant in the forward light cone and in the
backward light cone and is given explicitly by

EðxÞ ¼ − 1

8π
ϵðtÞθð−x2Þ: ðA24Þ

Equation (A22) can be verified by checking that the resulting
commutator satisfies the equation of motion,

�
δμλ□þ

�
1

α
− 1

�
∂μ∂λ

�
DμνðxÞ ¼ 0; ðA25Þ

with initial conditions given by

½A0ðxÞ; _A0ðx0Þ� ¼ −iαδD−1ð~x − ~x0Þ;
½AiðxÞ; _Ajðx0Þ� ¼ iδijδD−1ð~x − ~x0Þ; ðA26Þ

which follow from (A11).
Note that the quantity B ¼ ∂μAμ generates gauge trans-

formations on both the electromagnetic and matter fields:

i½Bðx0Þ; AμðxÞ� ¼ α∂μDðx0 − xÞ;
i½Bðx0Þ;ϕðxÞ� ¼ iαqDðx0 − xÞϕðxÞ: ðA27Þ

This is an infinitesimal gauge transformation,

i½Bðx0Þ; AμðxÞ� ¼ δΛAμðxÞ ¼ −∂μΛðxÞ;
i½Bðx0Þ;ϕðxÞ� ¼ δΛϕðxÞ ¼ −iqΛðxÞϕðx0Þ; ðA28Þ

with ΛðxÞ ¼ αDðx − x0Þ. Here, the commutators with Aμ

follow from (A21). To check the ϕ commutator, we first use
the equal-time commutation relations to show that it holds
at equal times,

½Bðx0Þ;ϕðxÞ�jt¼t0
¼ 0;

½∂0Bðx0Þ;ϕðxÞ�jt¼t0
¼ −αqδ3ð~x − ~x0ÞϕðxÞ; ðA29Þ

where we have used the equation of motion to write
∂0B ¼ αð∂iπ

i þ j0Þ. The identity (A27) then follows at
unequal times using the fact that B satisfies the free
equation of motion □B ¼ 0 when the current jν is
conserved.
Thus, a gauge-invariant operatorΦ constructed out of the

electromagnetic field and the scalar field ϕ will commute
with BðxÞ. The physical states of the theory are those
annihilated by the positive-frequency part Bþ of B:

BþðxÞjψi ¼ 0 ⇔ jψi is a physical state: ðA30Þ

Then, if Φ is a gauge-invariant operator, it will commute
with the positive-frequency part of B and hence maps
physical states to physical states.

APPENDIX B: GRAVITY BASICS

Here, we collect some basic formulas relevant to
perturbative quantization of gravity.
The scalar Lagrangian density for Einstein gravity takes

the form

Lgrav ¼
2

κ2
Rþ Lgf þ Lm; ðB1Þ
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where κ2 ¼ 32πGD, GD is the D-dimensional Newton’s
constant, R is the scalar curvature, and Lm is the matter
Lagrangian; a particular example is that for a scalar with
mass m,

Lm ¼ − 1

2
½ð∇ϕÞ2 þm2ϕ2�: ðB2Þ

The second term in (B1), Lgf , denotes a gauge-fixing
(really, gauge-invariance breaking) term. If one picks a
background metric g0, one useful choice is

ffiffiffiffiffi
jgj

p
Lgf ¼ − 1

ακ2

ffiffiffiffiffiffiffi
jg0j

p
jgj

h
∇0

μ

	 ffiffiffiffiffi
jgj

p
gμν


i
2
; ðB3Þ

where∇0 denotes the covariant derivative with respect to g0

and g0 is used for the contraction of the ν index. Gauge
symmetry is restored for α ¼ ∞, α ¼ 1 is Feynman gauge,
and α → 0 is an analog of Landau gauge, which enforces
the de Donder gauge condition

∇0
μ

	 ffiffiffiffiffi
jgj

p
gμν



¼ 0: ðB4Þ

When g0 is the flat metric, this reduces to the usual
harmonic gauge condition, which can be expressed in
any of the equivalent forms:

∂μ

	 ffiffiffiffiffi
jgj

p
gμν



¼ 0; gμνΓα

μν ¼ 0; □Xμ ¼ 0:

ðB5Þ

The latter says that the coordinates Xμ are harmonic
functions of spacetime.
For the purposes of this paper, we primarily focus on the

linearization of gravity about flat space. The metric
perturbation is defined by

gμν ¼ ημν þ κhμν: ðB6Þ

For the linearized theory, we need the quadratic-order
expansion of

ffiffiffiffiffijgjp
LEH ¼ 2

ffiffiffiffiffijgjp
R=κ2 in h. Various for-

mulas simplify if we define the “trace-reversed” metric
perturbation,

h̄μν ¼ hμν − 1

2
ημνh; ðB7Þ

with h ¼ ημνhμν; the inverse to trace reversal, in D
spacetime dimensions, is

ˆ̄hμν ¼ h̄μν − 1

D − 2
ημνh̄ ¼ hμν: ðB8Þ

The quadratic part of the Einstein-Hilbert action can then be
simplified to

	 ffiffiffiffiffi
jgj

p
LEH



2
¼ − 1

2
∂σhμν∂σh̄μν þ ∂λh̄λμ∂νh̄νμ þ t:d:;

ðB9Þ

where indices are raised with the flat metric η and the last
term is a total derivative. Likewise, to quadratic order, the
gauge-fixing term gives

	 ffiffiffiffiffi
jgj

p
Lgf



2
¼ − 1

α
ð∂λh̄λμÞ2; ðB10Þ

and so the combined quadratic action for gravity is
(dropping total derivatives)

h ffiffiffiffiffi
jgj

p
ðLEH þ LgfÞ

i
2
¼ − 1

2
∂σhμν∂σh̄μν

þ
�
1 − 1

α

�
ð∂λh̄λμÞ2: ðB11Þ

This action exhibits the simplicity of Feynman gauge,

α ¼ 1. Here, the canonical conjugate to hμν is _̄h
μν
, so we

have the equal-time commutation relations

½hμνðxÞ; _̄hλσðx0Þ�jt¼t0
¼ iδλσμνδD−1ð~x − ~x0Þ; ðB12Þ

where we define

δλσμν ¼ δðλμ δ
σÞ
ν ðB13Þ

with symmetrization convention AðλσÞ ¼ ðAλσ þ AσλÞ=2.
Equivalently without using the trace-reversed field,

½hμνðxÞ; _hλσðx0Þ�jt¼t0
¼ i

�
δλσμν − ημνη

λσ

D − 2

�
δD−1ð~x − ~x0Þ:

ðB14Þ

When κ ¼ 0, the field equation reduces to □h̄μν ¼ 0,
from which we find the unequal-time Feynman-gauge
commutation relations for fields in the interaction picture,

½h̄μνðxÞ; hλσðx0Þ� ¼ iδλσμνDðx − x0Þ; ðB15Þ

or

½hμνðxÞ; hλσðx0Þ� ¼ i

�
δλσμν − ημνη

λσ

D − 2

�
Dðx − x0Þ; ðB16Þ

with DðxÞ given in Appendix A. Alternately, the momen-
tum-space two-point function is

hhμνðpÞh̄λσðp0Þi ¼ − i
p2

δλσμνð2πÞDδDðpþ p0Þ; ðB17Þ
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with the corresponding correlators for the metric found via
the transformation (B8).
These expressions can be generalized to α ≠ 1; let us

introduce the variable

β ¼ 1 − 1

α
: ðB18Þ

Then, the quadratic action (B11) takes the formh ffiffiffiffiffi
jgj

p
ðLEH þ LgfÞ

i
2
¼ 1

2
hμνLμν

λσðβÞhλσ; ðB19Þ

where Lμν
λσðβÞ is the second-order linear operator

defined by

Lμν
λσðβÞ ¼

�
δλσμν − 1

2
ημνη

λσ

�
∂ρ∂ρ

− 2β

�
δαðμ∂νÞ − 1

2
ημν∂α

��
δðλα ∂σÞ − 1

2
ηλσ∂α

�
:

ðB20Þ
Defining the stress tensor as

Tμν ¼ − 2ffiffiffiffiffijgjp δSm
δgμν

; ðB21Þ

the linearized gravitational equations then take the form

Lμν
λσðβÞhλσ ¼ − κ

2
Tμν; ðB22Þ

where in this equation the metric in Tμν gets replaced with η
to leading order. Then, the propagator for the metric takes
the form

hThμνðxÞhλσðx0Þi ¼ iðL−1Þμνλσðx; x0Þ: ðB23Þ

Note that the linearized gravitational equations (B22)
simplify to

□h̄μν ¼ − κ

2
Tμν ðB24Þ

in Feynman gauge (β ¼ 0).
One can also work out the canonical momenta and

commutators for the metric. From (B11), one finds

π0μ ¼ _̄h
0μ − β∂νh̄νμ;

πij ¼ _̄h
ij − β∂νh̄ν0δij: ðB25Þ

When β ¼ 1, there is no gauge fixing, so the momenta πμ0

do not contain time derivatives and give the expected
constraints. For general β, the canonical commutators are

½πμνðxÞ; hλσðx0Þ�jt¼t0
¼ −iδμνλσδD−1ð~x − ~x0Þ: ðB26Þ

When β ¼ 0, this agrees with the Feynman gauge
result (B12).
These commutation relations provide initial data for the

unequal-time commutators, which in the free limit satisfy
the free equations of motion (B22) with T ¼ 0. These are

½hμνðxÞ; h̄λσðx0Þ� ¼ iDμν
λσðx − x0Þ ðB27Þ

with

Dμν
λσðxÞ ¼ δλσμνDðxÞ

þ 2ð1 − αÞ
�
δðλðμ∂σÞ∂νÞ − 1

2
ηλσ∂μ∂ν

�
EðxÞ

ðB28Þ
and DðxÞ and EðxÞ given in Appendix A. This can be
checked by verifying that

LðxÞ
μν

λσDλσ
γδðx; x0Þ ¼ 0 ðB29Þ

and that Dμν
λσ satisfies the initial conditions implied by

½hμνðxÞ; hλσðx0Þ�jt¼t0
¼ 0 ðB30Þ

and (B26).
The gauge condition bν ¼ ∂μh̄μν generates infinitesimal

diffeomorphisms, just as the gauge condition in QED
generates infinitesimal gauge transformations [cf. (A28)].
From (B27) and (B28), we find the commutator

i½bσðx0Þ; hμνðxÞ� ¼ −∂μξ
ðσÞ
ν ðxÞ − ∂νξ

ðσÞ
μ ðxÞ; ðB31Þ

with the infinitesimal diffeomorphism generated by the
vector fields

ξðσÞμ ðxÞ ¼ α

2
δσμDðx − x0Þ: ðB32Þ

One can also see that

i½bσðx0Þ;ϕðxÞ� ¼ −κξðσÞμ ðxÞ∂μϕðxÞ: ðB33Þ
To show this, one first checks the equal-time versions of it,

i½bσðx0Þ;ϕðxÞ�jt¼t0
¼ 0;

i½ _bσðx0Þ;ϕðxÞ�jt¼t0
¼ i

ακ

2
½T0σðx0Þ;ϕðxÞ�

¼ − ακ

2
∂σϕðxÞδD−1ðx − x0Þ; ðB34Þ

where the latter commutator follows from the equations of
motion (B22). Then, by taking the divergence of the same
equations of motion, we find

□bσ ¼ 0 ðB35Þ
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when the stress tensor is conserved. Thus, since (B33)
satisfies this equation of motion in x0 and the initial
conditions (B34) at t ¼ t0, it holds for all x0.
In particular, this implies that if Φ is any operator

invariant under linearized diffeomorphisms, then the lin-
earized metric ~h defined to leading order in κ by

~hμνðxÞΦðx0Þ ¼ ½hμνðxÞ;Φðx0Þ� ðB36Þ

satisfies the gauge condition ∂μ
~̄h
μν ¼ 0.

APPENDIX C: SOME USEFUL FORMULAS

Here, we collect some derivative formulas and integrals
used in the main text. It will be useful to introduce a radial
vector field r̂μ such that r̂μ∂μ ¼ ∂r; we will denote the
spatial metric by qαβ. Then, we have the identities (given for
D ¼ 4, though easily generalized to D ≠ 4)

∂μ∂νr ¼ ∂μr̂ν ¼
1

r
ðqμν − r̂μr̂νÞ; ðC1Þ

∂μr̂μ ¼
2

r
ðC2Þ

□r̂μ ¼ − 2

r2
r̂μ ðC3Þ

∂μ

�
r̂αr̂β
r

�
¼ qμαr̂β þ qμβr̂α − 3r̂μr̂αr̂β

r2
ðC4Þ

∂μ

�
r̂μr̂β
r

�
¼ r̂β

r2
ðC5Þ

□

�
r̂αr̂β
r

�
¼ 2

qαβ − 3r̂αr̂β
r3

− 4π

3
qαβδ3ð~xÞ ðC6Þ

∂α∂β∂γr ¼
3

r2
ðr̂αr̂βr̂γ − r̂ðαqβγÞÞ ðC7Þ

∂α∂β∂γ
1

r
¼ 9r̂ðαqβγÞ−15r̂αr̂βr̂γ

r4
−12π

5
qðαβ∂γÞδ3ð~xÞ; ðC8Þ

where in the last two equations r̂ðαqβγÞ ¼
ðr̂αqβγ þ r̂βqγα þ r̂γqαβÞ=3.
Calculating the commutators in Sec. IV requires evalu-

ation of certain integrals. The first is

Z
d3y

1 − 3ðr̂ · r̂0Þ2
r3r0

; ðC9Þ

where ~r ¼ ~y − ~x, ~r0 ¼ ~y − ~x0. This is evaluated by choosing
spherical coordinates based at ~x ¼ 0 and with the polar
direction defined as that of ~d ¼ ~x0 − ~x. In particular, we
then find

ðr̂ · r̂0Þ2 ¼ 1 − d2

r02
ð1 − cos2 θÞ: ðC10Þ

We then expand 1=r0 and 1=r03 in Legendre and
Gegenbauer polynomials, respectively:

1

r0
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − 2dr cos θ þ d2
p

¼
(

1
r

P∞
l¼0 Plðcos θÞðdrÞl d < r

1
d

P∞
l¼0 Plðcos θÞðrdÞl r < d

ðC11Þ

1

r03
¼ 1

ðr2 − 2dr cos θ þ d2Þ3=2

¼
(

1
r3
P∞

l¼0 C
3=2
l ðcos θÞðdrÞl d < r

1
d3
P∞

l¼0 C
3=2
l ðcos θÞðrdÞl r < d:

ðC12Þ

The angular integral picks out the l ¼ 0 term of each sum,
and we find

Z
d3y

1 − 3ðr̂ · r̂0Þ2
r3r0

¼ 2π

Z
r2drd cosðθÞ

�−2
r3r0

þ 3d2

r3r03
ð1 − cos θ2Þ

�

¼ 2π

�Z
d

0

dr

�
− 4

rd
þ 4

rd

�
þ
Z

∞

d
dr

�
− 4

r2
þ 4d2

r4

��

¼ −
16π

3jx − x0j : ðC13Þ

Another needed integral is

Ii ¼
Z

d3y
aðr̂ · r̂0Þ2 þ b

rr02
r̂0i; ðC14Þ

where a, b are fixed constants. For this, we center spherical
coordinates about the point x0, with the polar axis deter-
mined by ~d ¼ ~x − ~x0. By symmetry, the integral must be
proportional to d̂i, with coefficient d̂iIi. We also use (C10),
with ~r ↔ ~r0, giving

d̂iIi ¼ 2π

Z
dr0d cos θ

�
aþ b
r

− a
d2ð1 − cos2θÞ

r3

�
cos θ:

ðC15Þ

As before, we expand 1=r and 1=r3 in Legendre and
Gegenbauer polynomials, using (C11), (C12) with r ↔ r0.
In both cases, the θ integral picks out the l ¼ 1 term of
the sum: Z

1

−1
d cos θ cos θPlðcos θÞ ¼

2

3
δl1;Z

1

−1
d cos θ cos θC3=2

l ðcos θÞð1 − cos θ2Þ ¼ 4

5
δl1: ðC16Þ
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Substituting this into the above integral, we find

d̂iIi ¼ 2π

�Z
d

0

dr0
�
2

3
ðaþ bÞ − 4

5
a

�
r0

d2
þ
Z

∞

d
dr0

�
2

3
ðaþ bÞ d

r02
− 4

5
a
d3

r04

��
¼ 2π

�
a
3
þ b

�
ðC17Þ

and thus

Z
d3y

aðr̂ · r̂0Þ2 þ b
rr02

r̂0i ¼ 2π

�
a
3
þ b

�
~xi − ~x0i

jx − x0j : ðC18Þ
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