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We investigate the absorption of a massive and charged scalar field in a Reissner-Nordström background.
We compare our numerical results for the absorption cross section, obtained for arbitrary frequencies, with
the low- and high-frequency limits. We find, in particular, that the total absorption cross section can be
negative, showing that planar scalar waves can be superradiantly amplified by black holes.
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I. INTRODUCTION

Scattering is a matter of major interest in physics, being
responsible, for instance, for the understanding of the
atomic nucleus. This tool has been used to study black
holes since the 1960s, starting with the pioneer work by
Matzner, in 1968 [1]. The first investigations were per-
formed analytically, using approximations in the limits of
high and low frequencies. The development of numerical
techniques performed with the aid of computers allowed
the investigation of scattering and absorption problems in
the full range of frequencies.
There are plenty of works on scattering by Schwarzschild

black holes, including the scattering and absorption for
massless [1–3] and massive [4] scalar fields, fermions [5,6],
and electromagnetic [7] and gravitational waves [8]. For
rotating black holes there is still a lot of work to be done in
this area, although some investigations have been devoted to
the scattering and absorption for scalar [9,10] and gravita-
tional fields [11] in Kerr spacetime.
For the Reissner-Nordström spacetime there is also a

considerable number of studies in the literature. Nakamura
and Sato [12] studied the absorption of charged andmassive
scalar fields in the Reissner-Nordström spacetime, finding
the reflection coefficient numerically. There are also recent
works that compute the absorption and scattering cross
sections of Reissner-Nordström black holes for massless
[13] and massive scalar fields [14] and electromagnetic
[15–17] and gravitational waves [18,19]. Some studies on
absorption by higher-dimensional Reissner-Nordström
black holes can also be found in the literature [20–22].
One effect that has received a lot of attention is the

superradiant scattering, which was first studied, for black
holes, by Misner [23]. This effect is triggered when a wave,
with frequency smaller than a certain critical value, is
scattered by the black hole. The wave gains energy from
the black hole and is scattered with more energy than it
originally had. Ifwe can trap these scatteredwaves in a cavity,
such that they keep being scattered by the black hole, wemay

create a chain reaction and develop a superradiant instability,
dubbed black hole bomb [24]. Recently a comprehensive
review about superradiance has been released [25].
In order to have superradiance in a physical system, we

must have an associated dissipation mechanism. In black
hole systems, the dissipation occurs through the event
horizon. We also need energy gain from the black hole for
the superradiance to take place [26]. In the Reissner-
Nordström case a charged field can gain energy by stealing
mass and charge from the black hole. Recently, Di Menza
and Nicolas [27] studied some aspects of superradiance in
Reissner-Nordström spacetimes. Moreover, the case of
superradiant instability of Reissner-Nordström black holes
has been studied in Refs. [28,29].
Here we compute the absorption cross section for a

charged and massive scalar field in a Reissner-Nordström
background for the full range of frequencies, using a
numerical approach. We compare our numerical results
with the low- and high-frequency limits, which we obtain
analytically. We also analyze the superradiant scattering
implications in the partial and total absorption cross
sections.
The remainder of this paper is organized as follows. In

Sec. II we present the field equations for the massive and
charged scalar field in the Reissner-Nordström spacetime.
In Sec. III we find analytical approximations for the
absorption cross section in the low- and high-frequency
regimes. In Sec. IV we show the results obtained numeri-
cally, comparing them with the analytical approximations
obtained in Sec. III. In Sec. V we present our discussions
and final remarks. We assume c ¼ G ¼ ℏ ¼ 1.

II. FIELD EQUATIONS

The Reissner-Nordström line element can be written as

ds2 ¼ fdt2 − ð1=fÞdr2 − r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ
where

f ¼
�
1 −

rþ
r

��
1 −

r−
r

�
; ð2Þ*lben.carol@gmail.com
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with

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
ð3Þ

being the outer (event) horizon (rþ) and inner (Cauchy)
horizon (r−), where M and Q are the black hole mass and
charge, respectively.
The Klein-Gordon equation for a charged scalar field in

this geometry can be written as

ð∇ν − iqAνÞð∇ν − iqAνÞΦ ¼ μ2Φ; ð4Þ

where μ and q are the mass and charge of the scalar field,
respectively, and Aν ¼ ðQ=r; 0; 0; 0Þ is the vector potential
of the background electromagnetic field. We can solve
Eq. (4) by making a separation of variables, such as

Φωl ¼
ψωlðrÞ

r
Plðcos θÞe−iωt; ð5Þ

where Plðcos θÞ is a Legendre polynomial and ψωlðrÞ
satisfies the radial equation

f
d
dr

�
f
d
dr

ψωl

�
þ VeffðrÞψωl ¼ 0; ð6Þ

with the effective potential

VeffðrÞ ¼
��

ω −
qQ
r

�
2

− f

�
μ2 þ lðlþ 1Þ

r2
þ f0

r

��
: ð7Þ

Since we are interested in absorption and scattering proper-
ties, we assume that the scalar field is unbounded, so
that ω > μ.
We can use the tortoise coordinate r�, defined by

dr�=dr ¼ f−1, in Eq. (6) and obtain a Schrödinger-like
equation, namely

d2

dr2�
ψωl þ VeffðrÞψωl ¼ 0: ð8Þ

Taking the asymptotic limits of Eq. (8), we find the
solutions

ψωlðrÞ ≈
�
Tωle−iξr� ; for r → rþ;

e−iρr� þ Rωleiρr� ; for r → ∞;
ð9Þ

where ξ≡ ω − qQ=rþ and ρ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2

p
. Tωl and Rωl are

associated to the transmitted and reflected parts of the
wave. By imposing the conservation of the flux, we find
the relation

jRωlj2 þ
ξ

ρ
jTωlj2 ¼ 1; ð10Þ

where jRωlj2 is the reflection coefficient and jTωlj2 is the
transmission coefficient.
When qQ < 0, ξ > 0, and we have an incoming wave at

the horizon, implying that there is no superradiance for this
case. On the other hand, when qQ > 0 and ω < jqQj=rþ
we have ξ < 0. In this case the sign of the exponential e−iξr�
is switched, and instead of an incoming wave at the horizon
we have an outgoing wave. This implies a superradiant
scattering, since this outgoing wave at the horizon will
reinforce the outgoing wave at infinity.
The absorption cross section is given by

σ ¼
X∞
l¼0

σl; ð11Þ

where the partial absorption cross section σl is given by

σl ¼
π

ρ2
ð2lþ 1Þð1 − jRωlj2Þ ¼ π

ξ

ρ3
ð2lþ 1ÞjTωlj2: ð12Þ

III. ANALYTICAL RESULTS

A. Low-frequency limit

In this subsection we compute the absorption cross
section in the limit ω ≪ 1. In order to find an analytical
solution we also assume μ ≪ 1 and qQ=rþ ≪ 1. We follow
the same method used by Unruh in Ref. [30], which
consists in making a separation of the parameter space
in three different regions, namely:

(i) Region I, very close to the black hole event horizon,
i.e., r → rþ;

(ii) Region II, low-frequency limit, where ω, μ, and
qQ=rþ are much smaller than 1;

(iii) Region III, far away from the black hole event
horizon, i.e., r ≫ rþ.

We find similar equations to the ones obtained in
Ref. [14] for each region, which are

ϕωlðrÞ ≈

8>>><
>>>:

Atrae−iξr� ; for Region I;

ζ ln
�
r−rþ
r−r−

	
þ τ; for Region II;

a Flðη;ωvrÞ
r þ b Glðη;ωvrÞ

r ; for Region III;

ð13Þ

where ϕωl ≡ ψωl=r; Flðη;ωvrÞ and Glðη;ωvrÞ are the
regular and irregular spherical wave functions, respectively;
Atra, ζ, τ, a, and b are constants, and

η ¼ −
Mðω2 þ ρ2Þ

ρ
þ qQ

2ρ
: ð14Þ

We then make an interpolation between the regions and
find the low-frequency absorption cross section, given by

σif ¼
A
ρ

�
ω −

qQ
rþ

�
; ð15Þ
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where A ¼ 4πr2þ is the area of the black hole. We see that

for q ¼ 0 Eq. (15) gives us A=v, where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2=ω2

p
,

which is the result obtained for the massive chargeless
scalar field in a Reissner-Nordström background [14].
Equation (15) agrees with the result obtained by
Gibbons [31]. Other results for low-frequency limits can
be found (i) in Ref. [32], for the massless charged scalar
field, and (ii) in Ref. [33], for higher-dimensional
black holes.

B. High-frequency limit

In the limit ω ≫ μ the field can be analyzed as a charged
particle. Is this case the particle does not follow a geodesic,
since it is subjected to the Lorentz force caused by the
charged black hole. We can write the equations of motion
and find the orbit equation of the particle, given by

�
du
dϕ

�
2

¼ −fðuÞu2 þ ð1 − fðuÞÞ μ
2

L2
þQ2u2q2

L2

−
2QqEu
L2

þ E2 − μ2

L2
; ð16Þ

where u≡ 1=r and fðuÞ ¼ 1 − 2MuþQ2u2. E and L are
the energy and the angular momentum of the particle,
respectively, which, in the semiclassical limit, can be
associated to E → ω and L → lþ 1=2, respectively.
The high-frequency absorption cross section is given

by σhf ¼ πb2c, where bc ¼ Lc=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
c − μ2

p
is the critical

impact parameter and Lc and Ec are the critical
angular momentum and critical energy, respectively.
With Eq. (16) and its derivative we can find bc and,
consequently, the high-frequency absorption cross
section. We have found a lengthy closed-form solution
for the critical impact parameter bc, which we will not
exhibit here.

IV. NUMERICAL ANALYSIS

We can solve the radial equation (6) numerically, from
very close to the black hole event horizon to very far away
from it, using the asymptotical expressions, given by
Eq. (9) and their derivatives. We can use the mass of the
black hole as a normalization factor and fix the values ofQ,
q, and μ. With the radial solution we are able to compute
numerically the reflection coefficient and the absorption
cross section.
Figure 1 shows the reflection coefficient for Mμ ¼ 0.4,

Q=M ¼ 0.8, l ¼ 0, and different choices ofMq. In this plot
we exhibit only the part of the reflection coefficient that is
greater than 1. We see that, as we increase the charge of the
field, keeping its mass fixed, the maximum of the reflection
coefficient grows and moves to the right, i.e., happens for
bigger values of the frequency.

FIG. 1. Reflection coefficient as a function of the frequency for
Mμ ¼ 0.4, Q=M ¼ 0.8, l ¼ 0, and different choices of Mq.

FIG. 2. Reflection coefficient for Q=M ¼ 0.8, Mq ¼ 1.6, and
different values of Mμ. As in Fig. 1, here we only exhibit the
values of jRωlj2 which are greater than 1.

FIG. 3. Total absorption cross section as a function of the
frequency, for Mμ ¼ 0.4, Q=M ¼ 0.4, and different choices
of Mq.
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If we fix Mq ¼ 1.6 and vary Mμ, as in Fig. 2, we see
that for smaller values of Mμ we have greater values of
the reflection coefficient. We also notice a modification in
the shape of the reflection coefficient as we vary the
parameter Mμ.
In Fig. 3 we compare the high-frequency limit of the

absorption cross section with the numerical results for a
fixed black hole charge and different choices of the scalar
field charge. We observe that (i) the numerical results
oscillate around the analytical approximation, even for
intermediate values of the frequency, and (ii) as we
increase the charge of the field the absorption cross
section decreases. We can also observe from Fig. 3 that,
depending on the charge of the field, we can have a finite
value for the absorption cross section in the limit
ω=μ → 1, contrasting with the chargeless massive field
case, in which we always have a divergent absorption
cross section in this limit.
Figure 4 presents the total absorption cross section

for different choices of the mass coupling Mμ. We see
that, for fixed values of Q=M and Mq, as we increase the
mass coupling the total absorption cross section also
increases.
In Fig. 5 we compare our numerical results for the

l ¼ 0 case with the low-frequency absorption cross
section σlf, given by Eq. (15). We see that for very small
mass couplings Mμ, σlf gives a good approximation
for the absorption cross section, but as we increase the
mass coupling, the approximation gets worse, once the
numerical results go to infinity faster than the analytical
ones.
In Fig. 6 we show the partial and total absorption cross

sections as a function of the frequency for Mμ ¼ 0.4,
Q=M ¼ 0.4, and Mq ¼ −0.4. In this case Qq < 0, and
therefore we do not have superradiance. Moreover, in the
low-frequency limit the total absorption cross section goes
to infinity.

FIG. 4. Total absorption cross section for Q=M ¼ 0.4,
Mq ¼ 1.6, and different values of Mμ. As in Fig. 3, here we
also exhibit the corresponding high-frequency result.

FIG. 5. Comparison between the partial absorption cross
section for l ¼ 0 (σ0) obtained numerically and the low-
frequency approximation (σlf) for different choices of Mμ. We
have chosen Q=M ¼ 0.4 and Mq ¼ 0.1.

FIG. 6. Partial and total absorption cross sections forMμ ¼ 0.4,
Q=M ¼ 0.4, and Mq ¼ −0.4.

FIG. 7. Partial and total absorption cross sections forMμ ¼ 0.4,
Q=M ¼ 0.8, and Mq ¼ 1.6.
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In Fig. 7 we present the partial and total absorption cross
sections for Mμ ¼ 0.4, Q=M ¼ 0.8, and Mq ¼ 1.6. In the
inset we can observe that for 1 < ω=μ≲ 2 the total and
partial absorption cross sections for l ¼ 0 and l ¼ 1 have
negative values, implying that, in this case, we have
superradiant scattering.

V. DISCUSSIONS AND FINAL REMARKS

We studied the Klein-Gordon equation for a charged and
massive scalar field in a Reissner-Nordström background.
We found the reflection coefficient and the absorption cross
section, comparing numerical and approximate analytical
results. Some of the features are similar to the chargeless
scalar case, but the charge introduces new aspects.
We obtained that the total absorption cross section

oscillates around the high-frequency limit and exhibits a
wiggly pattern as a consequence of the individual con-
tributions of the partial absorption cross sections, which
present maxima for different values of the frequency.
Another interesting feature observed is that as we
increase the charge coupling qQ, the absorption cross
section gets smaller. This is due to the presence of a
repulsive electromagnetic interaction (the Lorentz force)
for qQ > 0 competing with the gravitational interaction,
causing the decrease of the absorption.
If the charges of the field (q) and of the black hole (Q)

have opposite signs, the absorption cross section is bigger
than for the chargeless field case, due to the Lorentz
attraction between the charges.
It is also worth emphasizing that for Qq > 0, in the limit

ω → μ, we can have finite values for the absorption cross
section of the charged massive field; while for the case in
which q ¼ 0 the total absorption cross section always tends
to infinity in this limit. Therefore the Lorentz repulsion
force can render the low-frequency limit of the absorption
cross section finite.
Concerning the analytical results, for the high-frequency

limit we have been able to find the geometric optics limit of
the absorption cross section, and the numerical results
oscillate around this limit. A similar behavior is observed in
the absorption of the chargeless massive scalar field by a
Reissner-Nordström black hole. For the low-frequency

limit we found an analytical approximation for the absorp-
tion cross section in the case whenMμ and Qq=rþ are very
small. The result we found can be regarded as a generali-
zation of the one obtained for the chargeless massive scalar
field [14].
We have shown that we can have superradiance of a

charged and massive scalar field in a Reissner-Nordström
background and that this superradiance increases with the
increase of Qq and with the decrease of Mμ. As we have
seen, both the partial and the total absorption cross sections
can be negative. Partial waves are associated to spherical
waves which, when appropriately summed, give rise to a
planar wave. Our results show that planar scalar waves can
be superradiantly amplified by black holes. This contrasts
with the case of the rotating Kerr black hole [10], for which
we also have negative partial scalar absorption cross
sections, but they combine in a way that the total scalar
absorption cross section is always positive. Even for the
acoustic black hole analog system with rotation, namely the
draining bathtub, superradiance is not enough to imply a
negative total absorption cross section [34].
We can understand this difference between the

uncharged rotating and charged black hole cases by
realizing that for the rotating case we have, for the total
scalar absorption cross section, besides the sum in l, a sum
inm. Consequently, when the partial contributions ofm are
added, a positive sum is always obtained, resulting in the
fact that planar scalar waves impinging in a Kerr black hole
never present a negative total absorption cross section.
Superradiant amplification of planar waves has also been

reported for optical systems, related to electromagnetic
scattering in active media [35–37].
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