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We study the expectation value of the energy momentum tensor during thin shell collapse for a massive,
real, scalar field theory. At tree level, we find thermal, Hawking-type, behavior for the energy flux. Using
the Schwinger-Keldysh technique, we calculate two-loop corrections to the tree-level correlation functions
and show that they exhibit secular growth, suggesting the breakdown of the perturbation theory.
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I. INTRODUCTION

Black holes are one of the few laboratories for studying
quantum gravity. Indeed, a commonly viewed challenge for
any candidate theory of quantum gravity is to provide an
understanding of the quantum nature of black holes, and in
particular their radiation.
Hawking’s semiclassical calculation [1] shows that black

holes radiate with a thermal spectrum. This has led to black
holes being viewed as objects with which thermodynamic
quantities can be associated, such as temperature and
entropy, which satisfy relations analogous to the standard
laws of thermodynamics.1 The thermodynamic perspective
on black holes is incredibly attractive and has inspired
many questions regarding, for example, a microscopic
understanding of its entropy, or whether it implies a
holographic interpretation of gravity [3]. However, the
thermal spectrum of black hole radiation also poses a
puzzle in the form of the information paradox [4]. Our goal,
in this paper, is to revisit black hole radiation and study
quantum loop corrections to Hawking radiation that are
often dismissed as negligible.
Hawking radiation [1] (see also [5]) is a quantum effect

that can be seen in a Gaussian (non-self-interacting)
quantum field theory on a collapsed background.2 In this
paper, we begin by reproducing Hawking radiation in a
slightly different setting.
The background that we would eventually like to

consider is a star that is static due to an internal pressure
until some moment of time, after which the pressure is
switched off and collapse begins. To our knowledge the

best model of such a situation is the pressure-free collapse
of a spherical perfect fluid—Oppenheimer-Snyder collapse
[9]. For simplicity reasons, however, instead of a ball of
the perfect fluid, we study Hawking radiation in the case
of a massive thin shell collapse. We will study particle
creation during Oppenheimer-Snyder collapse elsewhere.
The background in question is described in detail in

Sec. II. It has three phases; see Fig. 1. The phase labeled I in
the figure is when the shell is kept fixed at some radius
RðtÞ ¼ R0 by an additional force. Phase II is a highly tuned
stage of collapse if one wishes to respect spherical
symmetry. In fact, if R0 is large enough, because of tidal
forces any perturbation violating the spherical symmetry
will grow in this phase. Phase III, however, describes the
final stage of the collapse, where, without rotation, spheri-
cal symmetry is restored (if it was lost in the second stage)
because all multipole momenta are radiated away [10,11].

FIG. 1. The collapse of a spherically symmetric thin shell as is
seen by an outside Schwarzschild observer. We divide the
collapse into three phases: I, II, and III.

1While these laws were, in fact, suggested before Hawking
radiation was proposed (see Ref. [2] and references therein), they
can be made sense of only if black holes radiate.

2For reviews see, for example, Refs. [6–8].
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This feature of the last stage of collapse is because of the
peculiar properties of the horizon—the surface of infinite
redshift. This phenomenon is also at the core of the “no hair
theorem.” Hence, this stage is universal and does not
depend on what is happening during phase II.
It should not be surprising that a nonstationary gravita-

tional background field creates particles. The production
rate is then generically nonstationary and nonuniversal. But
at the final stage of the collapse we have a stationary and
universal free fall of the shell. Hence, it is natural to expect
a stationary and universal particle production rate. Then the
question reduces to the following one: What is the spectrum
of the particles produced at the final stage of collapse? In
other words, we expect that the free Hamiltonian of a
theory on such a time-dependent background should also
depend on time. But it is obvious that the free Hamiltonian
can be diagonalized before the start of collapse. Its ground
state defines the initial conditions for the problem that we
study here. Moreover, we expect that it is also possible to
diagonalize the free Hamiltonian at the final stage of
collapse due to its stationarity. But one can guess that
the harmonic functions which do such a diagonalization
before collapse do not coincide with those performing the
diagonalization at the final stage of collapse. The technical
details supporting this general discussion are presented in
Sec. III.
In Sec. IV, we calculate the time evolution of the

expectation value of the stress-energy tensor. We find that
before collapse has started the energy flux is zero. But at the
final stage of the collapse it is given by a thermal stationary
energy flux. We perform the calculation beyond the geo-
metric optic approximation in four-dimensional space-time
for a massive real scalar field and include all spherical
harmonics.
The above discussion is true for a Gaussian theory. In

Sec. V, we study what happens if self-interactions, in
particular a ϕ4 interaction, is turned on. The common
wisdom is that quantum loop corrections should not change
the picture described above in a substantial way. This is
probably true for UV corrections. However, in Sec. V, we
show that perturbative IR corrections grow with time and, if
one considers a long enough period of time, they can even
dominate over the tree-level contribution. This is, in fact, a
well-known phenomenon in nonstationary condensed mat-
ter theory [12,13]: UV modes essentially do not feel the
presence of the background field, but the behavior of IR
modes reveals a change in the background state of the
quantum field theory under consideration. In the conclud-
ing section we explain how these corrections modify the
Hawking flux.
As far as we are aware this is the first study of the

effect of interactions on black hole radiation. For other
work where various other corrections to the standard
Hawking radiation picture are considered see, for example,
Refs. [14–22].

A. On the origin of secular growth in nonstationary
situation in perturbation theory

In Sec. V, we show that the perturbative corrections to the
Keldysh propagator of scalars on a collapsing shell back-
ground grow secularly. In this subsection we explain why
this is not surprising and is to be generically expected in
nonstationary situations.
Suppose that one would like to find the time evolution of

the expectation value of an operator O,

hOit0ðtÞ≡ hΨjT̄ei
R

t

t0
dt0Hðt0Þ

OTe
−i
R

t

t0
dt0Hðt0ÞjΨi: ð1Þ

The operator O could, for example, be the stress-energy
tensor. Here HðtÞ ¼ H0ðtÞ þ VðtÞ is the full Hamiltonian
of the theory, while T denotes time ordering, T̄ is anti–time
ordering, t0 is an initial time, and jΨi is an initial state. The
initial value of the operator hOiðt0Þ is known. We also
assume some kind of covariant UV regularization.
After transforming to the interaction picture, we get [12]

hOit0ðtÞ ¼ hΨjS†ðt; t0ÞO0ðtÞSðt; t0ÞjΨi
¼ hΨjS†ðt; t0ÞS†ð∞; tÞSð∞; tÞT½O0ðtÞSðt; t0Þ�jΨi
¼ hΨjS†ð∞; t0ÞT½O0ðtÞSð∞; t0Þ�jΨi; ð2Þ

where Sðt2; t1Þ ¼ Te
−i
R

t2
t1

dt0V0ðt0Þ; O0ðtÞ and V0ðtÞ are the
O and V operators in the interaction picture. The first step
in Eq. (2) is an application of the Baker-Hausdorff formula.
To perform the step on the second line of (2), we insert the
unit operator 1 ¼ S†ð∞; tÞSð∞; tÞ, which allows us to
extend the original time evolution from t0 to t, Sðt; t0Þ,
and back, S†ðt; t0Þ, to that which goes from t0 to future
infinity, Sð∞; t0Þ, and back, S†ð∞; t0Þ. Finally, we place the
operator O0ðtÞ on the part of the time contour that is going
forward.
Now let us slightly change the problem. Suppose we

adiabatically turn on an interaction term, V, after time t0.
Then the state jΨi does not change before t0. In this case,
we can rewrite the expectation value (2) as follows:

hOit0ðtÞ ¼ hΨjS†t0ð∞;−∞ÞT½O0ðtÞSt0ð∞;−∞Þ�jΨi: ð3Þ

An important question is if one can take t0 to past infinity,
t0 → −∞. If the answer is positive, then the remaining
problem is if this can be done within perturbation theory or
nonperturbatively. A well-known situation where this can
be done within perturbation theory is when the free
Hamiltonian, H0, does not depend on time and is bounded
from below. Moreover, jΨi should coincide with its true
ground state, jvaci, so that H0jvaci ¼ 0. In the calculation
that follows, we also assume that the interaction term is
adiabatically switched off at future infinity—after the
time t.
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In fact, if the state jvaci is the true vacuum state of the
free theory, then, by adiabatically turning on and then
switching off the interactions, we cannot excite such
a state, i.e., hvacjS†ð∞;−∞Þjexcited statei ¼ 0, while
jhvacjS†ð∞;−∞Þjvacij ¼ 1. Thus, the dependence on t0
disappears at every order of perturbation theory, and we
arrive at expressions that only contain time ordering: we
obtain an expression that can be calculated with the use of
the standard Feynman diagrammatic method,

hOit0ðtÞ ¼
X
state

hvacjS†ð∞;−∞Þjstatei

× hstatejT½O0ðtÞSð∞;−∞Þ�jvaci
¼ hvacjS†ð∞;−∞Þjvaci
× hvacjT½O0ðtÞSð∞;−∞Þ�jvaci

¼ hvacjT½O0ðtÞSð∞;−∞Þ�jvaci
hvacjSð∞;−∞Þjvaci : ð4Þ

In the first line in Eq. (4), we have inserted the unit operator
1 ¼ P

statejstateihstatej, where the sum runs over a com-
plete basis of states. In the second line, we have used the
fact that jvaci is the only state in the sum that gives a
nonzero contribution.
If, however, jΨi is not a vacuum state, or H0 is time

dependent (and, hence, cannot be diagonalized once and
forever), or H0 is not bounded from below, the above
technique cannot be used and we have to directly evaluate
the expression given on the right-hand side of Eq. (3).
Moreover, in principle, the dependence on t0 can remain,
and it frequently does remain within perturbation theory
and sometimes even nonperturbatively—after resummation
of leading corrections from all loops. The well-known
situation when the dependence on t0 does disappear after
such a resummation is when the system reaches thermal
equilibrium from a nonstationary initial state [12,13]. This
happens in flat spacetime without background fields, when
H0 is time independent and is bounded from below. A good
question, however, is whether there is a stationary state in
the presence of an eternally acting background field—such
as global de Sitter space, constant electric field, or eternal
Schwarzschild black hole. Let us explain how the depend-
ence on t0 reveals itself.
The standard method to calculate an expectation value

such as that given in Eq. (3) is the so-called Schwinger-
Keldysh diagrammatic technique, where both S and S†

have to be perturbatively expanded under the quantum
average [12,13]. In such a case every vertex in the diagrams
carries either a “þ” or a “−” index, depending on whether it
comes from S or S†. Furthermore, after Wick contractions
every field, e.g., ϕ, is described by a matrix of propagators,
whose entries are given by

D−þðX1; X2Þ ¼ hϕðX1ÞϕðX2Þi;
Dþ−ðX1; X2Þ ¼ hϕðX2ÞϕðX1Þi;
DþþðX1; X2Þ ¼ hTϕðX1ÞϕðX2Þi;
D−−ðX1; X2Þ ¼ hT̄ϕðX1ÞϕðX2Þi: ð5Þ

Propagators with time or anti–time ordering or without
orderings appear depending on whether the field ϕ comes
from S or S†. From their definitions, it is clear that these
propagators obey the relation Dþ− þD−þ ¼ Dþþ þD−−.
After Keldysh rotation [12,13], one of the entries of the

propagator matrix is set to zero. The other entries are given
by the retarded, advanced, and Keldysh propagators. The
retarded propagator is given by

DRðX1; X2Þ ¼ θðΔt12Þ½D−þðX1; X2Þ −Dþ−ðX1; X2Þ�
¼ θðΔt12Þ½ϕðX1Þ;ϕðX2Þ�; Δt12 ¼ t1 − t2;

ð6Þ

while the advanced propagator, DA, is conjugate to the
retarded one. Since the commutator ½·; ·� is a c-number, at
tree level these two propagators do not depend on the state,
but they define the spectrum of excitations in the theory.
The last entry of the propagator matrix is the Keldysh

propagator,

DKðX1; X2Þ ¼
1

2
½D−þðX1; X2Þ þDþ−ðX1; X2Þ�

¼ 1

2
hfϕðX1Þ;ϕðX2Þgi; ð7Þ

where f·; ·g is the anticommutator. The Keldysh propagator
is sensitive to the time evolution of the background state.
This is an important fact for finding the perturbative secular
growth that we are after in this paper.
To explain the origin of the secular growth, consider the

simple example of a spatially homogeneous but nonsta-
tionary situation.3 Then, in the case of a real scalar field ϕ
we have the following harmonic expansion:

ϕðt; ~xÞ ¼
Z

d3~k
ð2πÞ3 ½a~kgkðtÞe

i~k ~x þ c:c:�;

where the harmonic functions, gkðtÞei~k ~x, solve the corre-
sponding Klein-Gordon equation in a time-dependent

3Of course, in the case of spherically symmetric collapse
background the details will be different, but conceptually the
phenomenon is the same. The details for the collapse situation are
presented in Sec. V. Here we describe a simpler situation to give a
flavor of the physical meaning of secularly growing quantum
corrections. It is also worth stressing that in standard condensed
matter situations one considers a nonstationary initial state rather
than a background field.
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spatially homogeneous background field in flat space-time.
It is not hard to see that if in Eq. (7) we take the average
with respect to an arbitrary state respecting spatial homo-
geneity, thenZ

d3~xe−i~k~xDKðt1; ~x;t2;0Þ

¼
�
1

2
þ
D
a†~ka~k

E�
g�kðt1Þgkðt2Þþha~ka−~kigkðt1Þgkðt2Þþc:c:;

ð8Þ

where we have used the fact that in spatially homogeneous
situations

ha†~ka~k0 i ¼ ha†~ka~kiδð~k− ~k0Þ and ha~ka~k0 i ¼ ha~ka−~kiδð~kþ ~k0Þ:

If in such an expression we average over the vacuum, then
ha†~ka~ki ¼ 0 ¼ ha~ka−~ki. Note that all the standard tree-level

calculations of particle fluxes (such as Hawking flux or
Schwinger’s electric current) are done with the use of such
Wightman correlation functions as (8) with ha†~ka~ki ¼ 0 ¼
ha~ka−~ki.
Furthermore, at tree level ha†~ka~ki and ha~ka−~ki remain

constant, even if the average is done over an arbitrary state,
because all the time dependence of the creation and
annihilation operators is absorbed into the harmonic
functions gkðtÞ. Note that the appropriate quantity to
define as particle density is ha†~ka~kig

�
kðtÞgkðtÞ, rather than

ha†~ka~ki—this can be seen, in particular, from the form

of the correlation function in Eq. (8). While for plane
waves there is no difference, for the exact harmonics in
background fields the difference is obvious. The same
comment also holds for the anomalous quantum average
ha~ka−~ki. However, below, for simplicity, we refer to ha†~ka~ki
as particle density and to ha~ka−~ki as the anomalous
quantum average. We hope that this does not cause
confusion.
If one turns on interactions, the behavior of the Keldysh

propagator, Eq. (8), changes drastically. In particular,
ha†~ka~ki and ha~ka−~ki are generated, even if they were zero

to begin with. That, of course, is to be expected: the
presence of a nonzero anomalous quantum average means
that, in a strong field background, the ground state of the
theory is changing from past to future infinity once one
turns on self-interactions. The same happens with the
particle number density. In principle, they will depend
on t1 and t2 simultaneously. However, since we are only
interested in the leading growing terms, in the limit t≡
ðt1 þ t2Þ=2 → ∞ and jt1 − t2j ¼ const, we can neglect the
difference between t1 and t2. In fact, in λϕ4 theory, the

two-loop sunset diagram correction to the Keldysh propa-
gator is given by (8) with4

ha†~ka~kiðtÞ ∝ λ2
ZZ

t

t0

dt3dt4δð~kþ ~q1 þ ~q2 þ ~q3Þgkðt3Þg�kðt4Þ

×
Y3
j¼1

Z
d3~qjgqjðt3Þg�qjðt4Þ;

ha~ka−~kiðtÞ ∝ −λ2
Z

t

t0

dt3

Z
t3

t0

dt4δð~kþ ~q1 þ ~q2 þ ~q3Þg�kðt3Þ

× g�kðt4Þ
Y3
j¼1

Z
d3~qjg�qjðt3Þgqjðt4Þ; ð9Þ

if the initial state is chosen to be the ground state of the free
Hamiltonian at past infinity: a~kjgroundi ¼ 0. Here t0 is the
moment after which λ is adiabatically turned on. In spatially
inhomogeneous situations the formulas are quite different
from the present one, but conceptually the phenomenon is
the same. Also if the initial state is not a ground state, then
(9) gets modified.
These formulas are also valid in the stationary situation,

when the free Hamiltonian is time independent and is
bounded from below. But it is not hard to see that if
gpðtÞ ∝ e−iωðpÞt, then after a change of integration variables
from t3 and t4 to T ¼ ðt3 þ t4Þ=2 and τ ¼ t3 − t4, the
integral over τ leads to a δ-function establishing energy
conservation δ½ωðpÞ þ ωðq1Þ þ ωðq2Þ þ ωðq3Þ�. This δ-
function appears in the limit t − t0 → ∞. On mass shell
the arguments of the δ-functions, establishing the energy
and momentum conservation, cannot be simultaneously
zero. Hence, in the absence of a background field, i.e., in a
stationary situation, energy-momentum conservation for-
bids the change of level population and of the ground state.
Then the ground state jgroundi is actually a true vacuum
state, jvaci, of the free theory in question, which agrees
with the discussion before Eq. (4).
However, in the presence of a background field there is

no energy conservation (or the energy is not bounded from
below) because the system is not closed. In Eq. (9) this fact
reveals itself via the presence of the exact harmonics gpðtÞ,
which are drastically different from the simple exponential.
Therefore, the expressions for the level population and for
the anomalous average are not zero at loop order.
Furthermore, in the presence of a background field the

harmonics are functions of physical momenta. For exam-
ple, in the constant electric field, E, background harmonics
are functions of kþ eEt and, hence, are invariant under the
simultaneous compensating shifts of k and t (see, e.g.,

4Note that the bubble diagram correction to the propagator, ∼λ,
does not introduce corrections that grow with time because the
corresponding contribution is local, i.e., is not sensitive to the
position of the external legs.
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Refs. [23,24] for detailed discussions). In de Sitter space,
the physical momentum is ke−Ht, where H is the Hubble
constant. Hence, the harmonics are invariant under the
compensating shift of time and rescaling of the momentum
(see, e.g., [25] for the detailed discussion). Finally, in the
collapse background at future infinity and in the vicinity of
the horizon, harmonics are functions of ωe−t=rg , where ω is
the frequency and rg is the corresponding Schwarzschild
radius of the collapsing body, as we will see in Sec. III B.
Because of these symmetries, after the change of
integration variables from t3 and t4 to T ¼ ðt3 þ t4Þ=2
and τ ¼ t3 − t4 in Eq. (9), one can get rid of the dependence
of the integrand on T for low enough external physical
momenta. In such a case one finds that ha†~ka~kiðtÞ ∝
λ2ðt − t0Þ and ha~ka−~kiðtÞ ∝ λ2ðt − t0Þ, where ðt − t0Þ
comes from the integration over T. The coefficient of
proportionality here can be interpreted as a part of the
collision integral that is responsible for the change of the
population numbers from the background field and its
backreaction on the initial ground state. One important
complication with respect to the standard condensed matter
theory situations is the presence of the anomalous quantum
average. In standard situations (see, e.g., [12,13]) the
ground state of the theory does not change. In the latter
cases the only quantity that receives growing corrections, if
the initial state is chosen to be nonstationary, is the particle
number density, and the formulas are a bit different from
those in (9).
In the previous paragraph, we have assumed that the

background field is always on—from the past to the future
infinity. However, if the background field is turned on at
some time t�, then we can put t0 before t�. In such a
situation, ha†~ka~kiðtÞ∝λ2ðt−t�Þ and ha~ka−~kiðtÞ∝λ2ðt−t�Þ.
In either case we have the secular growth of the loop
corrections. Thus, after a long enough time of evolution we
obtain λ2t ∼ 1 and loop corrections become of the order of
tree-level classical contributions. The corrections, thus,
have to be resummed in all loops.5 Such a resummation
has been done in the case of the constant electric field
backgrounds in [23,24] and in the case of de Sitter space
massive scalar field theory in [25–29] (see also [30–33]). In
the present paper we start the same kind of study in the case
of black hole radiation.

II. THE BACKGROUND GEOMETRY

In this paper, we consider a spherically symmetric,
massive, thin shell that is kept fixed at radius r ¼ R0

(by an additional force) until t ¼ 0 when it is released and
collapses in free fall—see Fig. 1. Because of spherical
symmetry, by Birkhoff’s theorem, the geometry is given by
the Schwarzschild metric outside the shell and flat space
inside,

ds2 ¼
(
dt2− − dr2 − r2dΩ2; r ≤ RðtÞ
ð1 − rg

r Þdt2 − dr2

1−rg
r
− r2dΩ2; r ≥ RðtÞ ;

dΩ2 ¼ dθ2 þ cos2θdφ2; ð10Þ

where RðtÞ is the radial coordinate of the shell, which
before the start of collapse is Rðt ≤ 0Þ ¼ R0; rg=2 is the
Arnowitt-Deser-Misner (ADM) mass of the shell and t (t−)
is the time coordinate outside (inside) the shell. We assume
that R0 > rg and, before the start of collapse, the shell is
close to its Schwarzschild radius, i.e., jR0 − rgj ≪ rg.
Note that, ideally, we would like to consider the collapse

of some compact stellar object such as a neutron star, whose
radius is much larger than its Schwarzschild radius.
However, here we assume that jR0 − rgj ≪ rg. In fact, in
general, it is not possible for a stellar object of radius
smaller than 3rg=2 to be stable. We consider such a
phenomenologically unrealistic simplification, however,
to make analytic headway. In particular, such a simplifi-
cation allows us to find the behavior of the harmonic
functions on such a background.
The background that we consider is described by two

metrics (10) that have to be matched at the position of the
shell [34,35]. Before collapse, this is easily done because
the radius of the shell is time independent, i.e., on the shell
r ¼ R0 and dr ¼ 0, and we have that

t− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rg
R0

r
t; t ≤ 0: ð11Þ

After the start of collapse, we assume that the shell is in
the free fall; hence the metric on the shell is ds2 ¼
dτ2 − R2ðτÞdΩ2. Comparing this to the metric inside the
shell,

�
dt−
dτ

�
2

−
�
dR
dτ

�
2

¼ 1:

Furthermore, comparing the metric on the shell to the
metric outside the shell gives a relation between t and the
proper time of the shell τ,

�
1 −

rg
R

��
dt
dτ

�
2

−
_R2

1 − rg
R

¼ 1; ð12Þ

5Note that this is a signal of the breakdown of perturbation
theory, which has a clear physical meaning. The resummation
which has to be done is the standard procedure in condensed
matter theory nonstationary situations [12,13]. Apart from
summation of the leading loop IR contributions it allows us to
define the correct time evolution of the particle population
numbers. In our case the main technical and conceptual com-
plication is the presence of the anomalous quantum average,
which makes this example similar to de Sitter space quantum
field theory [25].
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where _R ¼ dR
dτ . Using our assumption that jR − rgj ≪ rg,

noting that _R ≠ 0 and dt
dτ → ∞ as t → ∞, we neglect the

right-hand side in comparison to the left-hand side and
integrate the above relation to find the shell’s trajectory
from the point of view of the outside observer:

RðtÞ ≈ rg

�
1þ R0 − rg

rg
e−

t
rg

�
: ð13Þ

From the point of view of the inside observer, given our
assumption that jR0 − rgj ≪ rg, the shell collapses at
constant speed ν [35], where

ν≡
���� dRðt−Þdt−

���� ¼ j _Rjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p ; and Rðt−Þ ≈ R0 − νt−:

ð14Þ

Now, identifying RðtÞ ¼ Rðt−Þ and using Eqs. (13) and
(14), we find the relation between t− and t,

t− ≈
R0 − rg

ν
ð1 − e−

t
rgÞ; t → ∞: ð15Þ

As t → ∞, the shell approaches its Schwarzschild radius
RðtÞ → rg. On the other hand, t− ≈ ðR0 − rgÞ=ν < ∞ is the
moment of internal time when the horizon is formed.
Beyond this moment of time there is no relation between
t and t−. In Sec. III, we use the relations between t and t−
before the collapse and at its final stage, relations (11) and
(15), respectively, to find the behavior of the free scalar
harmonics in these regimes.
In deriving the behavior of the harmonics during

collapse, we also use another simplifying assumption that
we will now explain. Gluing the two metrics in (10) to each
other with the use of the shell’s energy-momentum tensor,
we obtain the relation [34] (see also [36])

rg
2
¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p
−
M2

2R
; ð16Þ

where M ¼ const defines the energy-momentum tensor of
the shell’s matter content. This relation expresses the fact
that the total energy of the shell, rg=2, is the sum of the

kinetic energy, M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p
(recall that τ is proper time

rather than coordinate time), and its potential energy,
M2=2R. To avoid a bounce, when _R ¼ 0, i.e., to have
the actual collapse, we must have that rg > 2M. However,
we, in fact, make a stronger assumption, namely that
rg ≫ 2M. Neglecting the difference between RðτÞ and
rg, from Eq. (16) we obtain

_R ≈ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
rg
2M

þ M
2rg

�
2

− 1

s
:

Hence our assumption that rg ≫ 2M implies that j _Rj ≫ 1

and ν ≈ 1; i.e., the shell is almost lightlike at the final stage
of the collapse even from the point of view of the inside
observer. While we use ν ≈ 1, we keep ν explicitly in most
of the formulas presented below to indicate how the
situation would be different without this assumption.
In the region outside the shell, it is convenient to also use

tortoise coordinates

r� ¼ rþ rg log

�
r
rg

− 1

�
:

In terms of these coordinates the trajectory of the shell at
the final stage of the collapse is

R�ðtÞ ≈ R�
0 − tþ ðrg − R0Þð1 − e−

t
rgÞ; ð17Þ

where R�
0 ¼ R0 þ rg log ðR0

rg
− 1Þ; i.e., the shell’s motion

becomes lightlike as t → ∞—see Fig. 2.

III. FREE HARMONICS

The theory that we study on the background of a
collapsing shell is the real scalar field theory with ϕ4

interaction,

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
ð∂μϕÞ2 −m2ϕ2 −

λ

4!
ϕ4

�
: ð18Þ

In this section, we discuss the free theory case λ ¼ 0.
We expand the field ϕ as follows:

ϕðt; r; θ;φÞ ¼
X
l;n

Yl;nðθ;φÞϕlðt; rÞ;

where Y�
l;nðθ;φÞ ¼ Yl;nðθ;φÞ are real spherical harmonics.

Given this expansion and the background given by
Eq. (10), the action takes the form

FIG. 2. The collapse of a massive, thin shell in tortoise
coordinates. We again divide the collapse into three phases: I,
II, and III.
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S ¼
X
l

ð2lþ 1Þ
Z

dt
Z

RðtÞ

0

drr2
�∂t−
∂t

��� ∂t
∂t−

�
2

ð∂tϕlÞ2 − ð∂rϕlÞ2 −
�
lðlþ 1Þ

r2
þm2

�
ϕ2
l

�

þ
X
l

ð2lþ 1Þ
Z

dt
Z

∞

RðtÞ
drr2

�ð∂tϕlÞ2
1 − rg

r

−
�
1 −

rg
r

�
ð∂rϕlÞ2 −

�
lðlþ 1Þ

r2
þm2

�
ϕ2
l

�
: ð19Þ

Varying this action, we obtain the equations of motion,

8>><
>>:

h
∂2
t− − ∂2

r þm2 þ lðlþ1Þ
r2

i
ðrϕlÞ ¼ 0; r ≤ RðtÞh

∂2
t − ∂2

r� þ
�
1 − rg

r

	�
m2 þ lðlþ1Þ

r2 þ rg
r3

	i
ðrϕlÞ ¼ 0; r ≥ RðtÞ

; ð20Þ

and the boundary conditions,

ϕl½RðtÞ − 0� ¼ ϕl½RðtÞ þ 0�;�� ∂t
∂t−

����� dRdt
����∂tϕl −

�∂t−
∂t

�
∂rϕl

�
r¼RðtÞ−0

¼
� ∂tϕl

1 − rg
r

���� dRdt
���� −

�
1 −

rg
r

�
∂rϕl

�
r¼RðtÞþ0

: ð21Þ

The second equation above relates the normal derivative of
the scalar field across the shell. As t → ∞, the derivative
normal to the shell outside it becomes the derivative with
respect to the retarded coordinate u ¼ t − r�.
The equations of motion outside the shell can be under-

stood in terms of confluent Heun equations [37–39], and
there has been recent progress in understanding the proper-
ties of solutions to these equations [40,41]. However, for our
purposes it is sufficient to consider approximate solutions of
these equations in various stationary regions of space-time.
In this way we obtain estimates of the leading effects/
contributions to Hawking radiation.
The reason we can find approximate solutions to

Eqs. (20) and (21) lies in the fact that in the stationary
situation we can separate the variables t and r. Furthermore,
the potential,

UðrÞ ¼
�
1 −

rg
r

��
m2 þ lðlþ 1Þ

r2
þ rg
r3

�
; r > R0;

ð22Þ

in the second equation of (20) is vanishing as r → rg and
approaches a constant, m2, as r → ∞. Therefore, in the
vicinity of the shell—note the relation jRðtÞ − rgj ≪ rg—
the harmonics can be approximated by plane waves.
Meanwhile, at asymptotic spatial infinity, r → ∞, we have
that r ≈ r� and the harmonics are again plane waves. The
relation between the harmonics in the vicinity of the shell
and at spatial infinity can be found by solving the scattering

problem across the potential barrier (22). In the next
subsection, we will use the above arguments to find the
approximate harmonics.
Using the equations of motion, the free Hamiltonian of

the massive scalar theory can be rewritten as

H0ðtÞ ¼
X
l

ð2lþ 1Þ
Z

∞

0

dr

ffiffiffiffiffijgjp
sinðθÞ

×

�
gttð∂tϕlÞ2 −

1ffiffiffiffiffijgjp ϕl∂t

� ffiffiffiffiffi
jgj

p
gtt∂tϕl

	�
: ð23Þ

In the collapsing shell background, using the metric given
in Eq. (10), this Hamiltonian is

H0ðtÞ ¼
X
l;n

Z
RðtÞ

0

r2dr

×

�� ∂t
∂t−

�
ð∂tϕlÞ2 − ϕl∂t

�� ∂t
∂t−

�
∂tϕl

��

þ
X
l;n

Z
∞

RðtÞ

r2dr

1 − rg
r

½ð∂tϕlÞ2 − ϕl∂2
tϕl�

þ
X
l;n

R2ðtÞϕl

��∂t−
∂t

�
∂rϕl

���
r¼RðtÞ−0

−
�
1 −

rg
RðtÞ

�
∂rϕl

���
r¼RðtÞþ0

�
: ð24Þ

The last term in this expression is the contribution of the
field values on the shell itself. This Hamiltonian defines
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translations along the time coordinate t. The corresponding
Cauchy surfaces are depicted in Fig. 3.

A. In-harmonics before collapse

During the first stage, when the shell is stationary and is
yet to collapse, we can find harmonics that diagonalize the
free Hamiltonian, hence providing a sensible definition of
particle number. The state with respect to which the flux is
found is defined in terms of these harmonics, which we call
in-harmonics.
As is usual in canonical quantization, we expand the

scalar field in terms of a basis of harmonics h̄ω;lðr; tÞ,

ϕðx; tÞ ¼
X
l;n

Yl;nðθ;φÞ
Z

∞

m

dω
2π

�
aω;l;nh̄ω;lðr; tÞ þ H:c:

�
;

πðx; tÞ ¼ gtt
X
l;n

Yl;nðθ;φÞ
Z

∞

m

dω
2π

�
aω;l;n∂th̄ω;lðr; tÞþ H:c:

�
;

ð25Þ
where, at this stage, ω simply labels the harmonics and
“H.c.” stands for Hermitian conjugate. The harmonics
h̄ω;lðr; tÞ provide a basis for solutions of the Klein-
Gordon equation (20). Note that we only expand in
harmonics with ω > m because only these modes are
oscillatory at spatial infinity. We explain this point further
below Eq. (30). The harmonic functions that we wish to
work with are such that they diagonalize the Hamiltonian
when the shell is stationary. We refer to the corresponding
ground state, which is annihilated by all annihilation
operators, aω;l;njini ¼ 0, as the in-state.
The canonical commutation relations for the field ϕðx; tÞ

are

½ϕðx; tÞ; πðy; tÞ� ¼ iδð3Þðx − yÞ; ð26Þ
and all other commutation relations vanish. Assuming

½aω;l;n; a†ω0;l0;n0 � ¼ 2πδll0δnn0δðω − ω0Þ; ð27Þ
we obtain the following condition on the modes from the
canonical commutation relations:X
l;n

Yl;nðθ;φÞYl;nðθ0;φ0Þgtt

×
Z

∞

m

dω
2π

½h̄ω;lðt; rÞ∂th̄�ω;lðt; r0Þ − H:c:�

¼ iδð3Þðx − x0Þ: ð28Þ
We stress that x are the spatial coordinates.
In a stationary situation we can separate the dependence

of h̄ω;lðt; rÞ on t and r. Then during the stage before
collapse, the positive energy states can be represented as

h̄ω;lðt; rÞ ¼ hω;lðrÞe−iωt ¼ hω;lðrÞe−iω−t− ;

where from Eq. (11) it follows that ω− ¼ ω=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − rg

R0

q
.

Given the decomposition above, we can identify the label ω
in Eq. (25) with the energy of the mode h̄ω;tðt; rÞ at past
infinity.
Inside the shell, by solving the first equation in (20), we

find that

h̄ω;lðt; rÞ ¼
Aωffiffiffi
r

p Jlþ1
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
− −m2

q
r
	
e−iω−t− ;

for r ≤ R0 and t ≤ 0: ð29Þ
Note that we only require Bessel functions of the first kind,
which lead to finite harmonics at r ¼ 0.6 From Eq. (29), we
can see that ω is bounded from below: ω− ≥ m or
ω ≥ m− ≡m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rg=R0

p
. If the mass of the scalar is

small, Aω can be approximated by
ffiffiffi
π

p
—see

Appendix A. Note that it is not necessary to make this
assumption and we could simply keep Aω in the expres-
sions without solving the normalization condition (28).
However, we will use Aω ≈

ffiffiffi
π

p
for convenience.

Similarly, from the second equation in (20), we find that,
before t ¼ 0, the harmonics outside the shell are given by

h̄ω;lðt; rÞ ¼
e−iωt

r



Aωe−iωr� þ Bωeiωr� ; jr − R0j ≪ rg;

Cωe−ikr� þDωeikr� ; r ≫ R0;

ð30Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
.

FIG. 3. Penrose diagram of the collapsing shell background.
The curved, thin lines depict Cauchy surfaces with respect to the
Schwarzschild time t. The grey region represents the shell
interior.

6Note that these Bessel functions lead to the diagonalization of
the free Hamiltonian in empty flat space-time in spherical
coordinates.
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Now we can see that when ω ≥ m, the harmonics
oscillate as r� → ∞. Hence, in such a case we have the
continuous spectrum. But when m− ≤ ω ≤ m the harmon-
ics decay or grow exponentially as r� → ∞. After dropping
the exponentially growing mode, we are left with modes
that correspond to a discrete spectrum that oscillate
between r ¼ 0 and the turning point of the potential
(22). From the gluing conditions across the potential
(22) one can estimate the allowed values of the discrete
energy levels ωi. We leave the study of these discrete
modes for the future. For our present purposes, it is
important to know that there are only finitely many such
states in the well, which has a depth of order m2rg=R0.
Hence, these states play a minor role in the effects that we
consider here. In particular, since they do not correspond to
running states at spatial infinity, they do not contribute to
Hawking radiation at tree level. Moreover, if we take
m2rg=R0 to be small enough—we are, in fact, working
with small m—there will be no discrete states at all.
The absolute value of the undetermined coefficients in

Eq. (30) can be found using the normalization condition
(28). However, since we are only interested in the behavior
of the harmonics in the vicinity of the shell, we will
concentrate on coefficients Aω and Bω. The effects that we
are looking for appear in the vicinity of the collapsing shell.
As seen from spatial infinity, or elsewhere, these effects
simply receive grey body factors due to the potential
barrier (22).
We find coefficients Aω and Bω using the boundary

conditions (21). During the first stage, when RðtÞ ¼ R0, the
boundary conditions reduce to

hω;l½R0 − 0� ¼ hω;l½R0 þ 0�;

½∂rhω;l�r¼R0−0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rg
R0

r
½∂rhω;l�r¼R0þ0: ð31Þ

In Appendix B, we show that the above equations imply
that

Aω ¼ B�
ω ¼ ilþ1ffiffiffiffiffiffi

2ω
p

�
1 −

rg
R0

�
1=4

eiω½R
�
0
−R0ð1−rg

R0
Þ−12�

þO
��

1 −
rg
R0

�
3=4

�
: ð32Þ

Let us consider the free Hamiltonian for these modes
(see Ref. [42] for a similar discussion). In a generic
situation, the free Hamiltonian, expressed via harmonic
functions, takes the following form:

H0ðtÞ ¼
X
l;n

ZZ
∞

m

dωdω0

ð2πÞ2 ½Eω;ω0;lðtÞa†ω;l;naω0;l;n

þ J ω;ω0;lðtÞaω;l;naω0;l;n þ H:c:�; ð33Þ

where

Eω;ω0;lðtÞ ¼
Z

∞

0

dr

ffiffiffiffiffijgjp
sinðθÞ



gtt∂th̄�ω;lðr; tÞ∂th̄ω0;lðr; tÞ

−
1ffiffiffiffiffijgjp h̄�ω;lðr; tÞ∂t½

ffiffiffiffiffi
jgj

p
gtt∂th̄ω0;lðr; tÞ�

�
;

J ω;ω0;lðtÞ ¼
Z

∞

0

dr

ffiffiffiffiffijgjp
sinðθÞ



gtt∂th̄ω;lðr; tÞ∂th̄ω0;lðr; tÞ

−
1ffiffiffiffiffijgjp h̄ω;lðr; tÞ∂t½

ffiffiffiffiffi
jgj

p
gtt∂th̄ω0;lðr; tÞ�

�
:

Thus, generically the free Hamiltonian is not diagonal
because of the presence of terms with ω ≠ ω0 and espe-
cially because of the presence of a nonzero J ω;ω0;l.
However, given suitably chosen normalizable modes, in
stationary situations E and J become constants because of
the factorization of the dependence of the harmonic
functions on t and r: h̄ω;lðr; tÞ ¼ e−iωthω;lðrÞ. In such a
case one can find harmonic functions, satisfying

Z
∞

0

dr

ffiffiffiffiffijgjp
sin θ

gtthω;lðrÞhω0;lðrÞ ¼ 0;

Z
∞

0

dr

ffiffiffiffiffijgjp
sin θ

gtthω;lðrÞh�ω0;lðrÞ ¼
π

ω
δðω − ω0Þ; ð34Þ

which lead to the vanishing J terms. Note that the
normalization above is chosen so as to be consistent with
condition (28) in stationary situations.
The stage before collapse, considered in this section, is

indeed a stationary situation, but we have discussed the
behavior of the hω;lðrÞ modes for certain ranges of r. To be
able to find the free Hamiltonian, we integrate over r, and
hence, in principle, we need the modes for all r. However,
here it is sufficient to assume that there are normalizable
modes that satisfy Eq. (34)—these modes will necessarily
have the form given in Eqs. (29) and (30) for the
appropriate regions. With the normalization of the modes
given in Eq. (34), it is simple to verify that the free
Hamiltonian is

H0ðt ≤ 0Þ ¼
X
l;n

Z
∞

m

dω
2π

ω½aω;l;na†ω;l;n þ a†ω;l;naω;l;n� ð35Þ

and is indeed diagonal before the start of the collapse. But
during collapse, the in-harmonics no longer diagonalize the
Hamiltonian. This is a sign that there is particle creation.

B. In-harmonics during the late stage of collapse

In this section, we find the behavior of in-harmonics as
t → ∞. The change in the behavior of the in-harmonics
from past to future infinity due to the nonstationarity of the
background is what causes particle creation.
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We assume that ν ≈ 1 and neglect the difference between
ν and 1. The reason for this is as follows: Given a harmonic
function inside the shell (see Fig. 4), we would like to find
the harmonic function outside the shell by solving the
gluing condition (21). To find the form of the harmonic
function behind the shell, one has to solve the Cauchy
problem with initial values given at t ¼ 0 ¼ t−. The initial
condition is given by the values of the harmonic functions

behind the shell and just outside it and their derivatives at
t ¼ 0 ¼ t−. Then, at a point inside the shell which is
causally disconnected from the region outside of the shell
at t ¼ 0, e.g., a point labeled “a” in Fig. 4, the value of the
harmonic is simply given by Eq. (29). However, to use the
boundary condition to find the harmonic functions outside
the shell, we need to solve the Cauchy problem for the
region inside the shell, the grey region in Fig. 4, that is
within the domain of influence of points outside the shell
on the initial Cauchy hypersurface. This appears to be a
rather complicated problem. However, if we take ν ≈ 1,
then the domain of dependence of points inside the shell are
always inside the shell; hence the grey region can be
neglected and the matching can be done straightforwardly,
as we will see below.
Assuming ν ≈ 1, the harmonics inside the shell are given

by Eq. (29), where ω− ¼ ω=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rg=R0

p
. Since we are

only interested in the modes near the exterior of the shell,
assuming jRðtÞ − rgj ≪ rg, we neglect the potential (22).
The solution is again as in the case before collapse and can
be given in terms of Fourier modes. However, as the
matching at the shell is more complicated with the solution
in this form, we instead keep the solution general. In all we
have the following solution, as t → þ∞:

h̄ω;lðt; rÞ ¼
1

r

( ffiffiffiffiffi
πr

p
Jlþ1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
− −m2

p
r
	
e�iω−t− ; r ≤ RðtÞ;

fω;lðuÞ þ gω;lðvÞ; r ≥ RðtÞ; jr − RðtÞj ≪ rg;
ð36Þ

where u ¼ t − r� and v ¼ tþ r� are outgoing and ingoing
null coordinates, respectively. Since the shell is lightlike
at the late stage of collapse, the v-dependent part of the
harmonics outside the shell is not affected by the collapse.
This can easily be understood by noting that the boundary
conditions are a continuity of the harmonics and their
derivatives normal to the shell. Hence, gω;lðvÞ is unaffected
by the collapse, and from Eq. (30), we have

gω;l ¼ Aωe−iωv: ð37Þ
We now find the u-dependent part of the harmonic outside
the shell by imposing the boundary conditions (21) at the
shell. Note that we are assuming that ν ≈ 1, which means
that the shell collapses at approximately the speed of light
even from the point of view of observers inside the shell. In
terms of the picture in Fig. 4, this means that we are
assuming that the grey region is infinitesimally thin. In this
approximation the harmonics inside the shell are given by
Bessel functions, as in the static case, but close to the shell
they also have a constant contribution that is equal to the
value of the v-dependent part of the harmonics outside the
shell. Therefore, taking this constant piece into account, for
the positive frequency modes the continuity of ϕl across the
shell gives

ffiffiffiffiffiffi
πR

p
Jlþ1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
− −m2

q
R
	
e−iω−t− ¼ ½fω;lðuÞ�r¼R: ð38Þ

For brevity we denote RðtÞ as R, but the dependence of R
on t should be remembered. Using Eq. (17), as t → ∞ the
outgoing null coordinates evaluated at the shell are ap-
proximately

½u�r¼R ≈ 2t − ðR�
0 þ rg − R0Þ: ð39Þ

Hence, the continuity relation reduces to

fω;l½2t− ðR�
0þ rg−R0Þ�≈

ffiffiffiffiffiffi
πR

p
Jlþ1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
− −m2

q
R
	
e−iω−t− :

ð40Þ

Therefore, using relation (15), we find that

rh̄ω;lðr; tÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
πRðuÞ

p
Jlþ1

2

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
− −m2

q
RðuÞ

i

× e
−iω−

ðR0−rgÞ
ν

�
1−e

−
uþR�

0
þrg−R0
2rg

	
þ gω;lðvÞ; ð41Þ

where gω;lðvÞ is given in Eq. (37) and

FIG. 4. An illustration of the Cauchy problem for harmonics
after collapse.

EMIL T. AKHMEDOV, HADI GODAZGAR, and FEDOR K. POPOV PHYSICAL REVIEW D 93, 024029 (2016)

024029-10



RðuÞ ¼ rg

�
1þ R0 − rg

rg
e−

uþR�
0
þrg−R0
2rg

�
: ð42Þ

As t → ∞, the boundary condition for the derivative of
the modes at the shell, Eq. (21), becomes�∂t−
∂t

�
½ν∂t−hω;l − ∂rhω;l�r¼RðtÞ−0 ¼ 2½∂uhω;l�r¼RðtÞþ0:

ð43Þ
Since, as t → ∞, R → rg, we have used R

rg
≈ 1 to simplify

the right-hand side of the above equation. In Appendix C,
we show that this relation is satisfied by (41) if we neglect
the difference between ν and 1. In the case where ν is much
less than 1, our solution for the v-dependent part of the
harmonic will be modified and will be more complicated.
It is worth stressing at this point that the behavior of the

harmonic function very far from the gravitating center (at
spatial infinity) is the same both when the shell is static and
when the shell is collapsing. That can be expected on
general physical grounds because of locality. Hence, while
the harmonics have dependence on null coordinates near
the shell surface, this will not be the case at spatial infinity.
This is expected because these modes are harmonics of a
massive scalar field which propagates to future timelike
infinity and not future null infinity.

IV. HAWKING RADIATION (TREE LEVEL)

We will, first, reproduce the standard thermal radiation
using the harmonics constructed in the previous section. In
particular, we calculate the energy flux at the final stage of
collapse. It is technically easier and physically more
appropriate to calculate it just outside the shell, r≳ rg,
and then continue across the potential barrier (22). In fact,
the flux is created just outside the black hole. Thus, we find
the flux as t → ∞ in the vicinity of the shell, jr − rgj ≪ rg.
In the proximity of the shell, the energy flux is given by

Jðr ≈ rg; tÞ≡
Z
S2

sin θdθdφr2h∶Tr
tðr; tÞ∶i

≈ −r2g
Z
S2

sin θdθdφh∶Ttr�ðr; tÞ∶i: ð44Þ

Using the expression for the energy-momentum tensor of a
scalar field

Jðr ≈ rg; tÞ ¼
X
l

ð2lþ 1ÞðJðlÞu − JðlÞv Þ; ð45Þ

where

JðlÞu ¼ r2g

Z
∞

m

dω
2π

½∂uh̄�ω;lðr; tÞ∂uh̄ω;lðr; tÞ þ c:c:�;

JðlÞv ¼ r2g

Z
∞

m

dω
2π

½∂vh̄�ω;lðr; tÞ∂vh̄ω;lðr; tÞ þ c:c:�: ð46Þ

In Eq. (44), the normal ordering is understood in the standard
way in the presence of the background fields. In particular,
we understand h∶Tμ

ν∶i as a subtraction from hTμ
νi of the

same expression but calculated for the case of a shell that is
eternally static at r ¼ R0. In this case, since the harmonic
functions in the vicinity of a static shell are given by Fourier
modes in u and v, from Eq. (45), the flux vanishes.
To find the flux due to the collapsing shell we use the

harmonics outside the shell at the late stage of collapse
given in Eq. (41),

h̄ω;lðr; tÞ≈
1

rg

�
1−

rg
R0

�1
4

ffiffiffiffi
2

ω

r
cos

�
πðlþ1Þ

2
−ω−rg

�
eiωrge

−
u−u0
2rg

þ 1

rg

�
1−

rg
R0

�1
4 ilþ1ffiffiffiffiffiffi

2ω
p e−iωvþiω½R�

0
−R0ð1−rg=R0Þ−1=2�;

ð47Þ

where u0 ¼ rg logðR0=rgÞ − rg. To obtain this expression
from Eq. (41), we use RðuÞ ≈ rg, ν ≈ 1; neglect the
difference between r and rg in the denominator; and
neglect m2 in comparison with ω2

− ¼ ω2=ð1 − rg=R0Þ,
because R0 ≈ rg and ω ≥ m for the continuous part of
the spectrum. We also use the limiting form of the Bessel
function of the half-integer index with a large argument.
To calculate the flux, we now simply need to insert the

harmonic given in Eq. (47) into Eq. (45) and evaluate the
integrals. However, to make contact with the original
derivation of Hawking radiation [1] and for simplicity, it
is appropriate to reexpand the expression on the right-hand
side of Eq. (47) in terms of the modes given in Eq. (30).
Because the v-dependent part is unchanged we only have to
reexpand the u-dependent part,

�
1 −

rg
R0

�1
4

ffiffiffiffi
2

ω

r
cos

�
πðlþ 1Þ

2
− ω−rg

�
eiωrge

−
u−u0
2rg

¼
Z
jω0j>m

dω0

2π
ffiffiffiffiffiffiffiffiffiffi
2jω0jp αðω;ω0Þe−iω0u; ð48Þ

where αω;ω0 ¼ αðω; jω0jÞ and βω;ω0 ¼ αðω;−jω0jÞ are pro-
portional to the seminal Bogoliubov coefficients for
Hawking radiation.
The implicit expression for αðω;ω0Þ given in Eq. (48) is,

in fact, valid only for t > 0. There is also a contribution to
αðω;ω0Þ from before collapse. However, these contribu-
tions will be of the form δðω − ω0Þ. Since we are only
interested in the effects due to collapse, wewill ignore these
terms in αðω;ω0Þ and, from Eq. (48), find

αðω;ω0Þ ≈ 2

�
1 −

rg
R0

�1
4

ffiffiffiffiffiffiffi
jω0j
ω

r
cos

�
πðlþ 1Þ

2
− ω−rg

�

×
Z

∞

u�
dueiωrge

−
u−u0
2rg eiω

0u; ð49Þ
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where u� ¼ −R�
0. Because of the rapid oscillations of the

integrand in the lower limit of the u integration compared
with the upper limit, the exact position of u� is not very
relevant, and we can extend the range of integration to the real
line. Moreover, as we have eluded to before, since
we are interested in the late-stage flux generated by the
collapsing shell, we have ignored contributions to αðω;ω0Þ
from stages I and II of the collapse (see Fig. 2). Evaluating the
u integration on the real line, it is straightforward to show that

αðω;ω0Þ ≈ −4rg
�
1 −

rg
R0

�1
4

ffiffiffiffiffiffiffi
jω0j
ω

r
cos

�
πðlþ 1Þ

2
− ω−rg

�
× eiω

0u0eπω
0rge2iω

0rg log ðωrgÞΓð−2iω0rgÞ: ð50Þ

Using the above results, the expressions for JðlÞv and JðlÞu are

JðlÞv ≈
�
1 −

rg
R0

�1
2

Z
∞

m

dω
2π

ω ð51Þ

and

JðlÞu ≈
Z

∞

m

dω
2π

Z
jω0j>m

dω0

2π

×
Z
jω00j>m

dω00

2π

ω0ω00ffiffiffiffiffiffiffiffiffiffiffiffiffijω0ω00jp αðω;ω0Þα�ðω;ω00Þe−iðω0−ω00Þu:

ð52Þ

The integral over ω in the expression for JðlÞu can first be
evaluated as follows:Z

∞

m

dω
2π

αðω;ω0Þα�ðω;ω00Þ

≈ 8r2g

�
1 −

rg
R0

�1
2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

jω0ω00j
p

eiðω0−ω00Þu0eπðω0þω00Þrg

× Γð−2iω0rgÞΓð2iω00rgÞ

×
Z

∞

log ðmrgÞ

dðlog ðωrgÞÞ
2π

e2iðω0−ω00Þrg log ðωrgÞ; ð53Þ

where, sinceω−rg ≫ 1, we have replaced cos2½πðlþ1Þ
2

− ω−rg�
by 1=2 in the integral—other contributions lead to terms that
decay as powers of 1=u in Eq. (52). The integral above is over
the real half line; henceZ

∞

m

dω
2π

αðω;ω0Þα�ðω;ω00Þ

≈ 2rg

�
1 −

rg
R0

�1
2jω0je2πω0rg jΓð2iω0rgÞj2δðω0 − ω00Þ

þ regular term;

¼ 2π

�
1 −

rg
R0

�1
2

nð−ω0Þδðω0 − ω00Þ þ regular term; ð54Þ

where

nðωÞ ¼ signðωÞ
e4πrgω − 1

: ð55Þ

The “regular term” on the right-hand side of Eq. (54) is of the

form p:v:ð i
ω0−ω00Þ, and hence for large u its contribution to JðlÞu ,

Eq. (52), is negligible.

Substituting Eq. (54) into JðlÞu and using nð−ωÞ ¼
nðωÞ þ signðωÞ, we obtain the following expression for
the flux:

JðlÞu ≈ 2

�
1 −

rg
R0

�1
2

�Z
∞

m

dω
2π

ωnðωÞ þ
Z

∞

m

dω
2π

ω

2

�
: ð56Þ

Therefore, the total flux is

Jðr≈ rg; tÞ ¼
X
l

ð2lþ 1Þ½JðlÞu − JðlÞv �

≈
�
1−

rg
R0

�1
2
X
l

ð2lþ 1Þ
Z

∞

m

dω
2π

ωnðωÞ: ð57Þ

This is the black body radiation appearing in the vicinity
of the collapsing shell. The flux at infinity is modified due
to the mass of the field under consideration and is
multiplied by the grey body factor, jTω;lj2, due to the
potential barrier (22),

Jðr → ∞; tÞ ≈ 2

�
1 −

rg
R0

�1
2
X
l

ð2lþ 1Þ

×
Z

∞

m

dω
2π

ω

e4πrgω − 1
jTω;lj2; ð58Þ

where at large l the grey body factor Tω;l can be estimated

to behave as ðirgωÞlþ1

ð2l−1Þ!! (see, for example, Ref. [43]).

If we naively set m ¼ 0 in Eqs. (48)–(54), we encounter
divergent integrals at ω ¼ 0. However, in the massless case
one has to use

h̄ω;lðr; tÞ ≈ ffiffiffiffiffiffiffi
πrg

p
Jlþ1

2
ðω−rgÞe−

u−u0
2rg þ Aω

rg
e−iωv ð59Þ

instead of Eq. (47). It is not hard to show that because of
the peculiar behavior of the Bessel functions at small values
of their argument, Jlþ1

2
ðxÞ ∼ xlþ1

2, all ω integrals in
Eqs. (48)–(58) are convergent at their lower bounds.
Then the calculation of the flux continues in the same
way as for the massive case, and we obtain Eq. (58) where
m is set to zero.

V. LOOP CORRECTIONS AND THE
SECULAR GROWTH

In the previous section we used the two point Wightman
function to calculate the expectation value of the stress-
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energy tensor. As motivated in the Introduction section,
here we show that loop corrections to this Wightman
function grow with time.
The interaction term for λϕ4 theory in the collapsing

shell background has the following form:

VðtÞ ¼ λ

4!

Z
∞

RðtÞ
ϕ4r2drdΩþ λ

4!

�∂t−
∂t

�

×
Z

RðtÞ

0

ϕ4r2drdΩ: ð60Þ

In the limit t → ∞, the second term is exponentially
suppressed because ∂t−∂t ∝ e−t=rg . Hence, we can neglect
this term. Furthermore, in this limit, we can neglect the
difference between RðtÞ and rg as the integrals are regular
at r ¼ rg.
As mentioned in Sec. I, the one-loop, bubble diagram

correction to the Keldysh propagator does not introduce
a secularly growing contribution; hence we consider the
next loop order. The two-loop sunset diagram contribution
to the Keldysh propagator can be expressed as follows:

DK
0þ2ð1; 2Þ ¼

X
l1;m1;l2;m2

Yl1;m1
ðΩ1ÞYl2;m2

ðΩ2Þ
Z

dω1

2π

dω2

2π

× f½Nω1;l1;n1jω2;l2;n2ðtÞ þ δl1l2δm1m2
δðω1 − ω2Þ�h̄�ω1;l1

ðt1; r1Þh̄ω2;l2ðt2; r2Þ
þ Kω1;l1;n1jω2;l2;n2ðtÞh̄ω1;l1ðt1; r1Þh̄ω2;l2ðt2; r2Þ þ H:c:g; ð61Þ

where we have used the definition of the Keldysh propa-
gator in terms of Dþ− and D−þ propagators, Eq. (7). Also,
from Eq. (5),

Dþ−ð1; 2Þ ¼
X
l;m

Z
∞

m

dω
2π

h̄�ω;lðt1; r1Þh̄ω;lðt2; r2Þ

× Yl;nðθ1;φ1ÞYl;nðθ2;φ2Þ; ð62Þ

D−þð1; 2Þ ¼
X
l;m

Z
∞

m

dω
2π

h̄ω;lðt1; r1Þh̄�ω;lðt2; r2Þ

× Yl;nðθ1;φ1ÞYl;nðθ2;φ2Þ: ð63Þ

Neglecting the difference between t1 and t2 and
letting t ¼ ðt1 þ t2Þ=2, it can be shown that the coef-
ficients N and K in the Keldysh propagator take a simple
form,

Nω;l;njω0;l0;n0 ðtÞ ¼
λ2

3

ZZ
t

t0

dt3dt4

ZZ
∞

rg

ðr3r4Þ2dr3dr4h̄ω;lðr3; t3Þh̄�ω0;l0 ðr4; t4Þ

× Yðl; n; l0; n0Þ
Y3
j¼1

Z
∞

m

dωj

2π
h̄ωj;ljðr3; t3Þh̄�ωj;lj

ðr4; t4Þ ð64Þ

and

Kω;l;njω0;l0;n0 ðtÞ ¼ −
λ2

3

Z
t

t0

dt3

Z
t3

t0

dt4

ZZ
∞

rg

ðr3r4Þ2dr3dr4fh̄�ω;lðr3; t3Þh̄�ω0;l0 ðr4; t4Þ þ ðω; l ↔ ω0; l0Þg

× Yðl; n; l0; n0Þ
Y3
j¼1

Z
∞

m

dωj

2π
h̄�ωj;lj

ðr3; t3Þh̄ωj;ljðr4; t4Þ; ð65Þ

where

Yðl; n; l0; n0Þ ¼
X

l1;2;3;n1;2;3

hl; n; l1; n1; l2; n2; l3; n3ihl0; n0; l1; n1; l2; n2; l3; n3i;

hl; n; l1; n1; l2; n2; l3; n3i ¼
Z

dΩYl;nðθ;φÞYl1;n1ðθ;φÞYl2;n2ðθ;φÞYl3;n3ðθ;φÞ:

Note that we use the real basis of spherical harmonics.
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It is worth noting that N and K from (64) themselves do
not receive UV divergent contributions—this can be seen
from simple power counting even in flat space-time.
However, the Keldysh propagator has the standard UV
divergence due to integrations over ω. Our main interest,
here, is the contribution from IR modes to N and K. Hence,
we assume some suitable UV renormalization and assume
that all coupling constants acquire their physical (renor-
malized) values.
We start with Nω;l;njω0;l0;n0 ðtÞ. Our goal is to single out

the largest contribution to N and K in the infinite future
limit. This limit corresponds to ωe−t=rg ∼ ω0e−t=rg → 0
for fixed ω and ω0—we will keep only the leading terms
in this limit. Note that there are no large contributions
to N and K during the stationary stage before collapse
because of energy conservation—this was explained in
the Introduction section. Hence, we can put t0 before
t ¼ 0—before the onset of collapse. Furthermore, as we
argued at the end of Sec. III, very far from the collapsing

shell the behavior of the harmonic functions does not
change after the start of the collapse. Hence, there are
no growing contributions from the region of large r.
Therefore, the harmonic functions in Eq. (64) can be
approximated by (47), i.e., h̄ω;l ≈ h̄ω;lðuÞ þ h̄ω;lðvÞ, where
h̄ω;lðvÞ is the v-dependent part of h̄ω;lðr; tÞ given in
Eq. (47), while h̄ω;lðuÞ is its u-dependent part. Note that
we still keep ∞ as the upper limits of integration over
r3;4, because the integrals are rapidly converging—in fact,
the integrals converge much faster than if the modes at
spatial infinity were used. Moreover, the largest contri-
bution to Nω;l;njω0;l0;n0 ðtÞ comes from the region of
integration over t3 and t4 where t3 ≫ rg log ðrgωÞ and
t4 ≫ rg log ðrgω0Þ. In this region we can neglect the
dependence of h̄ω;lðu3Þ and h̄�ω0;l0 ðu4Þ on u3 and u4,

respectively. The v-dependent parts of h̄ω;lðr3; t3Þ and
h̄�ω0;l0 ðr4; t4Þ lead to subleading contributions.
Using the above simplifications, we find that

Nω;l;njω0;l0;n0 ðtÞ ≈
2λ2

3r2g
ffiffiffiffiffiffiffiffi
ωω0p

�
1 −

rg
R0

�1
2

cos

�
πðlþ 1Þ

2
− ω−rg

�
cos

�
πðl0 þ 1Þ

2
− ω0

−rg

�
Yðl; n; l0; n0Þ

×
Z

t

rg log ðrgωÞ
dt3

Z
t

rg log ðrgω0Þ
dt4

Z
∞

rg

r23dr3

Z
∞

rg

r24dr4
Y3
j¼1

Z
∞

m

dωj

2π
h̄ωj;ljðr3; t3Þh̄�ωj;lj

ðr4; t4Þ: ð66Þ

We can again express the harmonics as sums of u- and v-dependent parts; hence

Z
∞

m

dωj

2π
h̄ωj;ljðr3; t3Þh̄�ωj;lj

ðr4; t4Þ ≈
Z

∞

m

dωj

2π
½h̄ωj;ljðu3Þh̄�ωj;lj

ðu4Þ þ h̄ωj;ljðv3Þh̄�ωj;lj
ðv4Þ

þh̄ωj;ljðu3Þh̄�ωj;lj
ðv4Þ þ h̄ωj;ljðv3Þh̄�ωj;lj

ðu4Þ�: ð67Þ

Since h̄ω;lðuÞ is proportional to a rapidly oscillating cosine function, the last two terms in the above expression are negligible.
The first contribution can again be expanded in Fourier modes, as in the previous section. Using Eqs. (48) and (54),

Z
∞

m

dωj

2π
h̄ωj;ljðr3; t3Þh̄�ωj;lj

ðr4; t4Þ ≈
�
1 −

rg
R0

�1
2 1

r2g

Z
ωj>m

dωj

4πωj
f½nð−ωjÞe−iωjðu3−u4ÞþnðωjÞeiωjðu3−u4Þ� þ e−iωjðv3−v4Þg

þ subleading terms; ð68Þ

where nðωÞ is defined in Eq. (55).
We can now substitute Eq. (68) into the expression forNω;l;njω0;l0;n0 ðtÞ, Eq. (66). Changing the integration variables from t3

and t4 to T ¼ ðt3 þ t4Þ=2 and τ ¼ t3 − t4, we obtain

Nω;l;njω0;l0;n0 ðtÞ ≈
λ2

12r8g
ffiffiffiffiffiffiffiffi
ωω0p

�
1 −

rg
R0

�
2

cos

�
πðlþ 1Þ

2
− ω−rg

�
cos

�
πðl0 þ 1Þ

2
− ω0

−rg

�

× Yðl; n; l0; n0Þ
Z

t

0

dT
Z

∞

−∞
dτ

Z
∞

rg

r23dr3

Z
∞

rg

r24dr4

×
Y3
j¼1

Z
ωj>m

dωj

4πωj
f½nð−ωjÞe−iωjðτ−ΔrÞ þ nðωjÞeiωjðτ−ΔrÞ� þ e−iωjðτþΔrÞg; ð69Þ
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whereΔr ¼ r3 − r4. Note that the lower limit of integration
over dT is irrelevant for the leading term that grows with
time. We have also extended the limits of integration over τ
to �∞ because the rapid oscillations of the integrand
makes their exact position irrelevant as t → ∞.
Now we can see that the integrand of the dT integral does

not depend on T itself. Hence, the leading contribution is
N ∼ λ2t. As explained in the Introduction, it is also possible

to see how in a stationary situation this contribution would
vanish. In such a case, all the exponentials would have the
same sign in their exponent; hence the τ integration would
give δðω1 þ ω2 þ ω3Þ, which is zero given that ωj are
positive.
Let us now show that the same growth appears in K.

Making the same approximations in Eq. (65) as is made for
the calculation of N, we arrive at the following expression:

Kω;l;njω0;l0;n0 ≈ −
4λ2

3
ffiffiffiffiffiffiffiffi
ωω0p

r2g

�
1 −

rg
R0

�1
2

cos

�
πðlþ 1Þ

2
− ω−rg

�
cos

�
πðl0 þ 1Þ

2
− ω0

−rg

�
Yðl; n; l0; n0Þ

×
Z

t

rg logðωrgÞ
dt3

Z
t3

rg logðω0rgÞ
dt4

Z
∞

rg

r23dr3

Z
∞

rg

r24dr4
Y3
i¼1

Z
∞

m

dωi

2π
h̄�ωj;lj

ðr3; t3Þh̄ωj;ljðr4; t4Þ:

Then, using Eq. (68) and performing the same change of integration variables from t3; t4 to T and τ as above, we get that

Kω;l;njω0;l0;n0 ≈ −
λ2

6
ffiffiffiffiffiffiffiffi
ωω0p

r8g

�
1 −

rg
R0

�
2

cos

�
πðlþ 1Þ

2
− ω−rg

�
cos

�
πðl0 þ 1Þ

2
− ω0

−rg

�

× Yðl; n; l0; n0Þ
Z

t

0

dT
Z

∞

0

dτ
Z

∞

rg

r23dr3

Z
∞

rg

r24dr4

×
Y3
j¼1

Z
ωj>m

dωj

4πωj
f½nð−ωjÞe−iωjðτ−ΔrÞ þ nðωjÞeiωjðτ−ΔrÞ� þ e−iωjðτþΔrÞg:

We again see that the integrand of the integral over T does
not depend on T itself. Hence, here the leading contribution
is also K ∼ λ2t.
For the massless case the situation is similar, but instead

of using the harmonic of the form given in Eq. (47), we
must use h̄ given in Eq. (59) to evaluate

Z
∞

0

dω
2π

h̄�ω;lðr3; t3Þh̄ω;lðr4; t4Þ: ð70Þ

However, as before Jlþ1
2
ðωÞ is negligible in the small ω

region, so the only difference with the massive case is that
the ω integrals run from 0 to ∞. Therefore, we obtain the
same type of behavior of N and K for massless fields.

A. Loop corrections to the Hawking radiation

Above we have shown that loop corrections to the two-
point functions are not suppressed in comparison with the
tree-level contribution. In fact, even if λ2 ≪ 1, after a long
enough time of collapse λ2t ∼ 1. It means that perturbation
theory breaks down. In particular, higher loops bring higher
powers of λ2t to N and K. Thus, one has to do the
resummation of all leading loop corrections. This kind of
resummation was done for the case of a strong electric field
and massive scalar field theory on de Sitter space-time in

[23–29,32,33]. For the present case the resummation will
be done elsewhere.
Of course, it is too early to draw any conclusions before

this resummation has been done. However, based on the
intuition gained from previous examples, we make a few
remarks on the physical consequence of these growing
corrections. Their presence means that after resummation
one will get some specific time dependence Nω;l;njω0;l0;n0 ðtÞ
and Kω;l;njω0;l0;n0 ðtÞ, which does not necessarily have to be
linear. Furthermore, on general physical grounds we expect
the presence of a stationary final state for the case under
discussion. However, we expect that due to the loop nature
of the corrections in question this stationary state will be
reached at much later times than the stationarity of the
Hawking tree-level flux is reached.
In any case the presence of N and K means the

modification of the Hawking flux. In fact, in the case
when K ¼ 0 and N ≠ 0 the equation for the flux is as
follows:

Ju ≈
X
l;n

ZZ
∞

m

dω1dω2

ð2πÞ2
Z
jω0j>m

dω0

2π

Z
jω00j>m

dω00

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jω0ω00j

p
× αðω1;ω0Þα�ðω2;ω00Þhfa†ω1;l;n

; aω2;l;ngie−iðω
0−ω00Þu:

ð71Þ
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It is not hard to also restore the contribution of K. Now
because of the loop corrections we have that

hfa†ω1;l;n
; aω2;l;ngi ¼ δðω1 − ω2Þ þ 2Nω1;l;njω2;l;nðtÞ: ð72Þ

The above tree-level contribution is obtained when N ¼ 0.
Note that due to the orthogonality of the spherical harmonics
only diagonal in l and n, components of Nω1;l;njω2;l0;n0 will
contribute to the flux. Thus, one can see that the presence of
N does lead to a modification of the Hawking flux.

VI. CONCLUSIONS

In this paper, we show that, in the case of λϕ4 theory,
loop corrections to the Hawking flux are not suppressed
given a sufficiently long time—in other words, perturbation
theory breaks down. To make a definitive conclusion about
the fate of Hawking radiation and quantum black holes it is
necessary to consider the resummation of the leading
corrections from all loops, as done for the case of a strong
electric field and massive scalar field theory on de Sitter
space-time [23,24,26–29] (see [25] for a review). We leave
the resummation of the corrections, for the present case, for
the future.
The presence of unsuppressed loop corrections leads to a

modification of the Hawking flux. Furthermore, while the
tree-level flux hTr

t i is universal, loop corrections to it,
i.e., N and K, are not universal. Their final value after
resummation and as t → ∞ will, in general, depend on
initial conditions. At the same time, in some approximation
they completely characterize the state of the quantum field
theory in the vicinity of the black hole and affect the
spectrum of the radiation. In any case, in this paper we have
demonstrated that it is inappropriate and premature to draw
any conclusions about black hole evaporation and puzzles
associated with it, such as the information paradox [4],
based on a study of the tree-level contributions to the
energy-momentum tensor.
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APPENDIX A: NORMALIZATION OF THE
HARMONIC FUNCTIONS

In this appendix, we determine the normalization of the
harmonics inside the shell before collapse using the
condition from the canonical commutation relation. As
we remark in Sec. III, it is not necessary to fix the
normalization in order to find our results—we simply fix
the normalization for convenience. For the modes inside the
shell, given by Eq. (29), the left-hand side of condition (28)
reduces to
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where we have made use of the following substitution for ω:

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
− −m2

q
:

When mrg ≪ ð1 − rg
R0
Þ1=2, we can use the normalization

identity for Bessel functions whereupon we obtain7

1

πr2
jAωj2δðr − r0Þ: ðA1Þ

Hence,

Aω ≈
ffiffiffi
π

p
: ðA2Þ

APPENDIX B: THE BOUNDARY CONDITION
FOR THE HARMONIC FUNCTIONS ON THE

SHELL BEFORE COLLAPSE

We fix the coefficients Aω and Bω of the harmonic modes
in the vicinity of the shell, Eq. (30), by imposing the
boundary condition (21) on the shell. First, consider the
continuity of the modes at the shell, Eq. (31). From
jR0 − rgj ≪ rg, we deduce that

7We deduce that AωðpÞ must be p-independent in order to
obtain the form of the normalization identity for Bessel functions.
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Therefore, from Eq. (29),
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Hence, up to lower order terms in ð1 − rg
R0
Þ, the continuity of

the ϕl across the shell gives
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which, in particular, implies that Bω ¼ A�
ω. Furthermore,

the second boundary condition in (31) for the radial
derivative of ϕl, again up to lower order terms in
ð1 − rg
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Þ, gives
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Using the above equations, it is straightforward to see
that

Aω ¼ B�
ω ¼ ilþ1ffiffiffiffiffiffi
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APPENDIX C: THE BOUNDARY CONDITION
FOR THE HARMONIC FUNCTIONS ON THE

SHELL DURING THE LATE STAGE
OF COLLAPSE

In this appendix, we show that the solution for the
harmonic function outside and in the vicinity of the shell,

Eq. (41), which was found in Sec. III B by imposing
continuity at the shell also satisfies the boundary condition
on the normal derivative, Eq. (43).
In Sec. III B we added a constant term to rhω;l inside the

shell because of the approximation ν ≈ 1. In the boundary
condition for the normal derivatives of the harmonics this
term simply cancels the v-dependent term in rhω;l outside
the shell. This makes sense because the boundary condition
is a condition on derivatives normal to the shell, namely the
u-dependence of the harmonics outside the shell. In what
follows, we will concentrate on the nonconstant piece
inside the shell and the u-dependent term in the harmonics
outside the shell.
Using the harmonic function inside the shell, given in

Eq. (36), the left-hand side of Eq. (43) is
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where we have used the expression for t−, Eq. (15), as
t → ∞. The right-hand side of Eq. (43) is

2½∂uhω;l�r¼RðtÞþ0 ¼ −
ffiffiffi
π

p
2R3=2 R

0ðuÞe−iω−
ðR0−rgÞ

ν

�
1−e

−
uþR�

0
þrg

2rg

	h
2Jlþ1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
− −m2

q
RðuÞ

	
−2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
− −m2

q �
Jl−1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
− −m2

q
R
	
− Jlþ3

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
− −m2

q
R
		i

− 2iω−
R0 − rg
2νrg

ffiffiffiffi
R

p ffiffiffi
π

p
e−

t
rgJlþ1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
− −m2

q
R
	
e
−iω−

ðR0−rgÞ
ν

�
1−e

−
uþR�

0
þrg

2rg

	
; ðC2Þ

HAWKING RADIATION AND SECULARLY GROWING LOOP … PHYSICAL REVIEW D 93, 024029 (2016)

024029-17



where we have used Eq. (42),

R0ðuÞ ¼ −
R0 − rg
2rg

e−
t
rg ; ðC3Þ

and the behavior of u on the shell as t → ∞, Eq. (39). Using the above relation and Eq. (39), the right-hand side of Eq. (43)
simplifies to
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Comparing the above equation to Eq. (C1), we conclude that the boundary condition on the normal derivatives is satisfied
if ν ¼ 1.
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